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Abstract

Physical forces, including mechanical stretch, fluid pressure, and shear forces alter lymphatic vessel contractions and lymph flow.
Gravitational forces can affect these forces, resulting in altered lymphatic transport, but the mechanisms involved have not been stud-
ied in detail. Here, we combine a lattice Boltzmann-based fluid dynamics computational model with known lymphatic mechanobi-
ological mechanisms to investigate the movement of fluid through a lymphatic vessel under the effects of gravity that may either
oppose or assist flow. Regularly spaced, mechanical bi-leaflet valves in the vessel enforce net positive flow as the vessel walls con-
tract autonomously in response to calcium and nitric oxide (NO) levels regulated by vessel stretch and shear stress levels. We find
that large gravitational forces opposing flow can stall the contractions, leading to no net flow, but transient mechanical perturbations
can re-establish pumping. In the case of gravity strongly assisting flow, the contractions also cease due to high shear stress and NO
production, which dilates the vessel to allow gravity-driven flow. In the intermediate range of oppositional gravity forces, the vessel
actively contracts to offset nominal gravity levels or to modestly assist the favorable hydrostatic pressure gradients.

Keywords: lymphatic vessel pumping, edema, gravity, valves, computational model

Significance Statement:

The mechanisms that result in lymphatic insufficiency and peripheral lymphedema are not completely understood, but can be
exacerbated by gravitational forces, especially in the lower limbs. To better understand the interplay between tissue fluid pressure,
lymphatic contractions, and gravitational forces, we developed a mathematical model that includes the relevant mechanobiologi-
cal mechanisms. The simulations show that lymph transport is most efficient when the limb drainage is assisted by gravitational
forces and decreases when the flow direction is opposed by gravity. The results also suggest that lymphatic contractions can be
stalled by excessive body forces and re-activated by tissue-induced mechanical perturbations.

Introduction
Lymphatic transport of fluid and cells is important for fluid home-
ostasis and the immune response. Collecting lymphatic vessels
can actively pump fluid, but lymphatic pathologies can result in
inefficient transport and accumulation of fluid (lymphedema) (1–
4). It is well-established that lymph transport and fluid homeosta-
sis are affected by gravitational forces and limb orientation (5,
6). Lymphatic insufficiency is exacerbated if the direction of fluid
evacuation is opposed by gravity (7, 8).

The fact that lymphedema often occurs in dependent limbs
highlights the importance of gravity-imposed pressure on fluid
homeostasis and lymph drainage (9, 10). An early study by Ol-
szewski and Engeset addressed the question of whether evacu-
ation of fluid from the lower limbs is driven by skeletal mus-
cle movement or intrinsic lymphatic vessel contractions. By care-
fully measuring vascular pressures in various conditions (stand-
ing, supine, with and without flexing the foot), they found no dif-

ferences in lumen pressure within the lymphatic vessels between
standing and recumbent conditions, but saw increases in contrac-
tion frequency when standing or in response to external massag-
ing of the foot. Interestingly, they observed long periods with no
contractions of the vessels, but the contractions could be initiated
by injecting fluid (to increase pressure) or massaging the area ad-
jacent to the vessel (11).

Other studies have observed similar changes in contraction fre-
quency between upright and recumbent positions. Holm-Weber
et al. reported a more than doubling in frequency 3 minutes after
standing from a recumbent position (12). This higher frequency
persisted for up to 6 minutes after the subject returned to a lying
position. In this study, there was also an increase in lymph pres-
sure of 9 mmHg when standing relative to lying down. As a result
of this and other studies, a common therapeutic recommendation
for peripheral edema is to elevate the affected limb(s) so gravity
can assist, rather than oppose, drainage. However, benefit may be
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Fig. 1. Schematic of computational domain. At left is the initial lymphatic vessel segment where fluid enters the vessel, bounded by the dashed line.
Fluid enters this region from the surrounding tissue (red arrows). The initial lymphatic vessel segment is connected to the collecting lymphatic vessel
segment, which contains a series of lymphangions (five are shown in this example). The extravascular tissue is modeled as a porous material by
including solid islands (black dots), which hinder fluid flow in the lattice Boltzmann calculations. The gray boundary is the interface with the
surrounding tissue; fluid freely enters at this boundary. Flow leaves the domain at the exit of the vessel (right). The three locations indicated by red
circles are referenced in the results section. The vessel wall is anchored with viscoelastic springs and is affected by calcium-induced muscle cell
contractions as well as fluid forces (detail at bottom left). The muscle cell forces are modeled using a simplified scheme of calcium dynamics (bottom
right). Calcium enters the cytoplasm to induce contractions, and its activity is countered by NO produced by endothelial shear stress (35).

lost unless the elevation is maintained. The fluid pressure tends
to increase quickly when the limb is returned to a dependent po-
sition (13).

