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Significance of the Deformation History within the Hinge Zone of the
Pennsylvania Salient, Appalachian Mountains

Peter B. Sak,"* Mary Beth Gray,” and Zeshan Ismat®

1. Department of Earth Sciences, Dickinson College, Carlisle, Pennsylvania 17013, USA; 2. Department of
Geology, Bucknell University, Lewisburg, Pennsylvania 17837, USA; 3. Department of Earth and
Environment, Franklin and Marshall College, Lancaster, Pennsylvania 17603, USA

ABSTRACT

Two competing models exist for the formation of the Pennsylvania salient, a widely studied area of pronounced
curvature in the Appalachian mountain belt. The viability of these models can be tested by compiling and analyzing
the patterns of structures within the general hinge zone of the Pennsylvania salient. One end-member model suggests
a NW-directed maximum shortening direction and no rotation through time in the culmination. An alternative model
requires a two-phase development of the culmination involving NNW-directed maximum shortening overprinted by
WNW-directed maximum shortening. Structural analysis at 22 locations throughout the Valley and Ridge and southern
Appalachian Plateau Provinces of Pennsylvania are used to constrain orientations of the maximum shortening di-
rection and establish whether these orientations have rotated during progressive deformation in the Pennsylvania
salient’s hinge. Outcrops of Paleozoic sedimentary rocks contain several orders of folds, conjugate faults, steeply
dipping strike-slip faults, joints, conjugate en echelon gash vein arrays, spaced cleavage, and grain-scale finite strain
indicators. This suite of structures records a complex deformation history similar to the Bear Valley sequence of
progressive deformation. The available structural data from the Juniata culmination do not show a consistent temporal
rotation of shortening directions and generally indicate uniform, parallel shortening directions consistent with the
single-phase model for development of the Pennsylvania salient.

Introduction

The Pennsylvania salient is one of the most prom-  SW segment plunge to the SW and record short-
inent features in the Appalachian mountain system  ening directions that underwent a counterclock-
and has been extensively studied for more than 150  wise rotation through time (Nickelsen 1988, 2009).
years (e.g., Dana 1866; Rogers 1958; Nickelsen  The folds in the NE segment plunge to the NE, and

1963; Gwinn 1967; Thomas 1977;.Ong et all. 2007).  the shortening directions within these rocks pre-
The structures in the Valley and Ridge Province are  gerve evidence of a temporal clockwise rotation

the result of tectonic shortening and thickening as-  (Nickelsen 1979; Geiser and Engelder 1983; Gray
sociated with the closure of the lapetus Ocean, cul- 34 Mitra 1993; Markley and Wojtal 1996; Zhao
minating in the Permian continent-continent col- 4 Jacobi 1997', Younes and Engelder 1999’)' The

lision of Gondwana with Laurentia during the
Alleghanian orogeny (Rodgers 1949; Hatcher et al.
1989; Stamatakos et al. 1996; Faill 1998). In map
view, the Pennsylvania salient forms a smooth arc
with an interlimb angle of ~135° (fig. 1). This arc
links two relatively linear segments, the NNE- i o .
SSW-trending SW scgment and the ENE-WSW-  Passes the Juniata culmination and the area adja-

trending NE segment (fig. 1). The folds within the  ¢ent to 1t—it 1s deﬁned as the area of Maximuin
curvature, in plan view, of the Pennsylvania salient

segments of this salient meet in the hinge zone that
contains a NW-trending structural high, the Juniata
culmination (fig. 1b). The folds within the Juniata
culmination are doubly plunging to the NE and SW.
The hinge zone of the Pennsylvania salient encom-

Manuscript received July 29, 2013; accepted January 14, 2014; (ﬁg' 1b). . .
electronically published June 11, 2014. Currently, two competing end-member kine-
* Author for correspondence; e-mail: sakp@dickinson.edu. matic models attempt to explain (1) the formation
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a, Location of the study area; b, the Central Appalachian Salient, highlighting major lithologic contacts

in the Valley and Ridge Province, the hinge zone, the Juniata culmination, internal crystalline thrust sheets comprising
the Blue Ridge and Reading Prong, and location of study sites (black dots).

