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Abstract

Given a convex polygon inscribed in a circle that circumscribes a second circle,

connect each pair of vertices with a line segment. A theorem of Poncelet tells us

that every point on the circle is a vertex of one such polygon. In certain cases,

these polygons give rise to a family of circles called a package of Poncelet circles.

Specifically, we are interested in the centers of these circles.

Figure 1: Package of Poncelet circles, m = 6

In particular, we wish to answer the question: if we know where one of the centers

of the circles in the package is, can we know where all of the centers are as well?

These families of circles are also connected to a set called the numerical range that

is related to an operator (i.e., a linear function that maps vector spaces to vector

spaces). The numerical range of an operator is a convex set in the complex plane C

that contains the eigenvalues of the operator as well as other information about the

operator.

An open question in operator theory ([PT02], pp. 7) asks: when the numerical

range of an operator is circular? In 2016, Gau, Wang, and Wu [GWW16] looked at a

special class of operators called partial isometries, which are operators that preserve

distance on a specific subset of the domain. They showed that if the numerical range

of a partial isometry on a space of dimension n  4 is circular, then it must be
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centered at the origin. Their proof goes through each dimension n = 2, 3, 4 and for

each n, they prove this result for all possible dimensions of the kernel of the operator.

Our work simplifies and clarifies each proof.

In 2021, Spitkovsky and Wegert [WS21] proved the same statement for all n for

a certain class of partial isometries whose dimension of the kernel is 1. Their proof

involves elliptic integrals and requires a high level of mathematical understanding

to follow. Our work re-proves Spitkovsky and Wegert’s theorem using information

gleaned from the package of Poncelet circles. We show that if the one of the circles in

the package is centered at the origin, then all of the circles must be centered at the

origin. We do this in two ways. First, we have a straight forward projective geometric

proof that follows the work done by Mirman closely, but it hides what is happening

geometrically. So we also found a classical geometric proof of this result.
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1 Introduction

1.1 Motivation

Circles inscribed in triangles and squares have been studied for centuries. For in-

stance, we have the Euler-Chapple formula theorem that was published in 1765 for a

circle inscribed in a triangle inscribed in another circle that gives a relation between

the centers and radii.

Figure 2: Euler-Chapple theorem

Theorem 1 ([AC07] pp. 85)

Let C1 be a circle of radius R and suppose there is a triangle that has its three

vertices on C1. Let r < R be the radius of a circle inside of the triangle and tangent

to each side of the triangle. Let d be the distance between the centers of the circles.

Then

d
2 = R(R� 2r).

Circles inscribed in polygons also appear in various real world examples, one of which

is in architecture (see Figure 3). Further, we see them in philosophical ideas. Circles

have been associated with that of divinity due to the “infinite” nature of a circle. And

a square, with its four sides, is finite and “earthly.” So the combination of circles and

squares has spiritual meaning as the connection between celestial beings and those
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Figure 3: Left: Calakmul building in México City. México. Designed by Agust́ın
Hernandez; Right: Phillips Exeter Academy Library in Exeter NH, USA. Designed
by Louis I Khan.

of us on earth. Lastly, we find circles in squares in numerous pieces of art work (see

Figure 4).

Figure 4: Inspre-Dinspre (Towards-From there) painting by Serge Vasilendiuc

Understanding more about polygons inscribed in circles is a natural question to ask

and it is not surprising that mathematicians studied them.

One such mathematician was Jean-Victor Poncelet who was born in France in

1788. Like many famous mathematicians, he lived an interesting life. He joined the

Engineering Corps in France and ultimately joined Napoleon’s army. He became a

prisoner of war from 1813-1814 and during his imprisonment, he looked at circles in-

scribed in polygons and found his most famous theorem now called Poncelet’s closure

theorem, which we state in Section 1.2. After his release, he published Traité sur

les propriétés projectives des figures in 1822 where he shared this theorem with the
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world. Following this publication, several other mathematicians studied, generalized,

and re-proved the result using di↵erent approaches. A few of the mathematicians

who extended Poncelet’s work are: Carl Gustav Jacob Jacobi, Arthur Cayley, Gaston

Darboux, and George H. Halphen. Six years after Poncelet’s publication, Jacobi pub-

lished a result connecting this problem to elliptic functions. Then, in 1853, Cayley

found explicit conditions that allow the existence of an n-gon inscribed in one conic

and circumscribing another. Towards the late nineteenth century, Darboux took a ge-

ometric approach to Poncelet’s theorems and published his results in 1870. However,

he spent the next half century refining and perfecting his results, which he published

in 1917. Lastly, unlike Darboux, Halphen went back to elliptic functions to prove

Poncelet’s Theorem, where his main contribution was the addition of explicit elliptic

curves in the “elliptic representation” of points of the plane.

Note that we have only chosen a few mathematicians to highlight and this is not

a comprehensive list of the mathematicians who have contributed to the discussion

around Poncelet’s theorem. For those interested in an in-depth historical account of

Poncelet’s theorem, it can be found in [DC16a], [DC16b].

Our work continues this discussion on Poncelet’s Theorem through a connection of

Poncelet polygons to a special class of operators where we provide simplified geometric

proofs of results by Gau, Wang, Wu [GWW16], Spitkovsky and Wegert [WS21], and

Tabachnikov and Schwartz [ST16].

1.2 Introduction

Consider the unit circle (i.e., the circle centered at 0 with radius of 1), denoted by T,

and an m-sided convex polygon whose vertices lie on the unit circle. We will use the

notation m-gon to denote an m-sided polygon. This polygon is said to be inscribed
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in the unit circle (see Figure 5).

Figure 5: Left:5-gon (pentagon) inscribed in T; Right: Inscribed circle in a 5-gon

Now consider a circle that is tangent to all sides of the m-gon (see the right figure

in Figure 5). The polygon is said to circumscribe the circle or the circle is inscribed

in the polygon. It is important to notice that the pair, polygon and circle, must have

a specific relation so that the circle is indeed tangent to all the sides of the polygon.

But once we find such a pair, it turns out that there are infinitely many m-gons

that circumscribe the inner circle and are inscribed in T. This is exactly Poncelet’s

Theorem:

Theorem 2 (Poncelet’s Theorem for Circles) If there is at least one m-gon that

is inscribed in T and circumscribes an inner circle, then each point on T is a vertex

for such an m-gon.

If we connect “diagonal” lines that skip over 1 vertex of the polygon, we get a new

polygon (or, when m = 4, a point). Now we can find another circle that is inscribed

in the new polygon (see Figure 7), [Mir12]. Repeating this process by skipping over k

vertices for 1  k  m

2 (m even) and 1  k  m�1
2 (m odd), we get a family of circles

that are inscribed in polygons. We will see (Proposition 21) that if the first curve

that we obtain using this process is a circle, the curves that we obtain from skipping
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Figure 6: Example of Poncelet’s theorem, m = 4

points will be too. Note that, for example, when n = 5, we can skip 1 point and

obtain a curve, skip 2 points to obtain a second curve, but skipping 3 points yields

the same curve as skipping 2 points.

Figure 7: Left: Lines skipping over 1 vertex, m = 5; Right: Family of circles, m = 5

Our work is focused around one main question: If you know where one center

in the family of circles is, do you know where all of the other circles are

centered as well? This is a natural question; as seen by the examples in the

introduction, circles inscribed in polygons appear in numerous examples in the real

world.

The question of when the numerical range of an operator is circular is still open

[PT02]. In 2016, Gau, Wang, and Wu [GWW16] noted that this general problem is

di�cult and considered an easier question: when is the numerical range of an operator
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satisfying a particular condition circular? They looked at a special class of operators

called partial isometries, which are operators that preserve distance on a specific

subset of the domain. They showed that if the numerical range of a partial isometry

on a space of dimension n  4 is circular, then it must be centered at the origin. Their

proof goes through each dimension n = 2, 3, 4 and for each n, they prove this result

for all possible dimensions of the kernel of the operator. In Section 3, we simplify and

clarify each proof.

