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Abstract

Purpose — Unprecedented endeavors have been made to take autonomous trucks to the
open road. This study aims to provide relevant information on autonomous truck technol-
ogy and to help logistics managers gain insight into assessing optimal shipment sizes for
autonomous trucks.

Design/methodology/approach — Empirical data of estimated autonomous truck costs
is collected to help revise classic, conceptual models of assessing optimal shipment sizes.
Numerical experiments are conducted to illustrate the optimal shipment size when varying
the autonomous truck technology cost and transportation lead time reduction.

Findings - Autonomous truck technology can cost as much as 70% of the price of a
truck. Logistics managers using classic models that disregard the additional cost could
underestimate the optimal shipment size for autonomous trucks. This study also predicts
the possibility of inventory centralization in the supply chain network.

Research limitations/implications — The findings are based on information collected
from trade articles and academic journals in the domain of logistics management. Other
technical or engineering discussions on autonomous trucks are not included in the literature

review.
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Practical implications - Logistics managers must consider the latest cost informa-
tion when deciding on shipment sizes of road freight for autonomous trucks. When the
economies of scale in autonomous technology prevail, the classic economic order quantity
solution might again suffice as a good approximation for optimal shipment size.
Originality /value — This study shows that some models in the literature might no longer
be applicable after the introduction of autonomous trucks. We also develop a new cost ex-
pression that is a function of the lead time reduction by adopting autonomous trucks.
Keywords Economic order quantity, Lead time, Autonomous truck, Shipment size

Paper type Research paper

1 Introduction

What happens in a sci-fi movie may not always stay in a sci-fi movie. In the 2017 American
superhero movie Logan, one of the most intense scenes involves Australian actor Hugh
Jackman driving a car that almost gets hit by a number of speedy self-driving trailers on the
highway. A year later, the Swedish automotive company Volvo released a TV commercial
for its autonomous truck (AT) that looks similar to the self-driving trailers in the movie.
Back in 2016, Anheuser-Busch InBev, a multinational drink and brewing company based
in Belgium, and Uber Technologies Inc.’s autonomous trucking unit Otto worked together
and successfully made the first commercial delivery of Budweiser beer using a self-driving
truck (Phillips, 2016; King et al., 2017). While automated vehicles in controlled areas such
as transportation terminals or mining sites have been around for many years, only in the
last five years have we seen major trucking companies make unprecedented endeavors to
take ATSs to the open road (Tita and Ramsey, 2015). In this era of disruptive technologies,
we seek to learn how the ATs could revolutionize the way logistics mangers make decisions
on shipment size.

Considering the magnitude of the logistics industry and how driverless technology can

fundamentally disrupt the industry, government agencies have been playing an active role
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in guiding the private sector and steering the development of automated vehicles. In 2013,
the US National Highway Traffic Safety Administration (NHTSA) published a descrip-
tion of developments in automated driving and explained the automation levels (NHTSA,
2013). In the spirit of continuously encouraging innovations to self-driving technology,
NHTSA published federal guidance for automated vehicles in recent years (NHTSA, 2017;
DoT, 2018). In 2016, the UK chancellor pledged to remove impediments to adopting the
technology and announced plans in the budget to roll out driverless haulage technology
by the end of the decade (Cambell, 2016). In 2017, Germany permitted the automotive
industry to develop and test self-driving cars with much more flexible ways to road-test
vehicles (Wacket et al., 2017). It is commonly believed that the biggest barriers to tech-
nology deployment usually are not technical but rather inadequate or unclear government
regulations. Thankfully, governments have proposed legislation and issued licenses that
are crucial and necessary for improving the development of automated vehicles (Spector,
2016).

Automated vehicles entail many modern technologies costs as well as viable social and
commercial benefits. ATs need hardware and software to be able to better sense and judge
the surrounding environment (e.g., traffic, pedestrians, objects, lane markings, weather)
(Anderson et al., 2014). Among all kinds of vehicles, freight-carrying commercial motor
vehicles (e.g., trucks and tractor trailers) are commonly believed to be more commercially
viable than passenger-carrying consumer vehicles for the following reasons (Kilcarr, 2016a;
Markoff, 2016; Cheng, 2019). First, the substantial hardware and software investments
necessary for enabling automation are relatively less costly for a truck than a car (Waters,
2019). Second, labor costs account for a substantial percentage of road-freight operating
costs; ATs can, theoretically, cut labor costs to as little as zero (O’Brien, 2017; Kilcarr,
2017). Third, the ongoing truck driver shortage is a worldwide phenomenon, with trucking
companies having a hard time recruiting and retaining drivers (Schouten, 2016; Ramsey,

2016; O’Marah, 2016; Millett, 2017; Meahl, 2017; Woodward, 2017; Cambell, 2018; Meyer,
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2018). Last, in view of the federal Hours of Service (HOS) rules, ATs promise great
economic benefits as they allow freights to arrive at their destinations sooner because no
human driver needs to take a break during the trip (FMCSA, 2013). In many ways, ATs
are poised to promote benefits and alleviate imminent issues facing the logistics industry.

