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Abstract: The stress corrosion cracking (SCC) response of Al 6061 bulk deposits produced by
high-pressure cold spray (HPCS) was investigated and compared to commercial wrought Al 6061-T6
material. Representative tensile coupons were stressed to 25%, 65% and 85% of their respective
yield strength and exposed to ASTM B117 salt fog for 90 days. After exposure, the samples were
mechanically tested to failure, and subsequently investigated for stress corrosion cracking via optical
and scanning electron microscopy with energy-dispersive X-ray spectroscopy (EDS). The results were
compared to the wrought Al 6061-T6 properties and correlated with the observed microstructures.
Wrought samples showed the initiation of stress corrosion cracking, while the cold-sprayed deposits
appeared to be unaffected or affected by general corrosion only. Optical microscopy revealed evidence
of stress corrosion cracking in the form of intergranular corrosion in the wrought samples, while no
significant corrosion was observed in the cold-sprayed deposits. Fractography revealed wrought
samples failed due to multiple mechanisms, with predominant cleavage and intergranular failure,
but cold-sprayed samples only failed by ductile dimple rupture. The difference in SCC response
between the differently processed materials is attributed to the documented benefits of the cold spray
process, which includes maintaining fine grain structure of the feedstock powder and high density
after consolidation, low oxidation, and work hardening effect.

Keywords: aluminum alloys; cold spray; corrosion resistance; stress corrosion cracking

1. Introduction

Recently, efforts to produce highly dense, bulk components with high strength and ductility
have shifted focus from traditional metallurgy methods, which have limitations, to the cold spray
process [1–4]. Cold spray is a relatively new technology derived from other thermal spray processes.
The cold spray process involves the acceleration of micron-sized particles in the solid state toward a
target, upon which the surface of the powder particle undergoes high levels of plasticity. This plasticity
helps to break down surface contaminants on both the powder and substrate (which can be the target
or the prior deposited layers of cold spray) leading to a metallic and mechanical bond. The bulk
of the powder also undergoes plasticity, but to a much lesser extent than the surface. Because the
material is deposited in the solid state, the microstructure prior to spraying remains relatively intact
after spraying, with the exception of some dynamic recrystallization due to high strain levels. Also,
because the process requires high levels of plasticity, it is important to have a feedstock material that
can undergo high levels of strain with low energy input, but also work-harden sufficiently to obtain
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the strength required. The cold spray process can also produce near-net shapes before machining to
final components, making it a possible method for three-dimensional (3D) manufacturing. Unlike
thermal spray methods or conventional manufacturing processes, the main advantages of using cold
spray is that it can produce coatings and bulk materials with no recrystallization, thus maintaining the
structure and size of starting powders. As a low-temperature process, it operates below the melting
point of metals and results in very low porosity deposits without the need for combustible gasses.
Additional motivation to use this process is the low oxide content, which can improve corrosion
resistance, mechanical properties, and wear resistance by eliminating sites for localized corrosion and
premature failure.

There has been a great deal of research into corrosion mechanisms in metallic materials over the
past century [5–17]. Atmospheric or environmentally assisted corrosion is one of the least understood
areas of corrosion. Stress corrosion cracking is a type of atmospheric corrosion that is very difficult to
detect and mitigate, since it only occurs in alloys that have been under stress in corrosive environments.
Metallic materials used extensively in engineering and defense applications are susceptible to corrosion.
Corrosion costs the US billions of dollars per year in preventative maintenance and product loss. There
are many different types of corrosion that can attack metallic materials, which include uniform corrosion,
galvanic corrosion, crevice corrosion, pitting and environmentally induced corrosion. The environment
the material is exposed to has a major effect on how it corrodes. The three main types of environmental
corrosion that lead to cracking are: corrosion fatigue, hydrogen induced, and stress corrosion (SCC).
Stress corrosion cracking is the formation of cracks in a material that form due to corrosion while a
part is exposed to tensile stresses.