In 2021, Spitkovsky and Wegert [WS21] proved the same statement for all n for

a certain class of partial isometries whose dimension of the kernel is 1. Their proof

involves elliptic integrals and requires a high level of mathematical understanding

to follow. Our work re-proves Spitkovsky and Wegert’s theorem using information

gleaned from the package of Poncelet circles. In Section 3.1, we give a new proof of a

result due to Tabachnikov and Schwartz [ST16] that shows that the center of mass of

the vertices is constant. In other words, the sum of the vertices of the circumscribing

polygons is constant. Then we show that if the dimension of the kernel is one and one

of the circles in the package is centered at the origin, all of the circles must be centered

at the origin. We do this in two ways. First, we provide a straight forward projective

geometric proof in Section 4.2 that follows the work done by Mirman closely, but

hides what is happening geometrically. In Section 4 we provide a classical geometric

proof of this result. In addition, in Section 3, we provide modified proofs of the cases

in which the dimension of the kernel of the operator is greater than one and the

operator is defined on an n-dimensional space with n  4.
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2 Background

A Hilbert space H is a complete inner product space such that the norm is defined

by kfk2 = kfk2
H
= hf, fi for f 2 H. A bounded linear operator A on a complex

Hilbert space H is a linear transformation A : H ! H, for which there exists a real

number M > 0 such that kAxkH  MkxkH for all x 2 H. The numerical range of

an operator A on H, is defined by

W (A) = {hAx, xi : x 2 H, kxk = 1}.

Figure 8: The lines form an envelope of the
boundary of W (A)

A =

0

@
1.5 1 0
0 0 0.5
0 i 0

1

A

Figure 9: Matrix A

Figure 10: Figure and Matrix

A famous theorem regarding the numerical range is the Toeplitz-Hausdor↵ theo-

rem.

Theorem 3 (Toeplitz-Hausdor↵ Theorem) The numerical range, W (A), of an

arbitrary linear operator A on a Hilbert space (real or complex) is convex.

When the operator is bounded, the numerical range is a bounded convex subset of H.

Let the spectrum of A be the set of eigenvalues of A. Then it is also known that
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W (A) contains the spectrum of A. Note that when A is a matrix, we are working on

a finite dimensional space and W (A) is closed.

A bounded linear operator on H is an isometry if kAxk = kxk for all x 2 H; in

this case A preserves distance. Denote by (kerA)? the orthogonal complement of the

kernel of A. Then a bounded linear operator on H is a partial isometry if kAxk =

kxk for all x 2 (kerA)?. Partial isometries form an important class in operator

theory as they are used in the polar decomposition of arbitrary operators, and they

play a key role in the dimension theory of von Neumann algebras. Furthermore,

several well-known operators are partial isometries. First, clearly, all isometries are

partial isometries. Recall that a unitary operator satisfies U
⇤
U = UU

⇤ = I, where

U
⇤ denotes the adjoint of U . We also have the following (well-known) result.

Proposition 4 A unitary operator is a surjective isometry.

Proof: Let U be a unitary operator. Thus, hU⇤
Ux, xi = hx, xi = kxk2 for all x 2 H

and hU⇤
Ux, xi = hUx, Uxi = kUxk2 so kUxk = kxk. Thus U is an isometry. Since U

is invertible, it is also surjective. ⇤

A unitary operator U is also a partial isometry. We also have the following result.

Proposition 5 Let A be a bounded linear operator. Let P be the orthogonal projec-

tion onto (kerA)?. Then P is a partial isometry.

The proof is straightforward. More on partial isometries can be found in [Sko14].

Let In denote the n⇥n identity matrix. Halmos and McLaughlin [HM63] showed

that a partial isometry A can be represented by

0

B@
0 B

0 C

1

CA on H = kerA � (kerA)?



9

where B
⇤
B + C

⇤
C = Idim((kerA)?). Notice that A

⇤
A =

0

B@
0 0

B
⇤

C
⇤

1

CA

0

B@
0 B

0 C

1

CA =

0

B@
0 0

0 B
⇤
B + C

⇤
C

1

CA . Since B⇤
B+C

⇤
C = Idim((kerA)?), we have that A

⇤
A is the iden-

tity on (kerA)?.

Proposition 6 If A is an invertible n ⇥ n matrix that is a partial isometry (i.e., if

0 is not in the spectrum), then A is unitary.

Proof: Let H = Cn. If A is invertible, then kerA = {0} so (kerA)? = H. Then

hA⇤
Ax, xi = hAx,Axi = kAxk2 = hx, xi for all x, as A preserves length on (kerA)? =

H. Thus, hA⇤
Ax � x, xi = 0 for all x 2 H. By [Axl15], we have A

⇤
A = I. Then

AA
⇤ = I follows. ⇤

Thus, for such an n⇥ n matrix, the spectrum is contained in the unit circle. The

theorem above can be stated in more generality, and it follows that the spectrum of

an invertible partial isometry is a non-empty compact subset of the unit circle, T.

This property led

Arlen Brown to characterize the spectra of partial isometries in [Bro53].

Theorem 7 If a nonempty compact subset of the closed unit disk contains the origin,

then it is the spectrum of some partial isometry.

Gau, Wang, and Wu explained why Theorem 7 holds and narrowed this statement

to examine partial isometries A whose numerical range is circular, with center c and

radius r. Gau, Wang and Wu proved the following theorem.

Theorem 8 ([GWW16]) Let A be an n⇥n partial isometry and n  4. If W (A) =

{z 2 C : |z � c|  r} where r > 0, then c = 0.
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Gau, Wang, and Wu conjectured that this would hold for a general n. In 2021,

Spitkovsky and Wegert proved Gau and Wu’s conjecture for a special class of partial

isometries. This class of partial isometries is associated with a family of functions

called finite Blaschke products. Let D = {z : |z| < 1} be the open unit disk.

Definition 9 Let �1, . . . ,�n 2 D. Then a finite Blaschke of degree n is a function of

the form

B(z) := �

nY

k=1

z � �k

1� �kz
where |�| = 1.

Blaschke products are bounded analytic functions on D and are widely studied

for their nice properties such as their involvement in factorization theorems. Our

interest in these functions lies in something known as a Blaschke curve. Recall that

a Blaschke product of degree n maps the circle, T, to itself and the open unit disk,

D, to itself. It is an n-to-1 map of the unit circle.

Definition 10 Let B be a Blaschke product of degree n and define bB by bB(z) :=

zB(z). For t 2 T, let Pt be the convex (n + 1)-gon with vertices at the preimages

bB�1(t) of t. Then the curve obtained as the envelope of Pt for t 2 T is called the

Blaschke curve.

In Figure 11, the values of B on T that have the same argument, mod 2⇡, are

colored with the same color. The Blaschke curve is the envelope of the line segments

between points z, w 2 T closest to each other with B(z) = B(w); that is, line segments

that join subsequent like colors on T.

A finite Blaschke product B is associated with an operator known as the compres-

sion of the shift operator, denoted SB, acting on a finite-dimensional Hilbert space.

Let H2 denote the Hardy space on T.
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Figure 11: Example of Blaschke curve, n = 3

Definition 11 The Hardy space H
2
is the class of holomorphic functions f on D

satisfying

f(z) =
1X

n=0

cnz
n
,

1X

n=0

|cn|2 <1.

The model space KB = H
2  BH

2 = {f 2 H
2 : hf,Bgi = 0 for all g 2 H

2}.

Then our compression of the shift operator SB : KB ! KB is defined by SB(f) =

PB(zf), where PB is the orthogonal projection from H
2 onto KB. A matrix M is of

class Sn if M is a contraction (i.e., kMk  1), the eigenvalues of M are in D, and

rank(In �M
⇤
M) = 1. It turns out that Sn consists of operators that are unitarily

equivalent to SB with B a finite Blaschke product; thus, a matrix representing a

compression of the shift operator with a finite Blaschke product symbol is in the class

Sn [DGSV18]. In [GW03], they that show the zeros of B, namely �1, . . . ,�n, are also

the eigenvalues of SB. Further, the numerical range of SB is the closure of the interior

of the Blaschke curve.

