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SUMMARY5

Calderas are kilometer-scale basins formed when magma is rapidly removed from shallow6

magma storage zones. Despite extensive previous research, many questions remain about how7

host rock material properties influence the development of caldera structures. We employ a8

mesh-free, continuum numerical method, Smoothed Particle Hydrodynamics (SPH) to study9

caldera formation, with a focus on the role of host rock material properties. SPH provides sev-10

eral advantages over previous numerical approaches (finite element or discrete element meth-11

ods), naturally accommodating strain localization and large deformations while employing12

well-known constitutive models. A continuum elastoplastic constitutive model with a simple13

Drucker-Prager yield condition can explain many observations from analogue sandbox mod-14

els of caldera development. For this loading configuration, shear band orientation is primarily15

controlled by the angle of dilation. Evolving shear band orientation, as commonly observed16

in analogue experiments, requires a constitutive model where frictional strength and dilatancy17

decrease with strain, approaching a state of zero volumetric strain rate. This constitutive model18

also explains recorded loads on the down-going trapdoor in analogue experiments. Our results,19

combined with theoretical scaling arguments, raise questions about the use of analogue models20

to study caldera formation. Finally, we apply the model to the 2018 caldera collapse at Kı̄lauea21
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volcano and conclude that the host rock at Kı̄lauea must exhibit relatively low dilatancy to22

explain the inferred near-vertical ring faults.23

Key words: Calderas – Numerical modeling – Geomechanics24

1 INTRODUCTION25

Volcanic calderas are kilometer-scale surface depressions, round in shape, that are formed when26

overlying material collapses into a depleted melt storage zone as the result of an eruption (Acocella,27

2021; Branney & Acocella, 2015). While often associated with extremely large explosive erup-28

tions that produce hundreds to thousands of cubic kilometers of erupted material (Smith & Bailey,29

1968; Hildreth & Mahood, 1986; Jellinek & DePaolo, 2003; Gregg, De Silva, Grosfils, & Parmi-30

giani, 2012), calderas have also formed during eruptions of more modest size (1 km3 or less) and31

intensity (Francis, 1974; Branney & Acocella, 2015). Similarly, a range of magma types are asso-32

ciated with caldera formation (Cashman & Giordano, 2014). Large silicic calderas are formed in33

explosive eruptions where magma erupts along caldera ring faults; basaltic calderas (e.g., Figure34

1) are generally formed as magma is laterally withdrawn from a reservoir and migrates to a remote35

vent or dike (Acocella, 2021). Nevertheless, many questions remain about what factors control the36

initiation and orientation of the ring faults that bound calderas.37

Both analogue and numerical models have provided valuable insights into caldera development38

(Geyer & Martı́, 2014). These experiments demonstrate that caldera development is controlled39

by factors such as the strength of the rock and geometric factors (Acocella, 2007, 2021). For40

example, the ratio of the depth of magma chamber to the width of the chamber (H/B in Figure41

2) has been shown to significantly influence the surface deformation. For sufficiently shallow42

chambers, caldera collapse occurs as a coherent block moves down along reverse faults; for deeper43

chambers multiple faults interact to accommodate more complex deformation (Roche, Druitt, &44

Merle, 2000). Other experiments have studied the significant role of regional or tectonic stresses45

⋆ bmullet@stanford.edu



SPH modeling of calderas 3

in caldera formation. In particular, extensional stresses may lead to favorable conditions for dike46

propagation and ring fault development (Gudmundsson, 2006; Cabaniss, Gregg, & Grosfils, 2018).47

Analogue models generally employ sand as the scaled representation of rock and generate de-48

formation by manipulating a scaled “magma chamber” (Figure 2). To construct analogue models,49

not only must the geometry of the system be faithfully scaled, but stresses (including those in-50

duced by body forces) and constitutive behavior must be considered as well (Hubbert, 1937). One51

goal of this paper is to consider the scaling of the analogue problem and show that while it may52

be possible to scale many elements of the caldera forming systems, it is exceedingly difficult to53

scale all elements appropriately. We refer to both theory (Section 3) and the results of numerical54

models (Section 5), and show that certain aspects of sand’s constitutive behavior – primarily, its55

significant dilatancy and critical state behavior – might not be appropriate analogues for the in situ56

behavior of rock.57

The simplest analogue model of caldera formation is equivalent to the classic “trapdoor prob-58

lem” from soil mechanics (Terzaghi, 1936) (Figure 2), in which a trapdoor is lowered beneath a59

box of soil, typically sand. (Note that the term “trapdoor” has also been used to refer to a char-60

acteristic style of asymmetric caldera development (Lipman, 1997), which is not the focus of this61

paper.) In the geotechnical and soil mechanics literature, the trapdoor problem has been explored62

to study soil “stress arching,” in which the vertical stress on the trapdoor decreases dramatically63

with small displacements of the trapdoor due to stress transfer to the box on either side of the64

trapdoor (Costa, Zornberg, Bueno, & Costa, 2009; Iglesia, Einstein, & Whitman, 2014; Terzaghi,65

1943). This problem is relevant for many geotechnical engineering problems, such as the settle-66

ment of piles and the stresses exerted on underground pipes. Here we make extensive use of the67

results of Chevalier, Combe, and Villard (2012), a stress arching study from the geotechnical lit-68

erature. This study offers a unique perspective into the trapdoor problem, as it reports the vertical69

load exerted on the trapdoor, as a function of trapdoor displacement.70

Most previous numerical research on caldera development employs one of two numerical71

methods: the Finite Element Method (FEM) (Gudmundsson, 2007; Gregg et al., 2012; Kabele,72

Žák, & Somr, 2017) or Discrete Element Method (DEM) (Hardy, 2008; Holohan, Schöpfer, &73
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Walsh, 2011, 2015). While both of these techniques have yielded valuable insights about caldera74

formation, both techniques have limitations. FEM is an extremely well established and widely used75

technique, and, as a continuum method, conveniently allows for familiar continuum constitutive76

models. Nevertheless, as a mesh-based method, FEM struggles to naturally adapt to large defor-77

mations and strain localization, both of which are intrinsic to caldera formation. DEM models,78

on the other hand, offer a discrete, mesh-free option, naturally accommodating large deforma-79

tions and strain localization (e.g., Holohan et al., 2011). However, as a fully discrete method, a80

user must fine tune inter-particle forces to approximate a continuum constitutive model (Cundall81

& Strack, 1979). These inter-particle forces may have natural interpretations for granular media82

such as sand, but it is unclear how to best scale these forces to the caldera scale. Furthermore,83

because appropriate use of DEM can require the simulation of millions or billions of particles, the84

computational demand of DEM models can be impractical (Bui, Sako, & Fukagawa, 2006).85

Here we employ a numerical method, Smoothed Particle Hydrodynamics (SPH), which is par-86

ticularly well suited to the study of caldera formation. SPH solves the continuum problem over87

a collection of mesh-free particles. As SPH is a continuum method, we can employ common88

elastoplastic constitutive models and easily interpret the results in terms of continuum stresses89

and strains. As a mesh-free method, large deformations and shear localization are naturally ac-90

commodated, while keeping computational costs relatively low.91

SPH, a technique originally developed in the late 1970s for astrophysical problems (Gingold &92

Monaghan, 1977; Lucy, 1977), has since seen wide application in a variety of disciplines. Indeed,93

one of the first authors to propose the SPH technique, Joseph Monaghan, later published two pa-94

pers on caldera development (Gray & Monaghan, 2003, 2004), although this work was limited to95

studying incipient host rock failure due to increased pressure in a magma chamber. Recently, SPH96

has been more widely applied to both geomechanics and the simulation of granular media (Bui &97

Nguyen, 2021; Fávero Neto & Borja, 2018; Fávero Neto, Askarinejad, Springman, & Borja, 2020).98

In this work we employ GEOSPH, a SPH code originally developed in del Castillo, Fávero Neto,99

and Borja (2021b, 2021a), who used the method to explore several classical geomechanics prob-100
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lems. This paper builds on these earlier works by presenting a shear-weakening constitutive model101

(approximating critical state behavior) and using SPH to study caldera formation.102

As a framing for the content of this paper, we refer to the 2018 eruption of Kı̄lauea volcano103

(Figure 1). This eruption represents a spectacular recent example of caldera development and is104

the best-instrumented example of caldera collapse on record (Neal et al., 2019; Anderson et al.,105

2019). Over the course of several months, over one cubic kilometer of lava erupted along Kı̄lauea’s106