Pure metals are typically resistant to stress corrosion cracking, but metallic alloys such as stainless
steel and aluminum alloys are susceptible due to the large amount of alloying elements in the matrix.
Typically, alloys rely on intermetallic formation at the grain boundaries to increase strength and ductility.
Consequently, the intermetallics cause an anodic condition at the grain boundaries, which in turn
causes preferential intergranular corrosion in aluminum alloys. Dealloying is associated with stress
corrosion cracking in aluminum alloys, steels, and noble metal alloys such as AgAu and CuAu [14–16].
Renner et al. [17] noted that cracks can form in CuAu alloys during local dealloying and depend
on the crystallographic orientation of the substrate material and stability of applied inhibitor layers.
Higher strength alloys such as the 7xxx and the 2xxx alloys are more susceptible to SCC [18–22] due
to the high alloying additions. The 6xxx series alloys are usually not as susceptible to SCC when
exposed to high tensile stresses and highly corrosive atmospheres [18,21–23]. For the most part, the
service record of 6xxx alloys shows no reported cases of SCC. But in accelerated laboratory tests where
high stresses and aggressive solutions are used, cracking has been observed [18,23]. These results
were predominately demonstrated in alloys with high alloy content and containing silicon in excess
of the Mg2Si ratio and/or high percentages of copper [23]. Aluminum alloy 6061-T6 (peak-aged) is
typically not susceptible to this type of corrosion, but more understanding of this behavior is required,
as published research in this area is often contradictory.

As high-pressure cold spray (HPCS) continues to gain interest in various applications such as
repair, wear and corrosion resistance, there is a necessity to understand the effects of the processing
parameters and resulting microstructure and mechanical/corrosion performance of defense-related
alloys produced by cold spray. Postdeposition heat treatments are often used in cold-sprayed materials
to improve ductility [24–27]. In precipitation-hardened alloys, such as Al 6061 that is used in various
defense applications, it is important to consider the effect the heat treatment may have on corrosion
resistance and precipitation strengthening. Cold-sprayed materials which are synthesized by severe
plastic deformation can result in varied precipitation strengthening performance when compared
with that of conventionally processed materials. As a result, finding an optimized heat treatment
for cold-sprayed materials of the same material class can be challenging. Thus, evaluating material
performance in the as-sprayed condition can provide a useful starting point.
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This paper studies the effect of the high-pressure cold spray process on the SCC performance of
Al 60601 alloy in an aggressive corrosive environment. Mechanical properties of bulk as-sprayed and
annealed cold-sprayed material were first evaluated and compared to wrought Al 6061-T6 values.
Since preliminary tensile data for the cold-sprayed 6061 was close to the wrought values (other than %
elongation), it was decided that the SCC performance of the materials would be compared in these
respective processing conditions. Furthermore, Rokni et al. [24] observed that ultimate tensile strength
did not substantially increase with subsequent heat treatment after deposition. They noted that the
increase in ultimate tensile strength (UTS) for the solution-treated and peak-aged cold-sprayed Al 6061
was relatively small. Knowing that precipitates can have negative affect on corrosion behavior, it was
decided to compare cold spray materials in the as-deposited and annealed conditions to wrought
material in the peak-aged condition. Resulting microstructures and fracture surfaces in this study were
evaluated through scanning electron microscopy with energy dispersive X-ray spectroscopy (EDS) and
optical microscopy after corrosion exposure and tensile testing to failure.

2. Materials and Methods

2.1. Feedstock Powders

All powders were produced by Valimet Inc. (Stockton, CA, USA) by inert gas atomization. Most
production of aluminum powder uses a process of inert gas atomization. In this process, an inert
or semi-inert gas like argon, helium, and even sometimes nitrogen is used to spray a molten stream
of aluminum, atomizing it into fine particles. The Al 6061 powder particles are relatively spherical
in appearance (Figure 1). Spherical aluminum particle morphology provides good consolidation
characteristics, with high deposit efficiency and results in a microstructure containing low porosity
and high hardness/strength. The specified particle size cut was −325 mesh, which corresponds to
a maximum particle size of approximately 44 µm. Particle size and morphology was confirmed
using a Horiba LA-910 laser scattering particle size distribution analyzer (Horiba, Kyoto, Japan) and
an environmental scanning electron microscope (ESEM, Quanta 200, FEI, Hillsboro, OR, USA). The
average Al 6061 feedstock particle size was approximately 18 µm (D50). Figure 2 shows the particle
size distribution for the 6061 powders.
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Figure 1. Al 6061 as-received powder at (a) low magnification and (b) high magnification; particles
primarily exhibit a spherical morphology.