Many properties of the operators in Sn have been established by Gau and Wu,

Mirman, and Daepp et.-al ([GW03], [DGV10], [DGSW21], [DGSV18], [DGSV17],

[GWW16], [Mir12]). To understand some of these properties from Mirman’s perspec-

tive, we include a section on pencils of circles.
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2.1 Pencil of Circles

The main types of pencils of circles are: elliptic pencils, hyperbolic pencils, and

parabolic pencils. Two circles determine two pencils: there is a unique pencil that

contains the circles and there is a pencil of circles orthogonal to them. The type of

pencil that we are interested in here is a hyperbolic pencil or a non-intersecting

pencil of circles (see Figure 12). These circles are determined by two points A and

B such that the centers of the circles lie on the line passing through A and B.

Figure 12: Pencils of circles; blue circles are the hyperbolic pencil [Wik]

The most familiar definition of a circle with center c and radius r is the set of points

X = (x1, x2) a distance r from c = (c1, c2) ({X 2 R2 :
p

(c1 � x1)2 + (c2 � x2)2 = r}).

But there are equivalent definitions of a circle. Apollonius discovered that a circle

could be defined as the set of points X that have a given ratio d = d1/d2 to two given

points (A and B in our case). Thus, each circle in the hyperbolic pencil is associated

to a positive number d and is defined to be the set of points such that

{X :
dist(XA)

dist(XB)
= d}.

Definition 12 For two circles, C1 and C2 with radii r1 and r2 and centers c1 and c2
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respectively, the power of a point P with respect to C1 and C2 is

⇧1(P ) = |Pc1|2 � r
2
1 and ⇧2(P ) = |Pc2|2 � r

2
2.

Figure 13: Pencil of circles with the radical axis

Definition 13 The radical axis is {P : ⇧1(P ) = ⇧2(P )}. A pencil of circles is a

family of circles that have the same radical axis and the centers of the circles lie on

a line.

The two important facts about pencils of circles that we will use are the following.

First, the centers of all of the circles in the pencil are collinear (i.e., lie on one line).

And second, any two circles in the pencil share the same radical axis and the radical

axis is perpendicular to the line segment passing through the centers of the circles in

the pencil (Radical Axis Theorem [oPS]).

Hyperbolic pencils of circles appear in real life as well. Suppose you have two

parallel wires with current flowing in opposite directions. Each wire will emit a

magnetic field whose direction follows the right-hand rule (see Figure 14 where the

limiting points act as the wires). These magnetic field lines form circles that resemble

a pencil of hyperbolic circles.
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Figure 14: Magnetic field lines of parallel wires

The family of all circles through the points A and B (including the line AB) is the

elliptic pencil of circles through A and B. The family of all Apollonian circles

(including the perpendicular bisector of AB) is the hyperbolic pencil defined by A

and B. The set of circles orthogonal to the circles of an elliptic pencil is a hyperbolic

pencil, and conversely.

The points A and B are called the limiting points of the hyperbolic pencil [Pam].

We can get a formula for the limiting points given two circles in the pencil of radii

r and R with centers separated by a distance d. Consider the unit circle T and the

circle with radius R centered at (c, 0) with 0 < c < 1. Then [Wei] shows the limiting

points are as follows:

A =
c
2 �R

2 + 1 +
p

(c2 �R2 + 1)2 � 4c2

2c

and

B =
c
2 �R

2 + 1�
p

(c2 �R2 + 1)2 � 4c2

2c
.

Given the equations above, the points A and B also satisfy the following:

A+B = A+
1

A
=

1 + c
2 �R

2

c
.

The limiting points in Figure 12 are the common intersection points of the red circles.
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Because one of the centers of our circles is zero and all the centers lie on a line,

without loss of generality, we may assume that the centers of the circles are real. In

[Mir12], Mirman gives an invariant, IC , of the pencil of circles given the center c > 0

and radius R of the first circle in D in the Poncelet package:

IC =
1 + c

2 �R
2

2c
.

In other words, every circle in the package with center ck and radius Rk satisfies the

following relation:
1 + c

2
k
�R

2
k

2ck
=

1 + c
2 �R

2

2c
.

But if one of the circles degenerates to a point (see the proof of Theorem 8, case

n = 3), then Rk = 0 so
1 + c

2
k

2ck
=

1 + c
2 �R

2

2c
.

Recall that each Euclidean disk with ck 6= 0, DE(ck, Rk), is also a pseudohyperbolic

disk, where the pseudohyperbolic disk has (pseudohyperbolic) center z0 and radius

rk, with

|z0|+
1

|z0|
=

1 + c
2
k
�R

2
k

ck
=

1 + c
2 �R

2

c

and

ck = z0(1� rkRk),

so c and z0 have the same sign. For the unit circle, we may think of every z0 2 D as

a pseudohyperbolic center by taking r = 1. In this case, r = R = 1 and c = 0.

Remark 14 All of the circles in the pencil have the same pseudohyperbolic center,

z0.
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2.2 Poncelet’s Theorem

We return to Poncelet’s closure theorem. After Poncelet first published his results,

he then generalized them to what we now call Poncelet’s general theorem.

Theorem 15 (Poncelet’s general theorem) Let C1 be a circle and let non-intersecting

circles a1, a2, . . . , an be inside C1 belonging to the same pencil. Starting at an arbi-

trary point w1 2 C1 construct points w2, . . . , wn+1 2 C1 so that wjwj+1 is tangent

to aj. If wn = w1, then we always get back to the starting point in the nth step, no

matter where we start.

Figure 15: Examples of Poncelet’s theorem, m = 4.

For t 2 T, the convex (n + 1)-gon with vertices at the preimages bB�1(t) of t is

denoted by Pt and conv(Pt) denotes the convex hull of the Pt. Gau and Wu proved

the following:

Theorem 16 ([GWW16]) Let B be a Blaschke product of degree n and define bB

by bB(z) := zB(z). Then the numerical range of SB is

W (SB) =
\

t2T

conv(Pt).

In view of the fact that the curve bounding the numerical range is inscribed in a

polygon Pt for each t 2 T, such a curve is called a Poncelet curve. Spitkovsky and

Wegert showed
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Theorem 17 ([WS21]) Let bB be a Blaschke product of degree n + 1 where n � 2,

bB(0) = 0 and bB0(0) = 0. If the Blaschke curve associated with bB is a circle, then

bB(z) = z
n+1

.

We will provide another, more elementary, proof of this theorem in Section 4.

Another way to approach the proof of this theorem is by inspecting something

called a package of Poncelet circles.

Figure 16: Package of Poncelet circles, m = 6

Definition 18 Let t 2 T and let Pt denote the convex (n+1)-gon whose vertices are

bB�1(t), ordered by principal argument. A package of Poncelet curves is the collection

of curves created by joining line segments skipping over k = 1, 2, . . . , bn+1
2 c vertices

of Pt. Each Poncelet curve Ck is tangent to the chords that skip over k vertices.

Figure 17: Method to get C2 in the package

We now introduce two other versions of Poncelet’s theorem to show why all the

curves in the package are circles.



18

Figure 18: Method to get C3 in the package

Theorem 19 ([Ber10], p. 218) Consider the pencil of curves defined by the pair

of circles C,C1. Let C2 be an arbitrary circle (interior to C) belonging to the pencil.

We traverse all these circles in the same direction, and with each m 2 C we associate

the point n where the tangent from m to C1 encounters C again; then from n we

follow the tangent to C2 that cuts C again at p. Then the line mp, when m traverses

C, envelops a circle C3 belonging to the pencil considered.

Theorem 20 ([HMFPS22] Theorem B) Let C be a closed convex curve in D and

suppose that there is an n-sided polygon P0 inscribed in T and circumscribed about C.