Anticipating promising advantages, trucking companies have tried to bring automated
vehicles out of controlled settings (e.g., mining sites, construction sites, transportation ter-
minals, distribution centers, production plants, and agricultural fields) and into uncertain
environments (e.g., streets and highways) (Meldert, 2016). In 2016, a fleet of self-driving
trucks from major companies, including Volvo, Daimler, and Volkswagen, completed a
cross-continent journey as an effort to not only take ATs onto real roads but also demon-
strate the tangible cost-saving benefits of ATs (Vincent, 2016). More recently, Ford and
Volkswagen have collaborated on developing self-driving cars to share the cost of new tech-
nologies (Boudette and Ewing, 2019). Other collaboration examples among companies can
be found in Wilmot (2019) and Vaish (2019). UPS, a multinational package delivery and
supply chain management company, has invested in a self-driving trucking start-up com-
pany with a goal of testing the capabilities and limitations offered by a fully autonomous
delivery fleet (Vartabedian, 2019). Despite many successful cases of ATs to date, exact
costs for enabling ATs remain elusive due to the lack of commercially available systems
(Kilcarr, 2015b; Woodward, 2017; Banks, 2017; Chottani et al., 2018). As a result, studies
of the implications of AT hardware or software costs on the inventory decision are scarce.
It is necessary to gain a better understanding of the AT enabling costs because many major
companies have shown determination to move forward with AT in ways that will capitalize
the savings of this disruptive technology.

Putting aside AT costs for a moment, we believe the logistical benefits of AT's are unde-
niable. One of the major competitive advantages introduced by this disruptive technology
is transportation lead time reduction. This does not mean that ATs can violate speeding

laws (that said, speed limits are meant for humans and should be revised when ATs on
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average require less response time than humans do). In comparison to human drivers, ATs
need no break time and can continue running for as long as there is fuel left in the tank.
As such, a better percentage of a truck’s lifetime can be spent running on roads rather
than sitting idle, thereby increasing the truck’s utilization and cutting transportation lead
time for clients (Crandall and Formby, 2016). Nonetheless, enabling automation requires
substantial capital investment on each truck. For example, in the 2018 PwC survey, “Costs
are prohibitive” was one of the main barriers to adopting AT (PwC, 2018). Given the nov-
elty of the autonomous technologies, the literature about ATs in the domain of logistics
management simply lags behind. We suspect previous models offer little insight into how
the features of ATs, namely AT enabling costs and reduced transportation lead time, might
affect a logistics manager’s decision-making in inventory management. Specifically, how
should a manager alter the shipment size when ATs incur additional costs but take less
time to arrive at their destinations? We are motivated to improve logistics management
by answering this question.

Therefore, we believe it is necessary to reexamine the literature and see if previous
research results are still applicable in the advent of ATs. To this end, this study collects
recent AT cost information available in the domain of logistics management. Through
the lens of ATs, this study not only reevaluates classic models but also develops new
models that can be used to consider the trade-offs between transportation and inventory
costs when determining optimal shipment sizes. Ultimately, we seek empirical evidence
and analytical results that can shed light on what implications ATs have on evaluating
optimal shipment size. Some of the findings of this study are as follows. First, we find
that the AT-related cost estimates vary substantially and can cost up to 70% of the price
of a truck. Second, the optimal shipment size for ATs derived in this study is larger
than the optimal shipment size derived from some classic models. Last, shipment sizing
solutions derived from some classic models might not be applicable until the AT costs can

be significantly offset. Overall, this study contributes to the literature with respect to
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empirically examining AT cost estimates and theoretically revising conceptual models to
illustrate the implications of ATs on shipment sizing problems.

The remainder of this study is organized as follows. In Section 2, we sample some
research work that is closely related to our study. In Section 3, we describe the scope
and scale of the data collection and briefly tabulate the AT cost estimates. In Section
4, we introduce our conceptual models, which allow us to consider the cost information
summarized in the previous section. In Section 5, we conduct numerical experiments to
illustrate the results of the theoretical findings for logistics managers’ decision-making in
shipment size. In Section 6, we discuss the implications of the ATs on the logistics industry.

In Section 7, we conclude this study and provide ideas for future research.

2 Literature review

The economic order quantity (EOQ) model has been the foundation for many decision-
making models (Harris, 1913; Erlenkotter, 1990). Blumenfeld et al. (1985) used the EOQ
model to establish the interface between transportation and production setup costs. The
trade-offs between transportation and inventory costs are assumed to be functions of ship-
ment size. The closed-form optimal shipment size solutions are constrained by the truck
capacity. Hall (1985) investigated an optimization problem in the context of “collecting”—
a way to consolidate freight that involves trucks picking up material from multiple suppliers
for a single customer. The author determined the optimal dispatch frequency and time
between dispatches by assessing a trade-off between inventory and transportation costs.
Again, any given load size delivered at a destination was assumed to be binding to the
truck capacity. Our study relaxes the conventional truckload capacity constraint because
when ATs are fully automated, platooning becomes much safer to execute as compared to
manual maneuvers. Platooning refers to multiple trucks that are dispatched at one time
and drive closely one after another to form a convoy (De Jong and Ben-Akiva, 2007). Pla-

tooning has been scientifically proven to improve fuel efficiency by reducing acrodynamic



oNOTULTL B WN =

International Journal of Logistics Management

1JLM

drag for all trucks in the convoy (Janssen et al., 2015; Banks, 2017; Mele, 2017). The 2018
McKinsey report indicated that a fully automated platooning convoy of trucks may need
a human driver only in the lead truck, and the following ATs can be unmanned, revoking
the need of the truckload capacity constraint.

