Title

sARI: a soft agreement measure for class partitions incorporating assignment probabilities

Publication Date

2018

Journal

Advances in Data Analysis and Classification

First Page

1

Last Page

21

Department

Mathematics

Abstract

Agreement indices are commonly used to summarize the performance of both classification and clustering methods. The easy interpretation/intuition and desirable properties that result from the Rand and adjusted Rand indices, has led to their popularity over other available indices. While more algorithmic clustering approaches like k-means and hierarchical clustering produce hard partition assignments (assigning observations to a single cluster), other techniques like model-based clustering include information about the certainty of allocation of objects through class membership probabilities (soft partitions). To assess performance using traditional indices, e.g., the adjusted Rand index (ARI), the soft partition is mapped to a hard set of assignments, which commonly overstates the certainty of correct assignments. This paper proposes an extension of the ARI, the soft adjusted Rand index (sARI), with similar intuition and interpretation but also incorporating information from one or two soft partitions. It can be used in conjunction with the ARI, comparing the similarities of hard to soft, or soft to soft partitions to the similarities of the mapped hard partitions. Simulation study results support the intuition that in general, mapping to hard partitions tends to increase the measure of similarity between partitions. In applications, the sARI more accurately reflects the cluster boundary overlap commonly seen in real data.

DOI

https://doi.org/10.1007/s11634-018-0346-x

Share

COinS