If the curve C is a connected component of a real algebraic curve � in D of class n�1

such that each diagonal of P0 is tangent to �, then for every point z 2 T, there exists

an n-sided polygon P (z) inscribed in T and circumscribed about C such that z is a

vertex of P (z) and each diagonal of P (z) is tangent to �. In the special case when C

is an ellipse, there always exists such an algebraic curve � and this curve decomposes

into (n� 1)/2 ellipses if n is odd, and (n� 2)/2 ellipses and an isolated point if n is

even.

Proposition 21 Consider the package of Poncelet curves determined by T and the

largest circle C1 in the package contained in D. Then every curve in the package of

Poncelet curves must be a circle.
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Proof: Let A be the matrix representing the operator SB, where B is a finite

Blaschke product, and the boundary of W (A) is C1.

We will use the construction in Theorem 19 to get all the circles in the pencil

defined by T and C1 using the following method.

To find C2, we take two neighboring line segments tangent to C1, mn and np, and

consider the line mp. Notice that mp skips over 1 vertex of our largest polygon P1,

which is tangent to C1. Then by Theorem 19, mp, as m traverses T, envelopes C2 in

the pencil.

To find C3, we take a line segment tangent to C1, mn, and a line segment tangent

to C2, np, and consider the line mp. Since mn skips over 0 vertices and np skips over

1 vertex, mp skips over 0 + 1 + 1 = 2 vertices of our largest polygon P1, where the

extra 1 vertex is the vertex at the point n. Then mp, as m traverses T, envelopes C3

in the pencil.

We repeat the process and have included a general formula to get Ck.

Case 1: k 2 2N. To get Ck, we take two neighboring line segments tangent to C k
2
,

mn and np, and consider the line mp. Since mn and np skips over k

2 � 1 vertices, mp

skips over k

2 � 1 + k

2 � 1 + 1 = k � 1 vertices of our largest polygon P1. Then mp, as

m traverses T, envelopes Ck in the pencil.

Case 2: k 2 2N+1. To get Ck, we take a line segment tangent to C k�1
2
, mn, and a line

segment tangent to C k+1
2
, np, and consider the line mp. Since mn skips over k�1

2 � 1

vertices and np skips over k+1
2 � 1 vertex, mp skips over k�1

2 � 1+ k+1
2 � 1+1 = k� 1

vertices of our largest polygon P1. Then mp, as m traverses T, envelopes Ck in the

pencil.

Since this construction is the process to obtain Mirman’s vertices of the package

of curves, we have that if the largest curve in D in the package is circular, then all of
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the curves must be circles as well.

⇤

We know the zeros of the Blaschke product B are the eigenvalues of SB ([GMR18]

Corr.12.6.7). We now obtain more information about the zeros of B; that is, the

eigenvalues of SB.

Consider P (z, w) = P (z, w; a1, . . . , aN�1), where

P (z, w) =
1

w � z

 
w

N�1Y

k=1

(w � ak)(1� akz)� z

N�1Y

k=1

(z � ak)(1� akw)

!
.

Mirman states [Mir05, Section 2] that the zeros of P (namely, a1, . . . , aN�1) are the

foci for ellipses in the package. Thus, they will give us the centers of our circles.

Notice that if P (z, w) = 0, and a1, . . . , aN�1 are the zeros of B, then

bB(w) = w

N�1Y

k=1

w � ak

1� akw
= z

N�1Y

k=1

z � ak

1� akz
= bB(z). (1)

Recall that our Poncelet polygons circumscribing W (SB) were constructed by con-

necting the points in bB�1(t) (ordered by principal argument) and we see in (1) above

that since t 2 T we have z, w 2 T and z, w 2 bB�1(t).

Spitkovsky and Wegert used elliptic integrals to prove Theorem 17. We re-prove

Theorem 17 in Section 4 using elementary geometry, classical projective geometry,

and linear algebra. Further, we showed in Proposition 21 that all of the circles in

the package belong to one pencil. Then since the centers are colinear and we are

assuming one circle in the package is centered at 0, then we can rotate our package

of circles such that all of the centers are real. Spitkovsky and Wegert’s result follows

from Mirman’s observation of the invariance of the pseudohyperbolic centers of the
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circles in the package, but we will give a di↵erent proof that demonstrates geometric

properties of the circles and circumscribing polygons.

2.3 Kippenhahn Curve

Rudolf Kippenhahn showed that the numerical range is the convex hull of a certain

algebraic curve now called the Kippenhahn curve. In this section, we will provide

a brief discussion of the Kippenhahn curve, as it plays a key role in the proofs in

Section 3.

For an n ⇥ n matrix A, let <A = A+A
⇤

2 and =A = A�A
⇤

2i denote the real and

imaginary parts of the matrix A, respectively. Let In be the n ⇥ n identity matrix.

Then consider the homogeneous degree-n polynomial PA(x, y, z) = det(x<A+y=A+

zIn). Let CP2 be the complex projective plane consisting of all equivalence classes

[x; y; z] of ordered triples of complex numbers x, y and z that are not all zero. Two

triples [x; y; z] and [x0; y0; z0] are equivalent if x = �x
0, y = �y

0, and z = �z
0 for

some nonzero �. Now let C(A) be the algebraic curve that is dual to the algebraic

curve determined by PA(x, y, z) = 0 in the complex projective plane CP2. In other

words, C(A) = {(u, v, w) 2 CP2 : ux + vy + wz = 0 is tangent to PA(x, y, z) = 0}.

Kippenhahn showed that the numerical range W (A) is the convex hull of the real

points of C(A) [Kip51]. Let the Kippenhahn curve of A be the set CR(A) = {a+ bi 2

C : a, b 2 R and ax + by + z = 0 is tangent to PA(x, y, z) = 0}. Then W (A) =

conv(CR(A)). With this result, we will be able to say things about the numerical

range using the Kippenhahn curve.
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3 Proof of Theorem 8

3.1 Preliminaries

Gau, Wang, and Wu reduced the question to the study of irreducible operators.

Definition 22 A operator A on H is irreducible if there are no other reducing

subspaces (a subspace S such that A(S) ✓ S and the adjoint A
⇤
satisfies A

⇤(S) ✓ S)

other than the trivial ones {0} and {H}.

We will assume all of our matrices are irreducible. In the proof of Theorem 8,

we also assume n  4. For a discussion on why we can assume irreducibility, see

[GWW16]. To prove Theorem 8, we must first introduce several important theorems

and propositions, the first of which is the famous Elliptical Range Theorem.

Theorem 23 (Elliptical Range Theorem) Let A be a 2⇥2 matrix with eigenval-

ues �1 and �2. The numerical range of A is an elliptical disk with �1 and �2 as foci,

and (tr(A⇤
A)� |�1|2 � |�2|2)1/2 as the length of the minor axis.

There are many proofs of this theorem (see, for example, [PRW21] [Li96]) and

it has been a critical result in the study of numerical ranges. This theorem will be

particularly useful in proving Theorem 8 for n = 2.

We will also use Schur’s theorem, which states:

Theorem 24 If A is an n ⇥ n square matrix with complex entries, then A can be

expressed as A = QUQ
⇤
where Q is a unitary matrix, and U is an upper triangular

matrix.

Schur’s theorem and a proof of it can be found in Theorem 6.14 of [FIS97].
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We continue with an important connection between the eigenvalues and the ver-

tices of the circumscribing Poncelet polygons. First, we must define a unitary dila-

tion.

Definition 25 An operator U : H 0 ! H
0
is a unitary dilation of A : H ! H where

H ⇢ H
0
if U is a unitary operator and PHU |H = A, where PH is the orthogonal

projection on H.

Now we introduce the Takenaka-Malmquist basis for H, which is used to get

a matrix representation of SB.

