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Abstract—Objective: Deep brain stimulation (DBS) modeling 

can improve surgical targeting by quantifying the spatial extent 

of stimulation relative to subcortical structures of interest. A 

certain degree of model complexity is required to obtain accurate 

predictions, particularly complexity regarding electrical 

properties of the tissue around DBS electrodes. In this study, the 

effect of anisotropy on the volume of tissue activation (VTA) was 

evaluated in an individualized manner. Methods: Tissue 

activation models incorporating patient-specific tissue 

conductivity were built for 40 Parkinson disease patients who 

had received bilateral subthalamic nucleus (STN) DBS. To assess 

the impact of local changes in tissue anisotropy, one VTA was 

computed at each electrode contact using identical stimulation 

parameters. For comparison, VTAs were also computed 

assuming isotropic tissue conductivity. Stimulation location was 

considered by classifying the anisotropic VTAs relative to the 

STN. VTAs were characterized based on volume, spread in three 

directions, sphericity, and Dice coefficient. Results: Incorporating 

anisotropy generated significantly larger and less spherical VTAs 

overall. However, its effect on VTA size and shape was variable 

and more nuanced at the individual patient and implantation 

levels. Dorsal VTAs had significantly higher sphericity than 

ventral VTAs, suggesting more isotropic behavior. Contrastingly, 

lateral and posterior VTAs had significantly larger and smaller 

lateral-medial spreads, respectively. Volume and spread 

correlated negatively with sphericity. Conclusion: The influence 

of anisotropy on VTA predictions is important to consider, and 

varies across patients and stimulation location. Significance: This 

study highlights the importance of considering individualized 

factors in DBS modeling to accurately characterize the VTA. 

 
Index Terms—Anisotropy, deep brain stimulation, diffusion 

tensor imaging, electric field modeling, Parkinson disease, 

subthalamic nucleus, volume of tissue activation. 
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I. INTRODUCTION 

EEP brain stimulation (DBS) has shown tremendous 

promise in treating symptoms of movement disorders, 

such as Parkinson disease (PD) and essential tremor, and 

psychiatric disorders, such as obsessive-compulsive disorder 

and major depression [1], [2]. However, a better understanding 

of how DBS modulates pathological neural activity is needed 

to optimize the therapy for patients. Clinical outcomes are 

highly dependent on electrode location and stimulation 

parameter settings. An accurate representation of the spatial 

extent of stimulation relative to surrounding structures may 

help clinicians localize stimulation to the target region via 

electrode placement and parameter adjustment. The electric 

field induced by DBS can be modeled using finite element 

analysis (FEA) and then thresholded appropriately to estimate 

the amount of neural tissue directly modulated, termed the 

volume of tissue activation (VTA) [3], [4]. DBS modeling and 

the VTA are valuable tools for both mechanistic study and 

clinical application [5], [6]. For example, they can be used to 

quantify and visualize stimulation delivered to specific parts 

of the brain, interpret and predict outcomes, investigate 

different targets, and validate new DBS paradigms and 

electrode designs [7], [8]. 

Current techniques for modeling the VTA vary in their 

complexity and implementation. Simplifications are usually 

made due to constraints on computational time and capability 

[9], [10]. Although a certain level of complexity is required to 

obtain accurate predictions from DBS models, exactly how 

much complexity is necessary and what aspects should be 

prioritized are still unclear. Many relevant factors contribute to 

the complexity of the model (to different degrees) and 

influence its solution when solved (often the distribution of the 

electric potential and field) [11]. These factors include 

neuroanatomy [12], [13], electrode geometry [14], [15], lead 

trajectory [16], [17], electrical material properties [18], [19], 

electrode-tissue interface [20], and stimulation settings [21]. 

Regarding the tissue surrounding the lead, a common 

simplification is to assume that it is a homogeneous and 

isotropic medium despite its nonuniform material composition 

and properties. Previous studies have investigated the effect of 

incorporating more complex electrical tissue properties, such 

as heterogeneity and anisotropy, on VTA predictions [11], 

[18]–[20], [22]–[24]. Tissue anisotropy, in particular, was 
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identified as a key factor to consider in DBS modeling due to 

its sizable influence on the stimulation-induced field 

distribution [18]. However, the impact of anisotropy on the 

VTA has not been evaluated across a large cohort of patients. 

