Constructing Frostman-Blaschke Products and Applications to Operators on Weighted Bergman Spaces
Publication Date
2015
Description
We give an example of a uniform Frostman-Blaschke product B, whose spectrum is a Cantor set, such that the composition operator C-B is not closed-range on any weighted Bergman space A(alpha)(p), answering two questions posed in recent papers. We include some general observations about these Blaschke products. Using methods developed in our first example, we improve upon a theorem of V.I. Vasjunin concerning the rate at which the zeros of a uniform Frostman-Blaschke product approach the unit circle.
Journal
Journal of Operator Theory
Volume
74
Issue
1
First Page
149
Last Page
175
Department
Mathematics
Link to Published Version
DOI
10.7900/jot.2014may14.2026
Recommended Citation
Akeroyd, John R. and Gorkin, Pamela. "Constructing Frostman-Blaschke Products and Applications to Operators on Weighted Bergman Spaces." Journal of Operator Theory (2015) : 149-175.