Scaling Rules for Diffusive Drug Delivery in Tumor and Normal Tissues
Publication Date
2011
Description
Delivery of blood-borne molecules and nanoparticles from the vasculature to cells in the tissue differs dramatically between tumor and normal tissues due to differences in their vascular architectures. Here we show that two simple measures of vascular geometry--δ(max) and λ--readily obtained from vascular images, capture these differences and link vascular structure to delivery in both tissue types. The longest time needed to bring materials to their destination scales with the square of δ(max), the maximum distance in the tissue from the nearest blood vessel, whereas λ, a measure of the shape of the spaces between vessels, determines the rate of delivery for shorter times. Our results are useful for evaluating how new therapeutic agents that inhibit or stimulate vascular growth alter the functional efficiency of the vasculature and more broadly for analysis of diffusion in irregularly shaped domains.
Journal
Proceedings of the National Academy of Sciences
Volume
108
Issue
5
First Page
1799
Last Page
1803
Department
Biomedical Engineering
DOI
10.1073/pnas.1018154108
Recommended Citation
Baish, James W.; Stylianopoulos, Triantafyllos; Lanning, Ryan; Kamoun, Walid S.; Fukumura, Dai; Munn, Lance L.; and Jain, Rakesh K.. "Scaling Rules for Diffusive Drug Delivery in Tumor and Normal Tissues." Proceedings of the National Academy of Sciences (2011) : 1799-1803.