2.2. Sample Preparation

The first major technical challenge was development and optimization of the cold spray process
parameters. Particle velocities and temperatures are two of the key variables in the cold spray
process. Modeling these variables saved significant costs by eliminating iterative and extraneous
experimentation. Army Research Laboratory’s (Adelphi, MD, USA) propriety cold spray computer
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model was used for this effort. Input variables include, but are not limited to, nozzle geometry, carrier
gas type, particle density, gas viscosity, operating pressure, gas temperatures and particle size. Particle
temperature and particle velocity at the substrate are the two of the variables which are actually
modeled. The modeling program also provides estimates for deposition efficiency as well as coating
cost per area. Both of these estimates are extremely practical tools which aid implementation. Other
parameters such as robot raster speed, nozzle material and stand-off distance were optimized for
aluminum coatings during the trials. Specific coating compositions, carrier gases and nozzle designs
are provided in Table 1.Coatings 2019, 9, x FOR PEER REVIEW 4 of 19 
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Table 1. Cold spray processing parameters for Al 6061 bulk deposit.

Contents Parameters Value

Feedstock Powder Powder Information Al6061 Valimet (−270/+635 mesh)

Cold Spray Nozzle

Nozzle Type PBI (polybenzimidazole)
Celazole®

Throat Diameter 2 mm
Exit Diameter 4 mm

Length 120 mm

Gas, Powder and Robot
Controls

Gas Type Helium
Gas Pressure 25 bar
Gas Heater 400 C

Mass Feed Rate 4.8 grams per minute
Robot Program Raster

Standoff 1 inch
Raster Speed 200 mm/sec

The SCC specimens were fabricated from both bulk cold-sprayed and wrought material. The
wrought Al 6061-T6 samples were used as a baseline. All samples were fabricated using wire electrical
discharge machining (EDM). For the wrought samples, a 0.125” thick plate of Al 6061-T6 was cut into
4” × 6” rectangular sections. Flat tensile bar specimens were machined in accordance to ASTM E8,
Standard Test Method for Tension Testing of Metallic Materials [28]. The samples were 4” in length
by 0.375” in width in the grip section and 0.25” in the gage section. The samples were inspected for
machining defects, and any burrs were removed using a file.

For the cold-sprayed bulk samples, two blocks of cold-sprayed Al 6061 were provided by the
Army Research Laboratory. They were manufactured by depositing a cold-sprayed 0.375” thick layer
of Al 6061 on to a 0.50” thick plate of wrought Al 6061-T6. After deposition, the aluminum coating
was machined to a uniform thickness of 0.20”. To accomplish this task, the block was placed in a
Bridgeport vertical mill (Bridgeport, CT, USA) and the coating was machined using a 3

4 ” diameter
titanium aluminum nitride coated carbide end mill (Niagara Cutter LLC, Reynoldsville, PA, USA). The
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cross section and isometric views of the aluminum blocks are shown in Figure 3. A wire electrical
discharge machining (EDM) process was used to separate the cold spray coating from the substrate.
Tensile specimens were subsequently cut from the cold spray material following ASTM E8, to the same
dimensions and method as the wrought specimens. The grip areas of the samples were anodized to a
type 3 condition to minimize galvanic corrosion between the test specimen and the test fixture.
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Figure 3. Cross section and isometric rendering of cold-sprayed coating on Al 6061-T6 plate.

2.3. Test Procedure and Fixture Development

Following ASTM standard G64-99 (2013), Standard Classification of Resistance to Stress-Corrosion
Cracking of Heat-Treatable Aluminum Alloys [29], the stress levels for the wrought were 0%, 25%, 65%
and 85% of the specified minimum yield strength for wrought Al 6061-T6 (270 MPa). The cold-sprayed
material was tested at 25%, 65% and 85% of the minimum yield strength, 270-MPa, since preliminary
tensile data for the cold-sprayed Al 6061 was close to the wrought values (other than % elongation).
The stress levels were achieved by mounting the tensile bars into a corrosion-resistant uniaxial stress
fixture, shown in Figure 4. The tensile test fixtures were developed by Pennsylvania State University
(PSU, State College, PA, USA)/ARL and were designed to withstand extended periods of time in the
ASTM B117 [30] salt fog environment.
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Figure 4. Corrosion-resistant uniaxial test fixture designed at PSU/ARL, used in SCC testing loaded
with a sample (a) before coating to prevent galvanic couple and (b) after coating with STOP-OFF lacquer.