East Rift Zone (Neal et al., 2019). As magma was withdrawn from the summit, Kı̄lauea caldera107

was significantly enlarged as portions of the caldera floor descended up to five hundred meters108

along both pre-existing and newly developed ring faults.109

Here, we explore how the material properties of the Kı̄lauea host rock exert control over the ori-110

entation of the ring faults that formed in the eastern sector of the caldera during the 2018 eruption.111

While these faults are inward-dipping and normal at the surface, both geodetic (Segall, Anderson,112

Johanson, & Miklius, 2019; Segall, Anderson, Pulvirenti, Wang, & Johanson, 2020) and seismic113

(Shelly & Thelen, 2019) evidence indicate that these ring faults are vertical or near-vertical at114

depth. (While basaltic caldera collapses are known to be episodic, occurring in short duration Very115

Long Period (VLP) seismic events, stable creep may also contribute to collapse.) This finding116

stands in contrast to the results of analogue models, which often find that early deformation in117

caldera formation is accommodated along outward dipping thrust faults (Acocella, 2007). In this118

paper, we reconcile these two observations, and show that the dip of ring faults is primarily con-119

trolled by the dilatancy of the host rock. We conclude that the dilatancy of the host rock at Kı̄lauea120

must be fairly low to explain the observed ring fault orientation at depth.121

The primary objective of this paper is to explore what factors control the development of122

caldera structures, with a particular emphasis on material properties and constitutive models. In123

this pursuit, we first discuss the trapdoor problem (Section 2). We then present theoretical ar-124

guments to establish what scaled analogue models can – and cannot – tell us about the caldera125

formation problem (Section 3). Next, we provide the details of the SPH method, and discuss the126

strain-weakening constitutive model that we employ that mimics critical state behavior for dense127

sands (Section 4). In the Results (Section 5), we show that our numerical method can adequately128
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Figure 1. Observations from the 2018 caldera collapse event at Kı̄lauea volcano. (A) Digital elevation model

highlighting areas of dramatic subsidence and location of inferred magma storage zone based on modeling

of pre-collapse deformation (from Anderson et al., 2019 ). (B) Seismic locations indicate vertically-oriented

ring faults (from Shelly & Thelen, 2019, dashed line has been added to denote vertical fault structure, color

indicates time).

explain both the kinematics and the load transfer observed in trapdoor experiments, but only by129

adopting a constitutive model with critical state behavior. We also show that the near-vertical ring130

faults observed during the 2018 Kı̄lauea collapse demand a relatively low-dilatancy host rock. In131

the Discussion (Section 6), we consider the implications of these results for the use of continuum132

constitutive models and appropriate construction of analogue experiments.133

2 A SIMPLE MODEL OF CALDERA COLLAPSE: THE TRAPDOOR PROBLEM134

In this paper we study the simplest model of caldera formation, the 2-D (plane strain) version of the135

“trapdoor problem” from soil mechanics (Figure 2). A box of width L and heightH is filled with a136

granular material. A trapdoor of width B is then slowly lowered (to study active arching) or raised137

(to study passive arching). Here, we limit our analysis to the case where the trapdoor is lowered,138

which mimics caldera collapse. Note that the trapdoor motion imparts a displacement boundary139

condition, while in an actual caldera with a depleting reservoir, a stress boundary condition might140

be more appropriate. We reserve the treatment of different boundary conditions for future work.141

Stress arching is usually observed in trapdoor models (Terzaghi, 1936), reflecting the elasto-142
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Figure 2. Schematic of the “trapdoor problem,” an idealized model of caldera formation. Soil (depth H ,

width L) is contained within rigid boundaries. The center piece of the bottom boundary (the “trapdoor”) is

moved downward with specified displacement δ(t). “Stress arching” and development of shear bands then

occurs. The angle between the shear bands and vertical is θ. The angle of dilation ψ forms the angle between

the relative displacement and the direction of a shear band.

plastic behavior of sand. Before the trapdoor is lowered, the vertical load exerted on the trapdoor143

is equal to the weight of the overlying sand, ρgH, where ρ is the density of the sand, g is the144

acceleration due to gravity, and H is the depth of the sand. Over a small initial displacement of145

the trapdoor, the deformation is accommodated in an elastic fashion. In this phase a stress arch146

initially forms, which allows for part of the vertical load that had been exerted on the trapdoor147

to be transferred to the experimental apparatus at the boundary of the trapdoor. As a result, the148

vertical load on the trapdoor decreases. As deformation continues, the stress along the stress arch149

increases to the point of plastic failure. Plastic strains then accumulate in shear bands that origi-150

nate at the corners of the trapdoor (Figure 2). These shear bands are observable in many trapdoor151

and analogue caldera formation experiments via observations using techniques such as Particle152

Image Velocimetry (PIV) (Ruch, Acocella, Geshi, Nobile, & Corbi, 2012). These shear bands are153

interpreted as the equivalent of faults in natural caldera systems.154

Here we use the parameter θ, which is defined as the angle between the shear band and the155

vertical, to denote the orientation of the shear bands (Figure 2). As noted previously (Costa et al.,156

2009), for a simple Drucker-Prager constitutive model (which shares many essential elements with157

the Mohr-Coulomb model, details in Section 4), the angle θ should be largely controlled by the158
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angle of dilation, which we denote ψ. This follows from the basic geometric interpretation of the159

angle of dilation (Figure 2), which quantifies the angle between a shear band and the direction of160

motion of the soil mass adjacent to the shear band (Davis & Selvadurai, 2005). (Note that the only161

way for this angle to be a value greater than zero is by allowing the soil to increase in volume,162

hence the name “dilation” angle.) In this paper we will present numerical results which confirm163

that the orientation of shear bands is primarily controlled by the angle of dilation.164

The constitutive model for sands that we have adopted in this paper, a non-associative Drucker-165

Prager model (described in detail below), has a yield surface defined by a cohesion c and angle166

of internal friction ϕ. (These parameters have the same essential meaning as in the more common167

Mohr-Coulomb model.) We discuss this constitutive model in depth in Section 4, but here note the168

connection between the angle of dilation ψ and the angle of friction ϕ. To satisfy the condition of169

non-negative plastic work, the angle of friction must always be greater than the angle of dilation170

(Borja, 2013). In the case of sand, a physical intuition for this requirement can be derived by171

considering the two sources of strength of the sand: First, the frictional resistance generated as172

two grains slide past each other, and, second, the resistance caused by the interlocking nature of173

grains. In order for two grains to move past each other, they must first overcome this interlocking.174

In other words, the sand must first dilate to allow for plastic flow. Thus we can see the connection175

between the angle of dilation and the angle of friction: the angle of friction accounts for both the176

resistance due to interlocking (the angle of dilation) and an additional frictional resistance.177

It is commonly observed in analogue models of caldera formation that the initially outward-178

dipping shear bands which bound the down-going parcel of sand rotate to become more vertical (or179

even inward-dipping) as the displacement of the trapdoor increases (Chevalier et al., 2012; Ruch180

et al., 2012). We propose that this change in shear band orientation is due to a changing value181

of the angle of dilation as plastic strain accrues. This idea aligns with a “critical state” model of182

sand behavior (Jefferies, 1993), where sands undergoing shear dilate (or contract) until a critical183

density (porosity) is reached. Intuitively, this concept agrees with the interpretation of the angle of184

dilation as quantifying the interlocking of sand particles; after a certain finite amount of dilation,185

grains no longer are interlocked and therefore interlocking will no longer influence the strength186
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or the volumetric deformation of the sand. There are many critical state constitutive models that187

have been developed for a variety of soils (Roscoe & Burland, 1968; Jefferies, 1993; Wood, 1990).188

Here, we use a strain-softening constitutive model that mimics the critical state behavior of dense189

sands (Section 4). This model allows for the reduction of the angle of friction and angle of dilation190

with increasing plastic deformation, eventually reaching a “critical state” of zero volumetric strain191

rate. In this way, the constitutive model we employ is not a proper critical state model that would192

allow for both compaction and dilation, but does provide a simple approximation of the critical193

state behavior of dense sands that dilate under deformation until a critical state is achieved. We194

therefore refer to the model as a “simplified critical state” model. We find that this simple model195

satisfactorily explains the kinematics and forces observed in trapdoor experiments.196

3 SCALING OF ANALOGUE CALDERA MODELS197

The proper scaling of analogue models is a topic that has received considerable attention (Hubbert,198

1937; Panien, Schreurs, & Pfiffner, 2006; Ramberg, 1981). Here we provide some insights relevant199

to caldera formation.200

Assuming geometric scaling has been satisfied (that is, all relevant lengths are in the same pro-201

portion in the lab scale and caldera scale), the scaling of stresses (or forces) remains. Assuming that202

accelerations are small enough to be negligible, the stresses must follow quasi-static equilibrium,203