The classic EOQ model was capable of investigating the nature of the trade-offs existing
among variables in freight transportation. Burns et al. (1985) considered two distribution
strategies: shipping separate trucks from the supplier to each customer or dispatching
trucks to multiple customers per load. The authors used the EOQ model to derive the
optimal shipment size that minimizes the total transportation and inventory costs, and
the costs had little AT implications. Abdelwahab and Sargious (1990) considered that
freight charges increased with shipment size (or the logarithm of shipment size), and the
identified relationship between the total cost and the parameters was largely aligned with
those in Blumenfeld et al. (1985). Ernst and Pyke (1993) assumed that the shipping costs
comprised a fixed cost per shipment that is function of truck capacity and a variable cost
that is associated with the distance traveled for a trucking company. The authors relaxed
the capacity constraint by allowing the trucking company to use some common carrier to
deliver the shipment. While these results did not directly inform the implications of the
AT features on the optimal shipment size, the analytic methods of these studies shed light
on the models in our study.

Even under the stochastic demand assumption, the solution of optimal quantity under
the EOQ model continues to provide a useful reference when investigating the optimal
order quantity (Liberatore, 1979; Eppen and Martin, 1988). Comparing to the optimal
quantity determined by the stochastic system, Zheng (1992) and Axséter (1996) showed
that the EOQ caused little or no relative cost increase for the continuous-review, reorder-
point, order-quantity inventory control system. Chung et al. (2009) and Cakanyildirim et
al. (2017) used an iterative approach to find the optimal reorder point and order quan-

tity by using the EOQ as the starting point. Essentially, the conventional shipment size
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optimization theory assumed that firms use the EOQ to minimize total logistics costs by
balancing ordering costs, transport costs, and inventory holding costs (Baumol and Vinod,
1970). We find the EOQ model has the conceptual framework that can account for the
trade-offs between transportation and inventory costs when analyzing optimal shipment
sizes.

To understand the implications of ATs on the optimal shipment size, we explicitly
incorporate the features offered by ATs—the shortened lead time and AT enabling costs—into
the EOQ model framework. As ATs are expected to effectively reduce the transportation
lead time, the property of the optimal shipment size under stochastic lead time appears
to require a separate investigation. Song et al. (2010) showed that while a stochastically
smaller or less-variable lead time can lead to a smaller reorder point, the order quantity is
not necessarily smaller. In the case where the transportation lead time is controllable, not
all studies explicitly considered the transportation cost a part of the total inventory cost
(Ertogral et al., 2007; Abate and De Jong, 2014). We found a stream of literature that
assumed that the shorter the desired lead time is, the more expensive it would be to shorten
one unit of lead time. Liao and Shyu (1991) assumed the crashable lead time consists of
multiple mutually independent components: administrative, transport, and supplier speed-
up costs. Ouyang et al. (2007) assumed that the lead time was controllable by a piecewise
cost function when optimizing the order quantity for the reorder-point, order-quantity
inventory system. (Glock, 2012) pointed out that many studies assumed a piecewise linear
function for the relationship between lead time reduction and lead time crashing costs, but
the relationship is not necessarily linear in nature. Please see Sarkar and Moon (2014) for
more references on the piecewise linear lead time crashing functions. One disadvantage
of the piecewise linear crashing cost function is that it requires exhaustively assessing the
total inventory system cost at each lead time break point of the intervals for optimality.
On the other hand, Ben-Daya and Raouf (1994) proposed an alternative crashing cost

function differentiable with respect to the lead time, but specific roles of the function
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parameters were unclear beyond fitting empirical data. Nakandala et al. (2014) proposed a
revised crashing cost function to consider both linear and non-linear relationships between
lead time and ordering cost, but the joint optimal lead time and order quantity were not
investigated. In our study, we aim to bridge the gap in the literature between the optimal

shipment size and the controllable lead time in the presence of nonlinear AT enabling costs.