The fixtures were made from 316L stainless steel and have a polymer spring system that can
be adjusted to apply a constant force on the sample depending on the compression of the spring.
An estimate for the required compression amount can be made by using values from the yield strength
and Hooke’s law. Before testing occurred, the fixtures were calibrated using Fiber Bragg Grating (FBG)
sensors (Micron Optics, Atlanta, GA, USA) to ensure that the compression was accurate and did not
creep over time. Figure 5 shows the results from a fixture loaded to 80% of the yield strength of Al
6061-T6. There was little change in the applied load, even during long-term testing.
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The moving parts in the tension fixtures were coated with anti-seize lubricant to prevent galvanic
corrosion from occurring between sample and fixture. Each fixture was subsequently compressed to
the desired percentage of the Al 6061-T6 yield strength by turning the nuts on the threaded rod. The
initial distance between the faces of each stainless steel clamp were noted at assembly. This distance
was then compressed to the calculated compression distance. The sample was then placed into the
fixture; the clamps were bolted down and torqued to 35 ft-lb in an alternating pattern. Once the clamps
were in place and bolted, the threaded rod was loosened, applying a constant force to the aluminum
sample. The loaded fixtures were then placed in the cyclic salt fog (SF) chamber for test duration of
90 days. The samples were photographed and inspected periodically during testing. Test duration was
determined using ASTM G64 [29] and was the recommended maximum exposure period to determine
intergranular SCC while avoiding excessive pitting. Test parameters for ASTM B117, Standard Practice
for Operating Salt Spray (Fog) Apparatus were followed and are shown in Table 2.

Table 2. Standard test parameters for B-117 testing.

Salt
Concentration

Salt Solution
pH

Salt Solution
Temperature

Exposure Zone
Temperature

4%–6% 6.5–7.2 35 ◦C 35 ± 2 ◦C

Samples were tensile-tested to failure after 90 days of exposure to ASTM B117 salt fog.
A screw-driven tensile frame (Instron 5866, Norwood, MA, USA) was used for all testing, which was
conducted following the ASTM E8 standard at a strain rate of 0.015 mm/mm/min. A 25 mm resolution
extensometer was mounted to each sample to measure strain, and a 10 kN load cell (Instron 5866,
Norwood, MA, USA) was used to measure load. Each sample’s cross-sectional area was measured
with digital calipers (Mitutoyo 500-753-100, Kawasaki, Japan) and used for stress calculation. After
testing, the fracture surfaces were preserved for further microscopic analysis. All valid results using at
least five specimens per condition (based on ASTM standard) were averaged and are presented for
each stress condition.

2.4. Microstructural Characterization

Both mechanical testing and microstructural analysis were performed to characterize the behavior
of wrought Al 6061-T6 and cold-sprayed Al 6061 material in a saline environment. This included tensile
testing, optical microscopy, and scanning electron microscopy (SEM, NanoSEM 630, FEI, Hillsboro, OR,
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USA) analysis of fracture surfaces with energy-dispersive X-ray spectroscopy (EDS, NanoSEM 630,
FEI, Hillsboro, OR, USA). Specimens were analyzed using a Nikon Epiphot 200 inverted microscope
(Tokyo, Japan) and DS-Fil camera head system to capture optical micrograph images. Samples for
grain-size analysis were etched using Keller’s reagent (95 pct water, 2.5 pct HNO3, 1.5 pct HCl, 1.0 pct
HF) for 10 s. The mean linear intercept method according to the ASTM-E112-12 standard [31] was
used to measure average grain size and was recorded using NIS Elements D (version 4.6).

