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Abstract

We consider the question asked by Wyman and Xi [WX23]: “Can you hear your

location on a manifold?” In other words, can you locate a unique point x on a man-

ifold, up to symmetry, if you know the Laplacian eigenvalues and eigenfunctions of

the manifold? In [WX23], Wyman and Xi showed that echolocation holds on one-

and two-dimensional rectangles with Dirichlet boundary conditions using the point-

wise Weyl counting function. They also showed echolocation holds on ellipsoids using

Gaussian curvature.

In this thesis, we provide full details for Wyman and Xi’s proof for one- and

two-dimensional rectangles and we show that echolocation also holds on many three-

dimensional boxes. We also prove that echolocation holds on rectangles with certain

mixed boundary conditions using a similar approach. Secondly, we explore echolo-

cation via Gaussian curvature and we focus on two categories of manifolds, namely

surfaces of revolution and minimal surfaces. We provide counterexamples to two con-

jectures of necessary conditions for echolocation to hold on surfaces of revolution. We

also show that Gaussian curvature is not enough for us to echolocate on Enneper’s



x

surface and Henneberg’s surface by constructing pairs of non-symmetric points that

have identical Gaussian curvatures.
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Chapter 1

Introduction

In 1966, Mark Kac asked the famous question: “Can one hear the shape of a drum?”

[Kac66] The question has become important in the field of spectral geometry while

its origins were in physics and chemistry. Around the mid-19th century, the French

philosopher Auguste Comte speculated that knowledge of the chemical composition of

stars would be beyond science’s grasp forever. However, spectroscopy was developed

a few years later and enabled scientists to determine stellar atmospheric composition.

Helium, a major universal element, was first discovered in the spectrum of the sun

during a total solar eclipse via spectroscopy. By observing the natural vibration

frequencies of the star, scientists were able to compare them to the frequencies of

chemicals in the lab and determine the chemical composition of the star. The study

of the frequencies of different systems has led to many theoretical questions, including

Kac’s question. More specifically, if people know the vibration frequencies (spectrum)

of a drum, is it possible to determine the shape of the drum? In 1992, Gordon, Webb,
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Figure 1.1: Two different drums that sound the same.

and Wolpert [GW96] gave a negative answer to the question by constructing a pair of

concave polygons that produce the same vibration frequencies while having different

shapes, as shown in Figure 1.1. In general, a concave polygon is a polygon that has at

least one part that is “caved in” or indented. Although it seems that Kac’s original

question has been completely answered for concave polygons, there are still variations

and related questions yet to be answered. For example, are there specific shapes of

drums that one can hear?

Before discussing more specific questions, we shall first introduce a piece of im-

portant terminology: manifold. Essentially, a manifold is a mathematical object that

might be somewhat “curvy” or might possess some other special properties, but if

you zoom in close enough on any small part of it, it looks flat. For example, consider

the earth as a manifold. A tiny piece of the Earth’s surface appears flat when you

stand on it, even though we know the Earth can be approximated by a sphere. In this

thesis, we work under the assumption that our manifolds are smooth and compact;

smooth means you can slide your finger along it without hitting any abrupt stops

while compact means our manifolds don’t stretch out to infinity.
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Figure 1.2: Echolocation in a concave drumhead. [WX23]

We focus on a variation of Kac’s problem. Instead of trying to identify the shape

of a drum, or in general, a manifold, Wyman and Xi asked “Can you hear your

location on a manifold?” [WX23] Note that if a manifold is symmetric, then there are

definitely pairs of points that sound the same, which makes the question uninteresting

to some extent. Therefore, Wyman and Xi proposed

Question 1. Suppose we know everything there is to know about the manifold M . Is

it possible to identify a point x on the manifold up to symmetry?

Here, we provide a physical interpretation of the question: “Can you hear where

a drum is struck?” If you know the shape of a drum and if the drum gets struck at a

point x, would it be possible to determine x, up to some symmetry, by listening to the

sounds that the drum produces? Figure 1.2 represents a concave drumhead getting

hit at points x and y, and the red dashed lines represent the sound reverberation.

In the work of Buser, Conway, Doyle, and Semmler [BCDS94], they identified some
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pairs of drums that, if struck at some special points, would “sound the same.” In

other words, the waves that the drums produce will have the same frequency and the

same intensity. Therefore, it would be natural to ask, can we identify those special

points? Wyman and Xi’s [WX23] showed echolocation is possible on one-dimensional

strings and two-dimensional rectangles with fixed boundaries using eigenfunctions.

Eigenfunctions contain rich geometric information that helps us study the vibration

of the manifolds. Later, we will start with eigenfunctions to derive a formal definition

of echolocation. Wyman and Xi argued if we consider higher dimensional hyper-

rectangles, the problem will be more complicated. In this thesis, we extend from their

examples and show that echolocation holds on three-dimensional boxes. Furthermore,

we also look at rectangles with different boundary conditions. More specifically, when

one side of the rectangle is no longer simply fixed, can we still use eigenfunctions to

echolocate?

In Example 3.4 of their paper, Wyman and Xi also showed that you can echolocate

on an ellipsoid via Gaussian curvature [WX23]. Gaussian curvature is a mathematical

property that measures how curvy a manifold is. In this thesis, we use Gaussian

curvature to explore echolocation on two different categories of manifolds, namely

surfaces of revolution and minimal surfaces.

The thesis is organized as follows. In Chapter 2, we provide some mathematical

definitions that are crucial for the understanding of this thesis and allow us to rephrase

Question 1 more rigorously. Chapter 3 contains the results of echolocation on different

rectangles via eigenfunctions. Chapter 4 starts with an introduction to Gaussian

curvature and the derivation of its formula, then we discuss the results of echolocation
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on surfaces of revolution and minimal surfaces using Gaussian curvature. Finally,

Chapter 5 concludes the thesis and contains some directions for future studies.
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Chapter 2

Background

2.1 Physical Interpretation of “Can Be Heard”

Consider any 2-dimensional drumhead M and denote the boundary as BM . Suppose

we hit the drum at some point; we may model the vertical displacement of any

point px, yq on the drumhead at any time t by a function upt, x, yq. To further

derive information about u, imagine the disturbance on the drumhead. This traveling

disturbance is what we call a “wave.” The wave equation is a mathematical model

that helps us understand how this wave moves over time and space. There are two

key components of the wave equation. First is the time evolution, or acceleration.

Imagine hitting a drumhead. The drumhead will vibrate and move up and down

rapidly. The drum is displaced a lot at the point where it was hit but not a lot near

the boundary. As time goes on, the point of maximum displacement moves across the
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drumhead, creating a traveling wave pattern. Eventually, the vibration diminishes

and the wave becomes smaller. The “time evolution” part of our equation helps us

predict how the surface of the drum will move at every moment after it is hit. The

second important part of the equation encodes the curvature of the drum. As we can

imagine, when the membrane of the drumhead is more curved, more force would be

needed to return the drumhead to equilibrium.

Mathematically, for any px, yq P M, t ą 0, the wave equation is given by

utt “ c2∆u, (2.1)

where utt is the second derivative of upt, x, yq with respect to t and ∆u “ uxx`uyy. For

px, yq P BM , the boundary condition will vary depending on our assumption. Here, we

may assume that any point on the boundary must satisfy upt, x, yq “ 0 for any t ą 0,

so the boundary of the drumhead is always fixed. The positive constant c2 depends on

the properties of each drum such as materials and tension of the membrane; without

loss of generality, we assume c2 “ 1. Even though there might be other solutions to

the wave equation, we’re particularly interested in solutions of the form

upt, x, yq “ vpx, yqeiωt, (2.2)

for which we can separate the space- and time-dependence of u. If we twice differen-

tiate u with respect to t, we have

utt “ ´ω2vpx, yqeiωt “ ´ω2u,
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where the ω are different frequencies that the drum produces. Plugging this expression

for utt into the wave equation, and rewriting it so that the right-hand-side equals 0

for further reference, we get u must satisfy

∆u ` ω2u “ 0. (2.3)

It was well-known [Tayl] that there exists a sequence of ω for which we can find

non-trivial solution u to Equation (2.3). Here, we might interpret the famous question

“Can you hear the shape of the drum” as “If you have complete information about

the frequencies that a drum produces, can you determine the shape of the drum?”

In other words, does the sequence of frequencies pωnq uniquely determine the shape

of M? As we will see in the next chapter, solving the wave equation helps us extract

useful information from the vibrations of the “drum.”

2.2 Heat Kernel and Spectral Invariants

Now, we take a more mathematical approach toward the properties of a drum that

can be “heard.” Consider a certain manifoldM with boundary BM . Imagine heating

it at a single point x P M to an infinite temperature and keeping the rest of the

manifold at temperature 0. This initial condition is modeled by the Dirac δ-function

supported at the point x P M , denoted by δx. Next, we let the heat flow within

the manifold while keeping the temperature on the boundary BM at 0. Let u be

a function that models this heat flow, so upt, x, yq gives the temperature of point y
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at time t given that the manifold is initially heated at x. Note that here x, y each

represents a unique point on M , where we use this notation because we don’t restrict

our manifold to R2.

Definition 1. In the d´dimensional Euclidean space Rd, let

∆f “

d
ÿ

j“1

B2f

Bx2j
,

where f “ fpx1, . . . , xdq is twice differentiable and B denotes the partial derivative.

The operator ´∆ is called the Laplacian in Rd.

With this notation, our temperature function upt, x, yq solves the heat flow model

given by
$

’

’

’

’

’

&

’

’

’

’

’

%

∆u “
Bu

Bt

up0, x, yq “ δxpyq

upt, x, yq “ 0, y P BM, t ą 0.

(2.4)

In order to understand the solution to this model, we first introduce the definition

of Laplacian eigenvalues and eigenfunctions.

Definition 2. Given a manifold M , the Laplacian eigenvalue problem is a set of

equations of the form

∆ϕpxq ` λϕpxq “ 0, x P M (2.5)

ϕpxq “ 0, x P BM. (2.6)

If ϕ ‰ 0 inM satisfies the Laplacian eigenvalue problem, we say ϕ is an eigenfunc-
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tion and the corresponding λ is called the eigenvalue. The condition where ϕpxq “ 0

for x P BM is called the Dirichlet boundary condition.

Returning to our model (2.4), the fundamental solution of the heat equation, or

the heat kernel, is represented by an infinite sum. The heat kernel on M is given by

upt, x, yq “

8
ÿ

j“0

e´λjtϕjpxqϕjpyq,

where tλju
8
j“0, tϕju

8
j“0 are the eigenvalues and eigenfunctions, respectively, for the

Laplacian eigenvalue problem. The set tϕju
8
j“0 also forms a basis for the space L2pMq,

meaning that any eigenfunction can be written as a unique sum of scalar multiples, or

linear combination, of the ϕj’s. Further on, we might omit ‘Laplacian’ in this thesis.

The function upt, x, yq P R` ˆ M ˆ M is continuous in all three variables. By

the Strong Spectral Theorem for a Riemannian manifold given by Theorem 2.2.21 in

[LMD23], the eigenfunctions tϕju
8
j“0 form an orthonormal set where the norm on M

is defined by

||ϕ|| “

ˆ
ż

M

|ϕ|
2dA

˙1{2

.