Definition 26 Let us write �a(z) = z�a

1�az
where a 2 D. For a Blaschke product of

degree n with zeros a1, . . . , an, then B = µ
Q

n

j=1 �aj where µ 2 T. Assume a1, . . . , an

are distinct. Let k̃a(z) =
p

1�|a|2
1�az

be the normalized reproducing kernel for H
2
at the

point a 2 D. Then the Takenaka-Malmquist basis for KB is given by

 
k̃a1

nY

j=2

�aj , k̃a2

nY

j=3

�aj , . . . , k̃an�1�an , k̃an

!
.

Let AB be the matrix representing SB with respect to the Takenaka-Malmquist

basis. If a1, . . . , an 2 D are the zeros of B, then AB has the form:

aij =

8
>>>>>><

>>>>>>:

aj if i = j

⇣Q
j�1
k=i+1(�ak)

⌘p
1� |ai|2

p
1� |aj|2 if i < j

0 if i > j

.

This representation is also valid when the zeros are not distinct. For each � 2 T, the

unitary dilation U� is defined as follows:
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aij =

8
>>>>>>>>>><

>>>>>>>>>>:

aj if 1  i, j  n

�

⇣Q
j�1
k=1(�ak)

⌘p
1� |aj|2 if i = n+ 1 and 1  j  n,

�Q
n

k=i+1(�ak)
�p

1� |ai|2 if j = n+ 1 and 1  i  n,

�
Q

n

k=1(�ak) if i = j = n+ 1

. (2)

Up to unitary equivalence, this is the complete set of unitary 1-dilations of AB.

Using this, we obtain the next theorem, which shows that the average of the vertices

of all circumscribing polygons lie on a circle. Further, if one of the eigenvalues of AB

is zero, then this circle degenerates to a point and the sum of the vertices of each

circumscribing polygon is the same. For each � 2 T, there is a unique unitary dilation

of AB, defined by U� (up to unitary equivalence) as defined in equation (2).

Theorem 27 If a1, . . . , an are the eigenvalues of AB and �1, . . . ,�n+1 2 T are the

eigenvalues of a unitary 1-dilation of AB; that is, a matrix of the form U� with � 2 T,

then
n+1X

j=1

�j = tr(U�) =
nX

j=1

aj + �

nY

j=1

(�aj).

Consequently, the matrix AB has 0 as an eigenvalue if and only if the unitary dilations

U�, � 2 T have the same trace.

Proof: The matrix U� is a unitary 1-dilation of the matrix AB; that is, we obtain

U� from AB by adding one row and one column to the matrix AB. Therefore, the

trace of U� is the sum of the diagonal entries of AB plus the entry in the final row and

column, �
Q

n

j=1(�āj). So, tr(U�) =
P

n

j=1 aj + �
Q

n

j=1(�aj). But U� is unitary and

therefore unitarily equivalent to a diagonal matrix with the eigenvalues �1, . . . ,�n+1
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on the diagonal. Since the trace is a unitary invariant, tr(U�) =
P

n+1
j=1 �j. Thus,

nX

j=1

aj + �

nY

j=1

(�aj) = tr(U�) =
n+1X

j=1

�j.

⇤

This result is due to Tabachnikov and Schwartz and a di↵erent proof can be found

in [WS21].

Remark 28 Note that the unitary dilations give the vertices of the circumscribing

polygons. Thus, when one of the eigenvalues of AB is zero, the sum of all the vertices

of every circumscribing polygon is the same.

In [Gau06], they show that for a 4⇥4 matrix whose numerical range is an elliptical

disk, CR(A) has a factor of order 2. By duality, it follows that the homogeneous

polynomial PA also has a factor of degree 2. Note that PA is of degree 4.

Remark 29 ([Gau06] pp. 118) Let A be a 4⇥ 4 partial isometry. If W (A) is an

elliptic disk, then PA can be decomposed either by two factors of degree 2 or by one

factor of degree 2 and two factors of degree 1. So there are two cases: when the

Kippenhahn curve of a 4⇥ 4 matrix consists of the boundary of an elliptical disk and

two points as well as when the Kippenhahn curve consists of the boundary of two

elliptical disks.

Gau provided conditions for the various possibilities for the Kippenhahn curve of

a 4⇥ 4 matrix, which we have included below as Theorem 30 and Corollary 31.
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Theorem 30 (Theorem 3 [Gau06]) Let A be a 4 ⇥ 4 matrix of the form A =2

66666664

�1 a d f

0 �2 b e

0 0 �3 c

0 0 0 �4

3

77777775

. Then CR(A) consists of two points and one ellipse if and only if

1. r
2 = |a|2 + |b|2 + |c|2 + |d|2 + |e|2 + |f |2,

2. r
2
�i�j = |a|2�3�4 + |c|2�1�2 + |d|2�2�4 + |e|2�1�3 + |f |2�2�3� (�1bce+ �2cdf +

�3aef + �3abd) + abcf,

3. r
2(�i +�j) = (|b|2 + |c|2 + |e|2)�1 +(|c|2 + |d|2 + |f |2)�2 +(|a|2 + |e|2 + |f |2)�3 +

(|a|2 + |b|2 + |d|2)�4 � (bce+ cdf + aef + abd), and

4. r
2
↵i↵j = |a|2↵3↵4 + |b|2↵1↵4 + |c|2↵1↵2 + |d|2↵2↵4 + |e|2↵1↵3 + |f |2↵2↵3 �

(↵1<(bce) + ↵2<(cdf) + ↵3<(aee) + ↵4<(abd)� 1
4(|a|

2|c|2 + |d|2|e|2 + |b|2|f |2 �

2<(acde)� 2<(bdef)� 2<(abcf))

When the Kippenhahn curve consists of two ellipses, we will use the following

corollary.

Corollary 31 (Corollary 6 [Gau06]) Let A be a 4 ⇥ 4 matrix with eigenvalues

�1,�2,�3,�4. Then CR(A) consists of two ellipses, one with foci �k,�l and minor axis

of length r, the other with foci �i,�j and minor axis of length s if and only if:

1. r
2 + s

2 = tr(A⇤
A)�

P4
i=1 |�i|2 = �

2
,

2. r
2
�i�j+s

2
�k�l =

P
1n<m4(�

2+|�n|2+|�m|2)�n�m+tr(A⇤
A

3)�tr(A)tr(A⇤
A

2),

3. r
2(�i + �j) + s

2(�k + �l) = �
2
tr(A)� tr(A⇤

A
2) +

P4
n=1 |�n|2�n, and

4. r
2
↵i↵j + s

2
↵k↵l � 1

4r
2
s
2 = 4↵1↵2↵3↵4 � 4 detReA where ↵i = Re(�i).
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We are interested in applying these condition to certain partial isometries. In

particular, we will apply it in the case when the dimension of the kernel of a 4 ⇥ 4

partial isometry is 2.

As previously mentioned, a consequence of the Halmos and McLaughlin result

[HM63] shows that a partial isometry for which the kernel has dimension 2 can be

written as

A =

2

64
02 B

02 C

3

75 where B =

2

64
c d

e f

3

75 , C =

2

64
↵ b

0 ↵

3

75 , and B
⇤
B + C

⇤
C = I. (3)

The first condition of Corollary 31 gives the following lemma.

Lemma 32 Let A be a partial isometry. If A is of the form (3), then the minor axis

of the Kippenhahn curve is given by r
2 = 2(1� ↵

2).

Proof: Let A be a partial isometry of the form (3); that is, A =

2

64
02 B

02 C

3

75 where

B =

2

64
c d

e f

3

75 and C =

2

64
↵ b

0 ↵

3

75 satisfy B
⇤
B + C

⇤
C = I2. Then

A
⇤
A =

2

64
02 02

02 I2

3

75

so tr(A⇤
A) = 2. Further,

P4
i=1 |�i|2 = ↵

2 where �i, 1  i  4 are the eigenvalues

of A and ↵ 2 R. By condition 1 of Corollary 31, we have r
2 + ↵

2 = 2 � 2↵2
. Thus,

r
2 = 2(1� ↵

2). ⇤

Recall that a matrix M is of class Sn if M is a contraction (i.e., kMk  1), the

eigenvalues of M are in D, and rank(In �M
⇤
M) = 1. In the proof of Theorem 8, we
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will use an important proposition by Gau and Wu.

