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Abstract

The goal of this project is to find reliable parameter settings for a multi-dimensional

global optimizer to optimize the performance of a large acceptance ion optical system

for the requirements of nuclear physics experiments. We develop and test the Particle

Swarm Optimization (PSO), a global optimization algorithm designed for continuous

multi-dimensional problems, on a large acceptance particle beam separator, the High

Rigidity Spectrometer (HRS) at the Facility for Rare Isotope Beams (FRIB), which

is a laboratory specializing in the production and experimental study of short-lived

nuclear matter. We split the HRS into two sections, the High-Transmission Beamline

(HTBL) and the Spectrometer Section. The objective of the PSO is to improve the

transmission rate for the Spectrometer Section and the beam spot size as well as dis-

persive foci for the HTBL, in both cases by adjusting the settings of the higher-order

magnetic field elements—sextupoles and octupoles. We successfully improved the

transmission rate of fission fragments from 57.5% to 63% in the Spectrometer Section

and shrank the beam spot size in horizontal direction of 40Mg from 1.8 mm to 1.0 mm

in the HTBL. Finally, we compare the performance of PSO with multiple, different

internal parameter settings (inertia, acceleration). We find a significant difference in
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performance across the PSO parameter settings considered, with the best internal

parameter setting for the PSO being (0.9, 0.45). Future work will explore the PSO

parameter space for additional input particle distributions (e.g. fission fragments in

the HTBL) and differently constructed objective functions to better understand the

operation of the PSO in these ion optical systems.
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Chapter 1

Nuclear physics

Nuclear physics is the subfield of physics that studies nuclear structures and re-

actions between nuclei, which are at the core of atoms. Back in the 5th century BCE,

ancient Greek philosopher Leucippus of Miletus originated the idea of atomic phi-

losophy, in which matter is considered to consist of an infinite number of indivisible

building blocks “atomos” and the different properties of matter are determined by the

types of “atomos” [4]. In the early 19th century, John Dalton converted the atomic

philosophy into scientific theories through physical observations and experiments [17].

In 1897, William Thomson developed the first atomic structure including the discov-

ery of electrons by J.J. Thomson. Thomson’s atomic model, or the “plum-pudding”

model, describes the atom as a uniform sphere of positively charged matter with em-

bedded electrons (negative charges) like raisins in a plum pudding [15]. A few years

later, Ernest Rutherford conducted the famous gold foil alpha scattering experiment,

in which he demonstrated that most of the volume occupied by atoms was actually
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empty space with only a tiny, solid part inside, called the nucleus. The discovery of

the nucleus led scientists to the study of nuclear structures, which became the sub-

field of nuclear physics. Although the concept of nuclear physics already exists for

decades, the study of nuclear properties and dynamics are largely inaccessible exper-

imentally except for limited cases of naturally radioactive isotopes, since the energy

scales involved are much higher than those of chemical reactions [10].

In nuclear physics, scientists not only explore nuclear theories to describe micro-

scopic particles—such as protons, neutrons, and the nuclei constructed from them that

comprise the majority of the mass of physical matter of our everyday experience—

but also conduct experiments to verify and expand their theoretical understanding.

Those experiments often require large accelerators to collide particles at speeds of a

significant fraction of the speed of light, to enable them to probe inside the nucleus

in the context of the extremely strong Coulomb repulsion between nuclei. By study-

ing nuclear physics, we are also able to better understand some of the largest scale

physical processes in the universe: stellar burning, evolution, and explosions (novae,

supernovae, and x-ray bursts), as well as the concurrent nucleosynthesis processes

that generate much of the nuclear matter in the universe [10].

Modern nuclear physics uses beams of high-speed particles for the experiments,

to examine the properties of specific nuclear structures in a systematic way. This

systematic study requires the ability to produce, separate, and identify the particles

within the beams. Scientists build particle accelerators to generate high-speed beams

and spectrometers to separate and identify the particles.
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Figure 1.1: An artist’s interpretation of supernova, a stellar explosion, spotted in a galaxy
4.6 billion light-years away in 2016 [20].
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Chapter 2

Charged particles in magnetic

fields

2.1 Particle beams and rare-isotopes

Most of the particles in daily life are neutral particles, but in nuclear physics ex-

periments we ionize them to become charged particles (particles carrying net charges).

Before discussing the motion of charged particles in magnetic fields, it is beneficial

first to explain the definition of a charged particle beam. One may think of a particle

beam by its relation to a laser beam or light beam, which is a thin straight stream of

photons travelling at the speed of light. A charged particle beam, by its name, is a

stream of charged particles like electrons or ions—atoms with more or fewer electrons

than protons in their nucleus. Unlike a typical laser beam, particle beams are not
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always thin and straight. For example, a beam consisting of the products of a nuclear

fission reaction originates as a cluster of particles at the reaction target (where the

target-beam interaction induced the fission) but then spreads out isotropically due

to the random orientation of the fission axis in the center of mass frame. Since the

particles are moving forward at a significant fraction of speed of light, however, they

end up continuing along their initial direction of motion with only a slight angular

deviation (Figure 2.1).

A typical opening angle for fission fragments is around five degrees. In beam

physics, we typically use milli-radians for the spreading angle, and five degrees is

equal to 100 mrad. Such a small angle will still result in the ultimate divergence of

the beam particles if they are not captured and redirected properly, in our case with

magnetic fields. It is also worth noting that a particle beam does not necessarily

contain only a single type of particle. Nuclear fission will produce a mix of different

daughter isotopes, even from a single parent isotope, as is the case in well-known

Uranium-235 fission (e.g. producing fragments like cesium, xenon, and strontium,

among many others) [3].

Figure 2.1: Illustration of a travelling particle beam. The beam spot spreads out as it
travels due to the angular divergence of the trajectories. The red lines show
the trajectories of several example particles.

In this project, we are focusing on a specific category of particles, called rare-
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isotopes. Isotopes are elements with the same number of protons and different num-

ber of neutrons in the nucleus [13]. For instance, the element carbon has six protons

in the nucleus, but the number of neutrons varies resulting in different isotopes, like

12C and 14C, which have six and eight neutrons in the nucleus, respectively. The

superscript gives the total number of nucleons (protons and neutrons) in the nu-

cleus. Rare-isotopes are radioactive isotopes that will ultimately decay, some in an

extremely short period of time (e.g. less than a millisecond) [16]. Some examples of

rare-isotopes are Sodium-35 (35Na) and Magnesium-38 (38Mg), both with half-lives

(time taken for half of the particles to decay) to be approximately 10 ms [5]. The

rare-isotopes exist in nature where nuclear reactions are taking place, like core of

stars, supernovae, and neutron stars. Experimental study of rare-isotopes thus re-

quire that they be produced through nuclear reactions like projectile fission—where

a single, large parent nucleus is separated into two, smaller daughter nuclei—or pro-

jectile fragmentation where some number of neutrons and protons are removed by

abrasion with the reaction target nuclei. Nuclear physicists are interested in measur-

ing the properties of rare-isotopes—such as mass, momentum, charge, and excitation

structure—and in conducting experiments involving further nuclear reactions induced

by the rare-isotopes generated. Details of the rare-isotopes we use in our work will

be discussed in section 4.2.
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Figure 2.2: Isotopes of the element Hydrogen, 1H, 2H, and 3H, all have one proton in their
nucleus but have 0, 1, and 2 neutrons, respectively. The size of the nucleus
relative to the electron cloud is not scaled. The actual size of nucleus is on
the order of 105 times less than the electron cloud [13].

2.2 Magnetic field and Lorentz force

A common bar magnet consists of a north pole (N) and a south pole (S). The

magnetic field is a vector field defined as pointing out of the north pole and pointing

into the south pole. By connecting those vectors together we can obtain the magnetic

field lines, which always form a closed loop going out from N and into S outside the

magnet, and continuing to close the loop by going from S to N inside the magnet.

Note that the magnetic field lines never cross each other, since at any given point,

the magnetic field has a unique magnitude and direction.

Magnetic fields influence the motion of moving charged particles including elec-

trons and ions, due to the fact that the magnetic field exerts a force, called the Lorentz
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force, on any moving charged particles.

F⃗mag = Q (v⃗ × B⃗) (2.1)

Here Q is the charge of the particle, v⃗ is its velocity vector, and B⃗ is the magnetic

field. Due to the nature of the vector cross product, the direction of the Lorentz force

is always orthogonal to both the direction of the particle’s velocity and the direction

of the magnetic field. This results in a change in the direction of motion of the charged

particle, while leaving the magnitude of the particle’s velocity unchanged [6].

2.3 Bending magnets

The simplest magnetic field one can imagine is a constant, uniform field, which

has both a constant direction and strength. Such a field may be approximated by

positioning the North pole directly opposite the South pole, as shown in Figure 2.3.

In the ideal case, the magnetic field lines inside the region between the poles are all

pointing straight downward. A charged particle beam travelling through the dipole

magnetic field will be bent in the direction orthogonal to both the direction of the

B-field and direction of motion of the particle with the curvature of bending linearly

proportional to the dipole field strength, according to the Lorentz force (Eq. 2.1).

If we have a large enough dipole field, and the particle’s motion is perpendicular to

the field, the particle will move in a circle—the Lorentz force and the corresponding

acceleration being always perpendicular to the direction of motion. This phenomenon
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is called the cyclotron motion, which can be used to experimentally determine the

particle’s charge-to-mass ratio. In our ion optical systems dipoles are used to bend

the particle beam either left or right, consequently producing an angular and spatial

divergence between particles of different momenta [23].

Figure 2.3: Schematic diagram of a magnetic dipole. It includes an iron yoke (dark blue),
including two pole tips, and electric wires (orange) surrounding the pole tips.
In this case, the upper pole is N and the lower is S. The black arrows besides
“N” and “S” pointing downward represent the direction of the magnetic field
vectors. Light orange lines between the pole tips represents the magnetic field
lines. The red sphere at the center represents a positively-charged particle
travelling into the page, with the force exerted by the field therefore pointing
to left [14].

Modern dipoles for ion optical systems in nuclear physics use current carrying coils

to induce the magnetic fields, as shown in Figure 2.3 by the orange wires wrapping the

blue poles. The magnetic field strength—and thus the degree of particle bending—can

then be controlled by changing the current flowing in the coils.
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Figure 2.4: Schematic diagram of a magnetic quadrupole consisting of an iron yoke (dark
blue), four shaped pole tips labeled in “N” and “S”, and current-carrying coils
(orange) wrapping the poles. The black arrows beside “N” and “S” represent
the direction of the magnetic field. Light orange lines between the pole tips
represent the magnetic field lines, and the red ellipse at the center represents
a positively-charged particle [14].

2.4 Focusing magnets

Just as a magnetic dipole has two poles (N and S), a magnetic quadrupole has four

poles (Figure 2.4), with N and S arranged alternatively around the central, symmetry

axis. The magnetic quadrupole will focus the moving charged particles in one plane

(horizontal or vertical) and defocus them in the other plane (vertical or horizontal).

As before, the beam deflection must be perpendicular to both the direction of the

particle motion and the direction of the magnetic field, according to the Lorentz force

law. Conceptually one may think of the function of a magnetic quadrupole as being

similar to a thin lens that is convex in one plane and is concave in the perpendicular

plane [23].
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Consider sending a positively-charged particle beam into the page through the

quadrupole in Figure 2.4. In the x-direction (horizontal plane), particles to the left

will be influenced mostly by the left N-S pair of poles and will be deflected to the

left (outward). Similarly, particles directly right of the central axis, between the

right N-S pair will be deflected to the right (outward again). Thus in the x-direction,

positively-charged particles will be deflected outward from the center—defocused—by

this quadrupole. The opposite situation happens in the y-direction, where positively

charged particles will get deflected inward—focused—by this quadrupole. Like a

spherical lens, the bending strength of the quadrupole (both in the horizontal and

vertical directions) increases linearly with the distance from the center. Modern

quadrupoles also use electromagnets to allow for variable focusing and defocusing

strength [23].