3. Results

3.1. Microstructural Characterization before B117 Salt Fog Exposure

3.1.1. As-Deposited Cold Spray Condition

Figure 6a,b shows the cross-sectional optical microscopy images of the cold spray Al 6061 bulk
deposit perpendicular to the spraying direction. The representative microstructures were etched,
showing where prior particle boundaries exist. Upon inspection, interparticle voids and porosity
can be observed; lower particle-impact velocity and subsequent lack of local deformation in some
particles results in these types of imperfections forming in cold spray deposits [32–34]. Rokni et al. [24]
observed similar microstructure in their as-deposited cold-sprayed Al 6061 materials and found the
imperfections to influence the mechanical properties. They also performed electron back-scatter
diffraction (EBSD) mapping in order to characterize the grain structure, and in doing so, Roki et al. [24]
identified the presence of two distinct regions, particle interiors and prior particle boundary (PPB)
regions. The first was characterized by small grain size, approximately 1–10 µm in size and was
attributed to significant plastic deformation that occurs in the feedstock powders. The second was
described as much smaller grain sizes and was believed to be the result of the pancaking mechanism
that results from the continuous buildup of particles. The ultrafine grain structures (UFG) that resulted
were attributed to the high plastic deformation at strain rates between 106/s–109/s and moderate
temperatures during the consolidation of the deposits. Ultrafine grain structures in cold spray deposits
have been observed by numerous researchers [35–43], who attributed the result to two types of dynamic
recrystallation, continuous and geometric. In this study, the average grain size of the as-deposited Al
6061 material was found to be 25 µm (standard deviation of 14.5). The ultrafine grain sizes can easily
be observed in the cold spray material at higher magnification and were observed to range from 1 to
10 µm, as shown in Figure 6b.
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Figure 6. Optical cross-sectional micrograph for cold spray Al 6061, etched using Keller’s reagent,
showing the particle morphologies after deposition. (a) There is some evidence of interparticle voids
and porosity, as indicated by arrows and (b) high-magnification micrograph showing small average
grain size and finer sub grains resulting from buildup of particles.

3.1.2. As-Received Wrought Al 6061-T6

Figure 7 shows the cross-sectional optical micrograph of wrought Al 6061-T6 in the as-received
condition. Irregular distribution of course second-phase particles can be observed throughout the
cross section. The effect of these precipitates on the SCC behavior is discussed later in this paper. The
average grain size was found to be 78 µm (standard deviation 24 µm).
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and etched using Keller’s reagent. There is clear evidence of randomly sized and irregularly distributed
second-phase precipitates.

3.2. Tensile Testing and Residual Strength Calculations

None of the wrought or cold-sprayed samples fractured in the stress frames during the B117
exposure; all samples remained intact after 90 days of exposure until removed from fixtures. Figure 8
shows the representative (average of five samples) stress/strain behavior of the wrought Al 6061-T6
samples that were tensile-tested to failure after 90 days of ASTM B117 salt fog exposure. The samples
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strained at 85% and 65% of the yield stress displayed similar stress/strain behavior, while the samples
strained at 85% displayed a much shorter plastic region and lower strain at fracture. The samples
prestrained at 25% of yield had the highest resulting yield and tensile stress after 90 days exposure to
the salt fog, while the 85% had the lowest. This result was expected, since higher imposed pre-strains
generally result in decreased strength properties, resulting from more aggressive stress corrosion attack.
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Figure 8. Stress/strain behavior of the wrought Al 6061-T6 samples after 90 days of B-117 salt
fog exposure.

Figure 9 shows the results from the cold spray Al 6061 samples that were tensile-tested (average of
five samples) after 90 days of ASTM B117 salt fog exposure. As expected, the samples strained at 85% of
the yield strength had the least amount of plastic deformation and the lowest yield and tensile strength.
The samples strained at 25% and 65% of yield strength had similar tensile behavior after exposure,
with the 25% displaying a more significant plastic region, a higher tensile strength, and higher strain at
fracture. There is no significant difference in the slope of the elastic region, for the most part, but the
biggest change is in the plastic region of the stress–strain curves for the cold-sprayed material and is
believed to be related to the type of corrosive attack (discussed later). For engineering alloys, this is
typically not an issue, since most designs do not come close to the elastic limit of the material.
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Figure 9. Stress/strain behavior of the cold-sprayed Al 6061-T6 deposits after 90 days of B-117 salt
fog exposure.
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Figure 10 combines data from Figures 8 and 9 into bar graphs to compare the average values
for ultimate tensile strength and yield strength of differently prepared samples at each pre-stress
condition. Average values of yield strength ranged from 227 to 191 MPa for the wrought Al 6061-T6
and 251–193 MPa for the cold-sprayed Al 6061 for all samples exposed for 90 days. The yield and
tensile strength of the cold spray samples was very close to that of the wrought samples and was
slightly higher in most cases, even though they had not been heat-treated. This improved strength in
the non-heat-treated condition can be attributed to the cold spray process, where particles experience
severe plastic deformation during deposition [1,28,34,37,38]. The grain refinement and strain hardening
of the process are mechanisms which assist with this increase in strength when compared with that of
conventionally processed Al 6061 [1,28,38,41,42]. Similar behavior has been documented by researchers
who studied other manufacturing processes where severe plastic deformation is involved, such as tube
channel pressing [43], equal channel angular pressing (ECAP) [44], and high-pressure torsion [45], with
increases in UTS from 39% to 92%. Depending on heat treatment and stress condition, the cold-sprayed
processing yields results similar or improved over the conventional wrought material, as shown in
Figure 10. While the results establish the cold spray process yields improved ultimate tensile strength,
the ductility of these materials displayed a marked reduction in ductility (Figure 11). This behavior can
be explained by the presence of interparticle voids and localized porosity, in addition to the increased
cold work during deposition, as explained in Section 3.1.1.
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Figure 10. Tensile data for wrought (W) and cold-sprayed (CS) samples at various pre-stress levels
after 90 days of B-117 salt fog exposure (SS).

