Publication Date

12-12-2022

Description

Small (< 8 kW) non-road engines are a significant source of pollutants such as particle number (PN) emissions. Many small non-road engines do not have diesel particulate filters (DPFs). They are so designed that air–fuel ratio (AFR) can be adjusted to control visible diesel smoke and particulate matter (PM) resulting from larger accumulation mode particles. However, the effect of AFR variation on smaller nucleation mode nanoparticle emissions is not well understood. Several studies on larger engines have reported a trade-off between smaller and larger particles. In this study, AFR was independently varied over the entire engine map of a naturally aspirated (NA) non-road small diesel engine using forced induction (FI) of externally compressed air. AFR’s ranged from 57 to 239 compared to the design range of 23–92 for the engine, including unusually high AFR’s at full-load operation, not previously reported for conventional combustion. As expected, larger accumulation mode particles were lowered (up to 15 times) for FI operation. However, the smaller nucleation mode nanoparticles increased up to 15 times. Accumulation mode particles stopped decreasing above an AFR threshold while nucleation particles continuously increased. In-cylinder combustion analysis showed a slightly smaller ignition delay and higher burn rate for FI cases relative to NA operation. Much higher peak cylinder pressures were accompanied by much lower combustion and exhaust gas temperatures (EGT), due to higher in-cylinder mass during FI operation. Peak nucleation mode emissions were shown to be negatively correlated to EGT for all the data, collapsing on a single curve. This is consistent with some other studies reporting increased nucleation mode emissions (and higher accumulation mode particles) with decreased load, lower speed, lower EGR, advanced combustion phasing, and higher injection pressure, all of which reduce EGT. The nucleation-accumulation trade-off has been explained by the ‘adsorption hypothesis’ by some investigators. In the current work, an alternative/supplemental argument has been made for the possibility that lower cylinder temperatures during the late-burning phase (correlated to lower EGT) phase hampers oxidation of nucleation mode particles and increases nucleation mode emissions.

Journal

Environmental Science and Pollution Research

Volume

29

Issue

59

First Page

89449

Last Page

89468

Department

Mechanical Engineering

DOI

https://doi.org/10.1007/s11356-022-22032-w

Share

COinS