Proposition 33 ([GWW16] Prop. 2.3) Let A be an n⇥ n matrix. Then A is an

irreducible partial isometry with dimkerA = 1 if and only if A is of class Sn with 0

in �(A).

This proposition allows us to reduce the case when dimkerA = 1 to the numerical

ranges of compressions of the shift operator for which the Blaschke symbol has a zero

at zero. The Blaschke symbol then allows us to use elementary geometry to prove

Theorem 8 when dimkerA = 1.

Lastly, we introduce an important theorem relating the geometry of the numerical

range and the eigenvalues.

Theorem 34 ([WG21]) If A is a matrix with numerical range a circular disk, then

two of the eigenvalues of A are equal to the center of the disk.

3.2 Proof of Theorem 8

We turn to the proof of Theorem 8 and we also show that every circle in the Poncelet

package is centered at 0. Following Gau, Wang, Wu, we break the proof into cases,

depending on the size of the kernel of the matrix A. However, we were able to simplify

several of the cases. For instance, when the dimension of the kernel is 1, we know that

0 is an eigenvalue of A so we can apply Proposition 33. Thus, the work in this section

provides a simpler proof of Theorem 8 and Theorem 17 for n = 2, 3, 4. In Section 4,

we provide a complete proof of Spitkovsky and Wegert’s result (Theorem 17).

Proof: We consider partial isometries on spaces of dimension n = 2, n = 3, and

n = 4 individually.
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Case 1: n = 2. Let A be a 2 ⇥ 2 matrix that is a partial isometry with circular

numerical range. Using Theorem 23 we know that W (A) must be an elliptical disk.

If no focus is 0, no eigenvalue is 0 and we know from Proposition 6 that A is unitary.

Therefore, the numerical range is the convex hull of the eigenvalues. If the eigenvalues

are distinct, the numerical range of A is not circular. If the eigenvalues are the

same, the matrix is a scalar multiple of the identity I2 and, consequently, reducible.

Therefore, the ellipse must have at least one focus at 0. Since we are assuming W (A)

is circular, the other focus is � = 0, and W (A) is centered at 0.

Case 2: n = 3. Let A be a 3 ⇥ 3 partial isometry with circular numerical range.

We consider three cases:

• Assume dimkerA = 0. This case is not possible as then (kerA)? = H so, as

above, A is unitary. In this case, W (A) is the convex hull of the finitely many

eigenvalues of U , all of which lie on T. Thus, W (A) is not circular.

• Assume dimkerA = 1. In this case, 0 is an eigenvalue and we know that

the eigenvalues are the foci of the curves in the package. We know that the

numerical range is circular and, by Proposition 33, A represents a compression

SB, with B a degree-3 Blaschke product. By [GWW16], this circle is a Poncelet

circle. Therefore, there are two circles in the package and one of the two circles

is centered at 0. Then by Theorem 16, the circumscribing quadrilaterals have

vertices determined by the pre-images bB�1(t) for t 2 T.

Since there are four vertices in the circumscribing quadrilateral, there is a de-

generate circle in the package of circles given by Theorem 20. So the package

determined by T and a circle C1 inscribed in quadrilaterals consists of C1 and

the degenerate circle, C2, at the intersection of the diagonals. We show that

both C1 and C2 are centered at 0. If C1 is centered at 0, then the vertices of the
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Figure 19: Illustration of the proof when n = 3, dimkerA = 1

circumscribing quadrilaterals must be evenly spaced. Then the diagonals must

pass through 0. Thus, this completes the proof in this case.

Now assume the degenerate circle is 0. Consider the quadrilateral P circum-

scribing the circle C1 where one side is vertical. By symmetry, the opposing

side must also be vertical. Let us denote the vertices of P , which lie on the

unit circle, by a = (a1,
p
1� a

2
1) and b = (b1,

p
1� b

2
1), and their conjugates,

where a1 > 0 and b1 < 0. Since 0 2 W (A) and operators in Sn cannot have an

eigenvalue on the boundary, this is possible.

Note that we do not yet know that a = �b. The equation of the line passing

through a and 0 must be of the form

y =

p
1� a

2
1

a1
x.

Notice that b = (b1,�
p

1� b
2
1) must be on this line by the definition of the

diagonal of the quadrilateral. So the following must hold:
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Figure 20: Illustration of the proof when n = 3, dimkerA = 1; C2 centered at 0

�
q
1� b

2
1 =

p
1� a

2
1

a1
b1. (4)

Simplifying (4), we get

a
2
1 � (a1b1)

2 = b
2
1 � (a1b1)

2

so a1 = ±b1. Since we know a1 > 0 and b1 < 0, it follows that a1 = �b1. Thus,

C1 is centered at c1 =
a1+b1

2 = 0.

• Assume dimkerA = 2.

Using Theorem 24, we can write A as an upper triangular matrix.

2

66664

0 x y

0 0 z

0 0 a

3

77775
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Since we know that the dimension of the kernel is 2, we can find an orthonormal

basis {f1, f2} for kerA. Let f3 be a unit vector orthogonal to {f1, f2}, so that

{f3} is a basis for (kerA)?. Then {f1, f2, f3} form a basis for the vector space

C3, as they are linearly independent and span C3. With respect to this basis

we get a matrix representation

2

66664

0 0 y1

0 0 z1

0 0 a

3

77775
.

Now using Theorem 34, we know that two of the eigenvalues must be the same

and will also be the center of W (A). If the two eigenvalues are 0 and 0, we are

done. If the two eigenvalues are 0 and a, then a = 0 and so W (A) is centered

at 0.

Case 3: n = 4. Let A be a 4⇥ 4 partial isometry with circular numerical range. We

consider four cases.

• Assume dimkerA = 0. Then A is unitary, so W (A) is the convex hull of the

eigenvalues of A, all of which lie on T. Therefore, W (A) is not circular.

• Assume dimkerA = 1. Recall that the package consists of circles from the

same pencil and therefore all centers lie on a line. Since one center is at 0 we

may assume that the line is the real axis. For five vertices, we consider two

circumscribing polygons, P1 and P2.

Let the five vertices in pentagon P1 be a = a1 + a2i, b = b1 + b2i, 1 and the

conjugates of a and b where b1 < 0 and 0 < a1. Let

2a1 + 2b1 + 1 = ↵. (5)
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Figure 21: Illustration of the proof when n = 4, dimkerA = 1

Now let P2 be the polygon with vertices c = c1 + c2i, d = d1 + d2i,�1 and the

conjugates of c and d. Then by Theorem 27, we have

2c1 + 2d1 � 1 = ↵. (6)

Let us denote the circle in the package tangent to bb and cc by C1 and C2 the

circle tangent to dd and aa. By Remark 14, since all of the circles have the

same pseudohyperbolic center, we can assume all the centers of the package are

real and non-negative. Then the center and radius of C1 are as follows:

x1 =
c1 + b1

2
(7)

r1 = x1 � b1 = c1 � x1 =
c1 � b1

2
. (8)

Similarly, the center and radius of C2 are as follows:

x2 =
a1 + d1

2
(9)

r2 = x2 � d1 = a1 � x2 =
a1 � d1

2
. (10)
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We then find the equation of the lines joining d and �1 and a and 1. The line

joining a and 1:
p
1 + a1x+

p
1� a1y �

p
1 + a1 = 0

and the line joining d and �1:

p
1� d1x�

p
1 + d1y +

p
1� d1 = 0.

Furthermore, the distance from the point (x1, 0) to the lines above is also the

radius, so we must have

����
p

1� d1

✓
c1 + b1 + 2

2

◆���� =
����
p
1 + a1

✓
c1 + b1 � 2

2

◆���� =
c1 � b1p

2
. (11)

Thus
p

1� d1 =

(c1�b1)p
2

(1 + (b1 + c1)/2)
(12)

and
p
1 + a1 =

(c1�b1)p
2

(1� (b1 + c1)/2)
. (13)

Having established these relations, we can now continue with the proof.