of the salient’s arcuate pattern, (2) the temporal
rotation of shortening directions within the salient,
and (3) the formation of the Juniata culmination
and general hinge zone (Gray and Stamatakos 1997;
Wise 2004; Wise and Werner 2004). The first model
is referred to here as the “single-phase” model and
the second as the “two-phase” model (fig. 2). Both
models assume that the shape and position of the
Pennsylvania salient has been inherited from a pre-
existing continental reentrant in the Iapetan rifted
margin of eastern Laurentia (North America). This

guided and shaped the present-day geometry of the
Pennsylvania salient during Alleghanian deforma-
tion (Thomas 1977, 2006; Beardsley and Cable
1983; Ong et al. 2007), such that major crystalline
thrust sheets within the internides (e.g., Reading
Prong and Blue Ridge) are also parallel to the seg-
ments of the reentrant (fig. 1b). In both of the mod-
els, the Juniata culmination forms at the corner of
this Eocambrian reentrant (fig. 1b). Despite these
similarities, the two models predict distinctively
different progressive deformation paths, particu-



Journal of Geology

CW rotation
of MSD
\7
a

CCW rotation
of MSD ’/‘

DEFORMATION WITHIN THE PENNSYLVANIA SALIENT 369

Pha Se

b

Figure 2. Schematic diagrams of the single-phase (a) and two-phase (b) models for Alleghanian tectonic shortening.
Juniata culmination enclosed in rectangle. Black arrows = early-stage shortening directions, gray arrows = late-stage
shortening directions. Stereonets show predicted maximum shortening directions in the Juniata culmination under
each of the models. A color version of this figure is available online. MSD = maximum shortening direction.

larly within the hinge zone of the Pennsylvania
salient.

While deformation paths on the salient segments
differ, the single-phase model proposes a unidirec-
tional transport toward the corner of the Eocam-
brian reentrant (fig. 2a4; Stamatakos et al. 1996;
Gray and Stamatakos 1997; Wise 2004). As a result,
a single shortening direction, approximately par-
allel to the NW trend of the culmination, should
be preserved within the salient’s hinge (Gray and
Stamatakos 1997). The two-phase model suggests
that the salient formed by two separate shortening
events, each directed approximately perpendicular
to the salient’s segments (fig. 2b; Geiser and En-
gelder 1983; Wise 2004; Wise and Werner 2004). If
this model is valid, both phases should be repre-
sented by overprinting shortening directions
within the salient’s hinge.

In this article, we have compiled structural ob-
servations preserved at 22 locations within the
hinge zone of the Pennsylvania salient—15 of these
sites are within the Juniata culmination (fig. 1b).
These structures are then compared to those pre-
dicted by the single- and two-phase models to de-
termine whether the data are consistent with either
of the models.

Background

Fold-thrust belt culminations commonly form in
salients and are topographic structural highs away
from which the folds plunge (Boyer 1978; Elliott
and Johnson 1980; Boyer and Elliott 1982). Cul-

minations often are a result of duplexing and/or
basement uplift, possibly due to excess sediment
in the original miogeoclinal package (Lageson 1984;
DeCelles and Mitra 1995). Culminations may also
reflect concentrated shortening resulting from pre-
existing reentrants along convergent plate bound-
aries (Thomas 1977, 2006; Lageson 1980; Mitra
1997; Faill and Nickelsen 1999). These topographic
highs are often the source for sediment shed into
the adjacent foreland basin. Culminations may also
help to maintain critical taper during fold-thrust
belt evolution (DeCelles and Mitra 1995; Mitra
1997). In addition, culminations are key targets for
oil and gas exploration (Lageson 1984).

The Juniata culmination, is a classic example of
a fold-thrust belt culmination (fig. 1). We have con-
ducted numerous small-scale structural studies of
outcrops along roads, in quarries and stream cuts,
within and around the culmination, with an eye to
discerning kinematics. We have complied the re-
sults of these studies and use the findings to test
the viability of the single-phase and two-phase
models. Each model is discussed in greater detail
below.