∇ · σ = ρgẑ, (1)

where σ is stress and ẑ is the unit vector pointing in the positive z direction (up). Note that by using204

Equation 1 we restrict our attention to experiments which are conducted at rest on Earth’s surface;205

while some trapdoor experiments have been conducted using centrifuges (Costa et al., 2009; Igle-206

sia et al., 2014), the vast majority of caldera formation analogue experiments are conducted under207

ambient gravity.208

Non-dimensionalization leads to209

∇∗ · σ∗ =

(
ρ0gH

σc

)
ρ∗ẑ, (2)
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where ρ0 is the characteristic density, H is the depth of the sand (our choice for a characteristic210

length), and σc is a characteristic stress. Asterisks denote non-dimensional variables.211

In order for an analogue model to be properly scaled, the non-dimensional quantity in paren-212

theses in Equation 2 must be the same for the Earth scale and the lab-scale model. This non-213

dimensional number quantifies the balance between gravitational (body) forces and stresses. It is214

straightforward to assign values to ρ0 and H at both scales, and we assume g is constant. The issue215

is thus how to properly set the value of σc, the characteristic stress.216

Before we discuss this choice, it is useful to first establish the necessary ratio between the217

characteristic stress at the field and lab scales. We take ρ0 and H to be 2900 kg/m3 and 1000 m,218

respectively, in the field scale, numbers that are representative of the basaltic caldera at Kı̄lauea219

(Anderson et al., 2019); for a sandbox model we take the values 1800 kg/m3 for ρ0 and 5 cm for220

H . Thus the quantity ρ0gH is 3.2× 104 times greater in the field case than in the lab case. In order221

for the the non-dimensional ratio in Equation 2 to stay constant, the ratio of σc in the field and lab222

should also scale by 3.2× 104.223

There are multiple potential choices for σc. For a Drucker-Prager (or Mohr-Coulomb) yield224

condition, the plastic yield stress is determined by the combined influence of the cohesion and225

the angle of friction. We can thus propose two potential values of σc: (1) c, the cohesion, or (2)226

ρ0gH tan(ϕ), a characteristic frictional stress equal to the the lithostatic load at the bottom of the227

sandbox times the coefficient of friction. Both of these values need to be scaled appropriately.228

Thus the cohesion of the material in the sandbox model needs to be a factor of ∼ 3.2 × 104229

less than the cohesion of rock. If we take a rock cohesion of 3 MPa, a value that is appropriate230

for a partially fractured basaltic rock mass (Schultz, 1993), we therefore require a sand cohesion231

of ∼ 90 Pa, which is within the range of cohesion claimed by some modelers by adding crushed232

silica powder to sand (Ruch et al., 2012; Norini & Acocella, 2011).233

Scaling using the frictional stress leads to the conclusion that the angle of internal friction ϕ234

needs to be constant between the two scales. Although the angle of friction is generally greater in235

rock than sand (Andersen & Schjetne, 2013; Carmichael, 1982), this requirement should also be236

tractable.237
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Thus appropriately scaling plastic yield stress of an analogue model should be possible. What238

about the elastic response? Most authors choose to ignore this part of the deformation (e.g. Norini239

& Acocella, 2011) because plastic strains are assumed to be much larger than elastic strains240

(Ramberg, 1981). While this is undoubtedly true for tectonic-scale processes that take place over241

millions of years, it is less clear that elastic deformation can be ignored in smaller length- and242

time-scale processes such as caldera collapse, particularly in the early stages of deformation, when243

shear bands (faults) have not fully developed. To answer this question, in this section we perform a244

scaling argument that compares the accumulated elastic strains to the accumulated plastic strains.245

In Section 5 we perform numerical tests to verify the utility of these scaling relations.246

In an elastoplastic constitutive model, the elastic stress is in effect capped by the plastic yield247

function. Assuming that in the case of the trapdoor problem plastic failure first develops near the248

trapdoor where lithostatic loads are relatively high, we can ignore the effect of cohesion and say249

that the plastic yield surface is defined by a characteristic frictional stress ρgH tan(ϕ). This stress250

can therefore be used to set a characteristic value for the elastic strain εe at plastic failure.251

On the other hand, after yielding commences, plastic strains continue to accrue without limi-252

tation. Assuming plastic strains are large, we can say that the plastic strain is thus approximately253

the total strain. We therefore define the characteristic plastic strain εp as254

εp =
δ

H
. (3)

Comparing the characteristic elastic and plastic strains we can define a non-dimensional num-255

ber which we call the elastoplastic regime number, Λep,256

Λep ≡
Gδ

ρgH2 tan(ϕ)
. (4)

When Λep is large, we expect plastic strains to dominate; when it is small, we expect elastic strains257

to be non-negligible. For the Kı̄lauea example from before, we took ρ0 and H to be 2900 kg/m3
258

and 1000 m, respectively. Taking ϕ to be 30◦, δ to be 500 m, and the elastic shear modulus of the259

host rock, G, to be 10 GPa gives a value of Λep of about 300, indicating that, by the end of the260

caldera collapse, elastic strains are probably negligible. Nevertheless, at earlier stages of caldera261

development (up until δ ∼ 20 meters), Λep is less than or equal to 10, such that elastic strains262
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might not be negligible. However, experiments are needed to determine over which ranges of Λep263

different regimes of behavior are observed. We provide results from numerical experiments to help264

constrain possible ranges in Section 5.265

Note that thus far, we have limited our discussion to the caldera scale context. For properly266

building a scaled model, we also need to consider the laboratory sandbox scale model.267

If scaling of elastic parameters is needed, challenges arise. To scale elastic constitutive behav-268

ior in a linearly elastic model we need to scale two elastic moduli. Assuming that the Poisson’s269

ratio of rock and sand is approximately the same, we can reduce this problem to scaling the shear270

modulus, G. Using the scaling conversion from earlier and assuming a shear modulus of rock271

around 10 GPa, we would thus need a shear modulus of sand around 10 GPa / (3.2 × 104) = 0.3272

MPa. Given that the static shear modulus of dense sand is likely 50 - 100 MPa (Hardin, 1965), this273

requirement is problematic.274

If we revisit our earlier scaling, we could design an analogue model where the scaling of275

elastic moduli would result in a sand shear modulus in a range of tractable values. However, it is276

exceedingly difficult to scale both the shear modulus and cohesion appropriately, at the same time.277

Shear moduli in rock are 100 - 200 times greater than shear moduli in sand; cohesions are 50,000278

times greater in rock (or more) than sand and crushed silica mixtures.279

Even if these constitutive parameters are appropriately scaled, however, there remains one280

fundamental assumption that is difficult to verify: that a single continuum constitutive model can281

explain both the deformation of the host rock in a real caldera and the deformation of sand in a282

analogue model. Due to its granular nature the deformation of sand is extremely complex, and283

the search for satisfactory continuum constitutive models for sands is an ongoing area of research284

(Forterre & Pouliquen, 2008; Jop, Forterre, & Pouliquen, 2006; GDR MiDi, 2004; Roux & Combe,285

2002). On the other hand, caldera host rock might be heavily jointed or horizontally layered,286

leading to complex continuum behavior (Gudmundsson, 2007).287

Here we take it as given that the constitutive behavior of sand and rock can both be described288

using continuum elastoplastic constitutive models. However, we do not assume that both sand289

and rock can be described by the same constitutive model. In subsequent sections we show that290
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a simplified critical state constitutive model – which allows for initial dilation followed by zero291

volumetric strain rate at large deformations – is necessary to explain the results from a simple292

sandbox analogue model. This leads to important considerations for the use of scaled analogue293

models, because this critical state behavior must be scaled appropriately in order to ensure valid294

results.295

4 MODELING CALDERA FORMATION USING SMOOTHED PARTICLE296

HYDRODYNAMICS297

4.1 The SPH method298

The SPH method is a continuum collocation method (a variant of the method of weighted residuals,299

MWR) where displacement and stress tensors are calculated at the same locations (co-location) in300

the computational domain. The idea in a MWR is to minimize the residual error in the approx-301

imation of a partial differential equation (PDE) solution in a weighted sense. More specifically,302

in the collocational variant, the minimization of the weighted residual is imposed on N sample303

points (henceforth denoted particles), which serve as both mathematical points (where the PDE304

solution is found) and Lagrangian representative volumes of matter (i.e., that they do not represent305

individual physical particles of sand or rock). Hence, what we want to achieve in the SPH method306

ideally is307 ∫
Ω

W (x− xi, h)r(x)dx = 0 , (5)

such that308

r (xi) = 0, i = 1, 2, ..., N , (6)

where r(x) is the vector of residuals corresponding to the PDE of the problem (detailed below),309