These considerations are also relevant to prolonged space
flight, where an absence of gravity induces many changes in phys-
iology (14, 15). It has been suggested that these changes are due
to cytoskeletal filament rearrangement, endothelial dysfunction,
and muscular atrophy, which affect vascular function and fluid
homeostasis (16). Evidence from mouse experiments in micro-
gravity support the idea that lymph flow is affected by gravita-
tional forces. After returning from a 13 day space shuttle mission,
mice had significantly altered systemic distributions of T cells
(17).

The relationship between cerebrospinal fluid (CSF) pressure
and gravitational forces is of primary importance in prolonged
space flight. CSF accumulation occurs in a number of pathological
conditions, and can result in spaceflight-associated neuro-ocular
syndrome, a problem for long-duration spaceflight. Studies have
shown that the fluid accumulation is due to the altered gravita-
tional environment and involves changes in lymphatic contractil-
ity (18).

In vitro experiments can be leveraged to study lymphatic phys-
iology under controlled conditions. By isolating and cannulating
lymphatic vessels ex vivo, it is possible to examine the relation-
ships between lumen pressure and contractility (19). These stud-
ies show that increasing pressure in the lymphatic lumen results
in altered contraction frequency and output (20). Lymphatic mus-
cle cells adapt to changes in transwall pressure with increased
contractility to maintain homeostasis (21). However, studies that
impose only a pressure within the vessel may not completely re-
capitulate the effects of gravitational forces, which operate both

inside and outside the vessel wall, so have less impact on tran-
swall forces. Although much clinical evidence and basic research
shows correlations between lymphatic function and gravitational
forces, there are still outstanding questions concerning how lym-
phatic function is affected by different body forces (18, 22–26).

Previous mathematical models have been developed to inves-
tigate lymphatic function and fluid homeostasis. Detailed models
of lymphatic networks, complete with valves have been described
(27), and valve mechanics have been examined in detail using ex-
plicit mechanics and fluid dynamics (28). Other models have ex-
amined the effects of gravity on CSF pressures (29) and the effects
of microgravity on systemic fluid redistribution using whole-body
compartment-based modeling (30). In general, these models ex-
amine transport without consideration of the mechanobiological
mechanism that control lymphatic contractions.

Previously, we demonstrated how the dynamics of nitric ox-
ide (NO) (produced by shear stress on lymphatic endothelial cells)
and intracellular calcium fluxes in lymphatic muscle cells can es-
tablish feedback that controls lymphatic contractions (31–33). We
have also considered the effects of gravity on the fluid balance
in the lower leg at the scale of the entire limb using a simplified
model of lymphatic pumping (57), but did not address the pump-
ing dynamics of individual lymph vessels. Here, we analyze how
gravitational force (i.e. limb position) affects lymphatic vessel con-
tractions, tissue fluid pressure, and valve dynamics using a lattice
Boltzmann mathematical model.

Model summary
Our 2D model domain consists of an initial lymphatic vessel
where fluid enters the vessel, several collecting lymphangions in

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/1/5/pgac237/6762942 by guest on 22 N

ovem
ber 2022



Li et al. | 3

series, and one outlet lymphangion (Fig. 1); each lymphangion is
flanked by two valves (34). The vessel is embedded in a porous tis-
sue space where fluid can move in response to pressure gradients.
The outer domain boundary (gray line) represents the interface
with the surrounding tissue. The outer domain boundary is suf-
ficiently distant from the vessels so as to not affect wall motion.
Similarly, the outer domain boundary is porous, allowing fluid to
leave or enter the domain, thus fluid–wall interactions should not
be affected by the boundary.

Fluid dynamics
Fluid dynamics are simulated by the D2Q9 lattice Boltzmann
method (LBM) (36). Interactions with the moving vessel wall
and the valves are calculated according to the so-called “curved
boundary condition” (37), and the hydrodynamic force is inte-
grated using the stress-integration method (38). Fluid interaction
with solid islands in the tissue, the inlet of the initial lymphangion,
and the static region at the vessel outlet are treated with bounce-
back boundary conditions (39). Similarly, the fluid exchanges mo-
mentum with the vessel wall and valves. To simulate gravity, a
body force is applied to all the fluid in the domain, including the
extravascular space. The direction is dictated by the vessel orien-
tation.

Tissue domain
Fluid moves into the domain from the surrounding tissue across
the gray boundary in Fig 1. In the tissue domain region, pres-
sure gradients drive the flow, which is generally oriented toward
the initial lymphatic segment. To simulate flow in a porous me-
dia, the tissue domain includes randomly placed solid “islands”
(black dots, Fig. 1); these comprise 5% of the tissue nodes out-
side the lymphatic vessel. In the LBM code, fluid packets that en-
counter these islands are reflected locally (implemented using a
full bounce-back condition) (40), thus hindering convection.

Initial lymphatic region
The initial lymphatic capillary is bounded by the dashed rectan-
gle at the left of the domain (Fig. 1). The wall in this region is rigid,
but contains a number of apertures that represent primary valves
through which flow can pass. These apertures comprise 50% of
the wall. At these locations, fluid freely enters if the pressure gra-
dient is favorable; some fluid can also exit the region if the lumen
pressure is higher than the tissue pressure.