Similar to the design of the quadrupole, the magnetic sextupole has six magnetic

poles and the magnetic octupole has eight magnetic poles. In both cases, N and

S poles are arranged alternately. These higher-order focusing elements act in some

ways similar to the quadrupole, with deflection strengths depending on the distance

from the central axis, but instead of focusing and defocusing along the x-y directions,

they do this along the multiple directions of their own planes of symmetry. Also, the

deflection strength of the sextupole and octupole increases with the square and the

cube of the distance from the center, respectively, rather than increasing linearly as

is the case for the quadrupole [23].

In this project, instead of using only quadrupoles, we combine the quadrupole

together with superimposed sextupole and octupole fields as a multipole. The purpose
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of the sextupole and octupole elements is the elimination of higher-order optical

aberrations, as will be discussed in section 2.5.3. The sextupoles and octupoles thus

serve as adjustable higher-order correction elements inside the multipoles.

2.5 Ion optical system

2.5.1 Definition of ion optical system

Telescopes and microscopes are two examples of typical light optical systems,

consisting of a combination of lenses, mirrors, films, screens, and detectors to expand

our vision beyond our purely biological capability. Similar to light optical systems, an

ion optical system consists of a combination of different electric or magnetic fields that

can bend (magnetic dipole), focus (magnetic quadrupole), or otherwise modify the

trajectories of the moving ions (magnetic sextupole and octupole) as well as detectors

that can measure various properties of ions like mass, momentum, kinetic energy, and

charge [10].

For secondary beam experiments involving rare-isotopes produced by nuclear re-

actions induced by primary beam particles impacting a production target, the beam

does not consist of purely one type of particle. Rather the beam is a mixture of

various isotopes. To make measurements involving only one specific type of parti-

cle, we have to first separate the beam constituents according to different criteria

like momentum and charge. An ion optical system that is able to separate particles
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according to momentum and charge is called a spectrometer. Figure 2.5 shows a

ray plot (diagram including magnetic elements and selected particle trajectories) of

a simple spectrometer.

The example spectrometer consists of a triplet of magnetic multipoles and a mag-

netic dipole. The purpose of the multipole triplet is to refocus the divergent ion

beam, whereas the dipole is used to separate the ions by momentum. The resolving

power (ability to distinguish or separate particles) of the spectrometer depends on

the dispersion of the beam produced by the dipoles and depends inversely on the final

beam spot width. With the separated beams at the end of the spectrometer, we are

able to measure and identify each type of particle.

2.5.2 Magnetic rigidity

The magnetic rigidity Bρ refers to the resistance of ions to the bending when

travelling through the magnetic dipole. It is the product of the magnetic field strength

B and the bending radius ρ. This magnetic rigidity is equal to the ratio of momentum

to charge of the ions, and has the unit of Tesla · meter (Tm).

Bρ =
p

q
(2.2)

Here p is the momentum of the ion, and q is the charge carried. While the magnetic

rigidity is a property of a given ion, the beam magnetic rigidity is also used to de-

termine the field settings for the spectrometer. This is because the curvature of the
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beam trajectory through the dipoles is fixed by the design of the spectrometer, due to

the fixed location of the upstream and downstream beamlines. Thus the dipole fields

must always be tuned to bend the ions to be transmitted with the predefined bend

radius. It is worth noting that the product of the maximum design dipole magnetic

field, Bmax, and the bend radius defined by the beamlines, ρ, therefore defines the

maximum magnetic rigidity beams transmissible by a given spectrometer [22].

2.5.3 Higher-order aberration

There are two main reasons why modern spectrometers and separators have grown

in size and complexity relative to the simple spectrometer shown above. The first one

is that we want to make measurements like momentum of the particles at different

positions inside the spectrometer to obtain more information about the particles’

properties and how their properties may change through the system, since properties

like angle, momentum, and charge may change after the nuclear reaction.

The second reason is related to the optical aberrations. Optical aberrations are

produced by deviations of the beam trajectories relative to the trajectories predicted

by the thin lens approximation (assuming all bending occur at same place) and the

paraxial approximation (assuming particles’ angles are close to zero, where sin(θ)

is approximately equal to θ). In our systems, the magnetic focusing elements have

significant lengths, which do not follow the thin lens approximation. Thus large

acceptance systems inherently have significant optical aberrations. Also, defects of

magnetic fields far from the central axis of the system (for these large acceptance
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systems) can produce additional optical aberrations. For a light optical example,

consider a pair of glasses. When looking through the edge of the glasses, especially

for a strong prescription, the image will be blurred compared to looking through

the center of the glass lenses. The same defects occur in ion optical systems, where

trajectories far from the center of the magnetic lenses will deviate from the trajectories

predicted by ideal approximations, resulting in a blurred focus of the particle beams.

As a first approximation, we simulate an ion optical system (i.e. the spectrometer)

in first-order, which is the ideal case with no aberrations. To better predict the real

situation, however, we must simulate the system in higher-order (fifth-order in this

project) which will include the dominant aberrations. Figure 2.6 shows a fifth-order

spectrometer ray plot.

To eliminate the higher-order aberrations, we engage the higher-order correcting

elements, namely the sextupoles and octupoles in the multipoles, as well as adding

extra magnetic elements to the spectrometer. The ion optical system will have more

degrees of freedom of tunable magnetic elements which makes the tuning process a

multi-dimensional problem.
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M5 M5 M5

MS

 2.0

 1.6

 1.6

X-motion

Figure 2.5: Ray plot of a simple spectrometer with three focusing elements and one bend-
ing element. “M5” represents one magnetic multipole focusing element, and
“MS” represents a magnetic dipole. The input particle beam that enters
the system with diverging rays from the left is separated according to dif-
ferent momentum-to-charge ratios (later defined as the magnetic rigidity in
section 2.5.2), illustrated in blue, green, and red color. Ions (blue) with higher
momentum-to-charge ratio will be bent less, thus appearing at the top of the
final focal plane. The red numbers on the top and bottom left indicate the
diameter of multipoles in meters, whereas the red number on the bottom right
indicates the total length of the system in meters. These system parameters
also appear on all the following ray plots.
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Figure 2.6: Fifth-order ray plot of the spectrometer. The major change from first-order
to fifth-order spectrometer is the final focus points for each representative
particle. The low-momentum particles (red) focus much earlier than the high-
momentum particles (blue), which have not yet been focused to one point in
the ray plot. This is caused by the higher-order aberrations.
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Chapter 3

High Rigidity Spectrometer

3.1 Facility for Rare Isotope Beams

The Facility for Rare Isotope Beams (FRIB) is a user facility for nuclear physics ex-

periments operated by Michigan State University and funded by the U.S. Department

of Energy Office of Science. FRIB is designed to produce a variety of rare-isotopes

predicted to exist and to conduct experiments with these isotopes. There are three

main sections in FRIB: a 200MeV/u superconducting heavy-ion driver linear accel-

erator used to accelerate stable isotopes and produce rare-isotopes through nuclear

reactions, the Advanced Rare-Isotope Separator (ARIS) [8] which is capable of col-

lecting and purifying the rare isotope beams from the initial reaction at maximum

magnetic rigidity of 8 Tm, and the High Rigidity Spectrometer (HRS) which is in the

design phase [12].
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3.2 High Rigidity Spectrometer

The HRS will consist of two sections: an analysis beamline called the High-

Transmission Beamline (simplified as HTBL) and the Spectrometer Section. For

the rare-isotope experiments, the high magnetic rigidity allows us to study all the

isotopes of interest at the energies at which they are most efficiently produced. The

purpose of HTBL is to allow the large beam envelope and rigidity from ARIS to reach

the Spectrometer Section and make in-flight measurements of momentum of the par-

ticles before going to the Spectrometer Section. The purpose of the Spectrometer

Section is to separate, identify, and refocus the products of nuclear reactions at the

target (labelled “FS0” in Figure 3.1) involving the incoming rare isotope particles of

interest. Details follow in the remainder of this section [12].

3.2.1 The Spectrometer Section

The Spectrometer Section of HRS starts from focal plane FS0 (end of HTBL) to

FS2 (end of the whole HRS) in Figure 3.1, which includes six multipoles listed as QS1

through QS6 (the final letters “A” and “B” in the names refer to the specific multipole

designs), and two dipoles DS1 and DS2. Figure 3.2 and 3.3 show the first-order and

fifth-order ray plots for the Spectrometer Section in both horizontal (x) and vertical

(y) directions. The Spectrometer Section is designed to separate and identify the

products of nuclear reactions between incoming particles from the upstream HTBL

and the reaction target at FS0. The particle distribution starts as a cluster at FS0,

and particles with different momenta focus separately at FS2. Thus we call FS2 a
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Figure 3.1: Layout of HRS consisting of HTBL and the Spectrometer Section. The gray
and yellow boxes represent the quadrupole and dipole magnets respectively.
The first letters of the magnets’ names denote the element types: “F” for a
focal plane, “D” for a dipole magnet, “Q” for a multipole magnet, and “T”
for a multipole triplet (Used with permission from [12]). FS0 is the location
of the reaction target.

dispersive focal plane.

The magnetic field strengths of the quadrupoles are determined by the basic prop-

erties desired of the optical tune, to give a clear dispersive focal plane at FS2 while

containing the ray envelope within the system apertures (see the first-order ray plot

in Figure 3.2 top) [12]. But we have to correct for the effect of the higher-order

aberrations by tuning the higher-order correcting elements, namely the sextupoles

and octupoles (including in total 12 tunable elements: 6 multipoles times 2 per mul-

tipole). Because the products of rare-isotope reaction are measured at FS2, we need

to minimize beam losses in the system before FS2. Therefore the goal of higher-order

tuning for the Spectrometer Section is to maximize the transmission rate. The uncor-
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rected Spectrometer Section has the transmission rate of 57.5% for fission fragments

that are challenging to be transmitted.

3.2.2 High-Transmission Beamline (HTBL)

The High-Transmission Beamline (HTBL) starts from FB0, the end of ARIS, and

ends at FS0, the reaction target of the Spectrometer Section. It consists of eight

multipole triplets (a series of three multipoles) listed as TB1 through TB8, and four

dipoles DB1 to DB4. Figure 3.4 and 3.5 show the first-order and fifth-order ray plots

for HTBL in both x and y-directions. HTBL is designed to transport rare-isotopes

from ARIS to the Spectrometer Section and measure particles’ momenta at focal

planes FB1 and FB3. Thus the particles enter HTBL at a single achromatic beam

spot (all momenta focused at the same location), with dispersive foci at FB1 and

FB3 (horizontal position depends linearly on momentum), and eventually is refocused

again to an achromatic image (all particle beams back to the same position) at FS0.