W (x − xi) is the weighting function, h is a length scale, and x is the vector representing the310

position of a particle in the problem domain Ω.311

In SPH, the weighting function is a smooth function called the kernel function (or kernel). The312

kernel should satisfy a number of conditions, among which the most important are: (1) symmetry313

(evenness), (2) positivity, (3) compact support, and (4) unity property. For more details on the314
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Figure 3. The SPH kernel function allows for a discretization of the continuum equations via discrete

particles.

kernel and its properties, the reader is referred to Liu and Liu (2010). The most commonly used315

kernels in practice resemble bell-shaped curves like the one shown in Figure 3.316

Referring to Figure 3 we can see that the length scale h defines the size (radius) of the compact317

support of the kernel, and in SPH is called smoothing length. The particle at which the kernel318

is centered is denoted particle “i,” and any other surrounding particles within the kernel support319

are denoted generically using the subscript “j,” and are called neighbor particles. The smoothing320

length is a function of the initial interparticle distance (∆x), such that h = Kh∆x, with 1.0 <321

Kh < 2.0 a constant. The radius of the kernel then is sh, and as shown in Figure 3, s ≈ 2.0 (also322

a constant). Hence, the kernel evaluates to zero everywhere outside its support and only neighbor323

particles within the kernel of particle i will influence it. The most common kernels used in practice324

are the cubic spline kernel (Monaghan & Lattanzio, 1991) and the Wendland C2 kernel (Wendland,325

1995). In this work, we use the Wendland C2 kernel.326

The mechanical problem that we are interested in solving is represented by an initial boundary327

value problem (IBVP), stated as follows328
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For a domain Ω with boundary ∂Ω such that Ω = Ω∪∂Ω, ∂Ω = ∂Ωv∪∂Ωh, and ∂Ωv∩∂Ωh =

∅, given g : Ω → R3, v : ∂Ωv → R3, and b : ∂Ωh → R3, find u : Ω → R3 such that:

1

ρ
∇ · σ + g = a in Ω× t (7)

dρ

dt
= ρ∇ · v in Ω× t (8)

v = v on ∂Ωv × t (9)

σ · n = b on ∂Ωh × t (10)

Subject to initial conditions u = u0, v = v0, a = a0, b = b0, and σ = σ0 at t = 0.

329

Here, σ is the Cauchy stress tensor, “∇·” is the divergence operator with respect to the spatial330

configuration, ρ is the current mass density, g is the vector of body force per unit mass (herein,331

gravity), vectors v and a are the particle velocity and acceleration, n is the unit vector normal332

to boundary ∂Ωh, v and b are the vectors of prescribed velocities and tractions, and t is time.333

Equations 7 and 8 represent the balance of linear momentum and of mass, respectively.334

We can discretize Equation 7 in the SPH formalism to illustrate the procedure. The first step335

of deriving SPH operators is to make use of Equation 5 where the residual version of Equation 7336

is defined as337

r (x) = ∇ · σ + ρ (g − a) (11)

Substituting Equation 11 into 5, and defining Wi = W (x− xi, h) yields338 ∫
Ω

Wi [∇ · σ + ρ (g − a)] dx =

∫
Ω

Wi∇ · σdx+

∫
Ω

Wiρ (g − a) dx = 0 . (12)

Using the divergence theorem, we can rewrite Equation 12 as339 ∫
∂Ω

Wiσ · ndx−
∫
Ω

∇⊗Wi · σdx+

∫
Ω

Wiρ (g − a) dx = 0 , (13)

where ∇⊗ = d/dx, is the gradient operator.340

Using the compact support property of the kernel, for an internal particle, the first integral341

above is equal to zero, and hence342

−
∫
Ω

∇⊗Wi · σdx+

∫
Ω

Wiρ (g − a) dx = 0 , (14)

Note that for particles near the domain boundary, the surface integral in Equation 13 will not343
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vanish. This will require some corrections to the operators and the kernel gradient. We briefly344

discuss the latter in Appendix A.345

The first integral in Equation 14 is referred to in SPH literature as the kernel approximation of346

the divergence of a field variable, and the second integral is an example of the kernel approximation347

of a field variable.348

The next step in deriving the SPH operators is the defining characteristic of the SPH method.349

In this step, the integrals in Equation 14 are transformed into summations over each particle,350

which in SPH literature is called particle approximation (or summation approximation). Using a351

simple trapezoidal rule to perform the numerical integration of a function in R3, we first define352

the integration volume associated with a set of discrete points in the integration domain xj (j =353

1, 2, ..., N), defined as354

Vj =
mj

ρj
, (15)

where mj = m(xj) and ρj = ρ(xj) are the mass, and mass density at each point j, respectively.355

Using this volume, the integrals in Equation 14 can be approximated as summations356 ∫
Ω

∇⊗Wi · σdx ≈
N∑
j=1

∇⊗Wji · σjVj , (16)

∫
Ω

Wiρ (g − a) dx ≈
N∑
j=1

Wjiρj (gj − aj)Vj , (17)

where ∇ ⊗Wji =
[
dWi(x)
dx

]
x=xj

= −∇ ⊗Wij =
[
dWj(x)

dx

]
x=xi

, and Wij = Wi(xj) = Wji. Note357

that we used the symmetry and evenness properties of the kernel to write the previous identities.358

Making use of the unit property of the kernel, the right-hand side of Equation 17 simplifies to359

ρi (gi − ai), and hence, based on Equations 16 and 17, the basic discrete SPH operator for the360

balance of linear momentum can be written as361

⟨a⟩i =
1

ρi

N∑
j=1

∇⊗Wij · σjVj + gi , (18)

where the ⟨⟩ brackets denote the SPH approximation of a field variable.362

Many different versions of the SPH operators can be derived to possess desired properties.363

For further details, the reader is referred to Fávero Neto (2020) and Violeau (2012). The most364
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commonly used SPH discrete operators for the dynamic balance of linear momentum and balance365

of mass (Bui & Nguyen, 2021), also used in this paper, are respectively,366

⟨a⟩i =
N∑
j=1

mj

(
σi + σj

ρiρj

)
· ∇ ⊗Wij + gi , (19)

and367

ρ̇i =

〈
dρ

dt

〉
i

=
N∑
j=1

mj(vj − vi) · ∇ ⊗Wij . (20)

In order to complete the purely mechanical SPH formulation we need to connect the state of368

stress of the material to the kinematics of motion (displacements and velocities). This is achieved369

through a constitutive law that relates deformation and stress (or strain rates and stress rates). In370

this work, the time rate of change Cauchy stress tensor, σ̇, is connected to the rate of deformation371

tensor through the following constitutive relationship372

σ̆ = Cep : d , (21)

where σ̆ is the Jaumann stress rate, required to enforce objectivity of the stress rate under large373

deformations, and d is the deformation rate tensor. The Jaumann stress rate is defined as374

σ̆ = σ̇ + σ · ω − ω · σ , (22)

while the deformation rate tensor is given by375

d =
1

2

[
∇⊗ v + (∇⊗ v)⊤

]
, (23)

and376

ω =
1

2

[
∇⊗ v − (∇⊗ v)⊤

]
, (24)

is the spin rate tensor. In SPH, the following operators are used to discretize the deformation rate377

and spin rate tensors respectively378

⟨d⟩i =
1

2

 N∑
j=1

Vj(vj − vi)⊗∇⊗Wij +

(
N∑
j=1

Vj(vj − vi)⊗∇⊗Wij

)⊤
 ,

⟨ω⟩i =
1

2

 N∑
j=1

Vj(vj − vi)⊗∇⊗Wij −

(
N∑
j=1

Vj(vj − vi)⊗∇⊗Wij

)⊤
 .
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In the next section we will provide more details on the simplified critical state constitutive379

model used in this paper and the elastoplastic tangent modulus.380

4.2 Simplified critical state constitutive model381

As presented in the previous section, the stress rate is connected to the rate of deformation tensor382

through the elastoplastic tangent modulus, Cep, which is defined as (Borja, 2013)383

Cep = Ce − 1

χ
Ce :

∂Q
∂σ

⊗ ∂F
∂σ

: Ce , (25)

where Ce is the elastic fourth-order tangent modulus of the material, F is the yield function, Q is384

the plastic potential function, and385

χ =
∂F
∂σ

: Ce :
∂Q
∂σ

. (26)

The plastic potential function allows the direction of plastic flow to be distinct from that defined386

by the yield surface, enabling the so-called non-associative plasticity. Furthermore, the plastic387

deformation is proportional to the plastic potential through the following relationship388