3 Empirical data

We focused on collecting cost figures related to AT technologies of heavy trucks. Consider-
ing the history and nature of autonomous technologies span many decades and disciplines,
this data collection is not intended to be exhaustive or comprehensive. To reduce the scope
and scale of the literature review to some manageable size, we reviewed the literature in
the domain of logistics management. Specifically, we used ProQuest and Google Scholar
to search articles with the keywords “driverless,” “truck,” “autonomous,” and “cost” un-
der “Trade Journals” and “Scholarly Journals” source types. According to the ProQuest
search results, the number of publications on “autonomous trucks” had stayed small until
a sudden increase in 2015. Thus, we searched articles published after January 1, 2015,
for more relevant empirical data. In addition, we omitted articles about applying ATs in
controlled areas. In the end, we reviewed 187 articles, most of them being trade journal
reports. Overall, we found that little cost information is available. Particularly, we found
that only around 20 articles have specific cost figures or estimates relevant to our study. In
general, AT equipment costs refer to cameras, Lidars (laser sensors for 3-D imaging), radar,
and onboard computers (Ohnsman, 2019). Cost estimates for special add-on software such
as driver-assist technology and hardware such as automated mechanical transmissions were
scarce. Note that costs external to trucks such as infrastructure are not considered in this
study. Extended discussions on ethical, legal, regulatory, and insurance issues are also
beyond the scope of this study; interested readers may find Insurance (2017), Riehl (2018),
or Ross (2018) useful.
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In terms of automation levels, DoT (2018) and SAE (2018) define six levels of driving
automation in the context of motor vehicles and their operation on roadways as follows:
from No Driving Automation (Level 0), where the driver handles the entire dynamic driv-
ing task, to Full Driving Automation (Level 5), where some automated driving systems are
able to unconditionally perform entire dynamic driving tasks without any human interven-
tion. It has been reported that Waymo, a self-driving technology development company,
is about to conditionally attain Level 4 in fair-weather Phoenix, Arizona (Kessler, 2019).
Nonetheless, most of the cars in the consumer market are equipped with the technologies
associated with Level 1 or lower (e.g., adaptive cruise control), and only high-end cars
are currently equipped with Level 2 technologies (e.g., Tesla Autopilot, Volvo Pilot Assist,
Mercedes-Benz Drive Pilot, and Cadillac Super Cruise) (Hughes, 2017). Similarly, ATs
are expected to phase through six stages of automation (Kilcarr, 2016b). In comparison to
consumer vehicles, ATs are considered by many experts to be one of the most disruptive yet
viable technologies to the logistics industry. Similar to the development of automated con-
sumer vehicles, ATs have recently attained Level 4 automation in Florida Roberts (2019).
The influences of ATs are generally believed to be profound and multifaceted, and many
people believe that the prevalence of ATs is no longer a question of if but when.

We found that the cost of adopting AT technologies can be significant and hence should
be considered when making decisions on shipment size. On the one hand, the manufacturing
cost of a regular truck is fairly mature and stable over the years. On the other hand,
estimates of AT equipment costs vary substantially. For a Class 8 truck costing around
$150,000, estimated additional AT equipment costs can be as much as 70% of the truck
cost, according to the trade journal publications. Table 1 tabulates the cost information
we have found in the literature.

Due to the small sample size, we did not attempt to elaborate any statistics in the
figures. Nonetheless, we noticed that the range of the AT equipment costs increased over

the years, which signals how uncertain experts might be about the potential costs to
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Table 1: A sample of publications that estimate AT-related costs

Year Truck Costs ($) AT Technology Costs (%) References

2015 140,000 20,000 Kilcarr (2015b)
2015 140,000 35,000 Kilcarr (2015b)
2016 - 23,400 Kilcarr (2016b)
2016 - 30,000 Kilcarr (2016a)
2016 135,000 65,000 Kilcarr (2016d)
2016 125,000 75,000 Kilcarr (2016d)
2016 150,000 75,000 Markoff (2016)
2016 - 13,100 Short and Murray (2016)
2016 - 19,000 Short and Murray (2016)
2016 - 23,400 Short and Murray (2016)
2016 - 30,000 Crandall and Formby (2016)
2016 - 75,000 Short and Murray (2016)
2017 : 23,000 Turnbull (2017)
2017 - 100,000 Freedman (2017)
2018 160,000 - Massey (2018)
2018 - 20,000 Zurschmeide (2018)
2018 - 30,000 Chottani et al. (2018)
2018 - 80,000 Zurschmeide (2018)
2018 - 100,000 Zurschmeide (2018)
2018 - 100,000 Chottani et al. (2018)
2019 150,000 50,000 Ohnsman (2019)

11
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enable ATs. Another plausible explanation is that as more knowledge about required AT
equipment is acquired, companies may choose to develop equipment of different calibers,
which then implies different costs (Chottani et al., 2018). Before autonomous driving
systems are more widely produced and gain economies of scale, the range of the estimated
costs may not decrease anytime soon (Healey, 2017).

For assessing the potential transportation lead time reduction by adopting ATs, we
excerpt some information pertaining to property-carrying drivers from the section of HOS

regulations as follows (FMCSA, 2013):

e 11-Hour Driving Limit: May drive a mazimum of 11 hours after 10 consecutive hours

off duty.

e 1/-Hour Limit: May not drive beyond the 14" consecutive hour after coming on duty,
following 10 consecutive hours off duty. Off-duty time does not extend the 14-hour

period.

e Rest Breaks: May drive only if 8 hours or less have passed since end of driver’s last

off-duty or sleeper berth period of at least 30 minutes.

e 60/70-Hour Limit: May not drive after 60/70 hours on duty in 7/8 consecutive days.
A driver may restart a 7/8 consecutive day period after taking 34 or more consecutive

hours off duty.

Basically, by regulating the maximum driving time as well as the minimum rest time
between driving shifts, the HOS rules aim to reduce accidents attributable to truck drivers’
fatigue. Simply put, if a fully automated truck (i.e., Level 5) is adopted, then technically
the freight on the truck can be transported from point A to point B without ever needing
to stop for the human driver to take a break, since none of the HOS rules would apply here
(GAO, 2019). ATs can continue driving while a human driver has to take a break or be

off duty for 10 consecutive hours, which means up to 40% potential driving time can be

12



oNOTULTL B WN =

International Journal of Logistics Management

1JLM

released from a 24-hour time window. For long-haul operations that used to last for more
than one day, the transportation time can be reduced by almost half. That is, given the

same period of time, ATs are able to travel farther than human drivers can.