The objective of the present study was to evaluate the effect 

of anisotropy on the VTA in an individualized manner based 

on patient-specific electrical tissue conductivity and 

stimulation location. Tissue activation models of STN DBS 

were used to assess the strength of this effect across PD 

patients. To the authors’ knowledge, this study is the first to 

quantitatively analyze the influence of intra- and intersubject 

variability in tissue anisotropy on VTA size and shape at this 

large a scale (40 patients). 

II. METHODS 

A. Patient Dataset 

Patients were selected from a clinical database at the 

University of Michigan (U-M) [7]. Forty patients (28 male, 12 

female) with advanced PD who had received bilateral STN 

DBS were included, yielding 80 lead implantations (model 

3389, Medtronic plc, Minneapolis, MN, USA). Of the 80 

implantations, eight leads that delivered nonmonopolar 

stimulation were excluded. Therefore, a total of 72 

implantations (37 left hemisphere, 35 right hemisphere) were 

modeled, simulated, and analyzed in this study. Information 

about the patient dataset is summarized in Table I. Clinical 

data obtained for each patient consisted of preoperative 

magnetic resonance imaging (MRI), preoperative diffusion 

tensor imaging (DTI), postoperative computed tomography 

(CT), and therapeutic stimulation settings. Details regarding 

image acquisition and processing are described in [7]. Briefly, 

the MRI and CT were acquired using previously published 

imaging protocols [25]. Settings for the MRI included: field 

strength = 3 T, slice orientation = coronal, voxel size = 0.69 × 

1.25 × 0.69 mm, slice thickness = 1.25 mm, and number of 

slices = 40. CT settings included: slice orientation = axial, 

voxel size = 0.5 × 0.5 × 0.625 mm, and slice thickness = 0.625 

mm. DTI settings included: field strength = 3 T, number of 

orientations = 15, b-value = 800 mm2/s, and voxel size = 1 × 1 

× 2 mm. The MRI and DTI data were resampled using linear 

and cubic spline interpolation, respectively. At the end of 

image processing, all imaging data had a uniform voxel size of 

0.51 × 0.51 × 0.51 mm. Use of the data for this study was 

approved in advance by the Institutional Review Boards at 

Bucknell University and U-M. 

 

B. Individualized Tissue Activation Modeling 

A 3D finite element model incorporating patient-specific 

neuroanatomy, lead position and orientation, anisotropic (and 

heterogeneous) tissue conductivity, and therapeutic 

stimulation settings was created for each implantation using 

COMSOL Multiphysics (5.5, COMSOL, Inc., Burlington, 

MA, USA) to simulate the electric field induced by DBS. 

Tissue activation models were built following the 

individualized (N-of-1) modeling framework described in  

TABLE I 
PATIENT DATASET INFORMATION 

 Mean SD Range 

Age (baseline) [yr] 63.1 6.7 52.7-74.7 
Age (diagnosis) [yr] 52.9 8.6 33.0-69.0 

Disease duration [yr] 10.3 5.2 2.0-22.8 

DBS amplitude [V] 2.7 0.6 1.5-4.2 
DBS frequency [Hz] 141.3 22.6 125-185 

DBS pulse width [µs] 60.4 3.5 60-90 

Number (patient) = 40 (28 M, 12 F), number (implantation) = 72 (37 L, 35 

R); SD: standard deviation. 

 

detail in [7] (Fig. 1a). Briefly, STNs traced from coronal MRI 

slices and electrode coordinates measured from 3D CT 

reconstructions using Analyze (12.0, AnalyzeDirect, Inc., 

Overland Park, KS, USA) were imported into MATLAB 

(R2021, The MathWorks, Inc., Natick, MA, USA) for 

analysis. The anisotropic electrical conductivity of the tissue 

was estimated using the DTI data. More specifically, 

Analyze’s Diffusion Tensor Imaging add-on was used to 

calculate diffusion eigenvalue and eigenvector maps. These 

maps were imported into MATLAB, where they were then 

transformed into diffusion tensors via matrix diagonalization 

[26]. The diffusion tensor fields were subsequently converted 

to conductivity tensor fields via a linear transformation [27]. 

Lastly, the conductivity tensors were imported into COMSOL 

for FEA (Supplement S.I). 

The electric potential throughout the tissue was solved 

using the steady state continuity equation for electric current 

density: 

 

∇ ∙ 𝑱 = −∇ ∙ (𝜎∇𝑉) = 0, (1) 

 

where 𝑱 is the current density, 𝜎 is the conductivity, and 𝑉 is 

the electric potential. The electric field norm was calculated 

from the potential and thresholded to define the VTA. VTA 

thresholds were derived from biophysical neuron models 

oriented perpendicular to the lead, assuming an axon diameter 

of 2.5 µm and stimulation pulse width of 60 µs [4]. Thresholds 

varied based on the stimulation amplitude of the implantation 

modeled. 