Single-Phase Model. The single-phase model pro-
poses that thrust sheets were transported toward
320°-340°, approximately parallel to the bisector of
the Eocambrian cratonic corner (Gray and Stama-
takos 1997; fig. 2a). The clastic wedge is strati-
graphically thickest at the corner of this reentrant
(Thomas 1977). As the excess sediment was short-
ened during Alleghanian deformation, a duplex-
cored wedge-shaped culmination formed, which
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Table 1. Structures Used to Determine Maximum Shortening Directions (MSDs)

Structural

stage

Structural feature Interpretation of MSD Early Late
Joints (mode I fractures)*  In plane of fracture and parallel to the strike of the fracture X X
Cleavage® Normal to cleavage plane X X
Wedge faults Parallel to the trend of slickenlines and fault poles X
Strike-slip faults® Parallel to the strike of the acute planar bisector of conjugate faults X X
Folds (and parasitic folds) Perpendicular to fold axes X
Flexural-slip slickenlines  Perpendicular to fold hinge X
Reverse faults Parallel to the trend of slickenlines and fault poles X

a

Joints and cleavage are associated with both the early and late stages of deformation. A fold test is used

(g

o

determine the temporal relationship between joint sets or cleavage and folding.

b

Strike-slip faults are associated with both the early and late stages of deformation. Early strike-slip faults

are characterized by slickenlines oriented parallel to bedding planes. Slickenlines associated with late-stage

deformation are not folded by outcrop-scale folds.

was tapered toward the foreland and laterally away
from the Juniata culmination. This model, com-
pared to the two-phase model, suggests greater
shortening within the corner culmination zone.
This increased shortening and thickening eventu-
ally led to late-stage, radial gravitational spreading
(Gray and Stamatakos 1997; fig. 2a). Because grav-
itational spreading was concurrent with shorten-
ing, this model does not require significant tangen-
tial extension around the arc of the salient. In other
words, as the clastic wedge continued to thicken
during transport and shortening, it provided a con-
tinual source of sediment that spread to the fore-
land, along the axis of the culmination, and later-
ally away from the culmination’s axis. If the
curvature postdated sediment deposition, then a
significant amount of tangential extension would
be required to form the salient’s hinge.

Gravitational spreading combined with a unidi-
rectional transport direction produced a shortening
history with a clockwise sense of rotation in the
northeast segment and a counterclockwise rotation
in the southwest segment of the Pennsylvania sa-
lient (Gray and Stamatakos 1997; Wise 2004; fig.
2a). This rotation is preserved as secondary short-
ening directions toward 010° in the northeastern
limb and 280°-290° in the southwestern segment
(Gray and Stamatakos 1997). The proposed three-
dimensional tapered wedge also helped to form the
NE- and SW-plunging folds on either side of the
culmination. Moreover, orientation patterns of
characteristic and secondary paleomagnetic com-
ponents in the strata exposed in the culmination
are uniquely explained by this model alone (Gray
and Stamatokos 1997).

A variation to this single-phase model suggests
that there was oblique convergence with the Lau-
rentian craton (Ong et al. 2007). This model sug-
gests that there was a single convergence direction

parallel to the Blue Ridge. The Reading Prong acted
as a buttress, so most of the rotation took place in
the salient’s NE limb. With this variation, we
would still expect to see only one shortening di-
rection within the hinge of the salient, supporting
a single-phase model (Ong et al. 2007). Although
this model is not critical to our article, it is inter-
esting to note that this approach would likely result
in a similar suite of structures preserved through-
out the hinge zone of the Pennsylvania salient as
is suggested by our single-phase model.

Two-Phase Model. In the two-phase model, two
successive stages of noncoaxial transport are used
to explain the structures within, and the curvature
of, the Pennsylvania salient (fig. 2b). An initial
shortening event directed toward 325° is followed
by a second shortening event directed toward 292°
(Wise 2004; Wise and Werner 2004; fig. 2b). Each
event is directed approximately perpendicular to
the edges of a preexisting, corner-shaped continen-
tal reentrant (Thomas 1977; Geiser and Engelder
1983, Wise 2004; fig. 1b).

The linear Reading Prong and Blue Ridge base-
ment uplifts trend perpendicular to the first and
second transport directions, respectively (figs. 1b,
2b). The Reading Prong and the Blue Ridge delin-
eate the NE and SW segments, respectively, of the
Pennsylvania salient. These basement uplifts are
proposed to be a result of each shortening event
(Wise and Werner 2004). During both events, thrust
sheet motion was impeded by the reentrant’s cor-
ner, resulting in rotational drag (Wise 2004). This
produced the observed clockwise rotation in short-
ening direction within the NE limb of the salient
and counterclockwise rotation in the SW limb of
the salient.

