Title

Response of Stream Biofilms to Pulsed Versus Steady-State Phosphorus Additions

Start Date

12-11-2016 1:30 PM

End Date

12-11-2016 4:00 PM

Description

Our current understanding of how algal-dominate biofilms in streams respond to phosphorus (P) enrichment is largely based on the assumption that streams have a constant P supply. However, in reality natural streams experience large swings in P concentrations due to runoff and in-stream biotic and abiotic uptake. The purpose of this study was to compare the effects of a steady-state P release versus successive pulse events on algae-dominated biofilms colonizing artificial streams. One treatment (n=4) was maintained at a constant 12 µg P/L, another was subjected to weekly 8 h pulses at 252 µg P/L (n=4) and a third treatment was maintained below P detection limits (n=4). Both the steady-state and the pulse treatments received an equivalent amount of P by the end of the experiment. Preliminary pulse amplitude modulation fluorometry data indicate that algae treated with the phosphorous pulse had a greater photosynthetic capacity and ability to utilize the phosphorus.

Keywords

phosphorous, biofilm

Type

Presentation

Session

Ecology and Water Quality

Language

eng

This document is currently not available here.

Share

COinS
 
Nov 12th, 1:30 PM Nov 12th, 4:00 PM

Response of Stream Biofilms to Pulsed Versus Steady-State Phosphorus Additions

Elaine Langone Center, Forum

Our current understanding of how algal-dominate biofilms in streams respond to phosphorus (P) enrichment is largely based on the assumption that streams have a constant P supply. However, in reality natural streams experience large swings in P concentrations due to runoff and in-stream biotic and abiotic uptake. The purpose of this study was to compare the effects of a steady-state P release versus successive pulse events on algae-dominated biofilms colonizing artificial streams. One treatment (n=4) was maintained at a constant 12 µg P/L, another was subjected to weekly 8 h pulses at 252 µg P/L (n=4) and a third treatment was maintained below P detection limits (n=4). Both the steady-state and the pulse treatments received an equivalent amount of P by the end of the experiment. Preliminary pulse amplitude modulation fluorometry data indicate that algae treated with the phosphorous pulse had a greater photosynthetic capacity and ability to utilize the phosphorus.