For each implantation, four simulations were run (one for 

each electrode) to assess the effect of local changes in 

anisotropy on the VTA (Fig. 1b, top). Between simulations, 

only the active electrode contact changed. All other model 

parameters stayed the same. This yielded a total of 288 

anisotropic VTAs across 40 patients and 72 implantations. To 

serve as a baseline comparison, tissue activation models with a 

homogeneous and isotropic conductivity of 0.33 S/m for the 

entire bulk tissue domain [28] were also built for each 

implantation (Fig. 1b, bottom). Simulations for each electrode 

were not run because changing the active contact did not 

generate significantly different VTAs despite the lead 

geometry given the uniform tissue conductivity. Instead, the 

same isotropic VTA (corresponding to the therapeutic active 

contact) was associated with each electrode for each 

implantation. This yielded a total of 288 isotropic VTAs (of 

which 72 were unique). 
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Fig. 1.  Individualized tissue activation modeling and VTA characterization. 

(a) Coronal MRI slice for one patient showing the DBS lead and electrodes, 

STN (green), and VTA (red) in the left and right hemispheres. (b) Coronal 
view of the anisotropic (top) and isotropic (bottom) VTAs at each electrode 

contact (C0-C3) for one implantation. (c) Coronal (left) and axial (right) view 

of one anisotropic VTA showing spread measured in the lateral-medial (solid 
line), anterior-posterior (dotted line), and dorsal-ventral (dashed line) 

directions. L, M, A, P, D, and V correspond to the lateral, medial, anterior, 

posterior, dorsal, and ventral directions, respectively. 

 

C. VTA Size and Shape Characterization 

Anisotropic and isotropic VTAs were characterized based 

on size using the following metrics: volume and lateral-medial 

(LM), anterior-posterior (AP), and dorsal-ventral (DV) 

spreads. LM and DV spreads were measured in the coronal 

plane at the center of the VTA (Fig. 1c, left). Similarly, AP 

spread was measured in the axial plane (Fig. 1c, right). 

VTAs were also characterized based on shape using the 

following metrics: sphericity and Dice coefficient. Sphericity 

(𝛹) was used to measure how similar the shape of the VTA 

was to a sphere [29]. The sphericity of an object ranges from 0 

to 1, where 1 corresponds to a sphere by definition. Sphericity 

was calculated with 

 

𝛹 =
𝜋1 3⁄ (6𝑉)2 3⁄

𝐴
, (2) 

 

where 𝑉 is the volume of the enclosed VTA and 𝐴 is the 

surface area of the enclosed VTA. Enclosed meant that the 

lead trajectory through the VTA (Fig. 1c) was filled in for this 

particular metric. 

The Dice coefficient (𝐷𝐶) was used to directly measure the 

similarity between anisotropic and isotropic VTAs [23]. DC 

ranges from 0 to 1, where 1 corresponds to identical VTAs. 

The DC was calculated with 

 

𝐷𝐶 =
2|𝑉𝑖𝑠𝑜∩𝑉𝑎𝑛𝑖𝑠𝑜|

|𝑉𝑖𝑠𝑜|+|𝑉𝑎𝑛𝑖𝑠𝑜|
, (3) 

 

where 𝑉𝑎𝑛𝑖𝑠𝑜 is the volume of the anisotropic VTA and 𝑉𝑖𝑠𝑜 is 

the volume of the isotropic VTA. 

D. VTA Location Classification 

Since the location of therapeutic stimulation was previously 

found to vary across patients [7], anisotropic VTAs were 

classified into three groups based on VTA location and VTA-

STN overlap relative to the STN centroid in a particular 

direction (LM, AP, and DV) to assess VTA sensitivity with 

respect to stimulation location. For example, in the DV 

direction, a VTA with greater ventral STN overlap than dorsal 

was labeled a ventral VTA (Fig. S1). A VTA that was 

completely dorsal to the STN (zero overlap) was labeled 

dorsal. If a VTA had approximately equal dorsal and ventral 

STN overlap (dorsal-ventral ratio equal to 1 after rounding), it 

was labeled centered. A similar approach was used to classify 

VTAs in the LM and AP directions. 