The change in direction of tectonic transport re-
sulted in overprinting and duplexes piling up at the
intersection of the two shortening directions, that
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Figure 3. Geologic map draped over a shaded relief digital elevation model of the study area showing the locations
of the 22 study sites and orientations of the early and late maximum shortening directions.

is, along the reentrant’s corner, producing the Ju-
niata culmination (Wise 2004). This type of salient
is referred to as an intersection orocline because it
is produced in a corner of a cratonic margin by more
than one overlapping directions of tectonic trans-
port (Marshak 2004; Weil and Sussman 2004). Based
on this model, we should expect to see evidence of
both the 325° and 292° shortening directions within
the hinge zone of the Pennsylvania salient. And,
similar to the one-phase model, this model does
not require significant longitudinal extension
around the arc of the salient.

Methods

In general, the structural stages preserved through-
out the Pennsylvania salient’s hinge zone mimic
those found in other parts of the Pennsylvania
Valley and Ridge fold-thrust belt. Here, the defor-
mation is due to the Alleghany orogeny. Nickelsen
(1979) first unraveled a structural sequence of the
Valley and Ridge Province from work done in the
Bear Valley Strip Mine in Shamokin, Pennsylvania.
The so-called Bear Valley sequence consists of five
Alleghanian deformation stages (II-VI; Nickelsen
1979). These stages have since been recognized at
other locations in the Valley and Ridge (e.g., Gray
and Mitra 1993; Gray and Stamatakos 1997). Spiker

and Gray (1997) documented the Bear Valley se-
quence on the Appalachian Plateau along the Al-
leghany front in the vicinity of Williamsport, Penn-
sylvania. A similar sequence is also recognized by
Gray and Mitra (1993) throughout the middle and
southern Anthracite regions of Pennsylvania.
Structures formed during the five-stage deforma-
tion sequence reported by Gray and Mitra (1993)
are found in table 1 along with a brief explanation
of how the orientations of these structures were
used to establish mean shortening directions.

Following the methodology employed by Nick-
elsen (1979) and Gray and Mitra (1993), the stages
of progressive deformation were established at each
of the 22 sites incorporated into this study (fig. 3;
table 2). Stages of deformation can be precisely de-
fined by observing cross-cutting relationships
among structures. In some cases it is possible to
distinguish up to six stages of Alleghanian defor-
mation. For the purposes of the regional compila-
tion of multiple studies by different authors, it is
most convenient to condense all progressive defor-
mation into two general Alleghanian stages, early
and late (Nickelsen 1963; fig. 4).

Early, or prefolding, structures are those that are
clearly demonstrated to have been rotated on the
limbs of folds (fig. 4). In the Valley and Ridge, these
structures typically include features that accom-
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Table 2. Locations of Field Sites and Orientation of the Maximum Shortening Directions

MSD*

Latitude Longitude
Site (°N) (°W) Formation Early stage Late stage Source
1 41.2816 77.0649 Lock Haven 338° 340° Spiker and Gray 1997
2 41.227 77.325 Lock Haven 326° 326° Lunde 2012
3 41.2158 76.9833  Bald Eagle 332° 355° Miller 1984
4 41.1829  77.3369 Lock Haven 323° This study
5 41.1304  77.4047  Mifflintown 338° 338° Miller 1984
6 41.0899  76.8807  Tuscarora 329° 354° Nickelsen and Cotter 1983
7 41.0445 76.8506 Bloomsburg 358° 002° This study
8 40.9663  76.6462  Bloomsburg/Mifflintown 348° 348° Nickelsen and Cotter 1983
9 40.8836  76.8903 Keyser/Tonoloway 340° Miller 1984
10  40.8759 76.6685 Mahantango 020° 348° Miller 1984
11 40.8674 76.5858 Mahantango 353° 348° Nickelsen and Cotter 1983
12 40.8738 77.2367 Bloomsburg 343° 342° This study
13 40.7665 77.0697 Keyser/Tonoloway 341° 351° Johnson 2000
14  40.7256  77.0239  Keyser/Tonoloway 329° 348° Miller 1984
15 40.6748  76.8343  Keyser/Tonoloway 342° 348° Bajak 1981
16  40.6241 77.2483 Keyser/Tonoloway 322° Miller 1984
17 40.6066  77.2377  Mahantango 340° 340° Miller 1984
18 406 77.4333  Tuscarora 325° 325° Herbert 2009
19 40.4893  76.9543  Pocono 327° Miller 1984
20 40.4715 76.9494  TIrish Valley Mbr, Catskill Fm 340° 343° Wills and Sak 2010
21 40.4674  77.1186 Irish Valley Mbr, Catskill Fm 298° 345° Miller 1984
22, 40.459 77.0252  Trimmers Rock 335° 338° This study