In our simulations, a small amount of retrograde flow is neces-
sary to close the first intraluminal valve. Experimental evidence
suggests that the primary valves of initial lymphatic vessels nor-
mally do not allow leakage of injected tracer when the lymphatic
pressure exceeds that of the tissue; however, during inflamma-
tion, backflow is possible (41). In addition, it is likely that ini-
tial and precollector lymphatics have elastic compliance that al-
lows for some retrograde flow that is necessary to close the valve
leaflets in the distal region of the network (22). Thus, our impo-
sition of slightly leaky primary valves is reasonable as it does
not alter the main model findings and compensates for the lack
of compliance upstream from the first valve. To do this, we im-
pose the leakage of the lymph out of the initial lymphatic ves-
sels using a partial bounce-back condition so that during vessel
contraction, some of the flow initially goes backward through the
(slightly leaky) initial lymphatic vessels into the tissue. This small
amount of retrograde flow from the first lymphangion is sufficient
to close the first open intraluminal valve. Specifically, fluid enter-
ing the vessel passes freely through the gaps in the initial lym-

phatic shown in Fig. 1; however, when the pressure gradient fa-
vors back flow into the tissue, 85% of fluid is reflected and 15% is
allowed to leak back into the tissue. This is imposed using a par-
tial bounce-back boundary condition (40), and approximates the
primary “flap” valves (42, 43) as well as upstream lymphatic com-
pliance.

Collecting lymphatic vessel
The initial lymphatic segment connects to the collecting lym-
phatic vessel, which consists of a number of lymphangions in se-
ries, separated by explicit mechanical valves. The vessel wall in
this segment is flexible, and is anchored to the surrounding tis-
sue with visco-elastic springs (33). Transwall fluid pressure gra-
dients can displace the wall locally, implemented by calculating
the momentum transfer between the fluid and wall nodes (33, 44).
Conversely, the wall generates forces that can move the fluid. We
do not explicitly model deformation of the tissue outside the ves-
sel, but instead adjust the tissue and fluid node conditions in the
LBM code: when the vessel wall expands into this tissue, we re-
place tissue nodes with fluid at those locations. Similarly, when
the vessel wall recedes, fluid nodes are replaced by tissue nodes
as appropriate (44). To anchor and stabilize the outlet region of the
collecting vessel, we impose a 0.296 mm length of noncontracting
vessel extending to the outlet boundary. The total vessel length
is 5.6 mm for the 5-lymphangion vessel and 29.7 mm for the 31-
lymphangion vessel.

At the vessel outlet, we impose a pressure boundary condition
(45). To simulate the fluid dynamics of lymphangions and valves
downstream, beyond the domain, we introduce a partial bounce-
back boundary located 0.016 cm upstream from the vessel out-
let. At this boundary, fluid can exit freely, but if the flow reverses,
85% will be reflected. When the last valve is completely closed, the
bounce-back on this boundary increases to 100%. This simulates
the effects of downstream valves, and is necessary to prevent in-
stabilities caused by the rigid vessel wall at the outlet region.

The lymphatic vessel contains a series of bi-leaflet valves that
are modeled as visco-elastic solid structures anchored at the ves-
sel wall (33). The opening and closing of the valves are passive,
entirely controlled by forces imparted by the flowing fluid. In the
absence of fluid flow, the valves are biased in the open position,
consistent with experimental observations (46).

In simulations of longer vessels (31 lymphangions), the resis-
tance is correspondingly larger, so we needed to increase the po-
tential amplitude of the contractions by decreasing the minimum
systolic diameter in the simulations. The contraction force is also
increased by a factor of 4.5 to compensate for the larger resistance
(see Suppplementary Material, increased Ca++ rate constant KM).

Calcium fluxes, nitric oxide, and contraction
force
Wall-generated forces simulate lymphatic muscle contractions,
and are implemented using a simplified scheme for calcium dy-
namics in the muscle cells (32). Briefly, contractions are initiated
when the Ca++ level exceeds a threshold, and the resultant con-
traction force is proportional to the Ca++ level. Ca++ accumu-
lates in the cytoplasm of the muscle cells due to a constant leak-
age rate, which is enhanced by vessel stretch [which simulates
stretch-sensitive ion channels (47, 48)]. Ca++ is depleted from the
cytoplasm according to a recharge rate, which is increased by NO.
NO production rate is proportional to the shear stress at the ves-
sel wall (49, 50) and it degrades exponentially with a half-life of
0.31 s. Ca++ diffusion is restricted to the wall of the vessel (sim-
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Fig. 2. Gravitational forces affect lymphatic contractions and flow. (A) Flow rates as a function of time for three positions along the vessel and different
gravitational forces (indicated in B). The time-averaged fluid velocities at the vessel outlet are plotted in (C). Simulations with 0, 1, 2, and 3g are shown.
"3g + trigger" indicates that we applied a pressure pulse to start the stalled contractions.

ulating gap junction transport), while NO diffuses and convects
freely in the domain.