Similar to the tuning of the Spectrometer Section, we need to reduce the higher-

order aberrations in HTBL by tuning the sextupoles and octupoles inside each mul-

tipole (totally 48 tunable elements: 8 triplets times 3 multipoles per triplet times 2

per multipole). The goal of higher-order tuning for HTBL is much more complicated

than that for the Spectrometer Section, because it needs to provide a high transmis-

sion rate, a small beam spot size at FS0 (which determines the resolving power of the

Spectrometer Section), and clear dispersive foci at FB1 and FB3. Details of how to

achieve this goal will be discussed in section 4.4.
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Figure 3.2: Top: first-order ray plot of the Spectrometer Section in horizontal (x) direction
with clear dispersive focus at FS2 (end of the system), and all the particles
trajectories contained inside the system apertures. Bottom: fifth-order ray
plot. Blurred dispersive focus at FS2 with some particles in the distribution
outside the acceptance of the system (top red lines at 5th “M5” multipole).
Note that unlike the simple spectrometer in section 2.5, the central axis of the
ray plot here has been straightened for clarity of the plotting. This technique
has been used for all the rest of the ray plots.
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Figure 3.3: Top: first-order ray plot of the Spectrometer Section in vertical (y) direction.
Bottom: fifth-order ray plot in y-direction. Since the Spectrometer Section
separates particles by momentum only in x-direction, ray plots in y-direction
do not carry much important information.
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Figure 3.4: Top: first-order ray plot of HTBL in x-direction. Clear dispersive foci at FB1
(between 3rd and 4th triplet from left side) and FB3 (between 5th and 6th

triplet), and perfect achromatic focus at FS0 (end of HTBL). Bottom: fifth-
order ray plot of HTBL in x-direction. Blurred dispersive foci at FB1 and
FB3, and a large beam spot (unfocused) at FS0.
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Figure 3.5: Top: first-order ray plot of HTBL in y-direction. Clear achromatic foci at
FB1, FB3, and FS0. Bottom: fifth-order ray plot of HTBL in y-direction.
Blurred achromatic foci at FB3 and FS0.
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Chapter 4

Monte Carlo simulation

4.1 Monte Carlo simulation

Since HRS has not yet been built, we use computer programs to simulate the tra-

jectories of rare isotope beams travelling through the system. Monte Carlo simulation

is a method of random sampling and statistical modeling to estimate mathematical

functions and mimic the operations of complex systems. A well-known example of

using Monte Carlo simulation is the “Buffon’s needle”, which is a method designed

by Georges-Louis LeClerc, Comte de Buffon in the 18th century to estimate the value

of π using random tosses of needles onto a equally-spaced lined sheet [7]. In this

project, we use Monte Carlo simulation to mimic the operation of particle generation

from the upstream of HRS to calculate the transmission rate, beam spot size, and

clarity of dispersion at dispersive foci.
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4.2 Input particle distribution

Since the Spectrometer Section and HTBL have different operation goals, we

use separate input particle distributions for the simulation. For the Spectrometer

Section, we use data of real fragments from nuclear fission reactions from the Los

Alamos Laboratory [24]. The reason of using this specific particle distribution for the

transmission rate optimization is that the fission fragments are extremely challenging

to be transmitted with a huge divergent distribution. The particle distribution has

five main coordinates: horizontal position x and horizontal angle a, vertical position

y and vertical angle b, and kinetic energy deviation dk. Figure 4.1 shows the shape

of particle distribution being used.

We use Monte Carlo simulation to generate separate input particle distributions

for HTBL, which in this project is Magnesium-40 (a rare-isotope near the very edge

of nuclear stability) whose observation was first reported in 2007 [18]. We choose this

particle distribution because we want to tune the HTBL system so that it can both

transmit rare-isotopes and make in-flight measurements of their momentum and the

broad distribution of 40Mg—due to the energy straggling during its production in a

very thick reaction target—makes it a challenging case. The particle distribution of

40Mg is generated with the distribution properties provided by LISE++, a program

designed to simulate the operation of radioactive beam production [19]. We use Gaus-

sian distributions to approximate the real distribution of particles with respect to each

of five coordinates, which approximates the production distribution of fragmentation

products well.
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(a) (b)

Figure 4.1: The input particle distribution of fission fragments generated through Monte
Carlo simulation and used for the Spectrometer Section of HRS. (a) Shape
of particle distribution with respect to horizontal angle a and kinetic energy
deviation dk. The horizontal axis has units of mrad and the vertical axis is
dimensionless. Blue particles are particles that can be transmitted through
the Spectrometer Section, whereas red ones are rejected. We chose to center
particles with dK = 0.0825, to maximize the transmission rate in the un-
corrected system, thus most transmitted particles have relatively high kinetic
energies. (b) Histogram showing the particle distribution with respect to ki-
netic energy deviation dk. Blue line represents the total distribution, red for
rejected particles, and green for transmitted ones.

4.3 COSY Infinity: transfer matrices and particle

tracking

The computer program we use for the simulation of moving particles in the Spec-

trometer Section and HTBL is called COSY Infinity (simply referred as COSY).

COSY is able to simulate the effect of the different magnetic field shapes on the tra-

jectories of particles by integrating the field derivatives along the system to produce
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transfer matrices. These matrices allow the tracking of changes in positions x and y,

angle a and b, and kinetic energy deviation dk as particles travel through the magnetic

elements (i.e. multipole or dipole) in the ion optical system [11].

The basic principle of how we track the changes of positions, angles and energy

deviation is through matrix multiplication shown in Eq. 4.1. COSY is able to produce

transfer matrices, a matrix with each element representing the relation between old

coordinates to new coordinates after going through the magnetic fields (e.g. (xf |ai)

represents the relation between final horizontal position xf and initial horizontal angle

ai). By multiplying the transfer matrix with each original particle trajectory, a vector

with elements xi, ai, yi, bi, dki, it will return the new particle trajectory as a vector

with xf , af , yf , bf , dkf . The dots in the particle trajectory vectors and transfer matrix

refer to the other particle coordinates that are less important than positions, angle

and energy deviation.



xf

af

yf

bf

dkf
...


=



(xf |xi) (xf |ai) (xf |yi) (xf |bi) (xf |dki) . . .

(af |xi) (af |ai) (af |yi) (af |bi) (af |dki) . . .

(yf |xi) (yf |ai) (yf |yi) (yf |bi) (yf |dki) . . .

(bf |xi) (bf |ai) (bf |yi) (bf |bi) (bf |dki) . . .

(dkf |xi) (dkf |ai) (dkf |yi) (dkf |bi) (dkf |dki) . . .

...
...

...
...

...
. . .


·



xi

ai

yi

bi

dki
...


(4.1)

The matrix multiplication shown in Eq. 4.1 is only in first-order, where we assume
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linear relations between each pair of coordinates. However, in our fifth-order simula-

tion, coordinates have more complicated relations, up to fifth-order polynomials. For

example, the relation between xf and ai can be a Taylor expansion up to fifth-order

in Eq. 4.2.

xf = (xf |ai)ai + (xf |a2i )a2i + (xf |a3i )a3i + (xf |a4i )a4i + (xf |a5i )a5i (4.2)

where (xf |aki ) refers to kth-order relation between xf and ai for k = 1, 2, 3, 4, 5. In

addition, there are other relations among three or more coordinates. For instance,

(xf |a2i yibidki) and (xf |aiyib2i dki) refer to fifth-order relations among all five coordi-

nates. This results in a much larger and more complex transfer matrix which is

cumbersome to show here.

COSY computes one transfer matrix from the beginning up to a given position in

the ion optical system (e.g. from the beginning of HTBL to FB1). By doing the matrix

multiplication at each element, we can monitor the trajectories of particles travelling

through the whole system. The ray plots like Figure 3.2 and 3.4 are produced by

connecting the particles after each element with smooth curves.

4.4 Optimization objectives

The tuning process of both the Spectrometer Section and HTBL is the optimiza-

tion to be considered, in which we want to find the best magnetic field strengths for

all of the higher-order magnetic elements in the systems. To quantitatively optimize
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the systems, we need to define the optimization objectives by mathematical expres-

sions involving physical observables (variables that can be physically measured). For

example, the optimization objective for the Spectrometer Section is simply the trans-

mission rate, which can be measured as the fraction of the number of transmitted

particles to the total number of incoming particles.

As mentioned in section 3.2.2, the optimization of the HTBL needs to consider

the transmission rate, the beam spot size at FS0, and the clarity of the dispersive foci

at FB1 and FB3. The transmission rate can be calculated using the same method as

for the Spectrometer Section. The beam spot at FS0 (at the end of the HTBL) is a

two-dimensional distribution in the xy-plane. The uncorrected beam spot produced

by the simulated 40Mg beam distribution is shown in the upper pane of Figure 4.2.

To describe the spot size, we assume the distribution in both x- and y-directions

follows Gaussian distribution and use the standard deviations of fitted Gaussians as

the objectives, labeled as xRMS and yRMS (RMS stands for root mean square, the

way to calculate standard deviation).

For the dispersive foci at FB1 and FB3, the HTBL should separates particles

horizontally purely according to momentum. Thus, at the dispersive foci we expect

that for a certain value of momentum, which is related to the coordinate of kinetic

energy deviation dk (the fractional energy deviation from the average kinetic energy),

the particles should focus at a single, precise horizontal position. This results in a

linear relationship also between the position x and dk at these dispersive focal planes.

Figure 4.2 (middle and lower panes) show the linear relationship between x and dk

at FB1 and FB3 respectively.
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We divide the continuous particle distribution into 100 slices in dk, with each

slice expected to be a thin Gaussian distribution in the case of a pure, momentum-

dispersive focus. We then take the average standard deviation of x over all the slices

as an objective to be minimized, since this describes the quality of the dispersive foci.

These average slice standard deviations at each focus are denoted xFB1 and xFB3 in

the objective function (Eq. 5.4). The smaller the values for xFB1 and xFB3 are, the

better the quality of the dispersive foci present. Therefore, the overall optimization

objective can be described using transmission rate, xRMS, yRMS, xFB1, and xFB3.
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Figure 4.2: Top: uncorrected beam spot at FS0 at the end of the HTBL. We assume
a Gaussian distribution in x and y. Middle and bottom: Graphs show the
linear relationship between x and dk at the dispersive focal planes FB1 and
FB3 respectively. Note that the linear relation is not perfectly uniform, which
indicates blurred dispersive foci corresponding to Figure 3.4 bottom. The
units for x and y are meters, and dk is dimensionless.
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Chapter 5

Particle Swarm Optimization

(PSO)

5.1 Basic function of PSO

In section 3.2, we explain why we need to optimize the field strengths of the higher-

order correction elements (i.e. the sextupoles and octupoles inside multipoles) for the

Spectrometer Section and HTBL. Optimization here means finding the magnetic field

settings to improve the spectrometer performance as described quantitatively relative

to certain tuning goals. For both systems, the optimization involves multiple variables

(12 for the Spectrometer Section and 48 for HTBL). To systematically solve the

optimization problem for both the Spectrometer Section and HTBL, we use a multi-

dimensional global optimization algorithm, Particle Swarm Optimization (PSO), to
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numerically determine the best magnetic field settings for each magnetic element

through a series of steps. The word “global” indicates that PSO is designed to avoid

finding and being trapped by local best solutions, and “multi-dimensional” means

PSO is able to optimize multiple variables simultaneously.

PSO is a parallel evolutionary optimization technique first developed in 1995 by

Kennedy and Eberhart [9]. “Parallel” implies that multiple trial solutions can be

evaluated simultaneously—allowing simulation-based optimizations to run orders of

magnitude faster on multi-core compute machines—and “evolutionary” implies that

the algorithm optimizes over a series of steps [21]. The algorithm is based on a

social behavior metaphor—how a swarm of bees or a flock of birds find the location

of a food source in a three-dimensional space. At first, the bees move in random

directions gathering information about the position of food sources in each of their

local neighborhoods. As the swarm explores the space, one of them will reach the

closest position yet found to food and communicate that “best” position to the other

bees in the swarm, telling them to focus further exploration in that region. All

the other randomized swarm members will then accelerate toward the current best

position (either changing the direction or magnitude of their velocity vector in the

multi-dimensional solution space). During the process, another bee may find an even

closer (improved) best position, and once this new best position is communicated to

the swarm, all other bees will then experience accelerations toward the updated best

position. After many optimization steps, bees eventually will gather together (i.e.

converge) at the global best position, metaphorically, the location of the food.