ε̇p = −λ̇∂Q
∂σ

(27)

where λ is the so-called plastic multiplier (or consistency parameter) which is a measure of the389

magnitude of plastic deformation.390

In this paper we adopt a simple elastoplastic model with a Drucker-Prager yield criterion com-391

bined with a simplified critical state formulation which allows for the internal friction angle ϕ392

and angle of dilation ψ of the material to vary with plastic strain, approaching a steady state of393

zero volumetric strain rate. In this model, we assume linear isotropic elasticity such that when the394

material is deforming in the elastic regime, its response can be expressed solely as a function of395

constant bulk and shear moduli, K and G, respectively. Hence, the elastic tangent modulus tensor396

takes the form397

Ce = K1⊗ 1+ 2G

(
I − 1

3
1⊗ 1

)
, (28)

where I is the fourth-order symmetric identity tensor, and 1 is the second-order identity tensor.398

The Drucker-Prager criterion is assumed to govern yielding of the material, and is expressed399
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as400

F (I1, J2) =
√
2J2 + αϕI1 − kc ≤ 0 , (29)

where J2 = |S|2/2 is the second invariant of the deviatoric part of the Cauchy stress tensor, S,401

and I1 = tr [σ] is the first invariant of the Cauchy stress tensor. Parameters αϕ and kc relate to402

the Mohr-Coulomb parameters of the material, ϕ and c (cohesion), respectively. For plane strain403

analyses, αϕ and kc are given by (del Castillo et al., 2021b)404

αϕ =

√
2 tanϕ√

9 + 12 tan2 ϕ
and kc =

3
√
2c√

9 + 12 tan2 ϕ
. (30)

In Equation 25, when the yield and plastic potential functions are chosen to be the same, F =405

Q, we have so-called associative plasticity. However, for geotechnical and geological materials, a406

non-associative behavior is more common, i.e., F ≠ Q. Hence, in this work, we assume a plastic407

potential function of the form (del Castillo et al., 2021a)408

Q =
√

2J2 + αψI1 , (31)

where αψ depends on the angle of dilation of the material, ψ, through the following relationship409

for plane strain analyses (del Castillo et al., 2021b)410

αψ =

√
2 tanψ√

9 + 12 tan2 ψ
. (32)

In order to model the critical state behavior of geological materials, we follow Zabala and411

Alonso (2011), and defined simple exponential functions relating the constitutive parameters to412

accumulated plastic strain, εp,acc,413

ϕ = ϕr + (ϕ0 − ϕr)e
−εp,acc/ηc , (33)

ψ = ψ0e
−εp,acc/ηc , (34)

where ϕr is the residual friction angle, ϕ0 and ψ0 are the initial values for the friction angle and414

angle of dilation, respectively, and ηc quantifies the characteristic plastic strain over which ψ and415

ϕ decay. Note that in this formulation, ϕ asymptotically approaches ϕr while ψ asymptotically416

approaches zero. Moreover, note that despite its simplicity, the model used here also allows for417

strain softening through the reduction of the internal friction angle.418
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It should be noted that the simplified model given by Equations 33 and 34 is not a proper critical419

state model, because the evolution in material parameters is connected directly to strain and there420

is no well defined critical state void ratio (porosity). Nevertheless, we follow Bui and Nguyen421

(2021) in using the critical state terminology because the model allows for initial volume change422

followed by zero volumetric strain rate (zero dilation angle) at large deformations, a defining423

feature of critical state models.424

For further information regarding the numerical implementation of the SPH method, please425

refer to Appendix A.426

5 RESULTS427

5.1 Kinematics of analogue models428

Using constant values of ψ and ϕ (i.e., a non-critical state constitutive model), we first investi-429

gated the role of ϕ and ψ in controlling the kinematics of analogue models (Figure 4). The SPH430

model clearly captures shear banding in the sand that is well developed after 1 cm of trapdoor431

displacement. These shear bands originate at the trapdoor edges, matching the results of analogue432

experiments.433

The orientation of shear bands (as measured by θ, Figure 2) stays relatively constant with434

increasing deformation. Our results further show that varying ψ leads to a a change in orientation,435

but changing ϕ while keeping ψ constant does not change the orientation of the shear bands.436

The continuum stresses and strains produced by the SPH model make it simple to quantify437

this relationship between ψ and θ (Figure 5). We find that θ tracks with ψ across a broad range of438

values of ψ, and this result holds true whether ϕ is allowed to vary with ψ or is held constant. This439

agrees with the theoretical argument, outlined in the Introduction, that θ should equal ψ (Costa et440

al., 2009; Davis & Selvadurai, 2005).441

5.2 Kinematics using simplified critical state constitutive model442

With constant ψ, the value of θ stays relatively constant throughout the numerical experiments.443

This finding contrasts with what is normally observed in analogue experiments, where the orienta-444
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Figure 4. Shear strain in numerical sandbox models (constant ϕ and ψ). Each row is at the same dis-

placement and shares a colorbar; each column has snapshots from one simulation with stated parameters.

H = 0.2 m, B = 0.2 m, c = 0, ∆x = 0.004 m.

tion of shear bands rotates to become more vertical with increasing trapdoor displacement (Ruch445

et al., 2012; Chevalier et al., 2012). We thus applied the simplified critical state constitutive model446

that allows for the value of ϕ and ψ to vary with plastic strain. As expected, the results from the447
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Figure 5. Orientation of shear band relative to vertical, θ (see Fig. 2), for models with different ϕ and ψ

that are independent of deformation. Red dots represent the angle formed by best-fit line for the 20 particles

with the greatest shear strain. Dashed lines denote extent of shearing region (25% of maximum shear strain).

Solid blue line is θ = ψ. (A) Associative (non-critical state) plastic flow, ϕ = ψ. (B) Non-associative (non-

critical state) plastic flow: constant ψ as in Figure 4 and ϕ = 49◦. Other parameters same as Figure 4.
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Figure 6. Top row: Rotation of particles for different trapdoor displacements, simplified critical state model

(the xy component of the infinitesimal rotation tensor is plotted, similar to the observations reported by PIV

studies, e.g. Ruch et al. (2012)). Counterclockwise (ccw) rotations are negative; clockwise (cw) rotations are

positive. Bottom row: the angle of dilation, ψ, at the same trapdoor displacements as the top row. The angle

of friction and the angle of dilation are calculated as a function of accumulated plastic strain (Equations 33

and 34). H = 0.2 m, B = 0.2 m, c = 0, ∆x = 0.004 m, ϕ0 = 49◦, ϕr = 15◦, ψ0 = 30◦, ηc = 0.1. Note that

the top row reflects an instantaneous rate while the bottom row reflects a function of cumulative strain.

simplified critical state model demonstrate the target behavior of shear bands rotating to be more448

vertical with increasing trapdoor displacement (Figure 6).449

With just a small amount of trapdoor displacement (δ = 0.5 cm), shear strains have already450

localized sufficiently to cause plastic strain to accumulate and ψ to decrease towards zero within451

the shear bands. As the shear bands first localize at the boundary of the trapdoor, ψ decreases most452

quickly in the deeper part of the shear bands. This variation in ψ along the length of the shear band453

contributes to an increased curvature of shear bands as the trapdoor displacement increases.454

Using our simplified critical state constitutive model, we attempted to explain the kinematics455

of the trapdoor experiment performed by Chevalier et al. (2012) (Figure 7). In order to fit the456

observed kinematics, we varied the constitutive parameters around the values reported in Chevalier457
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Figure 7. Kinematics of trapdoor model with simplified critical state plasticity matches the kinematics

described in analogue sandbox models. Frames (A) and (D) are images taken from the analogue trapdoor

experiments of Chevalier et al. (2012). Frames (B) and (E) are snapshots from SPH numerical experiments.

In (A), (B), (D), and (E) color bands are to illustrate deformation only; material properties are uniform.

Frames (C) and (F) show the accumulated shear strain at these displacements. Same material properties as

in Figure 6.

et al. (2012), who reported a peak friction angle (ϕ0) of 49◦, a residual friction angle (ϕr) of 39◦,458

and did not report a value for the dilation angle. We found we could satisfactorily reproduce the459

observed kinematics with an initial angle of dilation, ψ0 = 30◦, and a characteristic plastic strain,460

ηc = 0.1. The friction angle ϕ, and residual friction angle, ϕr, had a small effect on the kinematics,461

consistent with our earlier results (Figure 4).462

In the Chevalier et al. (2012) experiments, early deformation (δ = 1 cm) was isolated to a463

triangular-shaped wedge, bounded by straight, outwardly dipping thrust fault-like shear bands.464

Later deformation (δ = 4 cm) transitioned to vertically-oriented shear bands. Our model pro-465

duced qualitatively similar results (Figure 7 B, E) and demonstrated the transition from outwardly466

dipping to vertical shear bands (Figure 7 C, F).467
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Chevalier et al (2012)
experiments (dashed)

SPH Simulations (solid)

Figure 8. Load vs. displacement curves. Dashed lines represent the experimental values from Chevalier

et al, 2012; solid lines are SPH results from this paper. Some δ = 0 lithostatic loads are greater than the

maximum Fy shown; axis is truncated to show detail for δ > 0. (A) Constitutive model with constant values

of ϕ and ψ is unable to fit the observed data. (B) A simplified critical state model that allows for ϕ and ψ to

decrease with strain well explains the experimental data. Material properties not shown are the same as in

Figure 6.

