Understory dominance and the new climax: Impacts of Japanese knotweed (Fallopia japonica) invasion on native plant diversity and recruitment in a riparian woodland
Publication Date
11-13-2017
Description
Riparian forests exhibit levels of ecological disturbance that leave them especially prone to biological invasions. Japanese knotweed (Fallopia japonica) is particularly suited to these habitats and is an aggressive invader along watercourses throughout its now-global range as an exotic invader. Using one of the few Silver Maple Floodplain Forest communities that has not been invaded by F. japonica in the West Branch Susquehanna River valley (Pennsylvania, USA) as a baseline, this study examines whether and how this primarily intact riparian forest community differs from nearby invaded communities in terms of 1) native species richness, 2) native species density, and 3) riparian forest tree recruitment. Defining a baseline (intact) community composition will inform restoration plans for local riparian forests where knotweed might be eradicated or reduced. Invaded and non-invaded sites differed statistically across species richness, species density, and tree recruitment. Our results suggest that F. japonica has reduced the diversity and abundance of native understory riparian plant species. The species also appears to have suppressed long-term tree recruitment, setting up a trajectory whereby the eventual decline of trees currently in the canopy could shift this community from a tree-dominated riparian forest to a knotweed-dominated herbaceous shrubland.
Journal
Biodiversity Data Journal
Volume
5
Issue
e20577
Department
Biology
Link to Published Version
https://bdj.pensoft.net/article/20577/list/9/
DOI
https://doi.org/10.3897/BDJ.5.e20577
Recommended Citation
Wilson M, Freundlich A, Martine C (2017) Understory dominance and the new climax: Impacts of Japanese knotweed (Fallopia japonica) invasion on native plant diversity and recruitment in a riparian woodland. Biodiversity Data Journal 5: e20577. https://doi.org/10.3897/BDJ.5.e20577
Comments
Wilson and Freundlich contributed to this work while students at Bucknell.