With this similar technique, we develop the optimization algorithm replacing
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“bees” with generalized swarm particles. A swarm particle represents a multi-dimensional

vector, with each dimension representing a complete set of higher-order magnetic field

settings for the system (i.e. a 12-dimensional vector for the Spectrometer Section and

a 48-dimensional vector for the HTBL). The reader is advised to carefully avoid

confusing the swarm “particles” moving through solution space with the physical

particles (real or simulated ions) being transmitted through the spectrometer in the

experiment. These two are not the same thing.

The algorithm works as follows. Before the optimization starts, we define the op-

timization objective using a mathematical function, which includes all the values we

want to reduce in order to improve the system performance (lower objective function

value is always better). At the beginning (step 0), twenty swarm particles are given

randomized values from a Gaussian distribution for each dimension of the position

and velocity vectors, within the limits of the magnetic field strength. The higher-

order magnet tunes defined by each swarm particle’s position are taken as input to

the COSY simulation of the system and—using Monte Carlo calculations—the per-

formance of each tune is rated according to the objective function value, with one of

them having the lowest objective function value. The particle position that achieved

the best objective function value so far (gBestObj) is then called the global best posi-

tion (x⃗gbest). The rest of particles in the swarm will then accelerate with randomized

accelerations toward the current global best position (x⃗gbest) and its personal best po-

sition (x⃗pbest—the best value achieved by that particular swarm particle so far) while

continuing to explore the solution space trying to find an even better one. Equations
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5.1 and 5.2 show how a swarm particle evolves at each optimization step.

x⃗′ = x⃗+ v⃗ (5.1)

where x⃗ and x⃗′ are the old and new positions of the swarm particle, whereas v⃗ is the

current velocity. PSO then updates the velocity of the swarm particle by Eq. 5.2:

v⃗′ = inertia · v⃗

+ acceleration · randUniform(0, 1) · (x⃗gbest − x⃗)

+ acceleration · randUniform(0, 1) · (x⃗pbest − x⃗) (5.2)

where v⃗ and v⃗′ are the old and new velocities of one swarm particle, x⃗gbest is the current

global best position (shared by all the swarm particles), and x⃗pbest is the personal best

position for this swarm particle. The random number from the uniform distribution

provides flexibility for the swarm particles to explore over the whole solution space

[9]. Parameters inertia and acceleration are the internal parameters of PSO, which

will be discussed in section 5.2.

In the ideal case, where the algorithm finds the real global best value at step 0, the

rest of swarm particles will eventually converge to the close neighborhood of that gBest

value over a series of steps. It is far more likely that during the process of converging,

another swarm particle finds a better value at some later optimization step. This

new gBest will then replace the previous gBest value and all other swarm members

will be attracted toward it, as the new gBest value. The output is the vector with

each dimension (magnetic element) optimized to provide the best overall gBest value
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Figure 5.1: Plots showing the evolution of one dimension of a particle swarm during an
optimization for different internal PSO parameter settings. Here the different
swarms evolve analogously to over-damped [upper plot], critically-damped
[center plot], and under-damped [lower plot] mechanical oscillations. The
randomized initial values all converge or tend to converge toward one position
(i.e. field setting) over the course of 50 optimization steps. The internal
parameter settings for the swarm plots are: top - (0.1, 0.1); middle - (0.475,
0.25); bottom - (0.85, 0.4), which will be discussed in section 5.2.
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when we stop the optimization at 50 steps. Due to the significant computation time

required, we choose to optimize the system for 50 steps, which takes between 6 and

12 hours (depending on the size of the system and the number of particles simulated

in Monte Carlo) to complete a single simulated optimization. The exploration of one

dimension of a swarm (representing the setting of a single magnetic field strength)

can be illustrated using swarm plots in Figure 5.1. The difference among three swarm

plots will be explained later in this chapter.

For the Spectrometer Section and HTBL, the complete behavior of the multi-

dimensional swarms is shown in Figures 5.2 and 5.3 respectively, with each pane

representing one dimension of the evolving swarm.

5.2 Internal parameters: inertia and acceleration

There are two essential internal parameters in the PSO algorithm that determine

how the swarms explore the multi-dimensional solution space in search of the global

best location:

• inertia - the tendency of swarm particles to maintain their initial velocities.

Mathematically it is the fraction of the swarm particles’ velocities that will be

preserved in the next step.

• acceleration - how quickly swarm particles accelerate toward gBest values.

These internal parameters are unitless because they apply as scaling factors in cal-
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Figure 5.2: Complete swarm plots for the Spectrometer Section. Each swarm plot repre-
sents one dimension of the swarms (one magnetic field strength value). The
horizontal axes are steps from 0 to 50, and vertical axes are magnetic field
strength in Tesla with the same upper and lower limits set to be ±1 T.

culation. The parameter pair (inertia, acceleration) defines one internal parameter

setting of the PSO. The ranges of inertia and acceleration values that provide rea-

sonable dynamic behavior of the swarm particles are [0,4] for inertia and [-1,1] for

acceleration [21]. Note that the acceleration parameter does not give the acceleration

of the swarm particles directly. Rather, the acceleration parameter determines the

range of randomized accelerations possible. The effects of changing the internal pa-

rameter settings can be observed in the previous Figure 5.1, with the top one from

setting (0.1, 0.1), middle one from setting (0.475, 0.25), and bottom one from set-

ting (0.85, 0.4). In general, we prefer the setting whose swarm plot has a pattern of
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Figure 5.3: Complete swarm plots for a higher-order optimization for the HTBL. The left
twenty four plots (top if viewed in landscape) are the sextupoles’ optimiza-
tions and the right twenty four plots (bottom if viewed in landscape) are the
octupoles’ optimizations. The horizontal axes (in this case increasing up the
page) are steps from 0 to 50, and vertical axes (in this case increasing to the
left) are magnetic field strength in Tesla with the same upper and lower limits
set to be ±0.3 T.
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under-damped oscillation because we want the swarm to be able to explore the spaces

repeatedly while still converging relatively quickly (within 50 steps). Therefore the

preferred setting among these three is (0.85, 0.4).

However, we cannot simply conclude that the internal parameter setting (0.85, 0.4)

is the best setting of the PSO for the optimization of the HRS without systematic

verification. We aim to find the internal parameter setting of the PSO that gives the

best performance for both the Spectrometer Section and the HTBL by exploring a

range of internal parameters centered at (0.85, 0.4) changing up and down in steps

of 0.05 for both parameters (i.e. testing inertia values of 0.8, 0.85, and 0.9 together

with acceleration values of 0.35, 0.4, and 0.45). By analyzing the performance of

the PSO under each internal parameter setting, we can identify the best setting for

HRS optimization. To make statistically significant conclusion on the robustness of

the optimization based on each parameter setting, we complete twenty optimizations

with same parameter setting.

5.3 Defining objective functions

As mentioned in section 5.1, the PSO algorithm optimizes the higher-order mag-

netic field strength settings for HRS by reducing the objective function value. For

each of the unique optimization goals for the Spectrometer Section and the HTBL,

we design a specific objective function. For the single-objective optimization of the
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Spectrometer Section, we define the objective function as

gBestObj = 1− fracTrans (5.3)

where gBestObj represents the global best objective function value and fracTrans rep-

resents the transmission rate defined as the fraction of beam particles entering the

system that are successfully transmitted through.

For the multi-objective optimization of the HTBL, we need to take the impor-

tance of each objective into account. Due to the design purpose of HTBL [12], the

most significant objective is the beam spot size in x-direction, referred as xRMS as it

determines the spectrometer’s resolving power. The second most significant objective

is the quality of the dispersive foci at FB1 and FB3, referred as xFB1 and xFB3. The

transmission rate fracTrans and beam spot size in the y-direction—yRMS—are the

least significant objectives. Thus we need a weighted objective function to appropri-

ately prioritize the reduction of the various objective function components. We first

apply weights so that the final desired values of each objective function term will be

of the same numerical order. For instance, to make xRMS (typically around 0.002

m) in the same number order as 1-fracTrans (typically around 0.01 for 40Mg in the

HTBL), we add a multiplicative factor of five to xRMS. To properly emphasize each

of the remaining terms, we add more factors from high to low in order, finally arriving

at the weighted objective function for the HTBL as:

gBestObj = 1− fracTrans + 25 · xRMS + 3 · yRMS + 10 · xFB1 + 10 · xFB3 (5.4)
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The computational framework we use for PSO is called ROOT, which is a data

analysis framework written in C++ capable of statistical calculation and visualization

[2].
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Chapter 6

Data acquisition and analysis

6.1 Method of group simulation and analysis

As different internal parameter setting (inertia, acceleration) of the PSO affects the

performance of the optimization, the purpose of this project is to find the best internal

parameter setting for the Spectrometer Section and HTBL. To define a “good” set of

internal parameters, we consider the quality of the final optimization results (i.e. the

global best objective function value, lower being better) and the reliability, since we

need to ensure when we apply PSO to a real system, it can optimize the system reliably

(i.e. without the need for many repeated optimizations to find a well-performing

tune).

The way we quantify the goodness of the final result and reliability is to use the
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average result of multiple optimizations with the same set of internal PSO parameters.

Specifically, we take the average of the best 60% of the optimization runs, because we

only want the PSO to work well most of the time instead of always, and the top 60%

also represent the best results for one setting. Due to the time limit, we decide to

operate the PSO 20 times for each one of the internal parameter settings. To produce

different optimizations for each of the 20 trial runs, we use unique random number

generator seeds inside the PSO algorithm, doing our best to provide randomization

processes of initial swarm positions and velocities covering the whole exploration

spaces of swarms.

We designate the internal parameter space (collection of all internal parameter set-

tings) that we want to explore as being centered at setting (0.85, 0.4), which has been

tested to be a good setting in earlier experimental online optimization [1]. The explo-

ration of internal parameter space for optimizing the transmission of the Spectrometer

Section for fission fragments was completed in the summer of 2021, testing all possible

combinations of the parameter settings: inertia [0.8, 0.85, 0.9] and acceleration [0.35,

0.4, 0.45] (a total of nine settings). For the more challenging multi-objective HTBL

optimization, we explored a wider internal parameter space, hoping to extract more

information about the overall shape of the internal parameter space because earlier

exploration in the Spectrometer Section did not identify a minimum within the range.

The PSO parameter space for the optimization of the HTBL included inertia values

[0.75, 0.8, 0.85, 0.9, 0.95] and acceleration values [0.3, 0.35, 0.4, 0.45, 0.5] (25 settings

in total).
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6.2 Results

6.2.1 Optimization for the Spectrometer Section

Before evaluating the performance of the PSO with different internal parameter

settings, we first compare the optimization objectives and the overall objective func-

tion values (defined as Eq. 5.3) before and after the optimization to confirm that

the system has been successfully optimized. Table 6.1 shows how the objectives were

improved by the optimization.

The transmission rate of the fission fragments through the Spectrometer Section

has been successfully improved by 10% for one of the PSO internal parameter settings.

We are also interested in seeing how the trajectories of particles change in the ray

plot. Figure 6.1 shows the fifth-order ray plot after optimization. The difference is

not obvious because the ray plot only shows the trajectories of selected characteristic

rays through the system, rather than the full, realistic particle distribution. However,

we do see fewer particles escape from the system at the entrance of the 5th “M5”

multipole and clearer dispersive foci (not our priority and thus not included in the

objective function) at the end of the Spectrometer Section.

Table 6.1: Improvement of optimization objectives for the Spectrometer Section with one
PSO internal parameter setting.