Therefore, we have

ż

M

upt, x, xqdA “

ż

M

8
ÿ

j“0

e´λjtϕjpxqϕjpxqdA

“

8
ÿ

j“0

e´λjt

ż

M

ϕjpxq
2dA

“

8
ÿ

j“0

e´λjt.
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Definition 3. The heat trace of a manifold M is defined by

uMptq :“ Σ8
j“0e

´λjt “ Tr et∆M ,

where λn are the Laplacian eigenvalues.

Notice that in Equation 2.5, the eigenvalues λn are exactly the squares of the

frequencies ωn in Equation 2.3 if we order them so that the sequences pλnq, pωnq are

both increasing. This gives us the connection between Laplace eigenvalues and the

physical vibration frequencies of a manifold.

Definition 4. A property of the manifold M is a spectral invariant (can be “heard”)

if it’s completely determined by the spectral data (eigenvalues and eigenfunctions).

It has been shown that there exists a unique heat kernel uMpt, x, yq on every

compact manifold M with or without boundary [DG04]. Notice that the Laplace

eigenvalues of a manifold completely determine the heat trace, so the heat trace of a

manifold is a spectral invariant. The asymptotic expansion of the heat trace will show

that certain properties of a manifold, including the Gaussian curvature, are spectral

invariants; we will use this fact in later chapters.
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2.3 Audible Quantity and Echolocation

Now we introduce the pointwise Weyl counting function

Nxpλq “
ÿ

λjďλ

|ϕjpxq|
2 (2.7)

where λ and ϕ are the Laplacian eigenvalues and eigenfunctions, respectively. Nx is

a spectral invariant as it’s explicitly defined by λ and ϕ. Following Wyman and Xi,

we give the following definition:

Definition 5. An audible quantity is any function f on M satisfying fpxq “ fpyq

whenever Nx “ Ny identically. In other words, any spectral invariant is an audible

quantity.

Given the definition of audible quantity, we can phrase the question of echolocation

more rigorously.

Question 2. Let M be a manifold with or without boundary. Are we able to locate

any point x, up to symmetry, given a certain set of audible quantities?
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Chapter 3

Echolocation with Eigenfunctions

In this chapter, we will explore echolocation on some basic manifolds. Wyman and

Xi showed that echolocation holds on 1-D strings and 2-D rectangles; we will start

with these and add more details to their proof.

3.1 1-Dimensional and 2-Dimensional Examples

For our first example, we consider a simple string of length a. Suppose we fix the

endpoints of the string on the x-axis. As the string is plucked (i.e., pulled away from

the x-axis and released), the tension in the string will cause it to move up and down.

Figure 3.1 provides an illustration of this problem, in which we wish to determine x

where the string is plucked.
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x

y

0 a

y “ fpxq

Figure 3.1: 1-D string with fixed endpoints at 0 and a.

Let upx, tq model the behavior of the string. Then u should satisfy the wave

equation (2.1). In this one dimensional case, we have ∆u “ uxx. Thus, we can

rewrite the wave equation as

utt ´ c2uxx “ 0. (3.1)

Without loss of generality, we may assume c2 “ 1. Since the two endpoints of the

string are fixed, we have the boundary conditions

up0, tq “ upa, tq “ 0. (3.2)

We have the initial condition

upx, 0q “ fpxq (3.3)

for some function f that describes the initial configuration of the string.

In order to solve the wave equation, we use the method of separation of variables.

We express upx, tq as a product of two functions, one only depending on x and the

other only depending on t. In other words,

upx, tq “ XpxqT ptq.
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Then, we have uxxpx, tq “ X2pxqT ptq and uttpx, tq “ XpxqT 2ptq. Substituting into

equation (3.1), we get

XpxqT 2
ptq ´ X2

pxqT ptq “ 0.

By assumption, upx, tq ‰ 0, so the functions X and T are nonzero. We can simplify

the above equation and get

T 2ptq

T ptq
“
X2pxq

Xpxq
. (3.4)

Note that the ratio is a constant since the left-hand side of equation (3.4) does

not depend on x and the right-hand side doesn’t depend on t; we denote the constant

by k. Therefore, we have

X2pxq

Xpxq
“ k, or X2

pxq ´ kXpxq “ 0

which means X is a solution to the eigenvalue problem for 1-D string. We consider

three cases for k.

Case 1, k ą 0: Note that the characteristic equation of the differential equation

is

r2 ´ k “ 0,

so we get r “ ˘
?
k. The solution is

Xpxq “ Ae
?
kx

` Be´
?
kx

for some A,B P R. Recall that we have boundary conditions that Xp0q “ Xpaq “ 0,
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so by applying the boundary condition, we get A “ B “ 0, a contradiction to

upx, tq ‰ 0. Thus, k ą 0 is not feasible.

Case 2, k “ 0: We have X2 “ 0 which means

Xpxq “ Ax ` B

for some A,B P R. By the boundary conditions, we get Xpxq “ 0 again.

Case 3, k ă 0: In this case, the general solution is

Xpxq “ A cosp
?

´kxq ` B sinp
?

´kxq

for some A,B P R. By the boundary conditions, we get Xp0q “ 0 which yields A “ 0.

Thus, Xpaq “ B sinp
?

´kaq “ 0, which gives k “ ´pnπ
a

q2 for n P N.

Although B can be arbitrary, here we follow Wyman and Xi’s strategy of choosing

B such that ||Xpxq|| “ 1. In order to solve for B, we have

ż a

0

B2 sin2
´nπ

a
x

¯

dx “ 1

1

4
aB2

ˆ

2 ´
sinp2πnq

πn

˙

“ 1.

Notice that since n P N, sinp2πnq “ 0. Thus, we get B “
a

2{a.

Let B “
a

2{a and define ϕnpxq :“ Xnpxq; we have ||ϕnpxq|| “ 1 for all n P N.

Also, tϕnunPN is the set of orthonormal eigenfunctions of a 1-D string and ´k “
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pnπ{aq2 are corresponding eigenvalues.

Therefore, the eigenvalues and eigenfunctions of the Laplacian eigenvalue problem

of 1-D string are given by

λn “

´nπ

a

¯2

, ϕnpxq “

c

2

a
sin

´nπx

a

¯

where n P N.

Example 3.1. For the 1-D string, the first eigenfunction is

ϕ1pxq “

c

2

a
sinpπx{aq,

and we have the audible quantity

Nxpλ1q “ Nx

ˆ

π2

a2

˙

“ |ϕ1pxq|
2

“
2

a
sin2

´πx

a

¯

.

Notice that the function

BNxpλ1q

Bx
“

4π

a2
cos

´πx

a

¯

sin
´πx

a

¯

.

For x P p0, a{2q, we have cos pπx{aq ą 0 and sin pπx{aq ą 0, so BNxpλ1q

Bx
ą 0, suggesting

Nxpλ1q “ p2{aq sin2 pπx{aq is increasing, and injective, for x P p0, a{2q.

Notice that

2

a
sin2

´πx

a

¯

“
2

a
sin2

ˆ

πpa ´ xqq

a

˙

,



CHAPTER 3. ECHOLOCATION WITH EIGENFUNCTIONS 18

and the string is symmetric with respect to the line x “ a{2, so we say this audible

quantity allows us to echolocate x up to the midpoint reflective symmetry of the 1-D

string.

Example 3.2. We now extend the 1-D case to 2-D. Consider a rectangle M “

r0, asˆr0, bs with Dirichlet boundary conditions, in other words, points on the bound-

ary are fixed. Without loss of generality, we may assume a “ 1 and b P p0, 1s as all

other rectangles with fixed boundaries can be obtained by scaling and rotating this

case. By solving the similar Laplacian eigenvalue problem, we get the eigenfunctions

as

ϕn,mpx, yq “
2

?
b
sinpπnxq sin

´πmy

b

¯

where n,m P N with corresponding eigenvalues λn,m “ π2
´

n2 ` m2

b2

¯

.

Wyman and Xi [WX23] showed that echolocation is possible when b P p0, 1q by

considering the audible quantity

Npx,yqpλ2,1q ´ Npx,yqpλ1,1q

Npx,yqpλ1,1q
“

`

sin2p2πxq sin2p
πy
b

q ` sin2pπxq sin2p
πy
b

q
˘

´ sin2pπxq sin2p
πy
b

q

sin2pπxq sin2p
πy
b

q

“
sin2p2πxq sin2p

πy
b

q

sin2pπxq sin2p
πy
b

q

“
4 sin2pπxq cos2pπxq

sin2pπxq

“ 4 cos2pπxq.

(3.5)

The penultimate line comes from the double-angle formula, i.e. sinp2θq “ 2 sinpθq cospθq

for all θ P R. Since cospπxq “ cospπp1 ´ xqq for x P p0, 0.5q, as in the 1-d case, we

can determine x up to symmetry with respect to the line x “ 0.5. After identifying
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x, consider the audible quantity

Npx,yqpλ1,1q “
4

b
sin2

pπxq sin2
´πy

b

¯

. (3.6)

Recall that sin2pθq ` cos2pθq “ 1 for all θ P R, so we can rewrite Equation (3.6) as

sin2
´πy

b

¯

“
b

4
¨
Npx,yqpλ1,1q

1 ´ cos2pπxq
.

Since we’ve already identified x, the right-hand-side is a fixed number. Arguing as in

Example 3.1, sin2pπy{bq is injective for y P p0, b
2
q, and since

sin2
´πy

b

¯

“ sin2

ˆ

πpb ´ yq

b

˙

,

we can determine the y´coordinate up to a reflection symmetry with respect to the

line y “ b{2.

Before discussing the case b “ a “ 1, we shall first introduce the definition of

multiplicity.

Definition 6. The multiplicity of an eigenvalue λ is the dimension of its correspond-

ing eigenspace (set of eigenfunctions). If the dimension is one, we say λ is simple.

In our case, if there exist j distinct pairs of number pn,mq such that pn,mq ‰ pa, bq

and λn,m “ λa,b, the multiplicity of λa,b is j ` 1. If j “ 0, then the multiplicity of λa,b

is 1 and it is simple. Moreover, the first eigenvalue is always simple.

Now we will prove that echolocation holds on rectangles with a “ b “ 1 (squares);
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Wyman and Xi also considered this case but their proof lacks some crucial details.

For the case a “ b “ 1, we have λ2,1 “ λ1,2 has multiplicity of 2. Consider again

the audible quantities

Npx,yq pλ2,1q ´ Npx,yq pλ1,1q

Npx,yq pλ1,1q
“

sin2p2πxq sin2pπyq ` sin2pπxq sin2p2πyq

sin2pπxq sin2pπyq

“
sin2p2πxq

sin2pπxq
`

sin2p2πyq

sin2pπyq

“ 4
`

cos2pπxq ` cos2pπyq
˘

“ 4p1 ´ sin2
pπxq ` 1 ´ sin2

pπyqq

“ 8 ´ 4
`

sin2
pπxq ` sin2

pπyq
˘

and

Nx,y pλ1,1q “ 4 sin2
pπxq ¨ sin2

pπyq.