4 Conceptual models

4.1 Base model

We developed an EOQ model that treats the shipment size as an endogenous variable and
considers the interaction between transportation and inventory costs. We differentiated
our EOQ model from those in the literature by considering the features introduced by ATs
to evaluate trade-offs between these costs as a function of shipment size. We based our
models on direct shipping in a simple supply chain consisting of one supplier site and one
customer site. Moreover, trucks make one single stop in a round trip to deliver products
to the customer.

The inventory holding cost per unit depends on the time each unit spends in the supply
chain, which consists of average production and consumption time and average in-transit
time. At the supplier site, the production rate is ¢. The average time needed to produce the
entire load is V/q, where V denotes the shipment size in units. Thus, the average production
time per unit is V/(2q). In general, supply chain entities in a good business relationship
typically have some kind of mechanism in place (e.g., point-of-sales system or electronic
data interchange) that allows the entities to synchronously update demand information
to mitigate the bullwhip effect. Therefore, we have assumed that the production rate at
the supplier site is synchronized with the deterministic product consumption rate at the
customer site to simplify the analysis. Thus, once V arrives at the customer site, the
average time to consume the entire load is V/¢, and the average consumption time per unit
is V/(2q).

Let T be the in-transit time and h denote the unit inventory carrying cost per unit

13
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time period, then the inventory carrying cost per unit is

(L)

Let the fixed transportation cost S = v+ €D, where v denotes the fixed cost of dispatching
a truck, including loading and unloading at a customer stop, ¢ denotes the variable cost
per unit of distance, and D denotes the round-trip distance. Thus, the transportation cost
per unit is S/V. Given the transportation and inventory holding costs, the classic models

derive the optimal shipment size (Burns et al., 1985):

Sq
ey /o 1)

Thus, the total cost with the optimal shipment size is given by

C*=2 ﬁ+hT.
\/ q

While Eq. (1) is capable of explaining many relationships between the variables, it was
not intended to inform the effects of the features of ATs on V*. Clearly, the variable T was
omitted in the formula as it was not considered a decision variable before the advent of
ATs. The higher the level of automation that can be achieved in the truck (from Level 0 to
Level 5), the more the expected amount of time originally tied up by the HOS rules can be
released. Given V*, the logistics manager would not be able to treat T as one of the decision
variables. In the presence of ATSs, logistics managers are able to decrease T', within some
reasonable range, by better utilizing the trucks. That is, holding D constant, the trucks
with AT technologies will spend more time running than idling, thereby increasing the
average speed and decreasing T'. For enabling a higher level of automation, the additional
costs per truck for automation hardware and software would be as follows (Short and

Murray, 2016):
e Level 3: $13,100 added to truck price.

e Level 4: $19,000 added to truck price.

14
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e Level 5: $23,400 added to truck price.

Therefore, the classic EOQ model must reflect the fact that the higher the automation
levels, the greater the lead time can be reduced, and the higher the costs would be required.

To this end, we add an amortized cost of acquiring and using AT technology into S:

S=~+eD+ %,
where x denotes the cost increase for each unit decrease in T'. The larger & is, the higher
the cost incurred to reduce one unit of the transportation lead time. We may view x as AT
deployment efficiency when logistics managers acquire and implement AT technologies. A
large x refers to low deployment efficiency because it renders a higher cost for the logistics
manager when adopting AT technologies. We suppose k is large until the deployment of
AT's becomes an industry-wide phenomenon. We then derive the updated optimal shipment

size V* by equating the first derivative of the total costs with respect to V to zero.

Proposition 1.

-« [Sq | Kq
Vi = VT T

Clearly, V* > V*, showing that the classic model was no longer applicable after the
introduction of AT technologies in logistics management. Notice that the smaller the lead
time is, the larger the optimal shipment size would be. Also, the greater the AT deployment
efficiency is, the smaller the optimal shipment size would be. The trend of k in the short
run is unclear as AT technologies are continuously evolving. To the best of our knowledge,
no single dominating or standardized hardware or software has been mass-produced to
enjoy the economies of scale as of yet. However, in the long run, most experts believe the
production and deployment of AT technologies will become increasingly widespread and

mature, thereby contributing to a smaller k.

15
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Remark 1. Given deterministic demand, the optimal autonomous truck shipment size

tends to be larger than the shipment size prescribed by the classic EOQ expression.

Corollary 1.

D(t):M_Z_E (2)
4he € et

where t < T denotes some reduced lead time.

Derived from Proposition 1, Corollary 1 shows the impact of the reduced transportation
lead time on the AT’s travel distance. As such, D(t) is not monotonic in ¢ and can be

sensitive to the parameter values.

4.2 Extended model

We would like to consider the reality where the demand during lead time can be stochastic
and the AT enabling cost consists of variable and fixed costs. To this end, we create a
separate scenario (with a new set of notations) in which the buying firm faces a stochastic
demand with mean p and standard deviation . We now assume that ¢ > 0 so the time
for production or consumption is negligible. The inventory control system that the firm
operates is a continuous-review, reorder-point, order-quantity system, except we use V in
place of the order quantity for this analysis. Let the reorder point be the demand during
lead time p1" plus the safety stock kov/T, where k is the safety factor (Silver et al., 2016).
For simplicity, we assume that k is large so that the reorder point achieves a high cycle
service level target. That is, out-of-stock events are rare and need not be explicitly specified
in the model.