The percentage of residual strength retained after exposure was calculated and is presented in
Figure 11. Most notable is that the cold-sprayed deposits retained a higher percentage of their original
tensile strength after 90 days exposure than the wrought samples at both the 25% and 65% of yield
stress conditions. This reduction in residual strength is believed to be due to the stress corrosion
attack, which developed in the Al 6061-T6 and was the focus of the subsequent microscopic analysis.
Conversely, in the 85% of yield stress condition, the wrought material retained more strength than the
cold-sprayed Al 6061 deposits. This behavior is attributed to the aggressive loading condition and the
predominately mechanical vs. corrosion response of the cold spray deposits, and can be rationalized
by understanding the precipitation behavior of the differently processed materials.

Rokni et al. [24,37] characterized cold-sprayed Al 6061 deposits in the as-deposited (AD),
stress-relief-annealed (SR) and peak-aged (T-6) conditions to understand the effect of heat treatment on
strength and ductility. They observed AD cold sprayed Al 6061 to possess moderate dislocation density
and multiple low-angle grain boundaries (LAGB). The microstructure of conventionally processed
Al 6061-T6 is well documented and commonly described as containing disc-shaped β, rod-shaped
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β′, and needle-shaped β” particles, in addition to fine spherical or needle-shaped Guinier-Preston
(GP) zones approximately 5 nm in size [23]. These precipitates are known to be sites for failure and
corrosive attack [23,26,27].Coatings 2019, 9, x FOR PEER REVIEW 11 of 19 
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3.3. Microstructural Analysis after B117 Exposure

3.3.1. Optical Microscopy

Optical microscopy was performed after 90 days of B117 exposure on all fractured tensile cross
sections to better understand the mechanisms of failure. The samples were polished and imaged using
a Nikon Epiphot 200 optical microscope using brightfield microscopy in order to identify any indication
of stress corrosion cracking. Metallographic sections of stress corrosion cracking samples revealed
evidence of pitting and intergranular corrosion at all three stress conditions (Figures 12–14) for the
wrought Al 6061-T6 samples. Stress corrosion cracking in aluminum alloys is typically intergranular in
nature [19]. At all three pre-stressed conditions, cracks nucleated at pits and were highly branched,
indicative of stress corrosion cracking (Figures 12–14). Braun et al. [22,23] investigated Al 6061 sheet
samples using bent-beam specimens (stress was applied in the transverse direction) in the natural
and peak-aged conditions that were alternately immersed in 3.5% NaCl solution and found them to
only show signs of pitting. It is possible that the wrought samples in the current study show signs
of SCC, most likely due to the extremely corrosive atmosphere found in the ASTM B117 salt fog.
Braun [23] noted pits reached a maximum depth of 30 µm, while pits in the current study were much
deeper, the size increasing with pre-stress condition. In the 25% of yield stress condition (Figure 12),
the wrought Al 6061-T6 displayed pits approximately 350 µm in size, with a maximum pit depth of
450 µm. Maximum depths of attack including branching reached up to 750 µm, with the average depth
of combined attack being approximately 400 µm. In the 65% of yield stress condition, maximum pit
depths grew to 600 µm, with combined depths of attack which ranged from 150 to 750 µm (Figure 13).
When wrought samples were stressed to 85% of yield stress, the maximum pit depth increased to
750 µm, with average crack branching attack reaching an additional 250 µm; average depths of attack
ranged between 250 and 650 µm (Figure 14). Under static loading, Braun [23] tested Al 6061 sheet in
the peak-aged condition using an aqueous chloride–bicarbonate solution. After 30 days, he observed
pitting and intergranular corrosion extending up to 210 µm in his samples [23], which is similar to
what was observed in this study. The occurrence of stress corrosion cracking is also supported in the
fractography of the failed specimen and is discussed later.
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Results of optical analysis (Figure 15a–c) of the cold spray samples did not show any evidence
of stress corrosion cracking at any of the stress conditions. The samples showed negligible general
corrosion on the surface (Figure 15a,b) in the 25% and 65% yield stress conditions. This is in contrast to
the wrought samples, which showed evidence of pitting and intergranular corrosion at the surface
in the same stress condition. At the 85% yield stress condition, the cold spray deposit did show
signs of some corrosive attack, although intergranular attack, pitting, or branching was not obvious
(Figure 15c).