 

E. Statistical Analysis 

Paired, two-sided Wilcoxon signed-rank tests were used to 

determine if anisotropic VTA volume, LM spread, AP spread, 

DV spread, and sphericity differed significantly from those of 

isotropic VTAs. Two-sample t-tests were used (after 

confirming normality with one-sample Kolmogorov-Smirnov 

tests) to determine if VTA volume, spread, sphericity, and DC 

differed significantly based on stimulation location relative to 

the STN (for example, dorsal/ventral, dorsal/centered, and 

ventral/centered; similar comparisons were made in the LM 

and AP directions). Since higher stimulation intensities 

generate larger VTAs in general [10], [30], VTA volume and 

spread were divided by the corresponding stimulation 

amplitude to normalize the metrics. Effect size was calculated 

using Cohen’s d [31] and Rosenthal’s formula [32] for the t-

tests and Wilcoxon signed-rank tests, respectively. Pearson's 

linear correlation coefficient was used to assess the 

relationships between sphericity (proxy for anisotropy, where 

lower sphericity corresponds to more anisotropic) and VTA 

volume and spread. Statistical analysis was performed using 

MATLAB. Significance was determined at a p-value less than 

0.05, adjusted for multiple comparisons as needed with the 

Holm-Bonferroni method. 

III. RESULTS 

A. Anisotropy Increases VTA Volume and Spread 

Anisotropic VTAs (n = 288) exhibited significantly larger 

volume than isotropic VTAs (n = 288) (p < 0.001, Wilcoxon 

signed-rank test; effect size r = 0.82) (Fig. 2). Individually, 

this relationship held in 58 implantations (232 electrodes) 

(Fig. S2). However, 17 anisotropic VTAs (across the other 14 

implantations (56 electrodes)) had a smaller volume than their 

corresponding isotropic VTA. The average volume of 

anisotropic and isotropic VTAs was 67.66 ± 22.07 mm3 (mean 

± standard deviation) and 55.94 ± 15.34 mm3, respectively 

(21.0% increase). 

Volume was split into spread in the LM, AP, and DV 

directions from the VTA centroid. Anisotropic VTAs 

exhibited significantly larger spread than isotropic VTAs in all 

three directions (p < 0.001, Wilcoxon signed-rank test; effect  
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Fig. 2.  Volume of anisotropic and isotropic VTAs. Violin plot showing the 

difference in volume between anisotropic and isotropic VTAs across 

implantations. *** p < 0.001, paired, two-sided Wilcoxon signed-rank test. 

 

size r = 0.78, 0.82, and 0.59 for LM, AP, and DV spread, 

respectively) (Fig. 3). Individually, this relationship held in 51 

implantations (204 electrodes) for LM spread (Fig. S3, top). 

However, 27 anisotropic VTAs (across the other 21 

implantations (84 electrodes)) had a smaller LM spread than 

their corresponding isotropic VTA. For AP spread, it held in 

55 implantations (220 electrodes) (Fig. S3, middle), but 26 

anisotropic VTAs (across 17 implantations (68 electrodes)) 

had a smaller AP spread. For DV spread, it held in 24 

implantations (96 electrodes) (Fig. S3, bottom), but 72 

anisotropic VTAs (across 48 implantations (192 electrodes)) 

had a smaller DV spread. The average spread of anisotropic 

and isotropic VTAs in the LM direction was 5.46 ± 0.72 mm 

and 4.92 ± 0.45 mm, respectively (10.9% increase); 5.53 ± 

0.75 mm and 4.94 ± 0.44 mm, respectively (11.9% increase) 

in the AP direction; and 5.08 ± 0.66 mm and 4.77 ± 0.41 mm, 

respectively (6.6% increase) in the DV direction. Interestingly, 

the extent of variation in anisotropic VTA volume and spread 

differed across electrodes for each patient and implantation. 

 

B. Lateral and Anterior Stimulation Have Larger LM VTA 

Spread 

Anisotropic VTA volume and spread were normalized by 

stimulation amplitude to control for differences in stimulation 

intensity across implantations. For anisotropic VTAs, LM 

spread differed significantly based on VTA location (relative 

to the STN centroid) in the LM and AP directions. In the LM 

direction, VTAs lateral to the STN (n = 99) had significantly 

larger LM spread than VTAs centered around the STN (n = 

54) (p < 0.01, t-test) (Fig. 4, top left). The average LM spread 

of lateral and centered VTAs was 2.23 ± 0.39 mm/V and 2.02 

± 0.27 mm/V, respectively (9.9% difference). In the AP 

direction, VTAs posterior to the STN (n = 168) had 

significantly smaller LM spread than VTAs anterior to the 

STN (n = 87) (p < 0.001, t-test) (Fig. 4, top right). The average 

LM spread of posterior and anterior VTAs was 2.07 ± 0.34 

mm/V and 2.23 ± 0.28 mm/V, respectively (7.4% difference).  