As such, the lowest and highest net inventory levels are kov/T and V + kov/T, respec-

tively, and the annual average inventory holding cost can be approximated by

h (% + ka\/T> : (3)
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where h is the annual inventory holding cost per unit.
As suggested by the literature, different levels of ATs represent stackable opportunities
to cumulatively “crash” the transportation lead time. We hereby propose a new model for

the annualized lead time crashing cost function for the controllable T:

u
1+ emT’

(4)
where u > 0 is the scale of the lead time crashing cost function, and m > 0 is the shape of
the function. m may change under different economies of scale of the AT deployment cost.
The smaller m is, the higher the variable cost is to crash the lead time, and even low levels
of automation requires significant enabling costs. Conversely, the larger m is, the smaller
the variable cost for crashing the lead time until the highest level of automation, where
the marginal variable cost increases exponentially (“L”-shaped cost function). Practically,
ATs have not only additional costs but also additional savings for reasons such as lower
maintenance, less fuel, less labor, lower insurance premium, and so on. Until those costs
are more transparent than they are now, we conceptually treat the AT variable cost as the
net of all the addition costs and additional savings. Judging by the empirical data, the
savings of deployment of the lower levels of ATs (e.g., 2 or lower) might already justify their
costs, but it is certainly not the case for the higher levels (e.g., 4 or higher). Intuitively,
we suppose that m would be increasing and u would be decreasing over time.

Let A denote the fixed order cost per replenishment. We construct the expected total

inventory cost function as follows:

K(V,T) = <A+—JL—>ﬁ+h<%+kmﬁj (5)

1+em? )V
OK(V,T) hko  pum
G - I ) ©)
O*K(V,T) pum? e —1  hko

oz~ v )

el +1 4T3
where f(mT) = ™ /(1 + e™1)? is a logistic distribution with mean 0 and variance w2/3

(Decani and Stine, 1986). We obtain the optimal lead time 775 that can minimize Eq. (5)
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by equating Eq. (6) to 0.
Proposition 2. Let [tmin, tmaz] denote a range of crashable T of interest.

o If K(V,T) is concave in T, then Ty, is tmin OT tmax, whichever bears a smaller
K((V,T).
o If K(V,T) is convex in T, then Ty, is such that

hkoV
2uum’

F(mT3) /Ty = (8)

Remark 2. The expression of the optimal lead time is subject to the shape of the total cost

function with respect to the crashable lead time.

Proposition 2 and Eq. (7) suggest the circumstances in which logistics managers might
decide to minimize the lead time (i.e., implement a higher level of ATSs) include, but are
not limited to, the following: the products have a high holding cost (i.e., a large h), the
inventory system sets a high cycle service level target (i.e., a large k), or the demand is

highly volatile (i.e., a large o). Obviously, a large u would disapprove the decision.
Proposition 3.

e If K(V,T) is concave in T, then

~ 2u U
Vi=y|— A+ —— ). 9
¢h( + ) ©)

e If K(V,T) is convex in T, then V* is such that

hko /T h h2E2 52
- v, _F <A+LT*> - Z4 . (10)
V*o(mTy)  (V*)? 1+ emiv 2 2pumf(mTy)®(mIy)

where ®(mTy) = 2mTy (1—2F(mTy)) +1, and F(mT) = €™ /(1+e™T) is the cumulative
distribution function of f(mT).
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Please see the derivation of Proposition 3 in the Appendix. We anticipate the differ-
ence between the two optimal shipment size expressions will vanish as u decreases and m
increases due to the better economies of scale in AT technologies, and both expressions

revert to the iconic EOQ expression, that is, \/2uA/h.
Remark 3. Assume the economies of scale of the AT technologies improve over time:

o In the short run, the optimal autonomous truck shipment size tends to be larger than

the shipment size prescribed by the classic EOQ) expression.

e In the long run, the optimal autonomous truck shipment size approximates the ship-

ment size prescribed by the classic EOQ) expression.
Given Proposition 3, the solution procedure for convex K(V,T') in T is as follows:
Step 0. Use V = /2uA/h to solve Eq. (8) for T. Let & > 0 be some tolerance.
Step 1. Given T, solve Eq. (10) for V{, and use Vj to update T" via Eq. (8).
Step 2. Given T, solve Eq. (10) for V4, and use V; to update T" via Eq. (8).

Step 3. If [Vi — Vo|/Vi > ¢, return to Step 1; otherwise, V* := Vi, T3, :=T.

5 Numerical examples

In this scenario where the demand is deterministic, we demonstrate the convex shape of
the total transportation and inventory cost using parameter values similar to those in
the literature. Also, we illustrate the effects of the reduced lead time on the shipment
size. Last, we show the impact of the AT deployment efficiency on the logistics managers’
decision to centralize the supply chain network.

Without loss of generality, we set T'= 1, and so t (i.e., lead time after reduction) will

assume the format of percentage. Moreover, let ¢ = 800, h =5, D = 800, v = 10, e = 1.4,
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and k = 800. Figure 1 illustrates the transportation cost, inventory costs, and total cost
over the range of shipment size V' = [100, 800]. The convexity of the total cost suggests
the existence of the optimal shipment size that can minimize the total costs. Increasing
the transportation cost (by acquiring the AT technology cost) or decreasing the inventory
cost (by reducing the transportation lead time) can increase the optimal shipment size.
Thus, companies that are developing ATs should consider increasing the truckload size or

implementing platooning to increase truckload capacity when dispatching.