Uncorrected Corrected
gBest Obj. 0.425 0.370
fracTrans 0.575 0.630
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Figure 6.1: Corrected fifth-order plot of rays through the Spectrometer Section on the
horizontal plane (x direction) with optimized higher-order magnetic field
strengths. A clearer dispersive focus at FS2 than uncorrected fifth-order ray
plot. Note that the goal of optimization was only the transmission rate.

After we confirm the effect of the optimization, we compare the performance of

the different internal parameter settings by comparing the average of the global best

objective function value obtained for the best 60% of the optimization runs from

each setting. We then produced a contour plot with the internal parameter space

on the x and y axes and the corresponding best 60% averaged global best objective

function values on the z axis. Figure 6.2 shows the performance of the optimizer over

the explored internal parameter space for the Spectrometer Section. Note that lower

gBest objective function values imply better optimization results.
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Figure 6.2: Plot of internal parameter space of PSO for the Spectrometer Section. The
internal parameter space is on the x and y axes and the corresponding best
60% averaged global best objective function value is on the z axis. Setting
(0.9, 0.45) gives the best performance (top right in blue).

By looking at the overall shape, we clearly see a lowest spot at the top right

corner of the parameter space, which corresponds to the setting (0.9, 0.45). The

parameter space tends to get systematically lower when exploring toward the direction

with higher inertia and acceleration. Due to the limited size of explored parameter

space, we are unable to demonstrate that (0.95, 0.4) is the best parameter setting

for the Spectrometer Section. The analysis of the internal parameter space for the

Spectrometer Section is simple because it uses a single-objective optimization.



CHAPTER 6. DATA ACQUISITION AND ANALYSIS 50

6.2.2 Optimization for HTBL

The optimization of the HTBL is much more complex than that of the Spectrom-

eter Section, mainly because it has more correcting elements and includes multiple

objectives that must be simultaneously improved by the optimization algorithm. As

PSO optimizes HTBL by lowering the objective function value defined in Eq. 5.4, we

are able to compare the optimization objectives before and after the optimization, as

shown in Table 6.2. Together with the uncorrected and corrected fifth-order ray plot

of HTBL (Figure 3.4 and 6.3), we are able to see clear and gratifying improvement

of the system performance.

In Table 6.2, all of the individual optimization objectives have been improved

in addition to a reduced global best objective function value after the optimization.

Individually, xRMS and xFB1 have been improved the most, with a fractional de-

crease of 45% and 27% respectively (even though xRMS only decreases by 0.8 mm, it

tremendously improves the momentum resolving power of the system). The behavior

can be explained by our design of the objective function. As xRMS has the greatest

weight in the objective function, it is encouraged for the optimizer to improve xRMS

Table 6.2: Improvement of optimization objectives for HTBL with one PSO internal pa-
rameter setting.

Uncorrected Corrected
gBestObj 0.1187 0.0764
fracTrans 0.9813 0.9825

xRMS (at FS0) 0.0018 (m) 0.0010 (m)
yRMS (at FS0) 0.0044 (m) 0.0040 (m)

xFB1 (average dk slice xRMS at FB1) 0.0015 (m) 0.0011 (m)
xFB3 (average dk slice xRMS at FB3) 0.0013 (m) 0.0012 (m)
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Figure 6.3: Corrected fifth-order plot of selected characteristic rays through the HTBL
in the horizontal plane with optimized higher-order magnetic field strengths.
Clearer dispersive foci at FB1 and FB3 than in the uncorrected fifth-order
plot are evident, as well as a much smaller beam spot in x-direction at FS0.
One thing that is unexpected is that the trajectories become more symmetric
along the central axis, which is significantly different from the asymmetric
shape before optimization.

more than other objectives. Similarly, xFB1 and xFB3 are expected to be improved

moderately since they have the second significant weights. The reason why xFB1 is

improved more than xFB3 could be that a clear dispersive image at FB1 is sufficient

to provide the desired performance even without improving the dispersive image at

FB3. The other two objectives, fracTrans and yRMS have not changed much due to

their low weights in the objective function. These changes of optimization objectives

are also reflected in Figure 6.4, where we plot the beam spot at FS0 and linear relation
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between x and dk at FB1 and FB3.

Table 6.2 shows the best optimization results we get among all of the PSO trial

runs, where all the objectives are improved by some amount. Nevertheless, as we

analyze the optimization results using different internal parameter settings, we found

that in most cases, not all of the objectives are improved, especially the ones that

have relatively low weights in the objective function (i.e. yRMS and fracTrans). The

low weights of these terms can result in their actually getting worse over the course of

the optimization, but it is still necessary to include them in the objective function to

avoid getting out of control. Therefore to see how each objective evolves during the

optimization, we plot the objectives along with the optimization steps for one internal

parameter setting, as shown in Figure 6.5 to 6.8. In short conclusion, the objectives

that have relatively high weights are improved continuously over optimization steps,

and the ones with less significant weights keep fluctuating between being sacrificed

and being improved.

Finally, we compare the performance of PSO optimizations with different internal

parameter settings with contour plots. Similar to the analysis of how each optimiza-

tion objective evolves in the trending graphs, we make a separate contour plot for

each component of the objective function. Looking at the shape of the contour plot

for the overall objective function value (Figure 6.9), we see a clear minimum close to

the center and gentle increment over the rest of the PSO parameter space. Since lower

objective function values represent better overall performance, we conclude that the

best pair of internal parameters (illustrated by the darkest blue spot toward the top

right corner) are the pair with inertia of 0.9 and acceleration of 0.45. The 60% mean



CHAPTER 6. DATA ACQUISITION AND ANALYSIS 53

x
0.04− 0.02− 0 0.02 0.04

y
0.04−

0.02−

0

0.02

0.04

dk
0.04− 0.02− 0 0.02 0.04

x

0.1−

0.05−

0

0.05

0.1

dk
0.04− 0.02− 0 0.02 0.04

x

0.1−

0.05−

0

0.05

0.1

Figure 6.4: Upper: corrected beam spot at FS0 from HTBL with both axes in meters.
Compared to the uncorrected beam spot in the upper pane of Figure 4.2,
the beam spot size has been significantly reduced in the x-direction. Middle
and lower: graphs showing the relationship between x and dk at dispersive
foci FB1 and FB3, respectively, after optimization. x is in meters, and dk
is dimensionless. The left half of the linear relation has become thinner,
indicating better dispersive foci at FB1 and FB3 as shown in Figure 6.3.
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Figure 6.5: Graph of the evolution of the global best objective function value during
optimization of the HTBL in one specific trial run of PSO. The global best
objective function value decreases monotonically, which means the system
is being optimized according to our definition of the optimization objective.
Note that the vertical axis does not start from 0 (same for all the following
evolution plots).

objective value for this parameter setting is 0.0798, which is approximately 10% lower

than the 60% mean of the worst setting (0.0895). On the other hand, compared to

the contour plots of the Spectrometer Section, the range of the parameter space has

been increased in both dimensions, which gives more information about the shape of

the whole parameter space.

In the ideal case, we expect to find one internal parameter setting of the PSO,

which gives the best performance for the Spectrometer Section as well as the HTBL

system. The comparison of parameter spaces of the Spectrometer Section and the

one for the HTBL shows similar trending across the parameter space inertia [0.8, 0.9]
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Figure 6.6: Graph of the evolution of the transmission rate during optimization of the
HTBL in one specific trial run of the PSO. Since the transmission rate has a
relatively low weight in the objective function, it is not improved significantly
(only from 0.983 to 0.981 in this case).

and acceleration [0.35, 0.45], which in both cases the setting at the top right corner

(0.9, 0.45) gives the lowest 60% mean objective value and the performance gets worse

gradually across the diagonal.

Meanwhile, we have already obtained the best internal parameter setting for the

HTBL system by simply finding the setting with the lowest 60% mean objective value.

However, since the optimization involves a complicated objective function consisting

of five objectives with different weights, we may learn more about the internal pa-

rameter space by considering the objectives one by one and making separate contour

plots.

As we expected, some of the separated parameter spaces have similar shapes as the
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Figure 6.7: Top: Graph of the evolution of xRMS during the optimization of the HTBL
in one specific trial run of the PSO. Note that the shape is extremely similar
to the one for the global best objective function value, because it has the
highest weight. xRMS decreases most of the time during the optimization
process. Bottom: Graph of the evolution of yRMS during the optimization of
the HTBL in one specific trial run of the PSO. Since yRMS has a relatively low
weight in the objective function, it keeps fluctuating during the optimization
process (not prioritized).
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Figure 6.8: Top: Graph of the evolution of xFB1 during the optimization of the HTBL
in one specific trial run of the PSO. Bottom: Graph of the evolution of xFB3
during the optimization of the HTBL in one specific trial run of the PSO.
Both objectives decrease fast in early stage (within 20 steps) and fluctuate for
the rest of steps since they have moderate weights in the objective function.
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one for the overall objective function. For example, the parameter space for the xRMS

objective has almost exactly the same shape, with a blue valley sitting in the middle

and gradually getting worse as it expands away from the lowest point. This result

matches our prediction because the objective of xRMS with the highest weighting

factor contributes the most to the objective function. When the optimization reduces

the overall objective function value over the steps, it must prioritize reducing the value

for the xRMS, as a small change would result in a large difference for the objective

value. We are able to draw the same conclusion quantitatively.

For the best result shown in Table 6.2, the xRMS term occupies 30% of the overall

objective value, with the second one, transmission rate, occupying 22%. By comparing

the parameter space of the xRMS objective to the one for overall objective function

both quantitatively and qualitatively, we conclude that the internal parameter setting

with better xRMS result performs better in general.
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Figure 6.9: Contour plot of the mean of the best 60% achieved overall objective function
values vs. the PSO internal parameters used for the HTBL optimization.
Setting (0.9, 0.45) gives the best performance (near the top right corner in
dark blue).
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Figure 6.10: Contour plot of 1-fracTrans in the internal parameter space of the PSO for
HTBL. Completely different shape than the one of global best objective
function value, with overall flat shape and a steep drop at the center.
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Figure 6.11: Contour plot of xRMS in the internal parameter space of the PSO for HTBL.
It has the most similar shape as the one of global best objective function
value, due to its highest weight in the objective function. Setting (0.9, 0.45)
gives the best performance.

Inertia

0.75

0.8

0.85

0.9

0.95

Accel

0.3

0.35

0.4

0.45

0.5

yR
M

S
 (

m
)

0.0042

0.0044

yR
M

S
 (

m
)

0.0042

0.0043

0.0044

Figure 6.12: Contour plot of yRMS in the internal parameter space of the PSO for HTBL.
Completely different shape with “hills” across most part of the space and
the lowest point at (0.9, 0.5).
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Figure 6.13: Contour plot of xFB1 in the internal parameter space of the PSO for the
HTBL. It has a similar shape as the one of global best objective function
value.
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Figure 6.14: Contour plot of xFB3 in the internal parameter space of the PSO for HTBL.
Completely different shape with two “valleys” and the lowest point at (0.85,
0.35).
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Chapter 7

Conclusion and future

This project formally started in summer 2021 and ends in spring 2023. During

this period, we successfully developed and tested the Particle Swarm Optimization for

the Spectrometer Section and the High-Transmission Beamline in the High Rigidity

Spectrometer. We explored the internal parameter spaces of PSO. From the results

discussed in section 6.2, we conclude that for both ion optical systems, the best in-

ternal parameter setting (inertia, acceleration) of the Particle Swarm Optimization

is (0.9, 0.45). This result may indicate that this internal parameter setting is well

performing for a wide variety of ion optical systems and very different input particle

distributions. For the Spectrometer Section, the optimization successfully improved

the transmission rate from 57.5% to 63%. For the HTBL, the optimization dramati-

cally shrank the beam spot size at FS0 in the x-direction by 44%, while also improving

the dispersive foci at FB1 and FB3, which helps increase the resolving power of the

downstream Spectrometer Section.
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To complete our theory regarding how the internal parameter setting affects the

performance of the PSO for optimizations of large-acceptance rare-isotope spectrom-

eters, we should further explore the parameter space to describe the quality of the

PSOs performance over a wider range. Instead of centering at the setting that we

did in this work (inertia=0.85, acceleration=0.4), we should recenter the parameter

space at (0.9, 0.45), which has been shown to be the best setting for the cases we

considered.