 
Fig. 3.  Spread of anisotropic and isotropic VTAs. Violin plots showing the 

differences in LM spread (top left), AP spread (top right), and DV spread 
(bottom) between anisotropic and isotropic VTAs across implantations. *** p 

< 0.001, paired, two-sided Wilcoxon signed-rank test. 

 

 
Fig. 4.  Normalized LM spread of anisotropic VTAs grouped by their location 

relative to the STN centroid. Violin plots showing the differences in LM 

spread in the LM direction (top left), AP direction (top right), and DV 
direction (bottom) across implantations. ** p < 0.01 and *** p < 0.001, two-

sample t-test. 

 

No significant differences in LM spread in the DV direction 

(Fig. 4, bottom) and in volume, AP spread, and DV spread in 

any direction were found. 

 

C. Anisotropy Decreases VTA Sphericity 

Across implantations, anisotropic VTAs (n = 288) exhibited 

significantly lower sphericity than isotropic VTAs (n = 288) (p 

< 0.001, Wilcoxon signed-rank test; effect size r = -0.87) (Fig. 

5). Individually, this relationship held in all 72 implantations 

(288 electrodes) (Fig. S4). The average sphericity of 

anisotropic and isotropic VTAs was 0.97 ± 0.01 and 0.99 ± 

7.94×10-4, respectively (2.0% decrease). Although the 

sphericity of isotropic VTAs was approximately 1, it was not 

equal to the theoretical value due to the nonspherical electrode 

geometry and finite mesh density. Interestingly, the extent of 

variation in anisotropic VTA sphericity differed across  

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2024.3359119

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Bucknell University. Downloaded on April 17,2024 at 16:02:18 UTC from IEEE Xplore.  Restrictions apply. 



 5 

 
Fig. 5.  Sphericity of anisotropic and isotropic VTAs. Violin plot showing the 

difference in sphericity between anisotropic and isotropic VTAs across 

implantations. *** p < 0.001, paired, two-sided Wilcoxon signed-rank test. 

 

electrodes for each patient and implantation. 

 

D. Dorsal Stimulation Has Higher VTA Sphericity 

For anisotropic VTAs, sphericity differed significantly 

based on VTA location (relative to the STN centroid) in the 

DV direction. VTAs dorsal to the STN (n = 147) had 

significantly higher sphericity than VTAs ventral to the STN 

(n = 97) (p < 0.001, t-test; Cohen’s d = 0.70) (Fig. 6, left). The 

average sphericity of dorsal and ventral VTAs was 0.973 ± 

0.011 and 0.965 ± 0.012, respectively (0.8% difference). 

Similarly, the DC between anisotropic and isotropic VTAs 

differed significantly based on VTA location in the DV 

direction. VTAs dorsal to the STN had a significantly higher 

DC than VTAs ventral to the STN (p < 0.001, t-test; Cohen’s 

d = 0.47) (Fig. 6, right). The average DC of dorsal and ventral 

VTAs was 0.82 ± 0.04 and 0.80 ± 0.05, respectively (2.5% 

difference). Both effect sizes were medium according to 

Cohen [31]. No significant differences in sphericity and DC in 

the LM and AP directions were found. 

 

E. VTA Sphericity Negatively Correlates With Volume and 

Spread 

A more spherical VTA corresponded to a more isotropic 

tissue conductivity (Fig. 5). Therefore, the sphericity of 

anisotropic VTAs was used as a proxy for the degree of tissue 

anisotropy. Anisotropic VTA volume and spread were 

correlated with sphericity. Correlation analysis showed a 

significant negative relationship between sphericity and 

volume (r = -0.37, p < 0.001, linear correlation) (Fig. 7), 

where higher sphericity was associated with smaller VTA 

volume. Significant negative relationships between sphericity 

and LM spread, AP spread, and DV spread were also found (r 

= -0.35, -0.50, and -0.47, respectively, p < 0.001, linear 

correlation), where higher sphericity was associated with less 

VTA spread. 

 
Fig. 6.  Sphericity of anisotropic VTAs and the DC between anisotropic and 

isotropic VTAs grouped by their location relative to the STN centroid. Violin 

plots showing the differences in sphericity (left) and DC (right) in the DV 
direction across implantations. *** p < 0.001, two-sample t-test. 