25 | | l I T T
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Figure 1: Total transportation and inventory cost is minimized by optimal shipment size.

Figure 2 compares the optimal shipment sizes considering the AT features (i.e., f/*)
and those disregarding the AT features (V*). The more the transportation lead time is
reduced by ATSs, the larger the optimal shipment size will have to be. Note that reducing

the lead time essentially decreases the in-transit inventory carrying cost, thereby increasing

the optimal shipment size, as implied in Figure 1. This observation helps explain why the

20



oNOTULTL B WN =

International Journal of Logistics Management

1JLM

platooning technology draws a lot of attention as AT technologies are developed.
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o
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450 1

400 :
0% 20% 40%

Transportation lead time reduction

Figure 2: As ATs cut transportation lead time, optimal shipment sizes increases.

Figure 3 shows the effect of the AT deployment efficiency on the truck’s travel distance.
To make the graph, we first calculated the cost savings due to a shorter lead time and then
calculated how much more distance ATs with optimized shipment sizes can travel given
the cost savings. Given D = 800, T' = 1, and « = 800, the first derivative of Eq. (2) with

respect to t is

81;—1@ = 1429t + 571.4t % — 3413.2.

As such, we do not completely rule out the cases where a smaller ¢ makes D smaller.
However, in the practically feasible region of ¢, that is, [0.6, 1.0], we see that a smaller
t does make D larger, especially for any t close to T" = 1. Therefore, we conclude that
reducing transportation lead time tends to increase the travel distance of ATs. Moreover,

we use different values for « to highlight how AT deployment efficiency can affect the
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supply chain configuration. Overall, the cost savings from a shorter lead time allow ATs
to travel farther. Conceptually, increased travel range should be positively correlated to
the number of consolidated inventory locations. Therefore, we believe that ATs are likely
to contribute to centralizing the supply chain inventory locations. Another observation
in Figure 3 is that territory expansion or warehouse consolidation would not be obvious
when the lead time reduction is minor. In the cases where the transportation lead time
can be substantially reduced (e.g., long-haul operations or better truck utilization), the

AT deployment efficiency would have a greater impact on the travel ranges of ATs. The

1500 .
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o
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1100 [
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Travel range for round-trip distance
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800 - - -Medium AT deployment efficiency (x = 400)|]|
Low AT deployment efficiency (x = 800)

700
0% 20% 40%

Transportation lead time reduction

Figure 3: Better AT deployment efficiency leads to better travel ranges.

supposition of centralized inventory locations under ATs depends on the development of
the AT deployment costs over time. Optimistically, the AT deployment costs decrease over
time. As informed by the extended model, it is possible that the lead time crashing cost
stays the same as the lead time is further reduced, thereby supporting Figure 3. With

many moving parts in the total expected function, it is also possible that the expected

22



oNOTULTL B WN =

International Journal of Logistics Management

1JLM

total cost does not remain constant as assumed by Figure 3.

We extend the base model by creating the stochastic-demand scenario where the buying
firm operates the continuous-review, reorder-point, order-quantity inventory system. Table
2 illustrates the analytic results from the Conceptual Model section. The optimal shipment
sizes offer savings on the total expected inventory system cost as compared to the shipment
sizes prescribed by the classic EOQ. As m becomes larger or u becomes smaller, the optimal

shipment size becomes similar to the EOQ.

Table 2: Optimal shipment size helps reduce the expected inventory cost.”

WrtTe[1,3]  hko m u EOQ v+ VPO KT KUTTY)
Concave K(V,T) 45 1 10 163 2.03 24.01% 1.00 0.93%
Concave K(V,T) 45 1 5 163 184 12.65% 1.00 0.27%
Concave K(V,T) 45 2 10 163 182 11.28% 1.00 0.22%
Concave K(V,T) 45 2 5 163 173  579% 1.00 0.06%
Comvex K(V,T) 1 1 10 632 6.64  5.00% 2.92 0.09%
Comvex K(V,T) 1 1 5 632 679 7.40% 171 0.21%
Comvex K(V,T) 1 2 10 632 653  3.18% 1.70 0.04%
Comvex K(V,T) 1 2 5 632 658 3.98% 121 0.07%

*A=5pu=4,¢=10"8%

5.1 Limatations

The size of the empirical data of cost estimates is limited. Hence, the values of the pa-
rameters in the numerical experiments largely follow those in previous conceptual studies
or are arbitrarily assigned for illustration purposes. Another limitation is that the allo-
cation between fixed and variable costs of adopting AT technologies is not yet clear in

the literature. Besides the aforementioned fixed costs, there can be some other variable
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costs to maintain the functions of ATs (Bosch et al., 2018; Andersson and Ivehammar,
2019). Furthermore, the variable costs such as data processing or storage costs are rarely
mentioned in the publications, making it difficult to assess reasonable values, if any, for
the experiments. It was estimated that 15% of the additional cost due to ATs is expected
to be from hardware needs, and 85% is expected to be from the need for highly advanced
software designed to replace a human driver’s sensory capability (Kilcarr, 2016b). When
human drivers are still required to be present in the cockpit, attending to driving or not,
the additional cost for resources such as data storage and processing may not be entirely
offset by the reduced labor costs at least in the near future. Last, the research findings
are based on the information collected from trade articles and academic journals in the
domain of logistics management. Technical or engineering discussions on the ATs are not

included in the literature review.