* The maximum shortening direction (MSD) for the early and late phases of the Alleghanian orogeny were determined
from field relationships. Absence of an MSD indicates insufficient data to support an interpretation. Mbr = Member;

Fm = Formation.

plished layer-parallel shortening during the earliest
stages of the orogeny such as joint sets, cleavage,
wedge faults, and conjugate strike slip fault sets.
Late-stage structures include folds and structures
associated with folding, such as flexural-slip slick-
enlines, hinge extension fractures, fold-transecting
cleavage, conjugate faults, and parasitic folds (fig.
4).

Structural Data

The rocks exposed in the Valley and Ridge Province
range in age from the Ordovician to the Pennsyl-
vanian and commonly form alternating layers of
competent (e.g., quartz sandstone and quartz pebble
conglomerate) and incompetent (e.g., shale and mi-
critic limestone) beds. In this investigation, we fo-
cus on the folds and the structures found within
the folds, throughout the 22 field sites (fig. 3). These
structures are classified as either early or late stage
and are described as either being primarily found
in the competent or incompetent units (fig. 4; table
1). The sequence of the structures is determined
from cross-cutting relationships.

Early Stage. The initial, prefolding, stages of de-
formation were accommodated by layer-parallel
shortening structures (figs. 4, 5). In the competent
units, this is primarily accomplished by conjugate

strike-slip (“wrench”) and dip-slip (“wedge”) faults.
Joint sets perpendicular to the strike of bedding also
formed (figs. 4, 5). The orientations of these joints
suggest a similar shortening required to form the
conjugate fault sets. Another set of joints, parallel
to the strike of bedding, is also recognized in many
of the competent layers. Both of these orthogonal
joint sets are in orientations consistent with the J,
and J, joints sets of Engelder et al. (2009), so both
may have formed during the very early stages of
folding.

In the incompetent layers, bed-perpendicular
cleavage is most pronounced (figs. 4, 5). The cleav-
age orientation is consistent with the shortening
directions required to form the structures preserved
in the competent layers. This set is preserved as
fanned cleavage, suggesting that it is passively ro-
tated as the layers folded.

Late Stage. As the beds began to fold, younger
conjugate fault sets formed in the competent layers
(figs. 4, 5). The acute bisector of these younger con-
jugate sets is oriented subperpendicular to the
hinge surfaces of the first-order folds, with a sub-
horizontal bisector plane. Slickenlines plunge
down the dip of these conjugate faults. Extensional
fractures are preserved within fold hinge zones, ac-
commodating tangential longitudinal strain (figs. 4,
5). Slickenfibers are commonly found on bedding
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Pre-folding steep
strike-slip fault
(Figs. 5a,b)

conjugate/vedge faults

(Figs. 5c-f)

Early Stages

LPS cleavage
(Fig. 5d)

Strike-slip
slickenlines

Joints/veins
(Fig. 5¢)

(Figs. 5a,b)

Sigmoidal veins
& fractures/joints
(Fig. 59)

Parasitic
folds
(Figs. 5j,k)

b Late Stage

Low-angle
fault
(Figs. 5¢,h,i)

Hinge-extensional

Jjoints/veins
(Fig. 5f)

2 generation
€conjugate fractures
? (Fig. 5i)

Flexural-slip
cleavage
(Fig. 5g)

Syn- and post-folding
steep strike-slip fault
(Figs. 5k.j)