We should also try different input particle distributions such as Nickel-84, which is

another benchmark rare-isotope production case for the HRS. Further, since the op-

timization algorithm includes multiple objectives in the objective function, we should

consider the benefit of assigning the weights differently in the objective function for

the HTBL to see how different objective functions affect the performance of the PSO.

Our assigned weights successfully optimized the HTBL with an emphasis on shrinking

the beam spot size at FS0, while preserving similar beam transmission and maintain-

ing a similar final vertical spot size. We may consider balancing weights for the beam

spot size at FS0 and for the quality of dispersive images at FB1 and FB3 for better

overall performance of the HTBL. This would require several additional CPU-years

of calculations to draw reliable conclusions comparable to those in the present work.
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Appendix A

COSY Infinity code for
spectrometer in section 2.5

INCLUDE ’ /home/ama018/ op t i c s /MA/hrs /cosyModel/ cosy91−master /
bin /COSY91 ’ ;

PROCEDURE RUN ;

VARIABLE Q1 1 ; VARIABLE Q2 1 ;VARIABLE Q3 1 ;
VARIABLE Q4 1 ; VARIABLE Q5 1 ;VARIABLE Q6 1 ;
VARIABLE Q7 1 ; VARIABLE Q8 1 ;VARIABLE Q9 1 ;
VARIABLE OBJ 1 ;

PROCEDURE TRIPLET A1 A2 A3 B1 B2 B3 C1 C2 C3 ;
M5 . 1 A1 A2 A3 0 0 . 2 ;
DL .05 ;
M5 . 1 −B1 −B2 −B3 0 0 . 2 ;
DL .05 ;
M5 . 1 C1 C2 C3 0 0 . 2 ;

ENDPROCEDURE ;

OV 5 3 0 ;
RP 1 1 1 ;
SB .015 .15 0 .015 .15 0 0 . 1 0 0 0 ;
PTY 4.0 ;
Q1 := . 5 ; Q2 := . 5 ; Q3 := .5 ;
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Q4 := . 5 ; Q5 := . 5 ; Q6 := . 5 ;
Q7 := . 5 ; Q8 := . 5 ; Q9 := . 5 ;

FIT Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 ;
UM ; CR ; ER 1 4 1 4 1 3 1 1 ;
BP ; DL .2 ; TRIPLET Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 ; DL .2 ;
MS 2 30 . 1 0 0 0 0 0 ; DL . 2 ;
EP ; {PP −101 0 0 ; PP −102 0 90 ;}
OBJ := ABS(ME(1 ,2 ) )+ABS(ME(1 ,22 ) )+ABS(ME(1 ,222) ) ;
WRITE 6 ’STRENGTHS Q1, Q2, Q3, OBJECTIVE FUNCTION: ’ Q1 Q2

Q3 Q4 Q5 Q6 Q7 Q8 Q9 OBJ ;
ENDFIT 1E−5 1000 1 OBJ ;{ PP −7 0 0 ; PP −7 0 90 ;}
PG −12 −12 ;
PM 6 ;

ENDPROCEDURE ; RUN ; END ;
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Appendix B

ROOT code for HTBL
optimization

#include <iostream>
#include <f stream>
#include <cmath>
#include ”TMath . h”
#include ”TH2F. h”
#include ”TF1 . h”
#include ”TGraph . h”
#include ”TColor . h”
#include ”TStyle . h”
#include ”TCanvas . h”
#include ”TFile . h”
#include ”TRandom. h”
us ing namespace std ;
#include ” . . / rootOpticsMonteCarlo /s3mapap .C”

const I n t t TOTRAYS = 75000;
// cons t I n t t TOTMAPS = 1;
const I n t t TOTMAPS = 36 ;
const I n t t SWARMDIM = 48 ;
const I n t t KSLICETOT = 100 ;
const Double t MAXDK = 0 . 0 2 5 ;
const Double t MINDK = −0.025;
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void PSOcosyWorkerMCHTBL Clean ( ) {
Cs3mapap ∗s3MapAp ;
Char t bu f f e r [ 1 0 0 ] ;
Char t bufferPSO [ 1 0 0 ] ;
Char t mapfilename [ 1 0 0 ] ;
Char t histname [ 1 0 0 ] ;
Double t gBestObj ;
Double t gBestPos [SWARMDIM] ;
Double t pBestObj ;
Double t pBestPos [SWARMDIM] ;
Double t nowObj ;
Double t nowPos [SWARMDIM] ;
Double t nowVel [SWARMDIM] ;
Double t a l lRays In [TOTRAYS] [ 8 ] , rayIn [ 8 ] , outVec [ 8 ] , xRMS,

yRMS;
Boo l t bCalc [ 5 ] , t rans [TOTRAYS] ;
Double t INERTIA = 0 . 9 ;
Double t ACCEL = 0 . 5 ;
Double t centA = 120 ;
Double t centQ = 49 ;
Double t xMeanFB1 ;
Double t xMeanFB3 ;
Double t xRMSFS0 ;
Double t yRMSFS0 ;
Double t rn ;
TH2F ∗fpYvX ;
TH1F ∗ fpX ;
TF1∗ f c = new TF1( ” f c ” , ” [ 2 ] ∗TMath : : CauchyDist (x , [ 0 ] , [ 1 ] )

” , −5, 5) ;
Double t F i e l d l im i t [SWARMDIM]= {0 .225 , 0 . 225 , 0 . 225 , 0 . 225 ,

0 . 225 , 0 . 225 , 0 . 225 , 0 . 225 , 0 . 225 , 0 . 225 , 0 . 225 , 0 . 225 ,
0 . 225 , 0 . 225 , 0 . 225 , 0 . 225 , 0 . 225 , 0 . 225 , 0 . 225 , 0 . 225 ,
0 . 225 , 0 . 225 , 0 . 225 , 0 . 225 ,

0 .16875 , 0 .16875 , 0 .16875 ,
0 .16875 , 0 .16875 ,
0 .16875 , 0 .16875 ,
0 .16875 , 0 .16875 ,
0 .16875 , 0 .16875 ,
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0 .16875 , 0 .16875 ,
0 .16875 , 0 .16875 ,
0 .16875 , 0 .16875 ,
0 .16875 , 0 .16875 ,
0 .16875 , 0 .16875 ,
0 .16875 , 0 .16875 ,
0 . 16875} ;

Double t kSliceW = (MAXDK−MINDK)/KSLICETOT;
I n t t kNum;
I n t t transNum ;
TH1F ∗FB1x KSlice [KSLICETOT ] ;
TH1F ∗FB3x KSlice [KSLICETOT ] ;

// v a r i a b l e s f o r f i s s i o n fragment inpu t s
I n t t fragA , f ragZ ;
Double t fragM , fragPx , fragPy , fragPz , fragBrho , fragTKE ;
Double t sumTKE, centTKE ;

Double t fragBrhoCent = 8 . 0 ;

Boo l t actDim [SWARMDIM] ;
Double t distA , distB , distK , waterBagR , distX , distY ;

// Monte Carlo beam d i s t r i b u t i o n s i z e s e t t i n g s o f Mg−40
distA = 0 .00625 ; // h a l f width in rad ians
distB = 0 . 0156 ; // h a l f width in rad ians
distK = 0 . 0154 ; // h a l f width in f r a c t i o n o f K
distX = 0 . 0006 ;
distY = 0 . 0017 ;

// Monte Carlo beam d i s t r i b u t i o n s i z e s e t t i n g s o f Ni−84
/∗ dis tA = 0.01025 ; // h a l f width in rad ians
d i s tB = 0.03165 ; // h a l f width in rad ians
dis tK = 0 .016 ; // h a l f width in f r a c t i o n o f K
dis tX = 0.0005 ;
d is tY = 0.00085 ; ∗/
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// inc rea se the s i z e o f the phase space o f the beam to
at tempt to he l p the f i t t i n g a l gor i thm

// dis tA ∗= 10;
// dis tK ∗= 14;
// dis tX ∗= 0 . 2 ;

I n t t ca lcOrder = 5 ;

I n t t step , raysPassed , junk ;
Double t fracTrans , la s tF i l eTime , th i sF i l eT ime ;
f loat seconds , minutes , hours ;

// f o r f a s t e s t Monte Carlo c a l c u l a t i o n s , put the most
r e s t r i c t i v e ape r tu re s f i r s t

//Aperture 16 − e x i t o f DS2
//Aperture 11 − entrance o f Q5A
//Aperture 5 − entrance o f DS1
//Aperture 6 − e x i t o f DS1
//Aperture 2 − e x i t o f Q1A
//Aperture 12 − e x i t o f Q5A
//Aperture 13 − entrance o f Q6A
//Aperture 14 − e x i t o f Q6A
// ver s i on wi th a l l ape r tu re s and the f i n a l f o c a l plane ,

TOTMAPS = 17

I n t t mapNum[TOTMAPS] = { 1 , 4 , 6 , 7 , 8 , 9 , 12 ,
14 , 15 , 16 , 17 , 20 , 22 , 23 , 24 , 27 , 29 , 30 , 31 , 34 ,
36 , 37 , 38 , 41 , 43 , 44 , 45 , 46 , 49 , 51 , 52 , 53 , 54 ,
57 , 59 , 60} ;

I n t t apType [TOTMAPS] = { 1 , 1 , 1 , 2 , 2 , 1 , 1 ,
1 , 2 , 2 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,

1 , 1 , 1 , 1 , 2 , 2 , 1 , 1 , 1 , 2 , 2 , 1 , 1 ,
1 , 1} ;

Double t apxhw [TOTMAPS] = { 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 ,
0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 ,
0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 ,
0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 } ;

Double t apyhw [TOTMAPS] =
{ 0 . 1 , 0 . 1 , 0 . 1 , 0 . 0 5 , 0 . 0 5 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 0 5 , 0 . 0 5 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 0 5 , 0 . 0 5 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 0 5 , 0 . 0 5 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 } ;
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/∗ I n t t mapNum[TOTMAPS] = {60} ;
I n t t apType [TOTMAPS] = { 1} ;
Doub le t apxhw [TOTMAPS] = {0 .1} ;
Doub le t apyhw [TOTMAPS] = {0 .1} ; ∗/

/∗
// ver s i on wi th TOTMAPS = 8
I n t t mapNum[TOTMAPS] = {16 ,11 ,5 ,6 ,2 ,12 ,13 ,14} ;
I n t t apType [TOTMAPS] = {2 ,1 ,2 ,2 ,1 ,1 ,1 ,1} ;
Doub le t apxhw [TOTMAPS] =

{0 . 7 5 , 0 . 2 , 0 . 4 5 , 0 . 4 5 , 0 . 2 , 0 . 2 , 0 . 2 , 0 . 2} ;
Doub le t apyhw [TOTMAPS] =

{0 . 1 , 0 . 2 , 0 . 3 0 , 0 . 3 0 , 0 . 2 , 0 . 2 , 0 . 2 , 0 . 2} ;

