Date of Thesis

2014

Description

The emerging disease White-Nose Syndrome in hibernating bat populations across the United States has increased the need to understand the physiological benefits and consequences of hibernation and the effects on immunological responsiveness. Hibernation has been well-documented in many mammalian species, yet few studies have examined hibernation immunology in bats, particularly with respect to normal immunological patterns. In order to characterize the levels of circulating leukocytes and plasma immunoglobulins in euthermic and hibernating female big brown bats (Eptesicus fuscus), blood smear differential leukocyte counts and total immunoglobulin assays were performed for each group using blood samples from the active and hibernation seasons. Hibernation patterns – torpor and arousals from torpor – were determined by placing temperature-sensitive dataloggers on the backs of bats assigned to the hibernating group during the hibernation season. Data indicate that the ratio of circulating neutrophils to lymphocytes is lower in bats assigned to the euthermic group during the hibernation season than in bats assigned to the hibernation group during the hibernation period, but that relative immunoglobulin levels do not differ during the hibernation season, regardless of whether bats were active or hibernating. Neither bats assigned to the hibernation group nor bats assigned to the euthermic group demonstrate a significant change in the ratio of circulating neutrophils and lymphocytes between their active and hibernating seasons. Bats assigned to the hibernation group were also observed to arouse from torpor somewhat synchronously. These results suggest that innate and adaptive cell levels are maintained, at best, in hibernating bats that are not immunologically challenged and that bats that remain euthermic during the hibernation season are able to continually regulate their levels of neutrophils and lymphocytes and therefore their innate and adaptive immune system responses.

Keywords

Hibernation, immunology, bats

Access Type

Honors Thesis (Bucknell Access Only)

Degree Type

Bachelor of Science

Major

Biology

First Advisor

DeeAnn Reeder

Share

COinS