5.3 Load displacement curves468

In addition to recording observations of the kinematics of the trapdoor problem, Chevalier et al.469

(2012) reported the vertical load exerted on the trapdoor. As with the kinematic observations, we470

attempted to fit the reported load displacement curves using both a constant parameter constitutive471

model and the simplified critical state constitutive model. As before, we found that the simplified472

critical state model was needed to explain the observations (Figure 8).473

As identified by Chevalier et al. (2012), the experimental load displacement curves show three474

distinct phases. In the first (the “elastic phase”) the vertical load on the trapdoor decreases dra-475

matically as a stress arch develops. This phase lasts for only a very small (∼ 1 mm) trapdoor476

displacement, before plastic yielding occurs. The second phase (the “transition phase”) is defined477

by the vertical load being partially re-established on the trapdoor, and is apparent in the range 0.1478

cm < δ < 2 cm, although the range varies depending on the sand depth. The transition phase is479

also defined by the rotation of shear bands to be more vertical. Finally, in the “critical phase,” the480

load reaches a relatively constant value that does not change with δ. Note that this final load value481

depends on the original sand depth (Figure 8) for H < 0.30 m but is very similar for all experi-482
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ments withH ≥ 0.30 m. This likely reflects the influence of the non-dimensional parameterH/B,483

which has previously been shown to control the development of kinematic features of analogue484

models (Roche et al., 2000; Acocella, 2021).485

These three phases are naturally explained by a critical state model. In the elastic phase, yield-486

ing has yet to occur. Once the transition phase begins, plastic deformation has begun, which causes487

the model to approach critical state (ϕ approaches ϕr and ψ approaches zero). Once enough plastic488

strain has developed, the model enters the critical phase.489

Enforcing constant parameters (a non-critical state constitutive model), results in load dis-490

placement curves which do not exhibit a load recovery after the initial drop during the elastic491

phase (Figure 8 A). As the frictional strength and the orientation of the shear bands do not change,492

the mass of the parcel between the stress arch and trapdoor does not change; thus the load remains493

constant. A critical state model, on the other hand, allows for the orientation of the shear bands to494

change and the frictional resistance in the shear bands to decrease. This leads to an increase in the495

load exerted on the trapdoor (Figure 8 B).496

The constitutive model parameters used to fit the load displacement curves (Figure 8) are the497

same as those used to fit the observed kinematics (Figure 7). This demonstrates the utility of the498

SPH method coupled with the simplified critical state constitutive model to explain both observed499

kinematics and forces.500

5.4 The granular length scale501

Our simplified critical state constitutive model includes the term ηc, which controls the rate at502

which critical state is approached (Equations 33 and 34). Up until this point we have treated this503

term as a fitting parameter, and varied its value in order to match the load displacement curves and504

kinematics reported by Chevalier et al. (2012) (Figures 7 and 8). However, the value of ηc can also505

be interpreted as indicating an intrinsic length scale, ℓ, for the problem.506

The choice of ηc is related to the intrinsic length scale of the problem, which in turn is related

to the smoothing length, h (Figure 9), in the simulations. By varying h, it can be seen that in order

to approximately maintain the same model response, it is necessary to vary ηc according to the
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Figure 9. Load displacement curves for the H = 0.2 m case of the simplified critical state model in Figure

8, but with varied smoothing length, h. (A) Constant ηc = 0.1. (B) Variable ηc = ℓ/h, with ℓ = 0.6 mm.

equation

ηc =
ℓ

h
, (35)

where ℓ is the previously described intrinsic length scale. For our model, we found satisfactory507

results when ℓ = 0.6 mm. (This translates to a ηc value of 0.1 for the SPH models shown in508

Figures 4 - 8, which use h = 6 mm.)509

In our SPH simulations (just like in FEM), the width of a shear band is influenced by the510

discretization size (for SPH, the smoothing length, h). Thus it is reasonable to conclude that ℓ511

reflects the intrinsic width of a shear band in the experiments, and ηc quantifies a correction to512

the constitutive model that is necessary when h does not equal ℓ. This interpretation is further513

validated by the observation that the characteristic width of a shear band in sandbox analogue514

models directly varies with the sand grain size. Chevalier et al. (2012) report an average grain size515

of 0.5 mm. Given that ℓ was determined by completely independent means to be a very similar516

value, we postulate that ℓ is likely a reflection of the mean grain size. However, further investigation517

of this parameter is warranted in future work.518

5.5 Scaling of analogue models519

We now return to the scaling question posed in Section 3. Specifically, we are interested in whether520

it is safe to ignore the scaling of elastic parameters, as is customarily done in analogue sandbox521
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Figure 10. Non-dimensional vertical load exerted on the trapdoor as a function of non-dimensional dis-

placement. Multiple values of the Young’s modulus, E, are compared. Caldera scale model: H = 1000 m,

B = 2000 m, C = 3 MPa, ρ0 = 2900 kg/m3. Sandbox scale model: H = 0.05 m, B = 0.1 m, C = 93

Pa, ρ0 = 1800 kg/m3. Both models: ϕ = ψ = 30◦, ν = 0.3. Dots mark where the elastoplastic regime

number Λep as defined in Equation 4 equals 1.0. Results shown are from dimensional simulations using the

caldera scale properties; results from dimensional simulations using sandbox scale properties give similar

non-dimensional curves.

models. We therefore conducted a series of numerical tests to determine the model sensitivity to522

changing elastic moduli, using a constant (non-critical state) constitutive model with an associative523

flow rule (Figure 10) for simplicity. We first conducted tests at the caldera scale, setting c, ρ0, H524

to be 3 MPa, 2900 kg/m3, and 1000 m, respectively, as in Section 3. We further took B (trap-door525

width) to be 2000 m and ϕ to be 30◦. Additionally, we varied the Young’s modulus, E, over a wide526

range of values that are plausible for a jointed basaltic rock mass (Schultz, 1993), and measured527

the response of the model by plotting the vertical load exerted on the trapdoor as a function of528

trapdoor displacement.529

Results from these numerical tests (Figure 10) suggest that for large trapdoor displacements,530

as plastic strains increase relative to elastic strains, the model responses will tend to converge and531

the scaling of E can be safely ignored. However, at smaller trapdoor displacements (δ/H < 0.05532

equating to δ = 50 m in the caldera model shown in Figure 10), the choice of E does make a533

material difference to the model results. In this example, if the Young’s modulus of the caldera534
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rock is thought to be 1 GPa or less (in a heavily fractured rock mass, for example), E should535

be scaled in any analogue model, or the model will not provide valid results. For the example in536

Figure 10 and a caldera rock with Young’s modulus of 1 GPa, this would demand use of a sand537

with a Young’s modulus of 31 KPa. This presents a challenge for sandbox models, because it is538

likely difficult to obtain sands in this range of elastic moduli (Hardin, 1965).539

Figure 10 further shows the utility of the non-dimensional elastoplastic regime number, Λep,540

that we defined in Section 3. The results show that if Λep is less than a factor of approximately 3,541

the elastic strains are sufficiently large to demand the scaling of elastic parameters.542

5.6 Application to the 2018 eruption of Kı̄lauea543

After successfully explaining the kinematics and forces of analogue models, we now turn our at-544

tention to real volcanic calderas. In the present work, we restrict our attention to the orientation545

of faults formed during the 2018 eruption of Kı̄lauea volcano (Figure 1). The 2018 collapse ex-546

ploited pre-existing faults along its west and north sides. During the course of the three month547

long eruption, a new (at least at the surface) ring fracture system developed along the east side548

of the collapse. The 2018 collapse offers a uniquely rich data set detailing the process of caldera549

formation. Of particular interest is the high resolution seismic catalogue of precisely located earth-550

quakes (Figure 1B; Shelly & Thelen, 2019). The most dominant feature of the catalogue is a clear,551

vertically-oriented distribution of events mainly associated with the surface trace of the eastern552

ring fault. This likely indicates that displacements were accommodated along a ring fault with553

a near-vertical dip to considerable depth (∼2 km). This conclusion agrees with geodetic models554

which favor a vertical or near-vertical dip (Segall et al., 2019, 2020). Note that vertical faults555

are distinct from the observed kinematics of sandbox experiments, where ring faults are initially556

outward dipping.557

Given this observation, our model can be used to make inferences about the constitutive behav-558

ior of the host rock at Kı̄lauea. We performed a series of tests using a simplified plane strain model559

geometry, and constitutive parameters judged appropriate for the Kı̄lauea caldera (Figure 11). We560

present results for both models with constitutive models with constant parameters (left and cen-561
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Figure 11. Caldera collapse simulation using parameters representative of Kı̄lauea volcano basalt. Left and

center columns show results for models with constant material parameters; right column shows results for

critical state model. H = 1 km, B = 2 km, E = 1010 Pa, ρ = 2900 kg/m3, c = 3 MPa, and ∆x = 20 m.