Coatings 2019, 9, 445 13 of 19

Coatings 2019, 9, x FOR PEER REVIEW 13 of 19 

 

 
Figure 14. Metallographic section of wrought Al 6061-T6 stressed at 85% of yield strength after 90 
days exposure to B117 salt fog testing. Various locations show pitting and intergranular crack 
branching. 

  
(a) (b) 

  
(c) 

Figure 15. Metallographic sections of cold spray samples at (a) 25% yield strength and (b) 65% yield 
strength after 90 days exposure to B117 salt fog testing. There is no indication of stress corrosion 
cracking through branching or evidence of any other artifacts related to corrosive attack on failed 
sample cross sections; (c) Metallographic sections of cold spray samples at 85% yield strength after 90 
days exposure to B117 salt fog testing. There is no indication of stress corrosion cracking through 
branching on the entire cross section. Evidence of slight corrosive attack is observed and identified 
on the figure. 

3.3.2. Fractography 

500 um 

Figure 14. Metallographic section of wrought Al 6061-T6 stressed at 85% of yield strength after 90 days
exposure to B117 salt fog testing. Various locations show pitting and intergranular crack branching.
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Figure 15. Metallographic sections of cold spray samples at (a) 25% yield strength and (b) 65% yield
strength after 90 days exposure to B117 salt fog testing. There is no indication of stress corrosion cracking
through branching or evidence of any other artifacts related to corrosive attack on failed sample cross
sections; (c) Metallographic sections of cold spray samples at 85% yield strength after 90 days exposure
to B117 salt fog testing. There is no indication of stress corrosion cracking through branching on the
entire cross section. Evidence of slight corrosive attack is observed and identified on the figure.

3.3.2. Fractography

Scanning electron microscopy (SEM) was used to analyze the fracture surfaces of both the wrought
and cold-sprayed samples to obtain more information about the failure mechanism. Figures 16
and 17 show the SEM micrographs of the fracture surfaces for wrought Al 6061-T6 samples after
90 days of ASTM B117 salt fog exposure. The samples appear to have failed due to multiple
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mechanisms, as characterized by two primary features: (1) few fine dimples showing microvoid
coalescence with associated tearing, and (2) smooth regions suggesting particle-to-particle fracture. In
the wrought sample strained to 25% yield (Figure 16a), although few fine dimples exist, the fractography
predominately shows intergranular fracture; Figure 16b shows the grain boundaries have been attacked.
This type of failure is caused by elemental depletion at the grain boundary or weakening of the grain
boundaries from oxidation, chemical attack, or embrittlement [17,27,46,47]. Figure 17a,b also shows
additional transgranular fracture. This fracture behavior corresponds with the ASM handbook on
aluminum alloys evaluating stress corrosion cracking and compliments the optical analysis by previous
researchers [24,47]. The smooth regions indicate fast fracture through rapid crack propagation as a
result of brittle behavior and low ductility (low strain to failure) and explains the similar and decreased
strain to failure when compared with that of the cold-sprayed deposits. Figure 18a–c shows the SEM
micrographs of the fracture surfaces for the cold spray Al 6061 deposits after 90 days of ASTM B117
salt fog exposure. These samples show evidence of predominate failure by ductile dimple rupture and
void coalescence, although smooth regions attributed to particle–particle fracture can also be observed
and are identified by arrows.
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Figure 17. Secondary electron images of wrought Al 6061-T6 fracture surfaces. The fractography
predominately shows cleavage and transgranular fracture (circles), but intergranular facture is also
present (arrows) in (a) 65% and (b) 85% stress conditions.
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Figure 18. Secondary electron images of cold-sprayed Al 6061 fracture surfaces. The fractography
predominately shows the failure mode to be ductile in nature in (a) 25% stress, (b) 65% stress, and
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3.4. Stress Corrosion Cracking