// ve r s i on wi th TOTMAPS = 3
I n t t mapNum[TOTMAPS] = {16 ,11 ,5} ;
I n t t apType [TOTMAPS] = {2 ,1 ,2} ;
Doub le t apxhw [TOTMAPS] = {0 . 75 , 0 . 2 , 0 . 45} ;
Doub le t apyhw [TOTMAPS] = {0 . 1 , 0 . 2 , 0 . 30} ;
∗/

// I n i t i a l i z e the random number genera tor based on user
input

I n t t randSeed , PSOnum;
cout << ”Enter the number o f PSO” << endl ;
c in >> PSOnum;
cout << ”Enter the pseudo−random number genera to r seed ” <<

endl ;
c in >> randSeed ;
TRandom3 ∗ rand1 = new TRandom3( randSeed∗SWARMDIM∗TOTRAYS∗

PSOnum) ;

//Setup the l o g f i l e f o r t h i s swarm p a r t i c l e
s p r i n t f ( bu f f e r , ”pso%d/p%3.3d . l og ” ,PSOnum, randSeed ) ;

o f s tream l o gF i l e ( bu f f e r , i o s : : out ) ;
//Read in the current s t a t u s o f the g l o b a l op t im i za t i on run
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s p r i n t f ( bufferPSO , ”pso%d/gBest . dat” ,PSOnum) ;
i f s t r e am gBes tF i l e ( bufferPSO , i o s : : in ) ;
gBes tF i l e >> gBestObj ;
cout << ”gBestObj = ” << gBestObj << endl ;
/∗
nowPos [ 6 ] = −0.0149303 ;
nowPos [ 5 ] = 0.00826769 ;
nowPos [ 4 ] = 0.0189009 ;
nowPos [ 3 ] = −1.45959e−05;
nowPos [ 2 ] = −0.0443817 ;
nowPos [ 1 ] = −0.029516 ;
nowPos [ 0 ] = 0.00814963 ;
∗/

// I n i t i a l i z e the p o s i t i o n o f the current swarm p a r t i c l e AND
// read the g l o b a l b e s t p o s i t i o n from the f i l e

for ( I n t t dim = 0 ; dim<SWARMDIM; dim++) {
nowPos [ dim ] = rand1−>Gaus (0 , F i e l d l im i t [ dim ] / 3 ) ;
while ( abs (nowPos [ dim ] )>F i e l d l im i t [ dim ] ) {
nowPos [ dim ] = rand1−>Gaus (0 , F i e l d l im i t [ dim ] / 3 ) ;
}

l o gF i l e << nowPos [ dim ] << ” ” ;
nowVel [ dim ] = rand1−>Gaus (0 , F i e l d l im i t [ dim ] / 4 ) ;
//nowVel [ dim]+= rn /1 . 5 ;
//nowVel [ dim ] = rand1−>Gaus (0 ,0 .05) ;
pBestPos [ dim ] = nowPos [ dim ] ;
pBestObj = 1e9 ;
gBes tF i l e >> gBestPos [ dim ] ;

}
l o gF i l e << endl ;
gBes tF i l e . c l o s e ( ) ;
//BEGIN LOOP OVER SWARM STEPS FOR THIS PARTICLE
s tep = 0 ;

//Read input data from Remco , F i s s i on product pa i r s from
LANL group

// i f s t r eam rayF i l e In (”/home/ama018/ op t i c s /MA/hrs /
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I n pu tD i s t r i b u t i on s / output . dat ” , i o s : : in ) ;
// F i l e Format :
//Mass number fragment 1
//Atomic Number 1
//Mass ( from mass t a b l e in MeV/c ˆ2) 1
//Momentum in X plane 1
//Momentum in Y Plane 1
//Momentum in Z plane 1
//Brho 1
//Tota l Kine t i c energy 1
//Fol lowed by the same fo r fragment 2 .
//
//The c en t r a l Brho i s 5.25
// I n t t fragA , fragZ ;
//Doub le t fragM , fragPx , fragPy , fragPz , fragBrho , fragTKE

;
// Doub l t t fragBrhoCent = 5 . 25 ;

/∗sumTKE = 0 . ;
f o r ( I n t t rayNum=0; rayNum<TOTRAYS; rayNum++) {

rayF i l e In >> fragA
>> f ragZ
>> fragM
>> f ragPx
>> fragPy
>> f ragPz
>> fragBrho
>> fragTKE ;

// cout << fragA << ” ” << f ragZ << ” ” << fragM << end l ;
a l lRays In [ rayNum] [1 ]= fragPx/ fragPz ; //a
a l lRays In [ rayNum] [3 ]= fragPy/ fragPz ; //b
// t h i s shou ld be the deltaK , but we w i l l update t h e s e TKE

to delta TKE l a t e r in a loop
a l lRays In [ rayNum] [4 ]= fragTKE ; // d e l t a k
sumTKE+=fragTKE ;
a l lRays In [ rayNum ] [ 6 ] = ( fragA−centA )/centA ; // f r a c t i o n a l

de l t a−M
al lRays In [ rayNum ] [ 7 ] = ( fragZ−centQ )/centQ ; // f r a c t i o n a l
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de l t a−Q
}

centTKE=sumTKE/TOTRAYS;
cout << ”Average TKE i s ” << centTKE << end l ;

// change the TKE va lue s in the a l lRays In array to be
delta TKE from the c en t r a l TKE

fo r ( I n t t rayNum=0; rayNum<TOTRAYS; rayNum++) {
a l lRays In [ rayNum ] [ 4 ] = ( a l lRays In [ rayNum][4] − centTKE)/

centTKE ;
}∗/

// produce a s e t o f random p a r t i c l e t r a j e c t o r i e s t h a t can be
used at a l l ape r tu re s

for ( I n t t rayNum=0; rayNum<TOTRAYS; rayNum++) {
// Gaussian Randomization o f x and y d i s t r i b u t i o n
a l lRays In [ rayNum ] [ 0 ]=gRandom−>Gaus (0 , distX ) ;
a l lRays In [ rayNum ] [ 2 ]=gRandom−>Gaus (0 , distY ) ;
// a l lRays In [ rayNum ] [ 0 ]=0 . ; / / s a f e assumption here t ha t the

s i z e o f the input beam doesn ’ t matter
// a l lRays In [ rayNum ] [ 2 ]= 0 . ;
// and ang l e d i s t r i b u t i o n s
a l lRays In [ rayNum ] [ 1 ]=gRandom−>Gaus (0 , distA ) ;
a l lRays In [ rayNum ] [ 3 ]=gRandom−>Gaus (0 , d istB ) ;
// and energy d i s t r i b u t i o n
// a l lRays In [ rayNum] [4 ]=gRandom−>Uniform(−distK , dis tK ) ;
a l lRays In [ rayNum ] [ 4 ]=gRandom−>Gaus (0 , distK ) ;
// a l lRays In [ rayNum ] [ 4 ]=0 . 0 ;

}

while ( gBestObj>0.0 && step < 1) {

for ( I n t t rayNum=0; rayNum<TOTRAYS; rayNum++) {
t rans [ rayNum]= true ; // a l l rays s t a r t w i thout having

been s topped ye t
}
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step++;

// INERTIA−=0.0001;
// ACCEL+=0.0001;
//

//////////////////////////////////////////////////////////////////////////

//Write the new s e t t i n g to be used by COSY to c a l c u l a t e
the maps

s p r i n t f ( bu f f e r , ”pso%d/HTBLTune%3.3d . in ” ,PSOnum, randSeed ) ;
o f s t ream f i e l dS e t t i n g sOu t ( bu f f e r , i o s : : out ) ;
for ( I n t t dim = 0 ; dim<SWARMDIM; dim++) {

f i e l dS e t t i n g sOu t << nowPos [ dim ] << endl ;
}
f i e l dS e t t i n g sOu t . c l o s e ( ) ;

//
//////////////////////////////////////////////////////////////////////////

// Ca l l COSY to c a l c u l a t e the t r a n s f e r maps f o r the g iven
system s e t t i n g

// the COSY s c r i p t w i l l need to be ed i t e d to take input
magnet f i e l d

// s e t t i n g s and to wr i t e maps wi th a swarm p a r t i c l e ID to
keep maps

// from d i f f e r e n t swarm p a r t i c l e s s epara t e
//

//////////////////////////////////////////////////////////////////////////

// Ca l l COSY to produce the new maps
s p r i n t f ( bu f f e r , ” . ! . / runCosy91Multi . sh c o s y s imp l i f i e d /

HTBL HA. fox %d %d” ,PSOnum, randSeed ) ;
// s p r i n t f ( bu f f e r , ” . ! . / runCosy91Multi . sh HRSdev . f ox 7.40

%d 5 y” , randSeed ) ;
gROOT−>ProcessL ine ( bu f f e r ) ;
cout << ”Cosy f i n i s h e d ” << endl ;
for ( int i i =0; i i<KSLICETOT; i i ++) {

s p r i n t f ( histname , ”FB1x kSl %d” , i i ) ;
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// cout << histname << end l ;
FB1x KSlice [ i i ] = new TH1F( histname , histname , 100 ,

−0.05 , 0 . 05 ) ;
}

for ( int i i i =0; i i i <KSLICETOT; i i i ++) {
s p r i n t f ( histname , ”FB3x kSl %d” , i i i ) ;
// cout << histname << end l ;
FB3x KSlice [ i i i ] = new TH1F( histname , histname , 100 ,

−0.05 , 0 . 05 ) ;
}

fpYvX = new TH2F( ”fpYvX” , ”fpYvX” , 100 , −0.05 , 0 . 05 , 100 ,
−0.05 , 0 . 05 ) ;

fpX = new TH1F( ”fpX” , ”fpX” , 100 , −0.05 , 0 . 05 ) ;

cout << ”Created histograms ” << endl ;

// S ta r t go ing through the maps one−by−one , e l im ina t i n g
s topped rays

// I n t t mapIdx = 0;
for ( I n t t mapIdx=0; mapIdx<TOTMAPS; mapIdx++) {

//
//////////////////////////////////////////////////////////////////////////

//Read a map f i l e to use f o r the Monte Carlo s imu la t i on
//

//////////////////////////////////////////////////////////////////////////

s p r i n t f ( mapfilename , ”pso%d/HTBL P%3.3d A%3.3d .MAP” ,
PSOnum, randSeed ,mapNum[mapIdx ] ) ;

cout << ”Reading map ” << mapfilename << endl ;
// s3MapAp = new Cs3mapap(mapfilename , sysOrder , apType ,

apxhw , apyhw ) ;
s3MapAp = new Cs3mapap(mapfilename , calcOrder , apType [

mapIdx ] , apxhw [ mapIdx ] , apyhw [ mapIdx ] ) ;
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//
//////////////////////////////////////////////////////////////////////////

// Ca l cu l a t e an o b j e c t i v e f unc t i on va lue f o r t h i s
p a r t i c u l a r s o l u t i o n

// based on a Monte Carlo s imu la t i on
//

//////////////////////////////////////////////////////////////////////////

// Se t s which f i n a l s t a t e beam coord ina t e s are
c a l c u l a t e d f o r each p a r t i c l e

// wi th ” bCalc ” array . Ca l cu l a t i n g fewer dimensions w i l l
save time .