Note that models indicate some degree of rockslide into the caldera and forming of tension cracks. Tension

cracks may be attributable to SPH numerical implementation.

ter columns, Figure 11) and employing a critical state constitutive law (right column, Figure 11).562

Because it is difficult to determine a natural length scale for shear bands in the Kı̄lauea context,563

we make the simple choice of setting ηc = 1 for our model employing the simplified critical state564

constitutive model (right column in Figure 11); this is an important source of uncertainty. As was565

the case for the analogue model simulations, a relatively low dilatancy is required for vertical ring566

faults to form. Alternatively, similar results could be obtained with a simplified critical state model567

with small ηc, such that the value of ψ would quickly drop to zero.568

Note that we do not model several potentially important aspects of the 2018 Kı̄lauea caldera569

collapse. Among these are the preexisting presence of the Halema‘uma‘u crater and caldera ring570

faults. These factors clearly had an important role in the early phase of the collapse, but it is un-571

likely that they dominated the formation of the ring fault in the eastern sector. We also reserve an572

exhaustive exploration of the potential parameter space for future work. Varying parameters be-573

yond ϕ and ψ would likely cause important effects; in a limited set of experiments we found that574

varying the cohesion could affect the near-surface expression of the model faults, where the in-575

fluence of cohesion is non-negligible. However, varying cohesion does not influence the predicted576

fault dips at depth.577
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6 DISCUSSION578

The non-dimensional parameter H/B, the chamber depth-to-width ratio, has been shown to be579

of central importance in determining the response of scaled analogue models and numerical ex-580

periments (Roche et al., 2000; Holohan et al., 2011). At low H/B the downgoing caldera block581

initially descends in a largely coherent manner along outwardly dipping reverse faults. At high582

H/B, on the other hand, the downgoing block may be broken into smaller parcels by multiple sets583

of reverse faults.584

Our results provide a new lens through which to interpret this well established result. In sand-585

box analogue models, the faults which initially develop are outwardly dipping and originate at the586

boundary between the trapdoor at the adjacent bottom boundary of the experimental apparatus.587

Given the faults are outwardly dipping, it is clear that if they are allowed to extend upward indefi-588

nitely they will at some point intersect (Figure 2). In order for a caldera block to remain intact as589

it descends, therefore, the depth H must be sufficiently small relative the width B. Furthermore,590

the critical ratio of H/B at which the outward dipping faults intersect depends on the angle θ, the591

angle formed between the faults and vertical. It is straightforward to determine from the geometry592

of the problem that this critical value is593

H

B
=

1

2 tan θ
=

1

2 tanψ0

, (36)

where we have made the additional substitution that the intial fault orientation angle θ equals the594

initial angle of dilation ψ0, as follows from our results.595

In analogue experiments the critical value of H/B at which the transition in behavior occurs596

has been determined to be around H/B ≈ 1 (Roche et al., 2000). This condition translates to a597

value of θ ≈ 26◦, which is very close to the initial value of the angle of dilation ψ0 = 30◦ that598

we have determined necessary to fit the experimental data of Chevalier et al., 2012. Our results599

therefore support the conclusion the critical value of H/B at which a transition in behavior occurs600

is set by the angle ψ. Note that this conclusion signifies that experimental results based on H/B601

are fundamentally a reflection of the material properties of the caldera rock (or rock analogue)602

and should therefore be applied with appropriate discretion to the caldera scale problem.603
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A clear lesson from our numerical modeling is that physically-realistic constitutive models are604

required to understand caldera formation and the behavior of analogue models. These constitutive605

models must not only consider the yield condition, but also, importantly, must consider post-yield606

behavior. Given relatively large plastic strains, any simplification of post-yield behavior will likely607

lead to incorrect results. Indeed, our results suggest the assumption that the material properties are608

constant leads to results which cannot explain observations in analogue experiments (Figures 4609

and 8).610

Instead, our results highlight the critical state nature of sand. Both the kinematics (Figure 7)611

and observed loads (Figure 8) of the Chevalier et al. (2012) experiments can be explained with612

a simplified critical state constitutive model. Theoretical considerations bolster this conclusion;613

given a direction of motion vertically downward, the orientation of shear bands (relative to vertical)614

should be primarily controlled by the angle of dilation. This paper thus strongly supports the view615

that the critical state nature of sand cannot be ignored in analogue models when the orientations616

of shear bands change with displacement.617

While using the simplified critical state constitutive model shows satisfactory results, it should618

be emphasized that this model likely would fail to capture certain known behaviors of sands, like619

the transition from dilative to contractive behavior or plastic yield in pure compression. More620

advanced models of critical state elastoplasticty offer approaches for modeling these behaviors621

(Roscoe & Burland, 1968; Jefferies, 1993). The Nor-Sand constitutive model, in particular, of-622

fers an attractive option for the present problem because it well captures the dilatant behavior of623

dense sands during shearing (Borja, 2013). In future work, we plan to implement Nor-Sand as a624

constitutive model in our SPH framework.625

In this paper we argue that the orientation of shear bands θ should be primarily determined626

by ψ, the angle of dilation. While our models adequately capture the behavior of many analogue627

models where shear bands rotate to be vertical at the later stages of deformation (Ruch et al., 2012;628

Chevalier et al., 2012), an objection to our results may be raised based on the frequently observed629

development of inward dipping normal faults at the later stages of caldera development (Acocella,630

2021). These inward dipping faults may be explained by a negative angle of dilation (not possible631
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in our model), but are more likely a reflection of passive, secondary activity that initiates only after632

the initial downward movement of the caldera block. This behavior is fundamentally extensional633

(i.e., dilational), and should be within the scope of our constitutive model. We hope to capture this634

kind of activity in future simulations.635

In addition to elastoplastic models, several alternative continuum constitutive models exist and636

have shown promise for the modeling of granular media (Forterre & Pouliquen, 2008). Visco-637

plastic models, which model the shearing of grains as a fluid-like process, have been shown to638

capture many aspects of granular flow (Jop et al., 2006; GDR MiDi, 2004). These models could639

be implemented in SPH without much difficulty, and we plan to test the behavior of these models640

in future work.641

The development of an appropriate continuum constitutive model for sand is doubtlessly a642

difficult task. Unfortunately, the development of an appropriate continuum constitutive model for643

the large-scale deformation of rock in a caldera forming eruption is no easier task either. While644

this issue represents a significant source of uncertainty in any modeling effort, it is our belief that645

numerical models are uniquely well equipped to provide valuable insights in this context. Numer-646

ical models allow for rapid experimentation with multiple constitutive models, highlighting model647

responses which are attributable to the specifics of any constitutive model. Furthermore, numerical648

models allow for experimentation with factors that we strongly expect would influence the defor-649

mation of rock in the caldera formation context, such as the layering of host rock (Gudmundsson,650

2007), which might be difficult to explore with scaled analogue models.651

Our results also demonstrate the utility of a numerical model for constraining the appropriate652

scaling of analogue models (Section 3). While it is customary to ignore the elastic moduli in653

scaling analogue models (Norini & Acocella, 2011; Ruch et al., 2012), our results indicate that654

this assumption is perhaps less valid than previously thought (Figure 10). While the assumption655

that the elastic part of the problem is negligible is likely correct for many scaled models, it may656

not be correct for models with low shear modulus, small displacement, or deep magma chambers657

(Equation 4). Before neglecting the scaling of elastic moduli in analogue experiments, care should658
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be taken to ensure that the expected plastic strains are indeed much larger than elastic strains at all659

phases of interest (not just the final state).660

Ultimately, the goal of both analogue and numerical models is to generate insights about the661

nature of real caldera forming events. Our results clearly demonstrate that the orientation of caldera662

ring faults is strongly influenced by ψ, the angle of dilation. In our critical state model, ψ decreases663

with increasing plastic strain. We can therefore connect our results to previous research on the re-664

lationship between caldera geometry and caldera maturity, where previous authors have found that665

immature systems tend to have outward dipping faults while mature systems have more vertical666

faults (Ruch et al., 2012). Our results help explain this observation; as strain accumulates the angle667

of dilation decreases and faults tend towards the vertical.668

In the case of Kı̄lauea, where nearly-vertical ring faults have been inferred (Segall et al., 2019,669