Implementation
In practice, the vessel in Fig. 1 is divided into multiple 465 × 66 lat-
tice sections for distributed GPU parallelization. Each vessel wall
is discretized into 232 segments, and each valve leaflet is repre-
sented by 28 segments. Parameter values were either obtained
from literature or estimated to produce vessel dynamics consis-
tent with experimental observations (31–33, 51–53). The code is
written in C++, and executed on a workstation with eight GPUs.
The GPUs all are NVIDIA Quadro GP100, each with 3,584 CUDA
cores. The workstation has two E5-2620 CPUs. We use CUDA to
parallelize the computations on the GPUs. Each GPU calculates
one or more regions. MPI (message passing interface) is used
to exchange border data between neighboring regions. The lym-
phatic vessel model is only limited by computational power, and
can be extended to simulate longer lymphatic vessels. For exam-
ple, with eight GPUs, we can assign two computational domain
units to each GPU, thus providing for 31 lymphangions (and 32
valves).

Note that no model parameters are changed when simulat-
ing the different gravitational forces (Supplementary Table S1).
The observed changes in contractions naturally emerge due the
mechanobiological mechanisms driven by NO and Ca++.

To initiate the simulations, we start with a high Ca++ concen-
tration (just below the threshold level for contraction) at every
vessel node. This is sufficient to induce rhythmic contractions, ex-
cept in the cases with high adverse gravity. In these cases, an addi-
tional perturbation in the form of transiently increased Ca++ force
constant is needed (Supplementary Fig. S1). Additional details of
the mathematical model are included in the supplementary ma-
terial.

Results
Because our simulated domain is relatively short, the effects of
gravity are most easily studied by increasing the gravitational
force artificially. To investigate how gravity affects lymphatic con-
tractions and transport through lymphatic vessels, we simulated
tissue drainage under various gravitational fields in a vertically
oriented vessel, ranging from zero to three times normal grav-
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ity (g = 9.8 m/s2; Fig. 2). At the entrance region (1), the peak flow
rates are lower, but more sustained compared with the short, high
peaks seen in the downstream segments (2) and (3).

In the case of 0g, near the inlet region, positive flow is initiated
as the vessel relaxes to the rest position after the previous con-
traction (Fig. 2, location 1, “a”). During this diastole phase, the
upstream valve opens and fluid is pulled into the lymphangion.
Note that the contractions are naturally synchronized, so down-
stream segments are also opening at the same time, increasing
the volumetric flow rate at the entrance. The vessel contraction
causes a shorter spike in outflow (Fig. 2, location 1, “b”). As dias-
tole starts again, a small amount of retrograde flow occurs, which
closes the downstream valve (Fig. 2, location 1, “c”), and the cycle
repeats (see Supplementary Videos S1 and S2). In the downstream
segments (Fig. 2, locations 2 and 3), the flow peaks are quite dif-
ferent. During diastole, the outlet vessel is closed and the net flow
is very small (Fig. 2, location 2, “d”). This is because fluid is be-
ing pulled from upstream, where the flow rate is high, while there
is no flux at the end of the vessel. Note that the fluid velocity in
an expanding tube with a closed end depends on the tube length,
wall velocity, and x-location along the tube. During contraction,
the inlet valve closes, the outlet valves open, and the flow rate
spikes, again due to the combined effects of multiple contract-
ing lymphangions (Fig. 2, location 2, “e”). At the start of diastole,
there is a small amount of backflow and the downstream valve
closes (Fig. 2, location 2, “f”). Similar behavior is seen when gravity
is introduced, but the flow rates are reduced (Fig. 2, 1 and 2 g; see
Supplementary Videos S3 and S4).

The exit flow rate (averaged over the simulation) decreases as
gravity increases (Fig. 2C). The hydrostatic pressure that a given
lymphangion experiences is dependent on the length of the ves-
sel, limb orientation, and the efficiency of the intraluminal valves.
Interestingly, when gravity is increased to 3g, the additional pres-
sure within the vessel lumen prevents the distal valve from open-
ing, and the contractions stall: the cycle of calcium fluxes, flow,
and NO production is disrupted, and flow stops (see Figs. 2, “ 3g”).
In this condition, the vessel cannot generate enough force to open
the valve(s). In addition, when gravity opposes the flow, the gra-
dient of velocity ∂vl/∂xn decreases. There is more resistance to
flow due to the increased hydrostatic pressure, so each contrac-
tion moves less fluid. The decreased shear stress reduces the pro-
duction of NO. In the model, NO enhances the release of calcium
from myosin light chains and the depletion of cytoplasmic Ca++.
With flow against gravity, less NO is available, thus delaying or pre-
venting sufficient cytosolic calcium decay and extending the con-
traction cycle. Although similar “stalling” of contractions is often
observed in vivo (11, 54, 55), a mechanistic explanation remains
elusive.