Research has determined that the effects of heat treatment, grain size, grain boundary segregation
and precipitates, hydrogen embrittlement, as well as the loading mode, all have an influence on the SCC
resistance of aluminum alloys [5–7]. Various studies have also shown that the stress corrosion cracking
behavior of aluminum alloys in chloride environments is largely dependent on the specific immersion
conditions [18,19,44–46]. Additionally, precipitates can cause areas of localized corrosion because of
differences in corrosion potential as compared with surrounding areas, resulting in hydrogen evolution,
promoting SCC [7–10,17,48,49]. The build-up of hydrogen can eventually embrittle the material and
cause cracking [11–13]. Since the cold spray deposit was in the as-deposited condition, while the
wrought Al 6061 in the T6, EDS was conducted to evaluate the elemental differences in fracture surfaces
between the two materials. Wrought fracture surfaces showed a presence of second-phase particles
rich in Mg, Si and Fe, as shown in Figure 19. Conversely, the cold-sprayed deposit fracture surfaces
show evenly distributed elemental mapping free of segregation. There were some random inclusions
observed, as shown in Figure 20.
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Based on the microstructural analysis, it can be concluded that the wrought samples failed by
stress corrosion cracking, while the cold-sprayed samples failure was predominately by mechanical
means. It has been well established that powder metallurgy (PM) methods can produce materials with
fine metallurgical structures and compositions, which make such materials more resistant to stress
corrosion cracking [5,6]. The cold spray process can also produce materials that have a very fine grain
size, which is dictated by the starting feedstock powder. The fine grain size of the powder is maintained
in the bulk deposit. This inherent characteristic becomes even more pronounced when producing
aluminum cold spray materials, because there can be a great disparity in grain size between the cold
spray Al 6061 material (Figure 6) and its wrought counterpart (Figure 7). The difference in average
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grain size is approximately 53 µm, and therefore, the SCC results were expected and substantiate
previous research of PM materials.
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4. Conclusions

In this preliminary study, the stress corrosion cracking response of cold spray deposits was
compared to wrought counterparts that were peak-aged. Following ASTM standard G64-99 (2013),
Standard Classification of Resistance to Stress-Corrosion Cracking of Heat-Treatable Aluminum Alloys,
the stress levels for the wrought were 0%, 25%, 65% and 85% of the specified minimum yield strength
for Al 6061-T6, while the cold-sprayed deposits were evaluated at 25%, 65% and 85% of the minimum
yield strength. SCC test fixtures were developed at PSU/ARL and were designed to withstand extended
periods of time in the ASTM B117 salt fog environment without galvanic interaction. Nonfailed
samples that were exposed for 90 days were subsequently tensile tested to obtain residual strength.

• The cold-sprayed deposits displayed yield strengths similar to wrought peak-aged samples after
exposure. Furthermore, the cold-sprayed deposits retained a higher percentage of tensile strength
after 90 days exposure in samples pre-stressed to 25% and 65% of yield strength than the wrought
counterparts did. The reduction in residual strength was attributed to the development of stress
corrosion cracking and was supported by metallographic evidence, which revealed pitting and
intergranular branch cracking in the wrought samples, with depths of attack averaging between
350 and 400 µm.

• At the same stress conditions, the cold-sprayed deposits showed negligible evidence of corrosion.
When samples were pre-stressed to 85% of the yield strength and exposed for 90 days, wrought and
cold spray deposits retained a similar percentage of residual strength. Metallographic evidence
showed average depths of attack reached 650 µm for the wrought material, with some evidence of
corrosive attack observed for the cold spray deposits, although not intergranular.

• Scanning electron microscopy of the fractured wrought peak-aged Al 6061 showed failure from
multiple mechanisms including cleavage, intergranular and transgranular fracture. Fractography
of the cold-sprayed deposits revealed failure predominately by ductile dimple rupture, although
brittle particle–particle fracture was also observed. Microstructural analysis supports that the
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wrought samples failed by stress corrosion cracking while the cold-sprayed samples failure
predominately by mechanical means and general corrosion.

• The dissimilarities between the SCC response of the differently processed materials is attributed
to the benefits of the cold spray process, which includes maintaining fine grain structure of the
feedstock powder, fine distribution of second phase precipitates, and low oxidation.
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