Figure 4. Representative structures used to determine maximum shortening directions in the Juniata culmination.
a, Barly-stage structures form before folding, in flat-laying strata; b, late-stage structures form during or after folding

of strata. LPS = layer-parallel shortening.

surfaces, with lineations perpendicular to the hinge
and hingeward directed shear sense, suggesting bed-
parallel flexural slip assisted folding. En-echelon
fractures and sigmoidal veins are sometimes found
in the competent layers in orientations consistent
with bed-parallel, flexural slip. In the incompetent
layers, higher-order parasitic folds and a second (or,
third, in the Anthracite region) generation of cleav-
age surfaces further indicate bed-parallel flexural
slip (figs. 4, 5). With continued folding, low-angle
faults formed in the steep limbs. These faults prop-
agated through the competent and incompetent
layers (figs. 4, 5).

Time-Independent Structures. Subvertical strike-

slip faults that strike approximately perpendicular
to the first-order fold hinges formed throughout the
folding history, and cut through the competent and
incompetent layers (figs. 4, 5). These strike-slip
faults often form conjugate sets. Folded slicken-
lines indicate that the faults formed prefolding,
while other strike-slip faults overprint all the other
structures, indicating that they are among the
youngest structures formed. The strike of these
faults supports a shortening direction comparable
to the shortening direction that formed the other
structures throughout the study sites.

Data Summary. Although the structures pre-
served at the 22 sites represent different stages in
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Figure 5. Representative field examples of structures from early and late stages of deformation.
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the deformation history of the Pennsylvania sa-
lient, they all suggest consistent shortening ori-
ented 320°-340°, that is, subparallel to bisector of
the Eocambrian cratonic corner (table 2). The stages
temporally overlap, which is consistent with Nick-
elsen’s (1979) observations from the Valley and
Ridge Province. The clockwise and counterclock-
wise maximum shortening directions (MSDs)
within the NE and SW segments, respectively, sug-
gest that the deformation was continuous during
rotation of the MSDs, which is consistent with the
single-phase model (Gray and Mitra 1993). Both of
these observations are critical in distinguishing this
model from others that call for a pause in defor-
mation between phases.

Discussion

Early- and late-stage MSDs are consistently ori-
ented to the northwest across the Juniata culmi-
nation (fig. 3; table 2). The mean orientations of the
early-stage and late-stage MSD are 336° = 16.3°(10)
and 343° + 8.5° (10), respectively (fig. 3; table 2).
There are no systematic variations in MSD orien-
tation as a function of position within the culmi-
nation. These findings differ from those reported
by Wise and Werner (2004) to the southeast in the
Piedmont province.

Discrepancies in the orientation of MSDs be-
tween the Piedmont and rocks exposed in the
Valley and Ridge and southernmost Appalachian
Plateau likely reflect the fact that the two regions
expose rocks of different age, and consequently, rec-
ord different deformational histories. Rocks in the
Piedmont are older, ranging from Precambrian to
Ordovician, whereas rocks exposed in the Valley
and Ridge and southern Appalachian Plateau range
in age from the Ordovician to Pennsylvanian. The
older rocks of the Piedmont may have been de-
formed during the Taconic orogeny in the middle
to late Ordovician as well as the during the Al-
leghany orogeny in the early Permian. This may
complicate the Piedmont data, which are the basis
for the two-phase model. However, the younger de-
positional age of the selected field sites in the
Valley and Ridge and Appalachian Plateau strata
preclude Taconic deformation. The deformation
histories in these post-Taconic orogeny strata only
record Alleghanian deformation, eliminating the
potential complications produced by overprinting
orogenies.

The variations in MSDs between the Piedmont
and the Valley and Ridge and Appalachian Plateau
provinces may also reflect the setting of the base-
ment thrust sheets within the Piedmont. The Read-

ing Prong and Blue Ridge thrust sheets define a
basement corner that is positioned south of the Ju-
niata culmination in the Valley and Ridge and Ap-
palachian Plateau provinces. The corner is pro-
jected to lie along a distinctive bend within the Blue
Ridge. The axis of this bend trends parallel to the
axis of the Juniata culmination. This basement cor-
ner likely served as a structural barrier within the
Piedmont, thus establishing boundary conditions
within the Piedmont that are distinctive from those
in the Valley and Ridge and Appalachian Plateau
Provinces.