 

 
Fig. 7.  Negative correlation between sphericity and volume of anisotropic 

VTAs. The solid and dashed red lines indicate the linear fit and 95% 

prediction interval, respectively. r = -0.37, p < 0.001, Pearson's linear 

correlation coefficient. 

IV. DISCUSSION 

A. Effect of Anisotropy on VTA Size 

Results demonstrated that anisotropic tissue conductivity 

had a variable effect on VTA size across patients and 

implantations, with the general trend being that the anisotropic 

models generated larger VTAs than their isotropic 

counterparts (Fig. 2). This finding aligns with recent studies 

evaluating the effect of anisotropy on the VTA [23], [24]. In 

DBS models for four and one patients, respectively, these 

studies showed that VTA volume increased with increasing 

anisotropy. However, another study evaluating the effect of 

DBS model complexity, which included anisotropy and 

heterogeneity, on the VTA found the opposite relationship 

[20]. In a model for one PD patient, this study showed that the 

most detailed model (anisotropic) performed best, whereas the 

simpler models (isotropic) overestimated the VTA, by 

reconciling the VTA predictions with experimental data. Other 

factors were involved simultaneously, such as the electrode-

electrolyte interface and gliosis around the implant, which 

affect the impedance of the models (in addition to how tissue 

conductivity was modeled in each domain). Model variations 

with respect to impedance, in turn, could explain the 

discrepancy between findings. Controlling for impedance 

differences using clinical measurements would facilitate 
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comparisons across studies. In the present study, gliosis was 

not explicitly modeled (via a layer of lower, homogeneous, 

and isotropic conductivity) to preserve the patient-specific 

anisotropic conductivity tensors near the DBS lead and isolate 

the effect of anisotropy. Notably, the trend of anisotropic 

models generating larger VTAs did not hold for all 

implantations as some had anisotropic VTAs with volumes 

smaller than the isotropic VTA. To further characterize VTA 

size, the spread of the VTA in the LM, AP, and DV directions 

was also measured (Fig. 3). Like VTA volume, the general 

trend was that the anisotropic VTAs spread more than the 

isotropic VTAs in all three directions. However, the increase 

in DV spread was less pronounced. The trend of anisotropic 

VTAs having larger DV spread did not hold as well across 

implantations compared to LM and AP spreads, suggesting 

more restricted spread of stimulation in the DV direction. 

Interestingly, for VTA volume and spread, the dispersion of 

the anisotropic measurements varied across implantations, 

suggesting that the subthalamic region in some brain 

hemispheres may be more isotropic (lower dispersion) than 

others. Furthermore, [24] showed that the isotropic case did 

not yield the smallest volume and spread for voltage-

controlled stimulation. Variations in the direction of 

anisotropy across patients and implantations could explain this 

observed variability. Therefore, incorporating anisotropy in 

DBS models may matter more depending on the patient and 

lead location. 

Although there were no significant differences in volume, 

AP spread, and DV spread in any direction after classifying 

the anisotropic VTAs based on stimulation location, LM 

spread differed significantly in the LM and AP directions (Fig. 

4). More specifically, lateral VTAs had significantly larger 

LM spread than STN-centered VTAs, which is interesting 

because the dorsolateral portion of the STN is the 

conventional DBS target for PD [33]. Just lateral to the STN is 

the internal capsule (IC), a white matter structure that, when 

activated, can cause unwanted side effects, such as involuntary 

muscle contractions and dysarthria [33]. Results suggest that 

by targeting the lateral half of the STN, there may be an 

increased likelihood of stimulation spreading laterally to the 

IC. In the AP direction, posterior VTAs had significantly 

smaller LM spread than anterior VTAs. The posterior 

subthalamic area (PSA) is another DBS target for treating 

tremor syndromes, including tremor-dominant PD [34]. The 

effectiveness of PSA DBS may partially be explained by this 

finding, which suggests that the spread of stimulation in the 

LM direction is more restricted posterior to the STN. Since the 

PSA contains mainly white matter tracts, and is posterior and 

medial to the IC [34], the likelihood of stimulation spreading 

laterally to the IC is decreased. These findings should be 

considered during DBS programming to prevent side effects 

resulting from inadvertent IC stimulation. 

 

B. Effect of Anisotropy on VTA Shape 

Results also demonstrated that anisotropy had a variable 

effect on VTA shape across patients and implantations, with 

the universal trend being that the anisotropic models generated 

less spherical VTAs than their isotropic counterparts (Fig. 5). 