Therefore, we know that both the product and the sum of sin2pπxq and sin2pπyq are

audible. Denote the sum by p and the product by q:

$

’

&

’

%

sin2
pπxq ` sin2

pπyq “ p

sin2
pπxq sin2

pπyq “ q.

(3.7)

We get sin4pπxqpp ´ sin2pπxqq “ q by plugging the first equation to the second one,

and we can rewrite the equation as

´ sin2
pπxq ` p sin2

pπxq ´ q “ 0.
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By the root formula for quadratic equations, we get

sin2
pπxq “

´p ˘
a

p2 ´ 4q

´2
.

However, the root formula suggests that there exist two potential values for sin2pπxq

that will yield non-symmetric x values. To deal with this issue, we need to apply the

following trick. Note that sinpπxq sinpπyq “
?
q and since sin2pπxq ` sin2pπyq “ p, we

have

psinpπxq ´ sinpπyqq
2

“ sin2
pπxq ` sin2

pπyq ´ 2 sinpπxq sinpπyq

“ p ´ 2
?
q.

So,

sinpπxq ´ sinpπyq “

b

p ´ 2
?
q.

To simplify our notation, let

ℓ “
?
q and k “

b

p ´ 2
?
q.

So, sinpπyq “ sinpπxq ´ k, and since sinpπxq sinpπyq “ ℓ, we can do the similar

substitution as Equation (3.7) and write

sin2
pπxq ´ k sinpπxq ´ ℓ “ 0.

By solving the quadratic again, we get

sinpπxq “
k ˘

?
k2 ` 4ℓ

2
.
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Since x, y P p0, 1q by assumption, we have sinpπxq ą 0 and sinpπyq ą 0. Thus, ℓ ą 0

and we have
?
k2 ` 4ℓ ą k. Therefore, we can conclude that

sinpπxq “
k `

?
k2 ` 4ℓ

2
and sin2

pπyq “ p ´ sin2
pπxq,

so we’re able to determine x up to the left-right reflective symmetry about the midline.

Similarly, y can be determined up to the up-down reflective symmetry about the

midline.

3.2 Rectangular Boxes with Distinct Side Lengths

There’s a jump in complexity when we consider 3-D rectangles (boxes). Before get-

ting into the example, for convenience, we explicitly write out the general formula of

eigenfunctions and eigenvalues for k´dimensional hyperrectangles. The formula can

be derived via similar separation of variable techniques as we did in previous sections.

Suppose we have a k´dimensional hyperrectangle with side lengths c1, . . . , ck. With-

out loss of generality, let 1 “ c1 ą c2 ą ¨ ¨ ¨ ą ck. A complete orthonormal basis of

eigenfunctions can be written as

ϕn1,...,nk
px1, . . . , xkq “

k
ź

i“1

"

c

2

ci
sin

ˆ

πnixi
ci

˙*

, n1, . . . , nk P N

with respective eigenvalues

λn1,...,nk
“ π2

k
ÿ

i“1

n2
i

c2i
.
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Now, consider a boxM “ r0, asˆr0, bsˆr0, cs with Dirichlet boundary conditions.

Similar to previous examples, without loss of generality, we may assume 1 “ a ą b ą

c ą 0.Wyman and Xi mentioned in their paper that this case is similar to the previous

lower dimensional cases and can be solved via similar arguments without providing

any further detail. We will show that even though echolocation is possible, it’s much

more complicated.

Lemma 1. λ1,1,1 and λ2,1,1 are always the two smallest eigenvalues and they are

simple.

Proof. Recall that our general form of eigenvalues is

λn,m,ℓ “ π2

ˆ

n2
`
m2

b2
`
ℓ2

c2

˙

for some positive integers n,m, ℓ. Thus, we can write

λ1,1,1 “ π2

ˆ

1 `
1

b2
`

1

c2

˙

λ2,1,1 “ π2

ˆ

4 `
1

b2
`

1

c2

˙

.

Notice that if we fix two of n,m, ℓ and let only one vary, the order of eigenvalues will

only depend on the varying index. For example, consider λn,1,1 where n ą 2; clearly

we have λn,1,1 ą λ2,1,1 ą λ1,1,1. Therefore, in order to show that λ1,1,1 and λ2,1,1 are

the smallest eigenvalues, we only need to consider λ1,2,1 and λ1,1,2. If we suppose, for

the sake of reaching a contradiction that there exist some b, c such that λ1,2,1 ď λ2,1,1,
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we will have

π2

ˆ

4 `
1

b2
`

1

c2

˙

ě π2

ˆ

1 `
4

b2
`

1

c2

˙

.

By solving the inequality, we get b ě 1, which contradicts our assumption that 1 ą b.

Thus, we have λ2,1,1 ă λ1,2,1. Similarly, we can show that λ2,1,1 ă λ1,1,2, so λ1,1,1 and

λ2,1,1 are the smallest eigenvalues, and they are simple, as desired.

As a result, if we consider the audible quantity and, similar to Equation 3.5 in

Example 3.2, apply the double-angle formula, we have

Npx,y,zqpλ2,1,1q ´ Npx,y,zqpλ1,1,1q

Npx,y,zqpλ1,1,1q
“

sin2p2πxq sin2p
πy
b

q sin2pπz
c

q

sin2pπxq sin2p
πy
b

q sin2pπz
c

q
“ 4 cos2pπxq,

and we can identify the x-coordinate up to the reflective symmetry in the plane

x “ 0.5.

In order to identify y, let’s consider

λ1,2,1 “ π2

ˆ

1 `
4

b2
`

1

c2

˙

.

Note that λ1,2,1 is not necessarily simple; it depends on the actual side lengths of the

box. In other words, we want to identify some side lengths of b and c such that for

the corresponding box r0, 1s ˆ r0, bs ˆ r0, cs, there exist some positive integers n,m, ℓ

that cause λ1,2,1 to have multiplicity more than 1, in other words,

1 `
4

b2
`

1

c2
“ n2

`
m2

b2
`
ℓ2

c2
. (3.8)
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We first consider ℓ. If ℓ ą 2, the right-hand-side is always greater than the left-hand-

side because b ą c. If ℓ “ 2, the only solution to Equation 3.8 is b “ c and m “ n “ 1,

which contradicts our assumption that b ą c. Thus, ℓ has to be 1. So we can write

the above equation as

1 `
4

b2
“ n2

`
m2

b2
. (3.9)

By simplifying, we get

b2 “
m2 ´ 4

1 ´ n2
. (3.10)

Since when n “ 1, b is undefined, we have n ě 2, and the denominator can only be

negative. Since b2 ą 0, we need m2 ´ 4 ă 0, so m “ 1. So we can further simplify

and get

b “

c

3

n2 ´ 1
. (3.11)

Notice if n “ 2, we have b “ 1 which is impossible, so n ą 2. Therefore, for an

arbitrary cube with distinct side lengths a, b, c where 1 “ a ą b ą c ą 0, if the side

length b “

b

3
n2´1

for some positive integer n ą 2, the multiplicity of the eigenvalue

λ1,2,1 will be greater than 1. This multiplicity will not be affected by c as long as

c ă b. More specifically, since we have at most 1 such n for each b, the multiplicity

will be at most 2. Figure 3.2 shows such behavior where the x, y-axes are b, c values,

respectively. For visual clarity, we restrict our n P r3, 10sXZ; n “ 1 and n “ 2 are not

included since b is undefined when n “ 1, and b “ 1 “ a when n “ 2, which cannot

be true. When n gets larger, there will be more parallel vertical lines that approach

0. On the vertical lines are the points where given that specific pb, cq, there exists a

unique n such that λn,1,1 “ λ1,2,1, so the multiplicity of λ1,2,1 is 2. The dashed line is

b “ c for reference; all the points should be below the dashed line as b ą c.
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Figure 3.2: Pairs of pb, cq for which the multiplicity of λ1,2,1 is 2

As long as we know the fact that the multiplicity is at most 2, we can try to

identify the y-coordinate. Recall the “first” 3 eigenfunctions from before:

ϕ1,1,1 “ α sinpπxq sin
´πy

b

¯

sin
´πz

c

¯

ϕ2,1,1 “ α sinp2πxq sin
´πy

b

¯

sin
´πz

c

¯

ϕ1,2,1 “ α sinpπxq sin

ˆ

2πy

b

˙

sin
´πz

c

¯

,

where α “ 2
?
2?
bc
. If all of their corresponding eigenvalues are simple, since we’ve already

identified x-coordinate, we are left with a two-dimensional problem, then we can deal

with the problem in the same way as in the 2-D case where the rectangle has distinct

side lengths, by considering the audible quantity pNpλ1,2,1q ´ Npλ1,1,1qq{Npλ1,1,1q.
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But now, suppose λn,1,1 “ λ1,2,1, so we want

ϕn,1,1 “ α sin pnπxq sin
´πy

b

¯

sin
´πz

c

¯

.

We consider the audible quantity

Npx,y,zqpλn,1,1q ´ Npx,y,zqpλ2,1,1q

Npx,y,zqpλ1,1,1q

“
sin2pnπxq sin2pπy{bq sin2pπz{cq ` sin2pπxq sin2p2πy{bq sin2pπz{cq

sin2pπxq sin2pπy{bq sin2pπz{cq

“
sin2p2πy{bq

sin2pπy{bq
`

sin2pnπxq

sin2pπxq

“4 cos2pπy{bq `
sin2pnπxq

sin2pπxq
.

Since we already have x based on the first two eigenfunctions, we can now derive y up

to symmetry with respect to the plane y “ b{2. The z- coordinate, up to symmetry

of the plane z “ c{2, follows immediately from the Npx,y,zqpλ1,1,1q.

3.3 Rectangular Box with a “ b and c ą
?
2
2

Consider the case where 1 “ a “ b ą c ą 0. We will have

λn,m,ℓ “ π2

ˆ

n2
` m2

`
ℓ2

c2

˙

.
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Then, by a similar argument as in Lemma 1, we can see that the first eigenvalue

λ1,1,1 “ π2 p2 ` 1{c2q will always be simple. The second eigenvalues are

λ2,1,1 “ λ1,2,1 “ π2
`

5 ` 1{c2
˘

.

Notice that λ2,1,1 ă λ1,1,2 because if λ2,1,1 ą λ1,1,2, we will derive c2 ą 1, which will

be a contradiction. Now, we have

ϕ1,1,1 “ α sinpπxq sinpπyq sin
´πz

c

¯

ϕ2,1,1 “ α sinp2πxq sinpπyq sin
´πz

c

¯

ϕ1,2,1 “ α sinpπxq sinp2πyq sin
´πz

c

¯

.

We determine the multiplicity of λ1,1,2. Note that for all n,m, ℓ P N, we will have

λn,m,ℓ “ λm,n,ℓ “ π2

ˆ

n2
` m2

`
ℓ2

c2

˙

.

Suppose λn,m,ℓ “ λ1,1,2. Notice that ℓ must equal 1, since for ℓ ą 2 the equation

n2
` m2

`
ℓ2

c2
“ 1 ` 1 `

4

c2

will have no solution, and m “ n “ 1 is the only solution when ℓ “ 2. So we have

n2
` m2

`
1

c2
“ 2 `

4

c2
.