It is important to note that while the data col-
lected in the Valley and Ridge and Appalachian Pla-
teau are consistent with the predictions of the one-
phase model, the Piedmont may reflect a different
history given the age of the rocks, their closer prox-
imity to the core of the orogenic belt, and the lo-
cation and orientation of the basement uplifts.
Therefore, the kinematic histories are not expected
to be similar across the entire salient, and so both
models may be valid, but for different provinces.

Distinction between the single- and two-phase
models is useful in classifying the Pennsylvania sa-
lient along the gradient of orogenic curves from
primary arcs, which form in a curved shape from
the onset of deformation, to secondary arcs, which
are originally linear mountain belts that have later
been bent by another deformation event. Because
the Pennsylvania outer arc of the salient appears
to have been produced by a single tectonic event,
it is improbable that the salient is a secondary arc.
However, rotation of MSDs with time implies that
primary inheritance of curvature is also unrealistic.
Most likely, the Pennsylvania salient is an inter-
mediate between these primary and secondary end
members and can be classified as a progressive arc,
where curvature is acquired continuously through-
out the evolution of the Alleghany orogeny (Mar-
shak 2004).

The progressive arc model for the Pennsylvania
salient was originally developed by Gray and Sta-
matakos (1997) and is sometimes referred to as a
three-dimensional spreading wedge model (fig. 2a).
In this model, shortening and gravitational spread-
ing occur simultaneously under a single transport
direction. It is a single-phase model that simply and
elegantly integrates the structural and paleomag-
netic data preserved throughout the Valley and
Ridge Province of the Pennsylvania salient.

However, proponents of the two-phase model
suggest that a progressive arc requires tangential
extension around the arc (cf. Wise 2004). The Penn-
sylvania salient has a notable lack of tangential ex-
tension features, and this is used to argue that a
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one-phase model is not possible. Nickelsen (1979)
noted a few small late-stage cross-grabens on the
“whaleback” anticline of the Bear Valley mine, and
Faill (1981) reported a series of minor conjugate
strike-slip faults just west of the Alleghany front,
but these account for only a small fraction of the
tangential stretching that some suggest would be
required for progressive bending of the Pennsyl-
vania salient (cf. Wise 2004). But, a progressive arc
does not require tangential extension—it would be
necessary only if shortening and gravitational
spreading did not occur simultaneously.

Although a progressive arc does not require ex-
tension around the arc, it does not preclude that
extension can take place and may help assist for-
mation of the salient. Difficult-to-observe micro-
scale processes, such as grain-boundary sliding and
microscopic finite bulk strain (Sak et al. 2012), may
have diffused extensional strain (Gray and Stama-
takos 1997), and strike-slip faults common
throughout the Pennsylvania salient (Nickelsen
2009) may assist curvature of the salient (Gray and
Stamatakos 1997).

The consistent orientation of the MSD through-
out the Alleghanian orogeny progressive deforma-
tion sequence in the Pennsylvania salient’s hinge
zone has implications for the construction of bal-
anced geologic cross sections through the orogen.
Couzens et al. (1993) argued that it is not possible
to construct balanced geologic cross sections
through the southern part of the central Appala-
chians because of the overprinting of at least two
episodes on noncoaxial deformation. Because the
Juniata culmination and overall hinge zone appear
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to have been subjected to a single MSD, this is a
suitable location through which to draw a balanced
cross section oriented parallel to the direction of
maximum shortening.

Conclusions

Our analyses of progressive Alleghanian deforma-
tion in within the hinge zone of the Pennsylvanian
salient permit us to draw four important conclu-
sions: (1) All 22 field sites exhibit structures that
have elements of the Bear Valley sequence (Nick-
elsen 1979) of progressive Alleghanian deforma-
tion. (2) In general, structures spanning the Allegha-
nian orogeny exhibit an MSD of ~340° in, and
adjacent to, the Juniata culmination, Pennsylvania
salient. (3) The Gray and Stamatakos (1997) single-
phase model agrees best with the data in the Penn-
sylvania Valley and Ridge. (4) It is possible that the
MSD data from the Great Valley and Piedmont dif-
fer from those in the Valley and Ridge because some
of the deformation in the internal portions of the
salient likely predates the Alleghanian.
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