6 Implications

Given the empirical data and analytical results, we summarize the practical and theoretical
implications of the study results as follows.

First, we see that, holding everything else constant, the higher the additional cost
incurred and the higher the automation level the ATs achieve, the more the transportation
lead time can be reduced, but the larger the shipment size has to be. The empirical data
suggests that the additional costs for enabling ATs are likely to be high, at least in the
beginning. Over time, the lower maintenance costs, increased fuel efficiency, lower labor
cost, and improved safety performance tend to bring down the overall AT costs (Kilcarr,
2016¢). Thus, the implication of the AT features is that the optimal shipment size for ATs
is likely to be larger than the shipment size currently used for trucks without autonomous
technologies, at least in the short run.

Second, given the optimal shipment sizes, we see that the higher the AT deployment

efficiency is, the more likely that ATs are to contribute to the centralization of inventory
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locations in the supply chain network. The deployment efficiency refers to the economies of
scale of producing and deploying AT technologies on each regular truck. If the deployment
efficiency is high, then the trucking companies can enjoy greater cost savings, which can
then be used for offsetting the cost of using ATs to travel farther and reach a broader
territory. Thus, the implication of using the optimal shipment sizes is that ATs are likely
to consolidate or centralize inventory locations.

Third, the analytical results published before the advent of ATs might no longer be
applicable in determining optimal shipment size. We have proposed a new framework
for determining the AT optimal shipment size. Specifically, the relationship between the
crashable lead time and AT technology costs can deviate the optimal shipment size from
the classic solution. Concave or convex, the shape of the expected total inventory cost
function with respect to the crashable lead time considerably alters the expression of the
optimal shipment size. More work needs to be done to examine empirical data as well
as formulate models that help logistics managers make informed decisions for ATs in the

domain of logistics management.

7 Conclusions and future research

In recent years, trucking companies have made unprecedented endeavors to take ATs to
the open road. Automation across transportation system helps increase productivity and
facilitate freight movement (DoT, 2018). ATs have the potential to drastically change
an organization’s entire logistics network (Richards, 2016). Our goal is to help logistics
managers make optimal decisions in regard to the shipment size for ATs. In lieu of updated
AT research results in the field of logistics management, we reviewed trade journal articles
that included cost estimates of AT-related technologies. With limited transparency, the
cost estimates suggest that the fixed and variable costs for deploying AT's can be substantial
in the short run. Using the cost information, we then updated the classic EOQ model used

in the previous research to consider the features offered by ATs—increased technology cost
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and reduced transportation lead time. The analytical results suggest that AT features
prescribe a larger optimal shipment size than is prescribed by the classic EOQ model in
the short run. Also, a better traveling range afforded by ATs can promote centralization of
inventory locations. In the extended model, we anticipate that the classic EOQ expression
would still be a good reference for optimal AT shipment size. ATs hold many promising
benefits for the logistics industry and beyond. We hope this exploratory study can shed
some light on a path that is worth for future research.

We propose several directions for future research. First, setting AT capacity constraint
can be a necessary topic. We omitted the truckload capacity constraint because ATs may
form a convoy consisting of multiple trucks. Realistically, a convoy of the length of few
football pitches will create problems for other vehicles that need to change lanes to enter
or exit the road (Jarvis, 2016). Another interesting direction can be treating the AT
shipment sizing as a multiple-period problem as opposed to a single-period problem. Such
multiple-period model would require time-correlated parameters with known distributions.
Other future research may consider the prospect of inventory location centralization under
ATs, which depends on many moving parts in the system. Therefore, the tipping point of

inventory centralization requires a separate investigation.

APPENDIX

Derivation of Proposition 3

We aim to solve for the optimal shipment size V* that can minimize Eq. (5). First, K(V,T)

is convex in V':

OK(V.T) _ h M-<A L) (11)

oV 2 V2 emT 1

0?K(V,T) 2u u
vt T W'(“W)”' (12)

In the case where K (V,T) is concave in T, T} is some constant, and we obtain V* by
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substituting 77, into Eq. (11) and equating Eq. (11) to 0.
In the case where K(V,T) is convex in T, we have some more work to do as follows.
First, we know that

of(mT) or  me™? [_(zemT ]

oV OV (1+enT)2 1+emT)

(13)
Since T7; is a function of V', we need an expression of 97/0V from the first order condition
of Eq. (8):

af(mT) 1 0T hko
o) T T —& - M7
191% +f(m )2\/T ov 2pum

Substituting Eq. (13) into the last equation, we obtain

or hkoVT
OV pumf(mT) [2mT [1 — 2F(mT)] + 1]

Now, we differentiate Eq. (5) with respect to V:

OK(V,TV) pum 0T u 1 1 0T
_— = - N—— - (A+ —= hl=z+ko—— ).
oV JmD ==y — v At e ) P3P hos g o
Substituting Eq. (14) into the last equation, we obtain
OK(V,\Ty) hkoT o L
ov  V2mT(1 -2F(mT))+1] V2 1+emT
h h2k?o?
+5+

2 2uumf(mT) [2mT (1 — 2F(mT)) + 1]

We set the last equation to 0 to obtain V.
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