Development of the Heat and Energy Concept Inventory: Preliminary Results on the Prevalence and Persistence of Engineering Students' Misconceptions

Publication Date

2012

Description

BACKGROUND Students frequently hold a number of misconceptions related to temperature, heat and energy. There is not currently a concept inventory with sufficiently high internal reliability to assess these concept areas for research purposes. Consequently, there is little data on the prevalence of these misconceptions amongst undergraduate engineering students.

PURPOSE (HYPOTHESIS) This work presents the Heat and Energy Concept Inventory (HECI) to assess prevalent misconceptions related to: (1) Temperature vs. Energy, (2) Temperature vs. Perceptions of Hot and Cold, (3) Factors that affect the Rate vs. Amount of Heat Transfer and (4) Thermal Radiation. The HECI is also used to document the prevalence of misconceptions amongst undergraduate engineering students.

DESIGN/METHOD Item analysis, guided by classical test theory, was used to refine individual questions on the HECI. The HECI was used in a one group, pre-test-post-test design to assess the prevalence and persistence of targeted misconceptions amongst a population of undergraduate engineering students at diverse institutions.

RESULTS Internal consistency reliability was assessed using Kuder-Richardson Formula 20; values were 0.85 for the entire instrument and ranged from 0.59 to 0.76 for the four subcategories of the HECI. Student performance on the HECI went from 49.2% to 54.5% after instruction. Gains on each of the individual subscales of the HECI, while generally statistically significant, were similarly modest.

CONCLUSIONS The HECI provides sufficiently high estimates of internal consistency reliability to be used as a research tool to assess students' understanding of the targeted concepts. Use of the instrument demonstrates that student misconceptions are both prevalent and resistant to change through standard instruction.

Journal

Journal of Engineering Education

Volume

101

Issue

3

First Page

412

Last Page

438

Department

Chemical Engineering

This document is currently not available here.

Share

COinS