Thus, when

c “

c

3

n2 ` m2 ´ 2
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for some integers n,m, λ1,1,2 will have multiplicity of more than 1. If n “ m, the

multiplicity will be 2; otherwise, when n ‰ m, the multiplicity will be 3 as n and m

are symmetric. In this thesis, we focus on c ě
?
2{2. In other words, the multiplicity

of λ1,1,2 is at most 2. When n “ m “ 2, λ1,1,2 will have multiplicity of 2 and c “
?
2{2.

Recall that we’ve shown that λ2,1,1 “ λ1,2,1 ă λ1,1,2, and when one of n,m equals 1

and the other equals 3, c “
a

3{8 ă
?
2{2, a contradiction. Thus, when c ą

?
2{2, we

cannot find integers n,m such that λn,m,1 “ λ1,1,2. As a result, we claim that when

c ą
?
2{2, λ1,1,2 has multiplicity 1.

Theorem 1. Echolocation is possible via the first three eigenfunctions on the rectan-

gular box r0, 1s ˆ r0, 1s ˆ r0, cs where c ą
?
2{2.

Proof. The first four eigenvalues are λ1,1,1, λ2,1,1 “ λ1,2,1, and λ1,1,2. Since c ą
?
2{2,

we know from the discussion above that λ1,1,2 has multiplicity of 1. Consider

Npλ1,1,2q ´ Npλ1,2,1q

Npλ1,1,1q
“

sin2pπxq sin2pπyq sin2p2πz{cq

sin2pπxq sin2pπyq sin2pπz{cq
“ 4 cos2pπzq,

which is enough for us to determine z up to symmetry of the plane z “ c{2. From

Npλ1,1,1q, we can then obtain sin2pπxq sin2pπyq. Note that Npλ1,1,2q´Npλ1,1,1q

Npλ1,1,1q
“ 4 cos2pπxq`

4 cos2pπyq, by solving quadratic equations in a similar way as we did for (3.7), we can

determine x and y up to reflective symmetry of the box.
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3.4 Rectangular Box with a “ b and c “
?
2
2

We consider the case where our manifold is a r0, 1s ˆ r0, 1s ˆ r0,
?
2
2

s rectangular

box. In this case, even though we know exactly the size of the box, there’s no clear

combination of the pointwise Weyl counting functions as in previous examples that

gives us a direct formula for echolocation. Therefore, we shall suppose, for the sake of

reaching a contradiction, that there exists a pair of points px1, y1, z1q and px2, y2, z2q

with the same first three pointwise Weyl counting functions.

Theorem 2. There exists an isometry between any two points with the same first

three pointwise Weyl counting functions in the r0, 1s ˆ r0, 1s ˆ r0,
?
2
2

s rectangular box.

Proof. Recall that our first ‘three’ eigenvalues are λ1,1,1, λ2,1,1 “ λ1,2,1, and λ1,1,2 “

λ2,2,1. Since by assumption

Npx1,y1,z1qpλ1,1,2q “ Npx2,y2,z2qpλ1,1,2q and Npx1,y1,z1qpλ1,2,1q “ Npx2,y2,z2qpλ1,2,1q,

we have

Npx1,y1,z1qpλ1,1,2q ´ Npx1,y1,z1qpλ1,2,1q “ Npx2,y2,z2qpλ1,1,2q ´ Npx2,y2,z2qpλ1,2,1q.

If we explicitly write out the terms, we have

sin2
pπx1q sin2

pπy1q sin
2
p2

?
2πz1q ` sin2

p2πx1q sin
2
p2πy1q sin

2
p
?
2πz1q

“ sin2
pπx2q sin

2
pπy2q sin

2
p2

?
2πz2q ` sin2

p2πx2q sin
2
p2πy2q sin

2
p
?
2πz2q

(3.12)
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To simplify our notation, define

a “ sin2
pπx1q, b “ sin2

pπy1q, c “ sin2
p
?
2πz1q

d “ sin2
pπx2q, e “ sin2

pπy2q, f “ sin2
p
?
2πz2q.

(3.13)

By the fact that for any θ P R, sin2pθq ` cos2pθq “ 1 and sinp2θq “ 2 sinpθq cospθq,

we get sin2p2θq “ 4 sin2pθqp1 ´ sin2pθqq. Thus, if we start with the left-hand-side of

Equation 3.12, we can write sin2p2
?
2πz1q as 4cp1´cq. Similarly, we have sin2p2πx1q “

4ap1 ´ aq and sin2p2πy1q “ 4bp1 ´ bq. We can simplify the right-hand-side using the

same approach. Therefore, we get

4abcp1 ´ cq ` 16p1 ´ aqp1 ´ bqabc “ 4defp1 ´ fq ` 16p1 ´ dqp1 ´ eqdef. (3.14)

Recall that by assumption, we have

Npx1,y1,z1qpλ1,1,1q “ Npx2,y2,z2qpλ1,1,1q, and Npx1,y1,z1qpλ2,1,1q “ Npx2,y2,z2qpλ2,1,1q,

Thus, the audible quantity

Npλ2,1,1q ´ Npλ1,1,1q

Npλ1,1,1q

“
sin2p2πxq sin2pπyq sin2p

?
2πzq ` sin2pπxq sin2p2πyq sin2p

?
2πzq

sin2pπxq sin2pπyq sin2p
?
2πzq

“4 cos2pπxq ` 4 cos2pπyq

(3.15)



CHAPTER 3. ECHOLOCATION WITH EIGENFUNCTIONS 32

should be the same for px1, y1, z1q and px2, y2, z2q. Therefore, we have

p1 ´ aq ` p1 ´ bq “ p1 ´ dq ` p1 ´ eq.

By simplifying, we get e “ a ` b ´ d. Also, since the two points have the same

Npλ1,1,1q, we get abc “ def , so we can write

f “
abc

dpa ` b ´ dq
. (3.16)

Therefore, if we divide both sides of Equation 3.14 by abc and substitute the first

f on the right-hand-side with (3.16), the equation can be simplified as

1 ´ c ` 4p1 ´ aqp1 ´ bq “ p1 ´
abc

dpa ` b ´ dq
q ` 4p1 ´ dqp1 ´ a ´ b ` dq. (3.17)

By solving this equation for d using Mathematica, we get four potential solutions for

d:

d “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

1
2

ˆ

a ` b ´

b

a2 ` b2 ` 1
2
pc ´

a

p4ab ` cq2q

˙

1
2

ˆ

a ` b `

b

a2 ` b2 ` 1
2
pc ´

a

p4ab ` cq2q

˙

1
2

ˆ

a ` b ´

b

a2 ` b2 ` 1
2
pc `

a

p4ab ` cq2q

˙

1
2

ˆ

a ` b `

b

a2 ` b2 ` 1
2
pc `

a

p4ab ` cq2q

˙

(3.18)

By (3.13), we have x2 “
sin´1p

?
dq

π
; if we substitute a, b, c into (3.18) and simplify x2
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by setting the constraint that a, b, c P p0, 1s, we get four corresponding solutions:

x2 “

$

’

’

&

’

’

%

y1, if cos p2πx1q ă cos p2πy1q ;

x1, otherwise;

(3.19)

x2 “

$

’

’

&

’

’

%

y1, if cos p2πx1q ě cos p2πy1q ;

x1, otherwise;

(3.20)

x2 “
1

π
arcsin

¨

˚

˚

˝

c

sin2pπx1q ` sin2pπy1q ´

b

psin2pπx1q ` sin2pπy1qq2 ` sin2p
?
2πz1q

?
2

˛

‹

‹

‚

;

(3.21)

x2 “
1

π
arcsin

¨

˚

˚

˝

c

sin2pπx1q ` sin2pπy1q `

b

psin2pπx1q ` sin2pπy1qq2 ` sin2p
?
2πz1q

?
2

˛

‹

‹

‚

.

(3.22)

Notice that in solution (3.21),

b

psin2pπx1q ` sin2pπy1qq2 ` sin2p
?
2πz1q ą sin2

pπx1q ` sin2
pπy1q,

so the numerator is undefined. If x2 takes the solution (3.22), we would have

d “ sin2
pπx2q

“
1

2

ˆ

sin2
pπx1q ` sin2

pπy1q `

b

psin2pπx1q ` sin2pπy1qq2 ` sin2p
?
2πz1q

˙

ą sin2
pπx1q ` sin2

pπy1q.
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We would also have

e “ sin2
pπy2q

“ a ` b ´ d

“ sin2
pπx1q ` sin2

pπy1q ´ d

ă 0,

a contradiction.

Therefore, given x1, y1, z1, the solution for x2 would be either x2 “ y1 or x2 “

x1. Then, we can identify y2 and z2 up to reflective symmetry from e and f . It’s

straightforward that the two points px1, y1, z1q and px2, y2, z2q are identical up to

either reflective symmetry or rotational symmetry of the box.

Thus, we conclude that there exists an isometry between any two points with

the same first three pointwise Weyl counting functions in the r0, 1s ˆ r0, 1s ˆ r0,
?
2
2

s

rectangular box.

For cases where c ă
?
2{2, and c “

b

3
n2`m2´2

for some n,m P N, if n “ m,

echolocation holds and can be shown using similar techniques. However, when n ‰ m,

the multiplicity of λ1,1,2 will be 3. Also, the cases will be different for each pair of

pn,mq; we won’t discuss those in this thesis.
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(0,0)

(a,1)

Figure 3.3: Rectangle with mixed boundary conditions, where the dashed lines denote
the Neumann boundary conditions and the thick lines denote the Dirichlet
boundary condition.

3.5 Rectangles with Mixed Boundary Conditions

Up to this point, all our computations assume the Dirichlet boundary condition, in

other words, all boundaries are fixed. Now we introduce a new boundary condition.

As usual, let our manifold be M with boundary BM .

Definition 7. Suppose u : M Ñ R is a function defined on M . The Neumann

boundary condition is given by

Bu

Bv

ˇ

ˇ

ˇ

ˇ

BM

“ 0,

where Bu
Bv

denotes the derivative of u in the direction normal to the boundary BM .

This condition essentially states that the rate of change of the function u in the

normal direction at the boundary is 0. In our case, u is the eigenfunction on the
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manifold and v is always parallel to the Euclidean axes.

Now we consider a rectangle. Without loss of generality, let M “ p0, aq ˆ p0, 1q

with Neumann boundary condition on the side t1u ˆ p0, 1q and Dirichlet on the other

sides, as shown in Figure 3.3.

To study echolocation on this rectangle, we first need to find a basis for its eigen-

functions and the corresponding eigenvalues. We follow a similar process as in the

1-D string example. Recall that we need to solve the wave equation

utt “ c2puxx ` uyyq

and we may assume c “ 1. Suppose that upt, x, yq is a solution to the wave equation

and u can be separated such that

upt, x, yq “ T ptqXpxqY pyq, (3.23)

We are particularly interested in the parts involving x and y. Since the normal vector

on the side t1u ˆ p0, 1q is in the positive x direction, the boundary conditions are

given by

upt, 0, yq “ 0 (3.24)

upt, x, 0q “ upt, x, aq “ 0 (3.25)

uxpt, a, yq “ 0. (3.26)
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By substituting equation 3.23 into the wave equation and simplifying, we get

T 2

T
“
X2

X
`
Y 2

Y
“ A (3.27)

for some A P R. By reordering, we get

X2
“ BX, Y 2

“ pA ´ BqY (3.28)

for some B P R. From the boundary condition 3.25, we know Y p0q “ Y paq “ 0.