First, assume that C1 is centered at 0. Since circles centered at 0 are rotationally

symmetric about their center, the polygon circumscribing C1 must have equally

spaced vertices. Thus, C2 is tangent to lines skipping over one vertex of a

regular pentagon centered at 0. It follows that C2 must be centered at 0 as well.

Now assume C2 is centered at 0 so a1 = �d1. Then
p
1� d1 =

p
1 + a1 so
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setting Eq. (13) equal to Eq. (12) we have

p
1� d1 =

(c1�b1)p
2

(1 + (b1 + c1)/2)
=

(c1�b1)p
2

(1� (b1 + c1)/2
=
p
1 + a1.

Then
1

(1 + (b1 + c1)/2)
=

1

(1� (b1 + c1)/2

so

1 +
b1 + c1

2
= 1� b1 + c1

2

and we get b1 = �c1. Therefore, x1 =
c1+b1

2 = 0 and C1 is centered at 0.

• Assume dimkerA = 2. Since W (A) is a circular disk, we may write A in the

form A =

2

64
02 B

02 C

3

75 where B =

2

64
c d

e f

3

75 and C =

2

64
↵ b

0 ↵

3

75 satisfy B
⇤
B+C

⇤
C =

I2. By Remark 29, we know there are two possible cases: the Kippenhahn curve

consists of an ellipse and two points or the curve consists of two ellipses.

We will first consider the case when the Kippenhahn curve consists of an ellipse

and two points. Condition 2 of Theorem 30 gives the following relation:

r
2(�i�j) = 0 where �i,�j are the foci of the ellipse.

Then we have the circle centered at 0 (when r
2(0) = 0) or the circle centered

at ↵ (when we have r
2
↵
2 = 0). Since r is the minor axis of the ellipse, we have

r > 0. Thus, ↵ = 0 and we are done.

Now, consider the case when the Kippenhahn curve consists of two ellipses. By

Theorem 34, we know that �(C) = {↵}. So by the Elliptical Range Theorem,

W (C) is circular. Now we wish to show that W (C) ✓ W (A).



36

Consider v = (0, 0, �, �)T 2 (kerA)? with kvk = 1. Then Av = (�c + �d, �e +

�f,↵�+�x,↵�)T . So hAv, vi = |�|2↵+��x+ |�|2↵. Now consider x = (�, �) 2

(kerC)? with kxk = 1. Then Cx = (↵� + x�,↵�)T so hCx, xi = |�|2↵+ ��x+

|�|2↵ = hAv, vi. Thus, W (C) ⇢ W (A).

So we have four eigenvalues and we know that we have one circle and an ellipse.

However, the foci of the circle must be the same. Therefore, the two foci of

the ellipse must also be the same. So, the Kippenhahn curve of A consists of

two circles, C1 centered at 0 with radius r and C2 centered at ↵ with radius

s, and we use Corollary 31. We compute and simplify the following matrix

multiplications:

A
⇤
A =

2

64
02 02

02 I2

3

75 ,

A
⇤
A

2 =

2

66664

02 02

02
↵ b

0 ↵

3

77775
,

A
⇤
A

3 =

2

66664

02 02

02
↵
2 2↵b

0 ↵
2

3

77775
.

Then tr(A) = 2a, tr(A⇤
A

2) = 2↵, and tr(A⇤
A

3) = 2↵2
. Condition 1 of Corollary

31 gives �2 = tr(A⇤
A) � 2↵2 = 2 � 2↵2

. So using condition b of Corollary 31,
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we have

r
2
↵
2 = (�2 + 2↵2)↵2 + 2↵2 � (2↵)(2↵)

= (2� 2↵2 + 2↵2)↵2 + 2↵2 � 4↵2

= 0.

Thus, ↵ = 0 and W (A) is a circular disk centered at 0. (Note that b 6= 0 as

then A will no longer be irreducible by [GWW16, Proposition 2.6].)

• Assume dimkerA = 3. Since we know that the dimension of the kernel is

3, we can find an orthonormal basis {f1, f2, f3} for kerA. Let f4 be a unit

vector orthogonal to {f1, f2, f3}, so that {f4} is a basis for (kerA)?. Then

{f1, f2, f3, f4} form a basis for A and with respect to this basis we get a matrix

representation 2

66666664

0 0 0 x

0 0 0 y

0 0 0 z

0 0 0 w

3

77777775

.

Now using Theorem 34, we know that two of the eigenvalues must be the same

and the value will also be the center of W (A). If the two eigenvalues are 0 and

0, we are done. If the two eigenvalues are 0 and w, then w = 0 and so W (A) is

centered at 0.

⇤
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4 Proof of Theorem 17

Rather than looking at all partial isometries, Spitkovsky and Wegert focused on n⇥n

partial isometries A with dim kerA = 1. They were able to show that for all n � 2,

if the numerical range of A is circular, then it must be centered at 0. They used

Mirman’s invariant value and elliptical integrals to prove this statement. However,

we have found a simpler proof that only involves classical geometry and linear algebra.

4.1 Classical Geometry Proof

Recall bB(z) = zB(z) where B(z) =
Q

n

k=1
z�ak
1�akz

and ak 2 D. Suppose bB has two

zeros at 0 and the numerical range of SB is circular. By Theorem 16, we know that

W (SB) is inscribed in a convex polygon inscribed in T. So, the package of circles

from W (SB) are Poncelet circles. Also note that the zeros of B are the foci of the

circles. Since we assumed that bB has two zeros at 0 we know that one of the zeros of

B is 0. Now all of the curves in the package are circles and Mirman’s result, [Mir05,

Section 2], tells us that the zeros of B are the foci of the circles, so a center of one of

the circles in the package is at zero. Then the following proof shows that all of the

circles in the package must be centered at 0.

Proof: Let bxc be the largest integer less than or equal to x. Recall that we have

shown that all circles have the same pseudohyperbolic center, so we may assume

that the x-coordinates of the centers are nonnegative. If C1 is centered at 0, then

the vertices of the circumscribing polygon are equally spaced and all circles in the

package will be centered at 0. Now suppose for some k = 2, 3, . . . , bn2 c, Ck is centered

at 0.

First, if Ck is a point, then consider the vertical line tangent to C1 passing through
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the points a = (a1,
p

1� a
2
1), and a where a1 � 0. Since Ck = {0}, the point identified

through Ck from a must be �a and the point identified via Ck (through 0) from a

must be �a. Then the center of C1 is a+(�a)
2 = 0 and we are done.

For Ck with radius rk > 0, we choose a polygon P
⇤ circumscribing Ck that is

inscribed in T (not necessarily convex) with f1 = (1, 0) as one of the vertices. Let

f = {f1, f2, . . . , fl} be the set of vertices of P ⇤
. Note that the vertices of every polygon

circumscribing Ck are equally spaced. Call the second vertex in the polygon P
⇤ for

Ck: f2 = e
i↵ = (cos↵, sin↵) where 0 < ↵ < ⇡. We search for the next vertex in a

circumscribing polygon P1 for C1 with (1, 0) as one of the vertices, where C1 is the

largest circle in the package (that is inscribed in a convex polygon inscribed in T).

Call the successor vertex g1 = e
i✓ = (cos ✓, sin ✓). Since C1 is symmetric with respect

to the real line and n � 3, we have 0 < ✓ < ⇡. Let bP be the circumscribing polygon

to Ck with g1 as one of its vertices. Let g = {g1, g2, . . . , gl} be the set of vertices of bP .

Let the vertex after g1 in the polygon bP for Ck: g2 = e
i(✓+↵) = (cos(✓+↵), sin(✓+↵))

where 0 < ↵ < ⇡ (see figure 22). Note that ↵ is the same for the vertices in f and

vertices in g because Ck is centered at 0.