When spontaneous contractions are prevented by gravitational
forces, they can be initiated by simulating physical massage of
the vessel (Figs. 2 and 3, “3 g + trigger”; Supplementary Fig. S1).
In the simulations, we do this by transiently increasing the lym-
phatic muscle force, applied either in the initial segment (imposed
for 0.133 s) or as a single traveling wave that propagates from en-
trance to outlet along the vessel wall. The lymphangion contrac-
tions are driven by calcium fluxes in the lymphatic muscle cells
(Fig. 1), and the sustained cycle is facilitated by shear-induced
NO produced in the endothelium. Transiently increasing the wall
strength locally partially empties the vessel, reducing lumen pres-
sure and creating additional NO, allowing another cycle to initiate.
Under adverse gravitational forces (3 g in this example), this tran-
sient increase in lymphatic muscle force is sufficient to trigger
stable oscillations. Clinically, lymph flow is often stimulated by

tissue massage, and it has been shown that tissue/muscle move-
ment can facilitate lymphatic transport, not by directly contract-
ing lymphatic vessels, but by activating endogenous lymphatic
contractility (11). The model suggests that the external perturba-
tions function to decrease lumen pressure transiently while creat-
ing shear stress and producing NO. The transient increase in lym-
phatic muscle force may also create strain in the vessel wall to
initiate the calcium action potentials through mechanically sen-
sitive channels, thus “jump starting” the contractions. Further in-
vestigation is needed to determine the physiological mechanisms
by which these external perturbations affect lymph transport.

The simulations also allow analysis of the fluid pressure in
the surrounding tissue, which is an indication of edema (Fig. 3).
In the absence of gravity (or when the vessel is horizontal), ves-
sel contractions move fluid, and the pressure in the tissue near
the entrance segment is the lowest (Fig. 3, 0g). When pumping
against gravity, fluid pressure near the entrance region increases
as gravity increases. When the gravity is increased to 3g, the vessel
stops pumping, and the upstream tissue fluid pressure is great-
est. Starting the contractions with a pressure pulse in this case
can decrease tissue fluid pressure in the entrance region. Note
that the tissue pressures increase or decrease primarily near the
inlet and outlet and are relatively constant in the central tissue
region. This is because our domain is finite and pressure differ-
ences are enhanced at the top and bottom of the “container.” The
flattened pressure profile near the center is due to fluid entering
and exiting the domain laterally, which buffers the pressure gra-
dients and may simulate the drainage of fluid by other lymphat-
ics outside the domain. Examining the average lumen pressures,
we see the expected discontinuities at the valves. Because of the
steep gradients in pressure along each lymphangion (relative to
the surrounding tissue), the transwall pressures are not uniform
along a given lymphangion segment, with higher gradients near
the valves. This may contribute to the formation of “bulb” struc-
tures at the locations of the valves.

We next examined the effect of limb position (angle) on con-
tractions and drainage. Keeping the gravity at 3g, we varied the
angle of the vessel from zero (flow oriented against gravity) to π

(flow oriented with gravity), and plotted the flux in the middle seg-
ment over time (Fig. 4). The simulations of the two steepest an-
gles (α = π/6 and π/3) experience stalling similar to that seen with
the vertical simulations (against gravity). As the direction of flow
starts to align with the direction of gravity (i.e. the limb is elevated;
α = 5π/6 and π ), gravity drives the flow, generating steady NO and
inhibiting the calcium fluxes. In these cases, the contractions stop,
but flow still occurs, driven by gravity.

Next, we examined the effect of gravitational forces on valve
opening and closing. This required simulating a longer vessel (31
lymphangions) to observe patterns in the valve dynamics. For
longer vessels, the flow resistance and effects of gravity increase,
and the contractions do not initiate as easily as with the shorter
vessel. As with the shorter vessel exposed to high gravitational
force, initiation of the contractions requires an external pertur-
bation. After the initiation trigger, the vessel can pump without
intervention. This “jump-start” procedure may simulate the initi-
ation of lymphatic contractions by skeletomuscular motion (11,
56).

To visualize the dynamics of the contractions and valves, we
create color maps that show the valve status as a function of time
and position along the vessel (blue and red colors indicate closed
and open valves, respectively; Fig. 5). In these plots, we can follow
a vertical line from bottom to top to see a single valve opening
and closing (changing to red, then blue). So for example with 0 g,
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Fig. 3. Calcium dynamics near the center of the vessel and fluid pressures in the domain. (A) Changes in Ca++ concentration in the middle segment
over time. (B) Pressure in the tissue outside the vessel, averaged perpendicular to the vessel wall. (C) Average lumen pressure along the vessel.
Simulations with 0, 1, 2, and 3 g are shown. 3g + trigger indicates that we applied a pressure pulse to start the stalled contractions.

at t = 0, the first (leftmost) valve is blue, indicating that the valve
at the inlet is closed. The contraction is starting from the inlet
and propagating toward the outlet, as indicated by the progression
from bottom left to top right in the red and blue color regions. The
red color moves from left to right as time increases, indicating that
the valves open sequentially from the inlet to the outlet. A vertical
line near the left side of the plot most often intersects red color,
so the valves near the inlet spend more time in the open position
than the closed position, consistent with the analysis in Fig. 2. The
initiation of the contractions can be inferred from this leftmost
valve as well: when a contraction is initiated, this valve will close,
changing the color from red to blue.

