Publication Date
1-18-2020
Description
We present nine bijections between classes of Dyck paths and classes of standard Young tableaux (SYT). In particular, we consider SYT of flag and rectangular shapes, we give Dyck path descriptions for certain SYT of height at most 3, and we introduce a special class of labeled Dyck paths of semilength n that is shown to be in bijection with the set of all SYT with n boxes. In addition, we present bijections from certain classes of Motzkin paths to SYT. As a natural framework for some of our bijections, we introduce a class of set partitions which in some sense is dual to the known class of noncrossing partitions.
Journal
Annals of Combinatorics
Volume
24
Issue
1
First Page
69
Last Page
93
Department
Mathematics
Publisher Statement
Link to Published Version
https://link.springer.com/article/10.1007/s00026-019-00482-3
DOI
https://doi.org/10.1007/s00026-019-00482-3
Recommended Citation
Gil, Juan B.; McNamara, Peter R. W.; Tirrell, Jordan O.; and Weiner, Michael D.. "From Dyck Paths to Standard Young Tableaux." (2020) : 69-93.