Figure 22: Illustration of the geometric proof of Theorem 17
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So the line segment f1g1 is a rotation of f2g2. Now C1 is tangent to both f1g1 and

f2g2 as fj and gj are neighboring points in the corresponding polygon for C1. Let us

denote the center of C1 by c1 = (x0, 0).

Consider the line segment f1g1. The equation of that line is

(cos ✓ � 1)y � (sin ✓)x+ sin ✓ = 0.

Now consider the line segment f2g2. Then the equation of the line is

(cos(✓ + ↵)� cos↵)y � (sin(✓ + ↵)� sin↵)x+

(� sin↵(cos(✓ + ↵)� cos↵) + (sin(✓ + ↵)� sin↵) cos↵) = 0. (14)

By the addition formulas for sine and cosine, the constant in (14) becomes sin ✓

so (14) simplifies to

(cos(✓ + ↵)� cos↵)y � (sin(✓ + ↵)� sin↵)x+ sin ✓ = 0. (15)

The distance from c1 = (x0, 0) to both f1g1 and f2g2 is the radius of C1. Thus,

r1 =
|� x0 sin ✓ + sin ✓|p

2(1� cos ✓)
(16)

and

r1 =
|� (sin(✓ + ↵)� sin↵)x0 + sin ✓|p

(cos(✓ + ↵)� cos↵)2 + (sin(✓ + ↵)� sin↵)2
. (17)

By the sine addition formula, (17) simplifies to

r1 =
|(sin↵� sin ✓ cos↵� cos ✓ sin↵)x0 + sin ✓|p

2(1� cos ✓)
. (18)
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We wish to show x0 must be 0 for both (16) and (17) to hold. To this end, note

that �x0 sin ✓ + sin ✓ > 0. We now show

(sin↵� sin ✓ cos↵� cos ✓ sin↵)x0 + sin ✓ > 0

for 0 < ✓,↵ < ⇡. The inequality above becomes

sin↵(1� cos ✓)x0 + sin ✓(1� (cos↵)x0) > 0.

Since 0 < x0 < 1 and 0 < ✓,↵ < ⇡, we have sin↵(1 � cos ✓)x0 > 0 and sin ✓(1 �

x0 cos↵) > 0. Thus, (sin↵� sin ✓ cos↵� cos ✓ sin↵)x0 + sin ✓ > 0 indeed.

Now setting (16) and (17) equal to each other, we get

(sin↵� sin ✓ cos↵� cos ✓ sin↵)x0 = �(sin ✓)x0. (19)

If x0 6= 0, then

sin↵� sin ✓ cos↵� cos ✓ sin↵ = � sin ✓

so

sin↵(1� cos ✓) + sin ✓(1� cos↵) = 0. (20)

But we showed above that sin↵(1�cos ✓) > 0 and similarly, we have sin ✓(1�cos↵) >

0 so sin↵(1�cos ✓)+sin ✓(1�cos↵) > 0. Thus, x0 = 0 so C1 is centered at the origin.

It follows that the vertices of the polygon for C1 is equally spaced and as above, Cj

where j = 2, 3, . . . , bn2 c is centered at 0 as well. Since the foci of the curves (i.e., the

centers of the circles) are the zeros of the Blaschke product, all zeros must be zero.

Remark 35 In the case when the polygon circumscribing Ck has n + 1 vertices on
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T, f2 = g1 in the proof above and we are actually discussing a chord tangent to C1.

⇤

4.2 Projective Geometry Proof

Proposition 36 Given a Poncelet package of circles, if one of the circles is centered

at 0, then all the circles in the package are centered at 0.

Proof: Suppose one of the circles is centered at (c, 0), where c > 0. Then we know

that IC is invariant of the choice of circle, so

1 + IC =
2c+ 1 + c

2 �R
2

2c
=

(1 + c)2 �R
2

2c

will also be invariant. Hence if one circle is not centered at zero, the others cannot

be. Thus, all other circles must also be centered at 0.

⇤

5 Conclusion

In 2016, Gau, Wang, and Wu asked the following question: “which circular disks

contained in D are the numerical range of a partial isometry on a finite dimensional

space [GWW16]?” This question became the cornerstone of two main results by Gau,

Wang, and Wu, and Spitkovsky and Wegert. A result by Tabachnikov and Schwartz,

which we also provide a simple proof of, provides insight into the geometry of these

problems. In this thesis, we aimed to re-prove and clarify these three results.

We first re-proved the following result by Gau, Wang, and Wu.
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(Theorem 8) Let A be an n ⇥ n partial isometry and n  4. If W (A) = {z 2
C : |z � c|  r} where r > 0, then c = 0.

Their proof goes through each dimension n = 2, 3, 4 and for each n, they prove

this result for all possible dimensions of the kernel of the operator. In addition, their

proofs needed clarification. In Section 3, we provide a new proof and, we hope that

we also clarify their proofs. Our work has significantly simplified the extreme cases –

when the dimension of the kernel is 1 and n� 1.

In 2021, Spitkovsky and Wegert [WS21] proved Gau, Wang, and Wu’s statement

for all n for a certain class of partial isometries whose dimension of the kernel is 1

(Theorem 17). Their proof uses elliptic integrals, which is a natural technique given

the history of the problem. However, it is also more complicated than the geometric

proofs that we provide. By relating these partial isometries to compressions of the

shift operators, we were able to provide a simpler and equivalent statement.

(Theorem 17) Suppose T and circle C1 inside T form a Poncelet package of
circles. If one of the circles in the Poncelet package is centered at 0, then all
the circles are centered at 0.

By doing so, we turn their elliptic integral approach into a purely linear algebra

and geometric problem (see Section 4.1). Further, we provide an explanation for a

statement made by Mirman [Mir12] about an invariant of the circles in a Poncelet

package,

IC =
1 + c

2 �R
2

2c
,

where c denotes the center of the Poncelet circle C1 and R denotes the radius.

Lastly, in Section 3.1, we also give a new proof of a result due to Tabachnikov

and Schwartz [ST16] that shows that the sum of the vertices of the circumscribing

polygons is constant.

In future work, we hope to extend Theorem 8 to n � 6. The case when n = 5 was
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covered by Benharrat and Mehdi in 2023 [BM23] using techniques similar to that of

Gau, Wang, and Wu. We also hope to clarify results by Mirman that finds a formula

for the centers of the circles in a Poncelet package of circles. Unfortunately, due to the

time constraints, we were unable to explores these topics further. We may continue

to work in this direction in the future.



45

References

[AC07] Nathan Altshiller-Court. College geometry. Dover Publications, Inc.,

Mineola, NY, 2007. An introduction to the modern geometry of the

triangle and the circle, Reprint of the second (1980) edition.

[Axl15] Sheldon Axler. Linear algebra done right. Undergraduate Texts in Math-

ematics. Springer, Cham, third edition, 2015.

[Ber10] Marcel Berger. Geometry revealed. Springer, Heidelberg, 2010. A Ja-

cob’s ladder to modern higher geometry, Translated from the French by

Lester Senechal.

[BM23] Mohammed Benharrat and Naimi Mehdi. On the circular numerical

range of 5-by-5 partial isometries. Bulletin of the Transilvania University

of Brasov. Series III: Mathematics and Computer Science, pages 57–76,

07 2023.

[Bro53] Arlen Brown. On a class of operators. Proc. Amer. Math. Soc., 4:723–

728, 1953.

[DC16a] Andrea Del Centina. Poncelet’s porism: a long story of renewed discov-

eries, I. Arch. Hist. Exact Sci., 70(1):1–122, 2016.

[DC16b] Andrea Del Centina. Poncelet’s porism: a long story of renewed discov-

eries, II. Arch. Hist. Exact Sci., 70(2):123–173, 2016.

[DGSV17] Ulrich Daepp, Pamela Gorkin, Andrew Sha↵er, and Karl Voss. Möbius
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