Following a similar process as we did for the 1-D string, we get

Y pyq “ β1 sinpnπyq, for n “ 1, 2, . . . , β1 P R. (3.29)

Now we consider Xpxq. We have X2 “ BX and the boundary conditions 3.24 and

3.26 tell us Xp0q “ 0 and X 1paq “ 0, respectively. Similar to 1-D, we can exclude the

cases where B ě 0. Thus, we have B ă 0 and the general solution of X2 “ BX is

given by

Xpxq “ c1 cosp
?

´Bxq ` c2 sinp
?

´Bxq.

The condition Xp0q “ 0 yields c1 “ 0. The condition X 1paq “ 0 implies

c2
?

´B cosp
?

´Baq “ 0.

Therefore, we have

c2 P R,
?

´B “
pm ` 1

2
qπ

a
, for m “ 0, 1, 2, . . .
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and the solution for Xpxq is given by

Xpxq “ β2 sin

ˆ

pm ` 1
2
qπ

a
x

˙

, for m “ 0, 1, 2, . . . , β2 P R. (3.30)

Combining equation 3.29 and equation 3.30, a basis of eigenfunctions can be written

as

em,n “ sin

ˆ

pm ` 1
2
q

a
πx

˙

sinpnπyq, m “ 0, 1, 2, . . . , n “ 1, 2, . . . (3.31)

with corresponding eigenvalues

λm,n “
π2

4a2
`

p2m ` 1q
2

` 4a2n2
˘

. (3.32)

Theorem 3. We can always echolocate on rectangles p0, aq ˆ p0, 1q where a ď 1 with

Neumann boundary conditions on a side of length a and Dirichlet on the other three.

Proof. As always, in order to use the pointwise Weyl counting function, Equation

2.7, we need to find the ordering of the eigenvalues. Since π2

4a2
is a common factor for

all eigenvalues, we denote it by k for simplicity. Note that λ0,1 is clearly always the

smallest eigenvalue. We divide the proof into two cases.

Case 1: a ‰
a

2{3.

In this case, we have

λ1,1 “ p9 ` 4a2qk

λ0,2 “ p1 ` 16a2qk.
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Since a ‰
a

2{3, we see that λ1,1 ‰ λ0,2. More specifically, when a ă
a

2{3, λ0,2 is

always the second smallest eigenvalue, and λ0,1 ă λ0,2 ă λ1,1. When a ą
a

2{3, note

that since a ď 1, λ2,1 ą λ0,2. It’s also obvious that λ0,3 ą λ0,2. Also, when a ą
a

2{3,

we have a2 ą 2{3, so 1 ` 16a2 ą 9 ` 4a2 and λ1,1 ă λ0,2. Therefore, λ0,1 ă λ1,1 ă λ0,2

are the three smallest eigenvalues.

When a ă
a

2{3, consider the audible quantity

Npλ0,2q ´ Npλ0,1q

Npλ0,1q
“

sin2p 1
2a
πxq sin2p2πyq

sin2p 1
2a
πxq sin2pπyq

“
4 sin2pπyq cos2pπyq

sin2pπyq
“ 4 cos2pπyq;

When a ą
a

2{3, consider the audible quantity

Npλ0,2q ´ Npλ1,1q

Npλ0,1q
“

sin2p 1
2a
πxq sin2p2πyq

sin2p 1
2a
πxq sin2pπyq

“ 4 cos2pπyq.

In either case, the audible quantity is always enough for us to echolocate y up to

reflective symmetry with respect to the line y “ 0.5. Then we can deduce x, up to

symmetry, from Npλ0,1q directly.

Case 2: a “
a

2{3.

When a “
a

2{3, our eigenvalue λ1,1, or equivalently λ0,2, has multiplicity of 2, so

Npλ1,1q “ Npλ0,2q “ Npλ0,1q ` sin2

ˆ

3

2a
πx

˙

sin2
pπyq ` sin2

ˆ

1

2a
πx

˙

sin2
p2πyq.

Instead of looking at the first three eigenvalues, we consider λ0,3 and λ0,6. We claim

that λ0,n is simple when n “ 3 and n “ 6.
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Recall that the general formula for λm,n is given by Equation 3.32. Suppose λ0,n

is not simple, so there exist a, b P N such that λa,b “ λ0,n, and we have

p2a ` 1q
2

` 4

ˆ

2

3
b2

˙

“ 1 `
8

3
n2.

By reordering and simplifying the equation, we get

n “

c

3

2
a2 `

3

2
a ` b2. (3.33)

Note that when n “ 6, if we let a “ 1, . . . , 5, and for each value of a we find the

corresponding b that solves the Equation 3.33, we have the following possibilities:

a “ 1 ñ b “
?
33

a “ 2 ñ b “
?
27

a “ 3 ñ b “
?
18

a “ 4 ñ b “
?
6

a ě 5 ñ b ă 0.

So, no a, b P N exists such that
b

3
2
a2 ` 3

2
a ` b2 “ 6. Therefore, λ0,3 is simple. Using

a similar approach, we can show that λ0,6 is also simple.

In fact, by explicitly computing the eigenvalues, we have

λ0,1 ă λ1,1 “ λ0,2 ă λ1,2 ă λ0,3 ă ¨ ¨ ¨ ă λ2,5 “ λ3,4 “ λ4,2 ă λ0,6.

Recall the double- and triple-angle formulas: sinp2θq “ 2 sinpθq cospθq and sinp3θq “
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3 sinpθq ´ 4 sin3pθq for all θ P R. Consider functions φ and ψ defined in terms of the

audible quantities by

φpx, yq : “
Npλ0,3q ´ Npλ1,2q

Npλ0,1q
“

sin2p3πyq

sin2pπyq
“ p3 ´ 4 sin2

pπyqq
2,

ψpx, yq : “
Npλ0,6q ´ Npλ4,2q

Npλ0,3q ´ Npλ1,2q
“

sin2p6πyq

sin2p3πyq
“ 4 cos2p3πyq.

Assume there exists y1 P p0, 0.5q such that y2 “ αy1 for some α P R and that

$

’

&

’

%

φpx, y1q “ φpx, y2q “ φpx, αy1q

ψpx, y1q “ ψpx, y2q “ ψpx, αy1q

. (3.34)

By solving the system of equations (3.34) through Mathematica, we obtain

α “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

´1 ` y1
y1

´ 1 `
1

y1

´ 1

1

(3.35)

Notice that since y2 P p0, 1q, α ą 0, so we are left with

α “ ´1 `
1

y1
or α “ 1.

When α “ ´1 ` 1{y1, we would have y2 “ αy1 “ 1 ´ y1, which is the reflection of y1

across the line y “ 0.5. When α “ 1, we have y2 “ y1. Therefore, y1 and y2 are either

identical or symmetric, so we’re able to echolocate up to the reflective symmetry of
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(0,0)

(a,1)

Figure 3.4: Rectangle with mixed boundary conditions where a ą 1, the dashed lines de-
note the Neumann boundary conditions and the thick lines denote the Dirich-
let boundary condition.

y “ 0.5. Thus, one can uniquely echolocate the y´coordinate up to symmetry, and we

can determine sin2
`

1
2a
πx

˘

by considering Npλ0,1q. Note that sin2
`

1
2a
πx

˘

is injective

for x P r0, aq, so we can uniquely identify the x´coordinate.

Notice that we’ve only considered rectangles p0, aq ˆ p0, 1q where a P p0, 1q. The

Neumann boundary condition is set on one side of length 1. We propose several

potential directions for future work.

If we allow a ą 1 and keep the Neumann boundary condition on the same side,

as shown in Figure 3.4, the multiplicity of λm,n will vary depending on a and be-

comes much more complicated. Furthermore, what if two sides of the rectangle are

equipped with the Neumann boundary condition: can we echolocate if the two sides

are adjacent, or opposite, to each other?

Besides rectangles, the question will be more exciting while complicated if we

consider boxes, as we have more freedom to specify different boundary conditions on
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different sides. These can be interesting questions for further exploration.
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Chapter 4

Echolocation with Gaussian

Curvature

4.1 Intuition for Gaussian curvature

Gaussian curvature is a concept from differential geometry that measures how curved

a surface is at some certain point. For some familiar examples, one can imagine a

flat sheet of paper that has a constant Gaussian curvature of zero; the curvature of

a sphere is also constant and can be thought of as the amount by which the sphere

deviates from being flat. A nice property about Gaussian curvature is that it depends

only on the shape of the surface itself, and if you bend the surface without tearing

or stretching it, the Gaussian curvature at each point will not change. For example,

even if you roll or bend the flat sheet of paper into a cone or something else, as long
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as you can flatten it back, the Gaussian curvature stays zero everywhere. Gaussian

curvature is also independent of our coordinate system, which is a useful fact for our

later computation.

A more mathematical intuition for Gaussian curvature is as follows: Pick any

point on a surface S and we can take the vector perpendicular to the surface at

that point. Any plane containing this normal vector is called a normal plane. Each

normal plane will intersect the surface and the intersection will be a 2-dimensional

curve, and we can measure the curvature of the curve. Specifically, suppose the curve

is parametrized by x “ xptq and y “ yptq; we can compute the curvature of the curve

by

κ “
x1y2 ´ y1x2

px12 ` y12q3{2
.

Note that since we have infinitely many normal planes, we have infinitely many such

curvatures. The maximum and minimum of these curvatures are called principal

curvatures, denoted by κ1, κ2. The Gaussian curvature is given by

K “ κ1κ2.

4.2 The Two Fundamental Forms and Computa-

tion of Gaussian Curvature

A surface patch is usually used to study the local behavior of a surface.
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Definition 8. A surface patch is a smooth mapping from an open subset Ω of R2 into

R3 defined by σpu, vq, where σpu, vq represents a point of the surface in R3, for each

pair of pu, vq P Ω. That is, σpu, vq “ ⟨xpu, vq, ypu, vq, zpu, vq⟩ .

A surface patch is closely related to the parametrization of a surface. For surfaces

that cannot be represented by a single continuous function over the entire domain, one

can construct multiple surface patches to describe different regions. These patches

together constitute the parametrization of the surface.

Suppose we have a surface S with surface patch σpu, vq. Pick any point p on S

and let σu and σv denote the derivatives of σ evaluated at the point pu0, v0q P R2 such

that σpu0, v0q “ p. Note that σu and σv form a basis of the tangent plane, assume

it’s well-defined, to S at p, denoted by TpS, so any tangent vector to S at p can be

expressed uniquely as a linear combination of σu and σv. Suppose v⃗ “ λσu ` µσv

where λ and µ are constants. Define maps du : TpS Ñ R and dv : TpS Ñ R by

dupv⃗q “ λ, dvpv⃗q “ µ.