2020; Shelly & Thelen, 2019), our results support the conclusion that the angle of dilation for670

the host rock must be small. It is known that plastic strain and increased confining pressure can671

decrease the angle of dilation for rocks (Zhao & Cai, 2010). At Kı̄lauea the confining stresses672

at the depth of the magma storage zone are likely in the range of 10-100 MPa, which should be673

sufficient to reduce the angle of dilation (Zhao & Cai, 2010). Additionally, it should be noted that674

the 2018 eruption of Kı̄lauea saw the enhancement of a previously-existing caldera; in this way675

the host rock must have already experienced considerable plastic deformation during its earlier676

development.677

We emphasize that this paper stops far short of a full exploration of the wide diversity of678

calderas found in nature. Observations from Kı̄lauea have been interpreted to indicate caldera679

block displacement along relatively vertical faults. But other calderas seem to be bounded by a680

range of collapse geometries, from outward dipping ring faults to inward dipping or mixed. Our681

results prompt speculation about what leads to these distinct geometries. As discussed above,682

outward dipping faults might indicate immature systems with high dilation angles. Inward dipping683

faults could be an indication of a negative dilation angle (not possible in our current constitutive684

model), extensional tectonic stress, or be an indication of more complex behavior (such as multiple685

interacting sets of faults). However, we stress that the present work is primarily meant as a proof-686
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of-concept for the method; a deeper exploration of applications to real world calderas is reserved687

for future work.688

There are several natural extensions to this work. Implementation of additional constitutive689

models specifically designed for rock would clearly be advantageous. We also hope to soon per-690

form 3D simulations of caldera formation. While previous studies show largely consistent results691

for 2D and 3D models (Roche et al., 2000), a full 3D simulation will allow for studying of more692

complex stress fields which can influence caldera development (Cabaniss et al., 2018). Incorpora-693

tion of additional physics, such as thermal or viscous effects, could also generate useful insights.694

Perhaps the greatest limitation of our current SPH model is the restriction to displacement bound-695

ary conditions. In future work, we hope to implement stress boundary conditions, allowing us to696

model a pressure boundary on a depleting magma reservoir and to study the effect of varying re-697

gional tectonic stress, a factor that has previously been shown to play an important role in caldera698

development (Holohan et al., 2005; Cabaniss et al., 2018; Gudmundsson, 2006).699

7 CONCLUSION700

• SPH, as a mesh-free continuum numerical method, offers a compelling option for numerical701

modeling of finite elastoplastic deformation of rock and granular material.702

• The kinematics and load-displacement curves of the Chevalier et al. (2012) experiments703

strongly indicate critical state behavior of the sand used in those and other similar experiments.704

• The orientation of shear bands in analogue caldera formation models is primarily controlled705

by the angle of dilation.706

• Proper scaling of analogue models might require consideration of elastic moduli. Numerical707

methods, such as SPH, can help diagnose if this scaling is needed. Furthermore, proper scaling708

requires a complete understanding of the constitutive behavior of rock and sand.709

• The inferred vertical orientation of the ring fault structure at Kı̄lauea implies the caldera host710

rock likely has low dilatancy.711
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APPENDIX A: SPH IMPLEMENTATION DETAILS868

An explicit stress-point integration algorithm is employed in SPH and in this paper. Based on the

Jaumann stress rate (Eq. 22), the Cauchy stress rate tensor is updated over time as

σn+1 = σn +∆tCep
n : dn +R · σn − σn ·R , R = ∆tωn . (A.1)

At each time step, the position, velocity, mass density, stress, and deformation are updated

for each particle in the domain. Any explicit time integration scheme can be used, but in this

paper, we used a variation of the explicit forward Euler method that has optimum conservation

characteristics as shown in Violeau (2012). In general, given a field variable f(x) whose value is

known at step n, corresponding to simulation time tn, the updated value of that variable at step

n+ 1, with corresponding time tn+1, is given by

f(x)n+1 = f(x)n + ḟ(x)n∆t , (A.2)

where ḟ is the material time derivative of the variable, and ∆t = tn+1 − tn.869

Hence, at the end of each time step, the positions, velocities, mass densities, and deformation

are updated as follows,

vn+1 = vn + an∆t , (A.3)

xn+1 = xn + vn+1∆t , (A.4)

ρn+1 = ρn + ρ̇n∆t , (A.5)

εn+1 = εn + dn∆t . (A.6)

Note that the first two updates have to be performed in the order presented above for optimum870

conservation to be achieved. Furthermore, the material time derivative of the mass density is given871

by Equation 20, and the update equation for the deformation tensor can be performed for the elastic872

and plastic components as well, making use of the additive split of the deformation gradient tensor,873

d = de + dp. For further details on the update of deformations see Fávero Neto (2020).874

In the previous update equations, the time step ∆t has to satisfy the CFL conditions (Fávero Neto

& Borja, 2018) in order to render the update stable. In this paper, the CFL condition is represented
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by

∆t ≤ a
h

cs
, (A.7)

where a is a coefficient chosen to be 0.1, and cs =
√
E/ρ is the numerical speed of sound of the875

material with Young’s modulus E.876

Another important numerical aspect to observe is that due to its dynamic nature, SPH (like

other dynamic methods) requires some level of dampening of elastic shock waves (artificial vis-

cosity) in the domain, which otherwise may lead to loss of stability and accuracy of the solution.

In this paper, we use the well-established artificial viscosity term proposed by Monaghan and Gin-

gold (1983). The artificial viscosity term is added to the balance of linear momentum, Equation 19

as follows

⟨a⟩i =
N∑
j=1

mj

(
σi + σj

ρiρj
+Πij1

)
· ∇ ⊗Wij + gi , (A.8)

where877

Πij =


απcs,ijΦij − βπΦ

2
ij

ρij
, for vij · xij < 0 ,

0, for vij · xij ≥ 0 ,

(A.9)

with

Φij =
hijvij · xij
|xij|2 + η2

, (A.10)

where cs,ij = (cs,i + cs,j)/2, ρij = (ρi + ρj)/2, hij = (hi + hj)/2, xij = xi − xj , vij = vi − vj ,878

and η = 0.01hij . The coefficients απ and βπ are constants between 0 and 1.0, and in this paper879

were chosen to be απ = 0.4 and βπ = 0.880

As mentioned previously, the assumption that the kernel domain is far from the problem do-

main boundaries is not true for particles near or at the problem boundary. For those particles, the

kernel gradient will not guarantee first order consistency, which is necessary for convergence and

accuracy of the method. Hence, a kernel gradient correction is required as described in Bui and

Nguyen (2021). The corrected kernel gradient is given by

∇̃ ⊗Wij = Li · ∇ ⊗Wij , (A.11)
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where

Li =

[
N∑
j=1

mj

ρj
(xj − xi)⊗ (∇⊗Wij)

]−1

. (A.12)

The corrected kernel gradient of Equation A.11 should be used in place of ∇⊗Wij in all applicable881

SPH operators, except in the balance of linear momentum, Equation 19 to enforce conservation882

(Bui & Nguyen, 2021).883

Finally, it is important to provide a brief discussion on how to enforce Dirichlet boundary884

conditions (prescribed displacement) in SPH. The simplest way to enforce rigid boundary condi-885

tions like walls or moving rigid bodies interacting with the geotechnical/geological materials is886

through the introduction of so-called dummy boundary particles. These particles are placed at a887

distance 0.5∆x from the actual boundary line and outside the domain. Usually three to four layers888

of particles are sufficient. These particles neither move (or move with prescribed displacements)889

nor have their properties such as mass density and mass updated, with the exception of their stress890

tensor. However, they help enforce no-penetration and no-slip boundary conditions by entering the891

calculations of the deformation rate tensor and in the balance of linear momentum.892

To update the stress tensor of the dummy particles, the stress of the deformable material is

extrapolated to the dummy particles using the following expression

σb =

 1
Nb∑
d=1

md

ρd
Wbd


Nb∑
d=1

md

ρd
σdWbd , (A.13)

where subscripts b and d refer to the boundary particles and deformable material particles respec-893

tively, and Nb is the number of deformable particles that are neighbors of the boundary particle.894

For more information about the boundary formulation presented here the reader is referred to Bui895

and Nguyen (2021).896
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