Subharmonicity, Comparison Results, and Temperature Gaps in Cylindrical Domains
Publication Date
2016
Description
In this paper, we compare the solutions of two Poisson PDE’s in cylinders with Neumann boundary conditions, one with given initial data and one with data arranged decreasing in the y−direction. When the solutions are normalized to have zero mean, we show that the solution with symmetrized data is itself symmetrized and exhibits larger convex means. The main tools used are the star function introduced by Baernstein and a new subharmonicity result. As a consequence, we give a new proof of a conjecture of Kawohl for temperature gaps in rectangles.
Journal
Differential and Integral Equations
Volume
29
Issue
5-6
First Page
493
Last Page
512
Department
Mathematics
Link to Published Version
https://projecteuclid.org/euclid.die/1457536888
Recommended Citation
Langford, Jeffrey J.. "Subharmonicity, Comparison Results, and Temperature Gaps in Cylindrical Domains." Differential and Integral Equations (2016) : 493-512.