Since an isotropic VTA was expected to have a sphericity of 

approximately 1, this finding makes sense and aligns with 

previous studies [11], [19], [22]. Qualitatively, anisotropy did 

not drastically alter the shape of the VTA. This explains the 

relatively high sphericity (> 0.9) measured for all anisotropic 

VTAs (for reference, the sphericity of a cube is ≈ 0.8). Despite 

this, anisotropic VTAs were found to be significantly less 

spherical than isotropic VTAs. Like for VTA volume and 

spread, the dispersion of the anisotropic measurements for 

sphericity varying across implantations stood out. 

Although there were no significant differences in the LM 

and AP directions after classifying the anisotropic VTAs, 

sphericity differed significantly in the DV direction (Fig. 6). 

More specifically, dorsal VTAs had significantly higher 

sphericity than ventral VTAs, which again is interesting 

because dorsolateral STN is the standard target [33]. This 

finding suggests that the conductivity of the tissue in the 

dorsal region of the STN is more isotropic than the tissue 

conductivity in the ventral STN region, possibly due to 

multiple crossing fibers. This is supported by the anisotropic-

isotropic VTA DC analysis. The implication of this finding is 

that it may be reasonable to assume uniform stimulation 

spread in the dorsal STN region. Therefore, for active contacts 

in or near the dorsal border of the STN, simpler DBS models 

with homogeneous and isotropic tissue conductivity may be 

sufficient to accurately predict the VTA and inform 

stimulation parameter optimization. The same, however, 

cannot be said for active contacts in the ventral STN region, 

where the spread of stimulation may be more uneven. This 

idea may be further supported by investigating the fractional 

anisotropy in different subthalamic regions. 

All VTA size metrics correlated significantly with 

sphericity, showing negative relationships (Fig. 7). These 

findings suggest that stimulation may be more confined in 

isotropic brain regions, and are supported by the VTA size 

results discussed above and recent studies that investigated the 

effect of anisotropy on the distribution of the electric field 

induced by DBS [23], [24]. A limitation mentioned in [23] 

was the number of samples (4 patients). Although [24] 

specifically was a theoretical study that used data from one 

patient as a benchmark, more patients are required to 

generalize findings. The present study addressed this by 

including 40 patients, each having their unique anisotropy 

incorporated in their tissue activation model(s). 

 

C. Clinical Relevance 

DBS modeling aims to develop tools that can inform 

clinical practice and, in turn, improve patient outcomes. For 

example, preoperative targeting and postoperative 

programming processes could be refined and optimized using 

VTA overlap with gray and white matter structures, such as 

the STN and IC, respectively, alongside clinical evaluations 

[5]. The VTA is a more accurate measure of stimulation 

location than active contact position because it considers the 
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spread of stimulation in all directions [7]. However, as a user-

defined metric, its ability to predict DBS outcomes may vary 

depending on the method used to calculate the VTA. 

Commercial DBS software to simulate and visualize the 

VTA relative to the target structure, such as GUIDE and 

SureTune, have been approved for clinical use [35]. However, 

the DBS models employed by these systems typically do not 

incorporate patient-specific electrical tissue properties, namely 

anisotropic conductivity, in their calculation of the VTA. The 

tissue surrounding the lead is instead assumed to be 

homogeneous and isotropic. A recent study compared VTA 

predictions from SureTune software to those from 

homogeneous and heterogeneous DBS models in COMSOL 

and found that the SureTune VTAs were similar overall to the 

homogeneous/heterogeneous COMSOL VTAs for voltage-

controlled stimulation [35]. Although tissue heterogeneity was 

considered, anisotropy was not. Another study determined that 

tissue anisotropy affected the VTA to a greater degree than 

heterogeneity [18]. The present study investigated this result 

further by quantifying the influence of anisotropic tissue on 

VTA predictions in a patient-specific manner. It was found 

that anisotropy affects VTA size and shape variably across 

patients and stimulation location. Therefore, clinical decision-

making based on VTA predictions from DBS software that do 

not take the electrical properties of the surrounding tissue into 

account is likely suboptimal. It is also important to remember 

that VTA predictions are an estimate of the possible extent of 

stimulation beyond the active contact for the most excitable 

neural tissue, based on a theoretical construct. They are not 

intended to imply that all tissue inside the VTA is activated. 

VTA predictions ultimately need to be validated 

experimentally using measurable biomarkers and patient 

outcomes to establish their clinical utility. 