Consider first the dot product of v with itself. We have the square of the length of v⃗

given by

||v⃗||
2

“ λ2 ⟨σu, σu⟩ ` 2λµ ⟨σu, σv⟩ ` µ2 ⟨σv, σv⟩ . (4.1)

Letting

E “ ||σu||
2, F “ σu ¨ σv, G “ ||σv||

2, (4.2)
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we can rewrite Equation 4.1 as

||v⃗||
2

“ Eλ2 ` 2Fλµ ` Gµ2
“ Edu2 ` 2Fdudv ` Gdv2.

Definition 9. The expression

Edu2 ` 2Fdudv ` Gdv2

is called the first fundamental form of the surface patch σpu, vq.

The first fundamental form provides a way to measure distances and angles, and

to compute areas, on the surface.

In order to study the curvature, we also need to consider the second fundamental

form which measures how much the surface deviates from the tangent plane at a point

σpu, vq. The deviation is represented by

pσpu ` δu, v ` δvq ´ σpu, vqq ¨ N⃗ ,

where N⃗ is the standard unit normal vector. We can expand this expression via

Taylor’s theorem for two variables. The full derivation can be found in Chapter 7.1

of [Pre10] and finally we have the deviation written as

1

2
pLpδuq

2
` 2Mδuδv ` Npδvq

2
q ` remainder,
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where

L “ σuu ¨ N⃗ , M “ σuv ¨ N⃗ , N “ σvv ¨ N⃗ , (4.3)

and the remainder tends to zero as δu and δv tend to zero. Note that δu and δv

essentially represent the same meaning as du and dv, respectively, as we defined

earlier.

Definition 10. The expression

Ldu2 ` 2Mdudv ` Ndv2

is called the second fundamental form of a surface patch σ.

The Weingarten map, also known as the shape operator, is a linear operator that

provides another way to think about the curvature of a surface. It encodes the changes

in the normal vector to the surface as one moves along the surface. Mathematically,

let S be an oriented surface and let N⃗ : S Ñ R3 denote the orientation. In other

words, N⃗ is the unit normal field on S. Thus, N⃗ maps any point p P S to a vector

in S2. For p P S, we consider the derivative of N⃗ at p, denoted by dN⃗p : TpS Ñ TpS,

and we give the following definition:

Definition 11. For every p P S, the linear transformation Wp,S : TpS Ñ TpS given

by

Wp,S “ ´dN⃗p

is called the Weingarten map of S at p.

The Gaussian curvature K at point p is defined by the determinant ofW , denoted
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by detpW q. Recall that in the last section, we defined Gaussian curvature as the

product of principal curvatures κ1 and κ2. In fact, κ1 and κ2 are two eigenvalues of

the Weingarten map, soK “ detpW q “ κ1κ2.We will see in the following computation

that the curvature of a surface can be understood both through the behavior of normal

vectors (as captured by the Weingarten map) and through the curvature extremes.

Now we can derive the explicit formula for K. Define two symmetric matrices FI

and FII by

FI “

¨

˚

˝

E F

F G

˛

‹

‚

, FII “

¨

˚

˝

L M

M N

˛

‹

‚

.

Recall that tσu, σvu is a basis for TpS. The matrix representation of the Weingarten

map Wp,S with respect to the basis tσu, σvu is F´1
I FII . The proof is given in Chapter

8.1 in [Pre10]. Therefore, we have

K “ detpF´1
I FIIq “

detpFIIq

detpFIq
“
LN ´ M2

EG ´ F 2
. (4.4)

We will use this formula to compute Gaussian curvature from now on.

Recall from Chapter 2 that every manifold has a unique heat kernel, and the

heat kernel is a spectral invariant. Here, we sketch the proof from Chapter 6.1.2 in

[LMD23] that the Gaussian curvature is a spectral invariant.

Theorem 4. Let M be a surface. The Gaussian curvature of M is a spectral invari-

ant.

Proof. By Minakshisundaram-Pleijel asymptotic expansion of the heat kernel for t Ñ
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0`, we have

ept, x, xq “ p4πtq´1
k

ÿ

j“0

ajpxqtj ` Optk`1
q

for all k ą 0, where ajpxq are called the local heat invariants. The heat invariants

contain rich geometric information about the surface. For example, a0 is the volume

of the surface and a1 involves the scalar curvature. They are ‘local’ because they can

be computed in terms of the geometry ofM near x. Optk`1q is the big O notation that

describes the error term in the asymptotic expansion of the heat kernel as t Ñ 0`,

this part of the formula will become negligible at the rate of at least tk`1 as t gets

closer to zero.

Note that we also have ept, x, xq “
ř8

j“0 e
´λjtϕjpxq2. Therefore, as t Ñ 0`, we

have
8
ÿ

j“0

e´λjt „ p4πtq´1
8
ÿ

j“0

ajt
j.

Note that the heat trace on the left-hand side is completely determined by the

Laplace spectrum. This implies that the local heat invariants ajpxq are also de-

termined by the Laplace spectrum. More importantly, according to calculation in

Chapter 3.3 of [RS97], a1pxq “ 1
6
τpxq, where τpxq is the scalar curvature of M at

point x, so the scalar curvature is also a spectral invariant. Since scalar curvature is

twice the Gaussian curvature, the Gaussian curvature is also a spectral invariant.
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4.3 Echolocation on Surfaces of Revolution

A surface of revolution is a surface in Euclidean space R3 created by rotating a

curve around an axis of rotation. The curve being rotated is called the profile curve.

We could consider the earth as a surface of revolution where the profile curve is

any longitude. Without loss of generality, we may assume our profile curve is any

curve in the xz´plane and the axis of rotation is the z´axis. If the profile curve is

parametrized by

γpuq “ pfpuq, 0, gpuqq,

by rotating it around the z´axis, the parametrization of the surface of revolution will

be given by

σpu, vq “ pfpuq cos v, fpuq sin v, gpuqq,

where usually v P r0, 2πs.

The Gaussian curvature of a surface of revolution has a simple form if the profile

curve has a certain parametrization.

Definition 12. A curve γpuq “ pfpuq, 0, gpuqq has unit-speed parametrization if

|| 9γ|| “ 9f 2
` 9g2 “ 1,

where 9f, 9g are the first derivative of f and g with respect to u, respectively.

Lemma 2. [Pre10, Example 8.1.4] The Gaussian curvature of a surface of revolution

is ´
:f
f
if the profile curve has unit-speed parametrization.
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Proof. Consider the surface of revolution parametrized by

σpu, vq “ pfpuq cos v, fpuq sin v, gpuqq,

with 9f 2 ` 9g2 “ 1 by assumption. Note that by differentiating both sides with respect

to u, we get :f 9f ` 9g:g “ 0. By computing the first and second fundamental forms of

this surface using Equations 4.2 and 4.3 (the full computation, which we omit here,

can be found in Example 6.1.3 and Example 7.1.2 in [Pre10]), we will find that

E “ 1, F “ 0, G “ f 2, L “ 9f:g ´ :f 9g, M “ 0, N “ f 9g.

Thus, we can compute the Gaussian curvature using Equation 4.4 and get

K “
LN ´ M2

EG ´ F 2
“

p 9f:g ´ :f 9gqf 9g

f 2
. (4.5)

Note that the numerator can be written as

p 9f:g ´ :f 9gqf 9g “ p 9f:g 9g ´ :f 9g2qf

“ p 9fp´ :f 9fq ´ :f 9g2qf

“ p´ 9f 2 :f ´ :f 9g2qf

“ ´ :ffp 9f 2
` 9g2q

“ ´ :ff.

Therefore, K “
´ :ff
f2 “ ´

:f
f
.
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Wyman and Xi [WX23] stated that echolocation holds on the torus but they didn’t

provide proof for that. We will provide a proof. A torus has rotational symmetry

around its central axis. It also has reflective symmetry when bisected along a plane

that contains its central axis.

Theorem 5. Echolocation on a torus is possible, up to symmetry, with Gaussian

curvature.

Proof. Consider a general torus. It is a surface of revolution where the profile curve

is a circle or an ellipsoid. We consider the case for the circle. Suppose the circle has

center pc, 0, 0q and radius R. Without loss of generality, we assume c ą 0 and R P R.

Note that we don’t necessarily assume c´R ą 0 as whether the torus intersects itself

will not affect our computation of its Gaussian curvature.

The circle will be parameterized as

γpθq “

ˆ

c ` R cos

ˆ

θ

R

˙

, 0, R sin

ˆ

θ

R

˙˙

where θ P r0, 2Rπs. We have 9γpθq “
`

´ sin
`

θ
R

˘

, 0, cos
`

θ
R

˘˘

, so

|| 9γpθq|| “

d

ˆ

´ sin

ˆ

θ

R

˙˙2

`

ˆ

cos

ˆ

θ

R

˙˙2

“ 1,

and γ is a unit-speed parametrization. Therefore, the parametrization of the torus is

given by

σpθ, ϕq “

ˆˆ

c ` R cos

ˆ

θ

R

˙˙

cospϕq,

ˆ

c ` R cos

ˆ

θ

R

˙˙

sinpϕq, R sin

ˆ

θ

R

˙˙
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where θ P r0, 2Rπq and ϕ P r0, 2πq. Define

fpθq “ c ` R cos

ˆ

θ

R

˙

, gpθq “ R sin

ˆ

θ

R

˙

.

Since we’ve already shown that 9f 2 ` 9g2 “ 1,

K “ ´
:f

f
“

1
R
cos

`

θ
R

˘

c ` R cos
`

θ
R

˘ “
cos

`

θ
R

˘

R
`

c ` R cos
`

θ
R

˘˘ .

Notice that

BK

Bθ
“ ´

c sin
`

θ
R

˘

R2
`

c ` R cos
`

θ
R

˘˘2 . (4.6)

For θ P r0, Rπq, sin
`

θ
R

˘

ą 0 and the denominator is clearly greater than zero, so BK
Bθ

is

always less than zero. In other words, Kpθq is decreasing when θ goes from 0 to Rπ.

Thus, Kpθq is injective for θ P r0, Rπq. Therefore, we can identify θ up to symmetry

with respect to the xy´plane on a torus. Since the torus is rotationally symmetric

about the z´ axis, we can say echolocation holds on the torus by Gaussian curvature

without identifying ϕ.

Now we take a look at a second surface of revolution called a catenoid. A catenoid

has rotational symmetry around its central axis. It also has reflective symmetry when

bisected along a plane that contains its central axis. It’s also symmetric with respect

to reflection in the xz´plane.

Theorem 6. Gaussian curvature is enough for echolocation on a catenoid up to

symmetry.
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Figure 4.1: Catenoid with c “ 1 and θ P r0, Rπq

Proof. Let’s consider a general catenoid parametrized by

xpu, θq “ c cosh
´u

c

¯

cos pθq

ypu, θq “ c cosh
´u

c

¯

sin pθq

zpu, θq “ u,

θ P r0, 2πq, and u P r´c, cs for some c ą 0. A catenoid with c “ 1 is shown in Figure

4.1. The coefficients for the first and the second fundamental forms are given by

E “ c2 cosh2
´u

c

¯

, F “ 0, G “ cosh2
´u

c

¯

,

L “ ´c, M “ 0, N “
1

c
.

By equation 4.4, the Gaussian curvature of a catenoid is given by

K “ ´
1

c2
sech4

´u

c

¯

.
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Figure 4.2: Tractrix and tractroid

Note that

BK

Bu
“ ´

4u

c3

´

sech4
´u

c

¯

tanh
´u

c

¯¯

.