In contrast to the left side of the plot (vessel entrance), a verti-
cal line near the right side (vessel outlet) has more blue color than
red, so valves in this region are mostly closed. This difference is
driven by the difference in fluid velocities during contraction and
relaxation. As the vessel contracts, fluid is rapidly pushed through
the exit, resulting in short opening times for valves at the outlet.
On the other hand, vessel relaxation back to baseline is slower, so
pulling fluid from the inlet requires the valves in that region to
stay open longer. In addition, there is more flow resistance down-

stream from the first lymphangions, and their contractions are
more prolonged, as also demonstrated in Fig. 2. This contributes
to the prolonged valve opening.

We can also examine horizontal lines to see how many valves
are open at a given time. As a horizontal line moves up through
the plot (advances in time), we see that the line often intersects
with long stretches of red color, indicating that multiple valves
in the sequence are all open at the same time. In general, we
see that ∼20 sequential valves near the central region are all
open or closed at a given time step, corresponding to a distanc
e of ∼2.23 cm.

Comparing 0g with 1g adverse gravitational force, there are no-
table differences in valve dynamics. First, there is more frequent
red color with 1g, indicating that there are in general, more open
valves when gravity is opposing flow. This seemingly counterintu-
itive result makes sense when considering the flow resistance ar-
gument discussed earlier. Against gravity, there is more resistance
to flow, and the vessel wall velocity during systole is slower. This
prolongs the contraction, keeping the downstream valves open
longer. The contractions against gravity are also more synchro-
nized and tightly packed. In general, the distance between closed
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Fig. 4. Flow rates and tissue pressures are affected by limb position. (A) Fluid flow in the central segment over time as a function of limb angle relative
to gravity. (B) Pressure in the tissue outside the vessel, averaged perpendicular to the vessel segment for various limb angles. The magnitude of gravity
is 3g, and we vary the angle relative to the vertical orientation. For the simulations of π/6 and π/3, an additional trigger (transiently increased Ca ++

force constant) was needed to initiate the contractions.

valves is reduced to the range of 10 to 12 lymphangions. This indi-
cates that as opposed to the 0g case, where long stretches of ves-
sel contract nearly simultaneously, when pumping against gravity,
the lymphangions contract more sequentially, in “bucket brigade”
style.

Discussion
The lymphatic system is a complex, self-regulated system that
functions to maintaining fluid homeostasis. One clinical mani-
festation of impaired lymphatic function is lymphedema. There
is abundant evidence that gravitational forces and limb posi-
tion affect fluid homeostasis and lymphatic function, but detailed
mechanistic analyses are lacking. To address this issue, we devel-
oped a computational model that includes explicit fluid dynam-

ics and known mechanobiological mechanisms of lymphatic con-
tractions.

The model has several notable limitations. Due to computa-
tional limitations, our simulations are limited to a 2D channel,
and as such cannot fully represent the 3D structure of the valves
or the circular cross section of a real vessel. As a result, the flow
rates reported in Figs. 2 and 4 are presented in units of area per
unit time rather than volume per unit time as would be expected
from a 3D model. A volumetric flow rate might be estimated by
multiplying by the width of vessel in the direction normal to the
plane of the simulation, but this approach should not be expected
to exactly match physiological flow rates. For example, it is well
known that steady 2D flow between parallel plates has a different
mean to peak velocity ratio than found in a 3D circular tube of
the same diameter. Nonetheless, our comparisons among 2D sim-
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Fig. 5. Valve dynamics in a vessel with 32 valves (31 lymphangions).
Cases for 0 and 1 g adverse gravity are shown. As time proceeds from
bottom to top, color changes indicate valve status. Red indicates fully
open, and blue is closed.

ulations should be expected to be internally consistent, and the
mechanobiological feedback mechanisms should be consistent in
3D. In addition, our domain is, by necessity, limited, and boundary
effects influence the pressures predicted in Figs. 3 and 4. How-
ever, the general trends are intuitively correct, and the changes
in contraction behavior in response to perturbations agree well
with those observed in animal models, ex vivo preparations and
clinical observations.

Our simulations of self-sustaining contractions of long vessels
show that the interval between closed valves may be many lym-
phangions in length, indicating that fluid and chemical signals
can induce coordinated action of a chain lymphangions, even in
the absence of external pacemaking. The simulations suggest that
gravitational forces may exacerbate lymphedema by increasing
distal pressures and altering tissue and luminal pressure gradi-
ents, ejection velocities, and wall shear stresses in the lymphatic
vessels. This, in turn, changes the dynamics of NO production and
calcium-induced contractions. Gravitational forces also alter the
propagation of the lymphatic contractions along the vessel wall,
so that the velocity is smaller, and the coordination of valve open-
ing and closing is restricted to shorter sequences of lymphan-
gions. This is apparently necessary to protect the distal vessels
from higher pressure, but makes the pumping less productive.