 

D. Limitations and Future Work 

There are limitations that should be considered when 

interpreting these findings. In common with similar work, 

image voxel size and coregistration error, number of diffusion 

gradient directions, electrostatic finite element model 

solutions, and threshold-based VTA definitions [7] all affect 

the results. The level of complexity required to sufficiently 

model the DBS-induced electric field is still uncertain. Tissue 

anisotropy is one of the more important factors to consider 

when modeling the VTA [18], but the precise impact of 

anisotropy on the VTA at the individual level is currently 

unknown. This is complicated by there being different 

methods to incorporate anisotropy in DBS models. The Tuch 

approach [27] is an established method. However, it may 

overestimate conductivity [18]. Although alternative methods 

have been proposed, they require further validation. Isolating 

the effect of tissue anisotropy from tissue heterogeneity is 

another limitation. In the patient-specific DBS models that 

incorporated individual DTI data, anisotropy and 

heterogeneity were difficult to disentangle because each voxel 

had an essentially unique conductivity tensor associated with 

it. However, previous studies have reported that heterogeneity 

has a minor impact on the VTA [18], [35], so its contribution 

was considered minimal. Normalizing the VTA size metrics 

by stimulation amplitude for comparison is a limitation as well 

because they are nonlinearly related. Since VTA size 

differences due to anisotropy were found proportional to 

stimulation voltage [3], this approximation was deemed 

reasonable. However, normalization by amplitude alone may 

not account for other differences across patients. 

Directly affecting VTA predictions is the method used to 

calculate the VTA. VTA methodologies, such as the axon 

model, activating function, and electric field norm methods, 

also vary in complexity [36]. The electric field norm method, 

based on activation field strength thresholds derived using 

biophysical axon models [4], was used. By defining VTAs 

with constant electric field thresholds, computation time was 

substantially reduced. However, the original thresholds were 

derived from isotropic conductance models with axons 

oriented perpendicular to the DBS lead [4]. It is uncertain how 

thresholds would be affected by DBS models incorporating 

heterogeneous and anisotropic tissue conductivities [36] or 

axon models with true fiber orientations [37]. Although the 

electric field norm and axon model methods have been shown 

to generate similar VTA predictions for monopolar and 

voltage-controlled stimulation [4], [36], the effect of patient-

specific anisotropy on VTAs calculated using other 

methodologies remains to be investigated. 

Electrode impedance is another factor that affects the VTA. 

For example, a high-impedance layer of tissue around the 

active contact will decrease the spread of stimulation and VTA 

size [30]. Clinical impedance measurements are usually taken 

to confirm device function and can be used to indirectly assess 

the state of the electrode-tissue interface [38]. Glial 

encapsulation of the DBS lead is a primary contributor to 

impedance. Incorporating encapsulation in DBS models may 

be helpful for further model validation because it would 

enable impedance matching between the modeled and clinical 

measurements (Fig. S5). This would avoid parameter 

discrepancies in the literature for the conductivity of 

encapsulation tissue by using a more data-driven approach. 

DBS modeling is often used to correlate VTA predictions 

with measurable clinical outcomes to identify stimulation 

features associated with the greatest therapeutic benefit (for 

example, VTA-STN overlap and Unified Parkinson's Disease 

Rating Scale improvement) [7], [20], [36]. As this study 

showed, the size and shape of the VTA was significantly 

influenced by the incorporation of anisotropy in individualized 

tissue activation models. This finding may, in turn, affect the 

results of VTA studies investigating the relationship between 

stimulation location and patient outcome. Although this study 

did not evaluate and compare the predictive capability of 

anisotropic and isotropic VTAs with respect to clinical 

outcomes, doing so is a natural next step. With the use of 

newer stimulation paradigms, such as current-controlled and 

directional DBS, anisotropy may play a more prominent role 

in tissue activation modeling [23], [24]. 
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V. CONCLUSION 

Incorporating patient-specific anisotropic brain conductivity 

in tissue activation models generated larger and less spherical 

VTAs. Tissue anisotropy had a variable effect on VTA size 

and shape across patients and implantations, highlighting the 

need to consider individualized factors in DBS modeling for 

accurate VTA characterization. The influence of anisotropy 

also depended on the local tissue environment in and around 

the STN, with the dorsal STN region being more isotropic 

than the ventral STN region (based on VTA analysis), 

suggesting that the spread of stimulation delivered dorsally 

more closely resembled the idealized case. In contrast, lateral 

and posterior stimulation had larger and smaller spreads in the 

LM direction, respectively. This study quantified the effect of 

anisotropy on VTA predictions in a patient-specific manner. 

Its findings, combined with neuroanatomical and clinical 

information, may aid in identifying optimal stimulation sites 

on an individual basis. 
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