For u P p0, cs, since tanh
`

u
c

˘

ą 0, BK
Bu

is always less than zero, so K is injective for

u P p0, cs; we can uniquely identify u up to symmetry of the xy´plane. Similar to a

torus, since a catenoid is a surface of revolution, we don’t need to identify θ. Therefore,

we can echolocate on a catenoid up to symmetry using Gaussian curvature.

Next, we show that there are also some surfaces of revolution for which Gaussian

curvature is not enough for echolocation.

For example, consider a tractroid, or a pseudo-sphere, generated by rotating a

tractrix about its asymptote (z´axis in our case), as shown in Figure 4.2.
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The tractroid is parametrized by

xpu, θq “ sechpuq cospθq

ypu, θq “ sechpuq sinpθq

zpu, θq “ u ´ tanhpuq,

where u P r´10, 10s and θ P r0, 2πq. We restrict u P r´10, 10s so that the surface is

compact. The coefficients for the first and second fundamental forms are given by

E “ tanh2
puq, F “ 0, G “ sech2

puq

and

L “ ´ sechpuq tanhpuq, M “ 0, N “ sechpuq tanhpuq,

respectively. We find that the tractroid has a constant Gaussian curvature K “ ´1.

Clearly, it does not help us echolocate.

Therefore, it’s natural for us to consider potential necessary and sufficient condi-

tions to echolocate using Gaussian curvature; we propose two conjectures for surfaces

of revolution pfpuq cospvq, fpuq sinpvq, gpuqq such that 9f 2 ` 9g2 “ 1.

Conjecture 1: If f is injective, then Gaussian curvature K is enough for

echolocation.

The conjecture is false. Let fpuq “ sinpuq and gpuq “ cospuq; f is injective for

u P r0, π{2q while K “ ´ :f{f “ 1 is not enough for echolocation.
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Conjecture 2: If f is injective and the Gaussian curvature K is not a constant,

it’s enough for echolocation.

This conjecture ends up being much harder to disprove. We first provide an

example to show why certain examples would not work as a counterexample. In

the following two examples, our strategy is to first consider fpuq, then compute the

Gaussian curvature. If the Gaussian curvature is not injective on the interval I, in

other words, f is a promising candidate, we also need to check if gpuq is well-defined

over I where gpuq is computed from the unit-speed parametrization assumption.

Example 1: First, consider fpuq “ lnpuq ` u; then

K “ ´

B

Bu
p 1
u

` 1q

lnpuq ` u
“

1{u2

lnpuq ` u
.

If we allow u P R, K is not injective up to some symmetry. Then we compute the

corresponding gpuq such that our parametrization is unit-speed; we need 9f 2 ` 9g2 “ 1.

Therefore,

g “

ż

c

´
1

u2
´

2

u
du.

Since g P R, we need ´ 1
u2 ´ 2

u
ě 0 and so u P r´1

2
, 0q. However, f is undefined for

u P r´1
2
, 0q, so this doesn’t work as a counterexample.

Example 2: Let fpuq “ sinpuq ´ u; then 9f “ cospuq ´ 1, so

K “ ´
B

Bu
pcospuq ´ 1q ¨

1

sinpuq ´ u
“

sinpuq

sinpuq ´ u
.
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Figure 4.3: Graphs of K and ´ cos2puq ` 2 cospuq

By the unit-speed parameterization, we follow a similar procedure as in the above

example to get

g “

ż

a

´ cos2puq ` 2 cospuq du.

Notice that g is a real-valued function when u is defined on a certain union of disjoint

intervals. In Figure 4.3, the function K is shown in the red curve, and the function

´ cos2puq ` 2 cospuq is given in blue. We want the blue curve to be above the u´axis

so that g is real.

If we pick u P r3π
2
, 5π

2
s, K is not injective over that interval. For example,

Kp7.7q “ Kp7.75q “ ´0.14723

To visualize the parametrized surface, we compute g numerically. The surface is

shown in Figure 4.4 where the thick line and dashed line are parametrized curve

tpfp7.7q cospvq, fp7.7q sinpvq, gp7.7qq |v P p0, 2πqu and tpfp7.75q cospvq, fp7.75q sinpvq,

gp7.75qq |v P p0, 2πqu, respectively.
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Figure 4.4: Visualization of the counterexample
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4.4 Echolocation on Minimal Surfaces

4.4.1 Introduction to Minimal Surfaces

Now we consider another category of surfaces, namely minimal surfaces. Minimal

surfaces are fascinating objects in mathematics and physics with both beauty and

complexity. The physical properties of minimal surfaces can be explained by a soap

film experiment. Imagine dipping a wireframe of any shape into a soap solution and

then pulling it out. The soap film that spans the frame tends to minimize its area,

forming a minimal surface. This phenomenon occurs because the surface tension of

the soap film seeks to reduce the surface area to the smallest possible value for the

given boundary conditions. In other words, the energy is minimized for the soap film.

Mathematically, minimal surfaces are defined as surfaces with zero mean cur-

vature, which means the average of the two principal curvatures is zero. Minimal

surfaces also have connections with complex analysis. Many minimal surfaces can be

parametrized in terms of two complex-valued functions via the Enneper-Weierstrass

Parameterization [CK05]. The first but trivial example of a minimal surface is a piece

of flat paper. Clearly, it has zero curvature everywhere. The catenoid we discussed

in Section 4.3 is also a minimal surface. In fact, the catenoid and the plane are the

only connected surfaces of revolution which are also minimal surfaces[MP12].

In this section, we consider two more complicated and interesting minimal surfaces,

namely Enneper’s minimal surface and Henneberg’s minimal surface.
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Figure 4.5: Enneper’s minimal surface with different range of r

4.4.2 Enneper’s Minimal Surface

Let’s first consider Enneper’s minimal surface. The surface is parametrized [WEEn]

by σpr, ϕq “ px, y, zq where x, y, z are functions defined as

xpr, ϕq “ r cosϕ ´
1

3
r3 cosp3ϕq,

ypr, ϕq “ ´
1

3
rr3 sinϕ ` r2 sinp3ϕqs,

zpr, ϕq “ r2 cosp2ϕq,
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where ϕ P r0, 2πq and r P r0, zs. One has the flexibility to choose z and the surface

will look different, as shown in Figure 4.5. In this thesis, we focus on the case where

r P r0, 1s so that the surface does not intersect itself.

The Enneper’s minimal surface has two obvious reflective symmetries with respect

to the xz´plane and yz´plane. It also has a less obvious rotational symmetry: if we

first rotate the surface about the x´axis by 180˝ and then rotate the surface about

the y´axis by 180˝, the surface will look the same. Mathematically, we can define a

rotational map R as

R “

¨

˚

˚

˚

˚

˝

´1 0 0

0 1 0

0 0 ´1

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

1 0 0

0 ´1 0

0 0 ´1

˛

‹

‹

‹

‹

‚

.

If we apply R to Enneper’s minimal surface, the overall shape of the surface won’t

be changed. For each point p “ px, y, zq on Enneper’s minimal surface, it will be

mapped to

Rp “

¨

˚

˚

˚

˚

˝

´1 0 0

0 ´1 0

0 0 1

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

x

y

z

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

´x

´y

z

˛

‹

‹

‹

‹

‚

.

The Gaussian curvature of Enneper’s minimal surface [WEEn] is given by

K “ ´
4

p1 ` r2q4
.

With this information, we are able to identify r, but the Gaussian curvature contains

no information about ϕ. Therefore, given any fixed r0, the Gaussian curvature on the
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Figure 4.6: Set of points on Enneper’s Minimal Surface that have the same Gaussian
curvature shown by the dashed line

curve σpr0, ϕq will be constant for all ϕ P r0, 2πq. Figure 4.6 shows a set of points on

the curve σp0.5, ϕq that have the same Gaussian curvature. Note that the surface is

not rotationally symmetric with respect to the z´axis, so Gaussian curvature is not

enough for us to echolocate on Enneper’s surface up to symmetry.
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Figure 4.7: Henneberg’s Minimal Surface with different range of u

4.4.3 Henneberg’s Minimal Surface

We look at Henneberg’s minimal surface. The minimal surface is parametrized by

[WEHe] σpu, vq “ px, y, zq where x, y, z are functions defined as

xpu, vq “ 2 sinhu cos v ´
2

3
sinhp3uq cosp3vq

ypu, vq “ 2 sinhu sin v `
2

3
sinhp3uq sinp3vq

zpu, vq “ 2 coshp2uq cosp2vq

where u P r0, zq and v P r0, 2πq; similar to Enneper’s minimal surface, one has the

flexibility to choose z, as shown in Figure 4.7. In our thesis, we focus on the case

where z “ 1.
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The coefficients [WEHe] of the first fundamental form are given by

E “ 8 cosh2 u rcoshp4uq ´ cosp4vqs

F “ 0

G “ 8 cosh2 u rcoshp4uq ´ cosp4vqs ,

and the coefficients of the second fundamental form are given by

L “ ´4 cosp2vq sinhp2uq

M “ 4 coshp2uq sinp2vq

N “ 4 sinhp2uq cosp2vq.

Therefore, we can compute the Gaussian curvature by

Kpu, vq “
LN ´ M2

EG ´ F 2
“

´16 cos2p2vq sinh2
p2uq ´ 16 cosh2

p2uq sin2p2vq

64 cosh4
puqpcosp4vq ´ coshp4uqq2

“
´4e´4u ´ 4e4u ` 4e´4iv ` 4e4iv

64 cosh4
puqpcosp4vq ´ coshp4uqq2

“
8pcosp4vq ´ coshp4uqq

64 cosh4
puqpcosp4vq ´ coshp4uqq2

“
sech4 u

8pcosp4vq ´ coshp4uqq
.

Henneberg’s minimal surface is a non-orientable minimal surface, meaning it only has

one side. The lines tx “ ˘y, z “ 0u lie on the surface, rotation of 180˝ around any of

these straight lines is a symmetry of the surface. In other words, it has a finite group

of symmetry [OB16].

Theorem 7. Echolocation on Henneberg’s minimal surface is not possible via Gaus-
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sian curvature.

Proof. Let u1, v1 be arbitrary; the Gaussian curvature at the point σpu1, v1q is given

by

K “
sech4

pu1q

8pcosp4v1q ´ coshp4u1qq
.

Let u2 “ u1 ` a where a P R and u2 P r0, 1s; we want to find a v2 such that

Kpu1, v1q “ Kpu2, v2q. We can rewrite this as

8pcosp4v2q ´ coshp4pu1 ` aqqq sech4
pu1q “ 8 sech4

pu1 ` aqpcosp4v1q ´ coshp4u1qq,

and further

v2 “ ˘
1

4
arccosrcoshr4pa ` u1qs ` cosh4

pu1q sech
4
pa ` u1qpcosp4v1q ´ coshp4u1qqs.