The simulations also show that gravitational forces can prevent
the distal valves from opening, preventing synchronized contrac-
tions. In these cases (seen primarily in the simulations with 3 g),
our usual startup procedure—which involves seeding a high level
of Ca++ along the vessel wall—leads to a single contraction that
dies out due to a lack of shear-induced NO and insufficient force
to open valves. Subsequently, the fluid and vessel wall dynamics
relax, and flow stops (see Supplementary Fig. S1). In these sim-
ulations, a stronger perturbation is needed, and the contractions
can be restarted by simulating exogenous mechanical perturba-
tions (similar to skeletal muscle motion or massage). This can be
accomplished by briefly enhancing the force produced by the lym-
phatic muscle cells to induce wall motion, either localized at the

initial segment or imposed as a traveling wave down the vessel.
This has the effects of transiently decreasing lumen pressure as
the vessel empties and increasing shear stress and NO, which can
“reset” the contraction cycle.

In summary, our results highlight the importance of gravita-
tional forces, limb position, and external perturbations on lym-
phatic vessel function. Future experimental studies may shed
more light on the mechanisms by which mechanical perturba-
tions can influence lymph transport.
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Fig. S1. Restarting stalled pumping. With large adverse gravitational force (3g), the normal startup procedure, which involves setting the initial Ca2+ at the wall to a high,
sub-threshold value, does not result in sustained contractions. Instead, the valves quickly close along the length of the vessel (blue color, 0-2s). Downstream valves transiently
open and close for a few seconds as the system relaxes, and the visco-elastic vessel wall passively stretches and contracts in response to the fluid forces (2-4s). At 3.99s, we
apply a transient increase in the force constant that controls the Ca2+ force, propagated as a single wave down the vessel. This is sufficient to create sustained, synchronized
pumping (4-9s).

Methods14

Vessel wall and the valve. Both the wall and the valve are discretized into segments, which can only move along the y (vertical)15

direction. They both have bending force:16

FB = −KB((y − ym) + (y − yn)), [1]17

where ym and yn are the y-positions of the neighboring segments. For the vessel KB is constant, but for the valve, it’s stronger18

for the anchor point and softer for the tip (1); thus we assume the bending rigidity for the valves as:19

Kv
B = 2(Kv

0 −Kv
R)

1 + exp(Ai/n) +Kv
R, n ≥ i ≥ 0, [2]20

where i indicates segment number and n is the total number of valve segments. Kv
0 is the maximum of Kv

B at anchor point.21

Kv
R is an approximation of the minimum of Kv

B , and the coefficient A adjusts the strength of stiffness variation along the valve.22

The elastic force from the tissue is23

FE = −KE(R−R0), [3]24

where R is the radius of the vessel or valve, R0 is the rest radius. For the vessel, R0 is a constant, but for the valve, to maintain25

the correct curvature seen in experiments, we impose a piecewise linear shape at rest:26

y0 = yl0 ±
√

(x− x0)/B, [4]27

where yl0 is the rest position of the vessel, x0 is the anchor point of the valve. ’-’ and ’+’ indicate upper and lower valve leaflets.28

B can adjust the rest position so that it is biased to stay open or close. We specify the minimum vessel radius Rl to limit the29

extent of the contractions. The valve also has a limit position to avoid excessive opening, specified by B. The structures are30

visco-elastic, so the viscous resistance force is introduced as:31

Fr = −Krv. [5]32

The minus sign means that Fr always acts in the direction opposing wall velocity v.33

There are lymphatic muscle cells (LMCs) on the lymphatic vessel, which can contract as calcium accumulates in the34

cytoplasm of the LMCs. The effect of calcium is known to be tempered by nitric oxide. The lymphatic muscle force depends35

on the concentrations of Ca and nitric oxide according to (2):36
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FM = KM ( CCa

1 + CCa
)( 2R
R+RCa

)( 1
1 +KNOCNO

), [6]37

where CCa and CNO are the concentration of calcium and NO respectively, and KM is the coefficient determining the strength38

of action. Ca production and the dynamics of Ca in the vessel wall (which includes diffusion) can be described as (2–7):39

4CCa(x, t) = DCa∇2CCa(x, t)4t40

+(−K−Ca(1 +KCa,NOCNO)CCa +K+
Ca41

+K+
Ca( (R−Rl)

(RCa −Rl)
)11

42

+10K+
δ δ ↑ (Cth, CCa))λ4t. [7]43

where the last term simulates calcium-induced calcium spikes.44

Production and diffusion of nitric oxide can be simulated through:45

4CNO(x, t) = DNO∇2CNO(x, t)4t− u · ∇CNO(x, t)4t46

+(−K−NOCNO(x, t) +K+
NO |

∂vl
∂xn
|)λ4t, [8]47

where CNO is the concentration of NO. DNO is the diffusion coefficient of NO. The third term represents production due to wall48

shear stress. Each segment moves according to the Newtonian law calculated by a so-called half-step ’leap-frog’ scheme (8).49

Extreme treatment. "Extreme" treatment is used when one body approaches closely to a limit position or two bodies are too50

close to each other. As shown in Fig. S2 (A), if a segment is too close to a limit position (for example, the vessel contracts too51

much and the gap between the upper wall and the limit position R−Rl = δ < ∆, we multiply FE by ( ∆
δ

)11. This transient52

but strongly increasing force prevents further approach and avoids numerical instabilities. The valve also has a limit position53

described by Eq. (4) where B is the maximum. If a valve is closing and the two leaflets are too close together, we also apply a54

lubrication force (9) to stabilize the membranes of the valve when there is no fluid node between them. In our simulation, the55

Newtonian time of the vessel and valve is 1/100 of lattice Boltzmann time step.56

Limit position

Fig-s2

F

n

Fig. S2. Schematic diagram of a membrane approaching too close to a limit position. δ is the gap between a membrane and the limit position. F is a rapidly increasing force
as δ.

Simulation parameters57

The diameter of the vessel at rest is assumed to be D′ = 0.01cm. The lymph inside is treated as water with kinematic viscosity58

of ν′ = 0.01cm2/s and density of ρ′ = 1g/cm3. The density of valves is also treated as water, but the density of the vessel is59

eighty times that of water. In the simulation, we choose the vessel rest diameter as D = 25 lattice nodes, and the relaxation60

time τ = 0.75; thus the kinematic viscosity ν = (2τ − 1)/6 = 0.0833, the density at the inlet is ρ = 1, the initial fluid density61

ρ0 = 1, and the velocity is zero. The initial calcium concentration at each membrane segment is 0.0999, which is close but below62

the threshold of calcium. The initial NO concentration at each lattice is zero. Each time step is T = ν
ν′ (

D′

D
)2 = 1.33× 10−6s,63

each lattice length is L = D′

D
= 0.0004cm, and the pressure unit is P = (L/T )2g · cm−3 = 9.045 × 104g · cm−1 · s−2. Other64

parameters are given in table S1. Here, in order to use parallel computing to calculate multi-lymphangion contracting together65

using MPI, when we discretize the membranes of the vessel and valves, we set the length of each segment to two lattice units.66

First we only use three GPUs to calculate three lymphangions (each including two valves) contracting under different gravity.67

Then we calculate 16 lymphangions contracting.68
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Parameter Definition Value Units Source
Chemical properties of NO and Ca2+

DNO NO diffusivity 1.2× 10−4 cm2/s 3.0× 10−5(cm2/s)(10)
K−NO NO degradation rate constant 75.1 s−1 Estimated
K+

NO NO production rate constant 20 Dimensionless Estimated
DCa Ca2+ diffusivity 5.02× 10−7 cm2/s 6.5× 10−7cm2/s (11)
K−Ca Ca2+ degradation rate constant 375.9 s−1 Estimated
K+

Ca Ca2+ production rate constant 22.6 s−1 Estimated
K+
δ

Ca2+ production rate constant 1.1× 105 s−1 Estimated
Cth Ca2+ threshold 0.1 Dimensionless Estimated
RCa Threshold radius for Ca2+ channel sensitization R0 − 0.5 L Estimated
KCa,NO Rate constant for NO inhibition of Ca2+ 0.5 Dimensionless Estimated
λ Chemical reaction rate constant 0.03 Dimensionless Estimated
VESSEL
KM Force constant for Ca2+ 1.0× 10−4 g · cm/s2 Estimated
KE Young elastic modulus of the vessel 407.0 dynes/cm2 Estimated
KB Young bending modulus of the vessel 3.6× 104 dynes/cm2 106(dynes/cm2)(12)
Kr Viscosity coefficient of vessel 4.8× 10−9 g/s Estimated
KNO NO inhibition of force 0.3 Dimensionless Estimated
Rl Limit radius 7.5 L Estimated
R0 Rest radius of the vessel 12.5 L Estimated
VALVE
A How soft the valve is 6 Dimensionless Estimated
B How much the valve biased to open 1500 cm−1 Estimated
KvE Young elastic modulus of valves 9.0× 10−4 dynes/cm2 Estimated
Kv0 Young Bending modulus of the base of valves 7.2× 104 dynes/cm2 106(dynes/cm2) (12)
KvR Young bending modulus of the tip of valves 0.018 dynes/cm2 0.1kv0 (1)
Kvr Viscosity coefficient of the valve membrane 4.8× 10−9 g/s Estimated
VESSEL & VALVE
4 0.5 L Estimated

Table S1. Chemical parameters of NO and Ca2+; Mechanical parameters of the fluid, vessel wall and valves.

Movie S1. Lymphatic vessel contractions without gravity. The color map shows the nitric oxide levels.69

Movie S2. Lymphatic vessel contractions without gravity. The same simulations as S1, but showing pressure70

in the colormap.71

Movie S3. Lymphatic vessel contractions with 1g opposing the flow. The color map shows the nitric oxide72

levels.73

Movie S4. . Lymphatic vessel contractions with 1g opposing the flow. The same simulations as S3, but74

showing pressure in the colormap.75
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