Since v2 P p0, 2πq and arccos has range r0, πs, we take the positive sign. If we obtain

two points p “ σpu1, v1q and q “ σpu2, v2q, where p and q are not related by any

kind of symmetry as described above, then we’ve shown that Gaussian curvature is

insufficient for echolocation on Hennegerg’s minimal surface. For example, choose

u1 “ 0.2, v1 “ 4, and let a “ 0.2, so u2 “ 0.4. By the formula above, we can

compute that v2 “ 0.177562. Thus, we get P “ p´0.621366,´0.532484,´0.314592q

and Q “ p´0.0582912, 0.656155, 2.50797q, as shown in Figure 4.8. We believe that

these two points are not related by a symmetry.

To complete a rigorous proof of Theorem 8, we will show the following:

Corollary 1. Given any pu1, v1q P p0, 0.5q ˆ p0, 2πq, there is always an a P p0, 1´u1q
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Figure 4.8: Two non-symmetric points with the same Gaussian curvature on Henneberg’s
surface
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such that the point parametrized by σpu2, v2q “ σpu1 ` a, π{8q will have the same

Gaussian curvature as the point parametrized by σpu1, v1q.

We will show the existence via the Intermediate Value Theorem (IVT). Given any

u1, v1, let u2 “ u1 ` a; by fixing K, as shown above, we have

v2 “
1

4
arccosrcoshr4pa` u1qs ` cosh4

pu1q sech4
pa` u1qpcosp4v1q ´ coshp4u1qqs. (4.7)

To simplify notation, we write u1, v1 as u, v in this proof. We can rewrite v2 in

terms of hyperbolic trigonometric functions and simplify using Mathematica; more

specifically, we have

v2 “
1

4
arccos

"

e4pa`uq ` e´4pa`uq

2

`

ˆˆ

eu ` e´u

2

˙ ˆ

2

ea`u ´ e´a´u

˙˙4 ˆ

e4iv ` e´4iv

2
´
e4u ` e´4u

2

˙*

“
1

8
pπ ` 2i log

"

1

2
i

`

e´4pa`uq
` e4pa`uq

˘

`
ie4pa`uqpe´u ` euq4 p´e´4u ´ e4u ` e´4iv ` e4ivq

2 p´1 ` e2pa`uqq
4

`

g

f

f

e1 ´

˜

1

2
pe´4pa`uq ` e4pa`uqq `

e4pa`uqpe´u ` euq4 p´e´4u ´ e4u ` e´4iv ` e4ivq

2 p´1 ` e2pa`uqq
4

¸2
*

q

“
π

8
`

1

4
i log

"

i
“

coshp4pa ` uqq ` cosh4
puqpcosp4vq ´ coshp4uqq csch4

pa ` uq
‰

`

b

1 ´
“

coshp4pa ` uqq ` cosh4
puqpcosp4vq ´ coshp4uqq csch4

pa ` uq
‰

*

.

(4.8)

Define a function

Γpa, u, vq “ coshp4pa ` uqq ` cosh4
puqpcosp4vq ´ coshp4uqq csch4

pa ` uq.
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Recall that u P p0, 0.5q, v P p0, 2πq, and a P r0, 1 ´ us. In order to use IVT, first

consider Γpa, u, vq when a “ 0; then we have

Γp0, u, vq “ coshp4uq ` pcosp4vq ´ coshp4uqq coth4
puq.

We want to find the maximum of Γp0, u, vq. Notice that for any u, coshp4uq ą

0 and coth4
puq ą 0. Therefore, in order to make Γ large, we need to maximize

cosp4vq ´ coshp4uq. Clearly, for any u, since u is fixed,

argmax
vPr0,2πq

tcosp4vq ´ coshp4uqu “ argmax
vPr0,2πq

Γp0, u, vq “
nπ

2
, n “ 0, 1, 2, 3.

Without loss of generality, let n “ 0, and thus v “ 0. Therefore, we have

Γp0, u, 0q “ coshp4uq ` p1 ´ coshp4uqq coth4
puq,

and we can find argmaxuPp0,0.5q Γ by taking the partial derivative. Note that

BΓp0, u, 0q

Bu
“ ´2p´6 coshpuq ´ 3 coshp3uq ` coshp5uqq csch3

puq ą 0

for all u P p0, 0.5q. Therefore, argmaxuPp0,0.5q Γp0, u, 0q “ 0.5, and we have for all

pu, vq P p0, 0.5q ˆ p0, 2πq,

Γp0, u, vq ă Γp0, 0.5, 0q ă ´45 ă 0.
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Now consider a “ 1 ´ u; we have

Γpa, u, vq “ Γp1 ´ u, u, vq “ coshp4q ` cosh4
puqpcosp4vq ´ coshp4uqq csch4

p1q.

Note that when pu, vq P p0, 0.5q ˆ p0, 2πq,

coshp4uq ď 5, and cosp4vq ě ´1.

Thus,

| cosp4vq ´ coshp4uq| ď 4 ă
coshp4q

cosh4
p1q csch4

p1q

and

Γp1 ´ u, u, vq ą 0.

Notice that Γ is continuous with respect to all three variables, so by the Intermediate

Value Theorem, there exists a P p0, 1 ´ uq such that Γpa, u, vq “ 0. Therefore, with

such an a, we can write

v2 “
π

8
`

1

4
i logpiΓ `

?
1 ´ Γq “

π

8
.

Note that there are only finitely many symmetries for points on the curve parametrized

by v2 “ π{8, but there are infinitely many points with v1 P p0, 2πq. Thus, given

two points with the same Gaussian curvature, they are not necessarily symmetric.

Therefore, we cannot echolocate on Henneberg’s minimal surface via Gaussian cur-

vature.
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Chapter 5

Conclusion

In this thesis, we studied the question of echolocation asked by Wyman and Xi

[WX23]. In particular, given a manifold M with boundary BM , are we able to locate

any point x P M , up to symmetry, given a certain set of audible quantities? To an-

swer this question, we studied two types of audible quantities, namely the pointwise

Weyl counting function and the Gaussian curvature.

We first explored echolocation by the pointwise Weyl counting function

Nxpλq “
ÿ

λjďλ

|ϕjpxq|
2, (5.1)

where λj and ϕjpxq are the Laplacian eigenvalues and eigenfunctions on M , respec-

tively. Besides providing full details for proofs of echolocation on one-dimensional

strings and two-dimensional rectangles, we explored the three-dimensional rectangles,
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on which we proved that echolocation up to symmetry is possible. We generalized the

problem to echolocation on rectangles equipped with mixed (Dirichlet and Neumann)

boundary conditions. By explicitly solving the Laplace eigenvalue problem via the

wave equation, we showed that echolocation is possible for rectangles in the form

r0, as ˆ r0, 1s with a P p0, 1q when the side tau ˆ r0, 1s is equipped with the Neumann

boundary conditions while the rest have Dirichlet boundary conditions.

Secondly, we studied echolocation via Gaussian curvature on some more compli-

cated surfaces. We first confirmed that echolocation is possible on the torus, and

proved it for the new example of the catenoid. By studying the Gaussian curvature

on surfaces of revolution, we provided counterexamples to two conjectures we made

about the necessary and sufficient conditions for us to echolocate on a surface of rev-

olution. We left this as an open problem. We also briefly explored echolocation on

minimal surfaces. We showed that Gaussian curvature is not enough for echoloca-

tion on both Enneper’s and Henneberg’s minimal surfaces. Since minimal surfaces are

themselves an interesting category of surfaces both for mathematicians and physicists,

these two examples could provide insights for further studies on minimal surfaces.
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Appendix A: Mathematica Codes

.1 Equations from (3.18) to (3.22)

equation =

1 - c + 4 (1 - a) (1 - b) == 1 - abc/(d (a + b - d)) + 4 (1 - d) (1 - a - b + d);

solution = Solve[equation, d]

a = Sin[Pi*x1]^2;

b = Sin[Pi*y1]^2;

c = Sin[Sqrt[2]*Pi*z1]^2;

expr1 = 1/

2 (a + b - Sqrt[

2 a^2 + 2 b^2 - Sqrt[16 a b c + (4 a b - c)^2] + c]/Sqrt[2]);

expr2 = 1/

2 (a + b + Sqrt[
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2 a^2 + 2 b^2 - Sqrt[16 a b c + (4 a b - c)^2] + c]/Sqrt[2]);

expr3 = 1/

2 (a + b - Sqrt[

2 a^2 + 2 b^2 + Sqrt[16 a b c + (4 a b - c)^2] + c]/Sqrt[2]);

expr4 = 1/

2 (a + b + Sqrt[

2 a^2 + 2 b^2 + Sqrt[16 a b c + (4 a b - c)^2] + c]/Sqrt[2]);

simplifiedExpr1 =

FullSimplify[

ArcSin[Sqrt[expr1]]/Pi, {0 < x1 < 0.5, 0 < y1 < 0.5,

0 < z1 < Sqrt[2]/4}]

simplifiedExpr2 =

FullSimplify[

ArcSin[Sqrt[expr2]]/Pi, {0 < x1 < 0.5, 0 < y1 < 0.5,

0 < z1 < Sqrt[2]/4}]

simplifiedExpr3 =

FullSimplify[

ArcSin[Sqrt[expr3]]/Pi, {0 < x1 < 0.5, 0 < y1 < 0.5,

0 < z1 < Sqrt[2]/4}]

simplifiedExpr4 =

FullSimplify[

ArcSin[Sqrt[expr4]]/Pi, {0 < x1 < 0.5, 0 < y1 < 0.5,

0 < z1 < Sqrt[2]/4}]
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.2 Equation 3.35

Solve[{Cos[3 Pi y]^2 ==

Cos[3 a Pi y]^2, (1 + 2 Cos[2 Pi y])^2 == (1 + 2 Cos[2 a Pi y])^2},

a]

FullSimplify[

ArcTan[-(Cos[3 [Pi] y]/(-1 + 2 Cos[2 [Pi] y])), -(Sqrt[

1 - Cos[2 [Pi] y]]/Sqrt[2])]/([Pi] y), 0 < y < 0.5]

FullSimplify[

ArcTan[-(Cos[3 [Pi] y]/(-1 + 2 Cos[2 [Pi] y])), Sqrt[

1 - Cos[2 [Pi] y]]/Sqrt[2]]/([Pi] y), 0 < y < 0.5]

FullSimplify[

ArcTan[Cos[3 [Pi] y]/(-1 + 2 Cos[2 [Pi] y]), -(Sqrt[

1 - Cos[2 [Pi] y]]/Sqrt[2])]/([Pi] y), 0 < y < 0.5]

FullSimplify[

ArcTan[Cos[3 [Pi] y]/(-1 + 2 Cos[2 [Pi] y]), Sqrt[

1 - Cos[2 [Pi] y]]/Sqrt[2]]/([Pi] y), 0 < y < 0.5]
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.3 Equations (4.7) and (4.8)

f =ArcCos[ (Exp[4 (a + u)] + Exp[-4 (a + u)])/

2 + ((((Exp[u] + Exp[-u])/

2) (2/(Exp[a + u] - Exp[-a - u])))^4)*(((Exp[4 I v] +

Exp[-4 I v])/2) - ((Exp[4 u] + Exp[-4 u])/2))]/4;

f2=Simplify[TrigToExp[f]];

Simplify[ExpToTrig[f2]/. power_Power:>ExpToTrig[power]]
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