// 0−>x , 1−>a , 2−>y , 3−>b , 4−>t
for ( I n t t i i i =0; i i i <5; i i i ++) bCalc [ i i i ]= true ; // s e t

a l l t rue to s t a r t
bCalc [1 ]= f a l s e ; //do not c a l c u l a t e f i n a l h o r i z o n t a l

ang l e s
// bCalc [2]= f a l s e ; //do not c a l c u l a t e f i n a l v e r t i c a l

p o s i t i o n
bCalc [3 ]= f a l s e ; //do not c a l c u l a t e f i n a l v e r t i c a l

ang l e s
bCalc [4 ]= f a l s e ; //do not c a l c u l a t e ToF de v i a t i o n s

xRMS = 0 . ;
yRMS = 0 . ;
f racTrans = 0 ;
//xMeanFB1 = 0 . ;
//xMeanFB3 = 0 . ;
transNum = 0 ;

for ( I n t t rayNum=0; rayNum<TOTRAYS; rayNum++) {
// only c a l c u l a t e t h i s ray i f i t has not ye t been

s topped
i f ( t rans [ rayNum ] ) {

rayIn [0 ]= a l lRays In [ rayNum ] [ 0 ] ;
rayIn [2 ]= a l lRays In [ rayNum ] [ 2 ] ;
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// and ang l e d i s t r i b u t i o n s
rayIn [1 ]= a l lRays In [ rayNum ] [ 1 ] ;
rayIn [3 ]= a l lRays In [ rayNum ] [ 3 ] ;
// and energy d i s t r i b u t i o n
// rayIn [4]=gRandom−>Uniform(−distK , dis tK ) ;
rayIn [4 ]= a l lRays In [ rayNum ] [ 4 ] ;
rayIn [6 ]= a l lRays In [ rayNum ] [ 6 ] ;
rayIn [7 ]= a l lRays In [ rayNum ] [ 7 ] ;

t rans [ rayNum ] = s3MapAp−>Trans ( rayIn [ 0 ] , rayIn [ 1 ] ,
rayIn [ 2 ] , rayIn [ 3 ] , rayIn [ 4 ] , rayIn [ 6 ] , rayIn [ 7 ] ,
bCalc , outVec ) ;

i f ( rayIn [4]>=MINDK && rayIn [4]<=MAXDK) {
transNum += 1 ;

i f (mapNum[mapIdx]==23) {
kNum = ( rayIn [4]−MINDK)/kSliceW ;
// cout << kNum << end l ;
FB1x KSlice [kNum]−>F i l l ( outVec [ 0 ] ) ;
// cout << outVec [ 0 ] << end l ;

}
i f (mapNum[mapIdx]==37) {
kNum = ( rayIn [4]−MINDK)/kSliceW ;
FB3x KSlice [kNum]−>F i l l ( outVec [ 0 ] ) ;

}
}

i f (mapNum[ mapIdx]==60) {
fpYvX−>F i l l ( outVec [ 0 ] , outVec [ 2 ] ) ;
fpX−>F i l l ( outVec [ 0 ] ) ;

}
// cout << outVec [ 0 ] << end l ;
i f ( t rans [ rayNum ] ) { // repea ted i f s ta tment ?

f racTrans +=1.0;
}
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xRMS += pow( outVec [ 0 ] , 2 ) ;

// cout << rayNum << end l ;
}

}
//FB1x KSlice [10]−>Draw() ;

i f (mapNum[ mapIdx]==23) {
xMeanFB1 = 0 . ;
for ( I n t t i i =0; i i<KSLICETOT; i i ++) {

// cout << ”RMS=” << FB1x KSlice [ i i ]−>GetRMS(1) <<
end l ;

xMeanFB1 += ( FB1x KSlice [ i i ]−>GetRMS(1) ) ;
// cout << ”sum=” << xMeanFB1 << end l ;

}

}

i f (mapNum[ mapIdx]==37) {
xMeanFB3 = 0 . ;
for ( I n t t i i =0; i i<KSLICETOT; i i ++) {

xMeanFB3 += ( FB3x KSlice [ i i ]−>GetRMS(1) ) ;
}

}

i f (mapNum[ mapIdx]==60) {
xRMSFS0 = fpYvX−>GetRMS(1) ;
yRMSFS0 = fpYvX−>GetRMS(2) ;
/∗ fc−>SetParameters (0 , 1 , 10000) ;

fpX−>Draw() ;
fpX−>Fi t (” f c ” ,”” ,”” , −0.005 ,0.005) ; ∗/

}

cout << mapIdx << ” ” << f racTrans << endl ;
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d e l e t e s3MapAp ;

} //end the f o r loop over maps

for ( I n t t i i =0; i i<KSLICETOT; i i ++) {
FB1x KSlice [ i i ]−>Delete ( ) ;
FB3x KSlice [ i i ]−>Delete ( ) ;

}

f racTrans = fracTrans /TOTRAYS; // t h i s w i l l be the f i n a l
t ransmi t t ed f r a c t i o n

xMeanFB1 /= KSLICETOT;
xMeanFB3 /= KSLICETOT;
// cout << ”xMeanFB1 = ” << xMeanFB1 << end l ;

xRMS = pow(xRMS/TOTRAYS, 0 . 5 ) ;
// cout << xMeanFB3 << end l ;

//Obj f o r Mg−40
nowObj = 1 .0 − f racTrans + 25∗xRMSFS0 + 3∗yRMSFS0 + 10∗

xMeanFB1 + 10∗xMeanFB3 ;

//Obj f o r Ni−84
//nowObj = 1.0 − fracTrans + 50∗xRMSFS0 + 5∗yRMSFS0;

cout << ” Lates t obj ” << randSeed << ” = ” << nowObj <<
endl ;

//
//////////////////////////////////////////////////////////////////////////

// I f t h i s i s a new persona l b e s t p o s i t i o n f o r t h i s swarm
member

// then update the pBestObj and pBestPos
//

//////////////////////////////////////////////////////////////////////////

i f (nowObj<pBestObj ) {



APPENDIX B. ROOT CODE FOR HTBL OPTIMIZATION 80

pBestObj = nowObj ;
cout << ”This i s a new pBest ! ” << endl ;
for ( I n t t dim = 0 ; dim<SWARMDIM; dim++) {

pBestPos [ dim ] = nowPos [ dim ] ;
}

}

//
//////////////////////////////////////////////////////////////////////////

// I f t h i s i s a new g l o b a l b e s t p o s i t i o n then update the
g l o b a l b e s t f i l e .

//
//////////////////////////////////////////////////////////////////////////

//Read in the current g l o b a l b e s t p o s i t i o n and o b j e c t i v e
f unc t i on va lue

s p r i n t f ( bufferPSO , ”pso%d/gBest . dat” ,PSOnum) ;
i f s t r e am gBes tF i l e ( bufferPSO , i o s : : in ) ;
gBes tF i l e >> gBestObj ;
for ( I n t t dim = 0 ; dim<SWARMDIM; dim++) {

gBes tF i l e >> gBestPos [ dim ] ;
}
gBes tF i l e . c l o s e ( ) ;

//Test
i f (nowObj<gBestObj ) {

gBestObj = nowObj ;

cout << ”New gbest wr i t t en by p a r t i c l e ”
<< randSeed
<< ” : gBestObj = ”
<< gBestObj
<< endl ;

s p r i n t f ( bufferPSO , ”pso%d/gBest . dat . tmp” ,PSOnum) ;
o fstream gBes tF i l e ( bufferPSO , i o s : : out ) ;
gBes tF i l e << gBestObj << endl ;
for ( I n t t dim = 0 ; dim<SWARMDIM; dim++) {
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gBes tF i l e << nowPos [ dim ] << endl ;
}
gBes tF i l e . c l o s e ( ) ;

s p r i n t f ( bu f f e r , ” . ! cp pso%d/gBest . dat . tmp pso%d/gBest .
dat” ,PSOnum,PSOnum) ;

gROOT−>ProcessL ine ( bu f f e r ) ;
// s p r i n t f ( bu f f e r , ” . ! cp pso%d/HRS P%3.3d A%3.3d .MAP pso

%d/gBest .MAP” ,PSOnum, randSeed ,mapNum[ mapIdx ] ) ;
s p r i n t f ( bu f f e r , ” . ! echo %d >> pso%d/gBest . l og ” , step ,

PSOnum) ;
gROOT−>ProcessL ine ( bu f f e r ) ;
s p r i n t f ( bu f f e r , ” . ! echo %12g >> pso%d/gBest . l og ” ,

gBestObj ,PSOnum) ;
gROOT−>ProcessL ine ( bu f f e r ) ;
//gROOT−>ProcessLine ( ” . ! cp pic001 . ps pic001 . b e s t . ps ”) ;

s p r i n t f ( bu f f e r , ” . ! echo %12g >> pso%d/gBest . l og ” ,
fracTrans ,PSOnum) ;

gROOT−>ProcessL ine ( bu f f e r ) ;
s p r i n t f ( bu f f e r , ” . ! echo %12g >> pso%d/gBest . l og ” ,

xRMSFS0,PSOnum) ;
gROOT−>ProcessL ine ( bu f f e r ) ;
s p r i n t f ( bu f f e r , ” . ! echo %12g >> pso%d/gBest . l og ” ,

yRMSFS0,PSOnum) ;
gROOT−>ProcessL ine ( bu f f e r ) ;
s p r i n t f ( bu f f e r , ” . ! echo %12g >> pso%d/gBest . l og ” ,

xMeanFB1 ,PSOnum) ;
gROOT−>ProcessL ine ( bu f f e r ) ;
s p r i n t f ( bu f f e r , ” . ! echo %12g >> pso%d/gBest . l og ” ,

xMeanFB3 ,PSOnum) ;
gROOT−>ProcessL ine ( bu f f e r ) ;

//Produce data f i l e s f o r t ransmiss ion p l o t s
s p r i n t f ( bu f f e r , ”pso%d/bestTransP%3.3d S%3.3d . dat” ,

PSOnum, randSeed , s tep ) ;
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ofstream gBestTrans ( bu f f e r , i o s : : out ) ;
gBestTrans << TOTRAYS << endl ;
for ( I n t t rayNum=0; rayNum<TOTRAYS; rayNum++) {

// p r i n t out the incoming beam p a r t i c l e s and whether
each was t ransmi t t ed

gBestTrans << t rans [ rayNum ] << ” ”
<< a l lRays In [ rayNum ] [ 0 ] << ” ”
<< a l lRays In [ rayNum ] [ 1 ] << ” ”
<< a l lRays In [ rayNum ] [ 2 ] << ” ”
<< a l lRays In [ rayNum ] [ 3 ] << ” ”
<< a l lRays In [ rayNum ] [ 4 ] << endl ;

}
gBestTrans . c l o s e ( ) ;

}

//
//////////////////////////////////////////////////////////////////////////

//Update the current p o s i t i o n and v e l o c i t y o f t h i s swarm
p a r t i c l e

//
//////////////////////////////////////////////////////////////////////////

i f ( rand1−>Uniform ( 0 , 1 . 0 ) <1.1) {
for ( I n t t dim = 0 ; dim<SWARMDIM; dim++) {

nowPos [ dim ] += nowVel [ dim ] ;
//Add mutation every 5 i t e r a t i o n s 2−3 o f the 12

dimensions w i l l jump to see the o ther op t i ons
/∗ i f ( s tep>0 && s t ep <21 && remainder ( s tep , 5 . )== 0.0

&& rand1−>Uniform (0 ,1 . 0 ) >0.8){
nowPos [ dim]+= rand1−>Uniform ( −0.02 ,0.02) ;
}∗/

l o gF i l e << nowPos [ dim ] << ” ” ;
nowVel [ dim ] = (INERTIA ∗ nowVel [ dim ]

+ ACCEL ∗ rand1−>Uniform ( 0 , 1 . 0 ) ∗ (
pBestPos [ dim]−nowPos [ dim ] )

+ ACCEL ∗ rand1−>Uniform ( 0 , 1 . 0 ) ∗ (
gBestPos [ dim]−nowPos [ dim ] ) ) ;
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}

} else { //what does t h i s do?
for ( I n t t dim = 0 ; dim<SWARMDIM; dim++) {

nowPos [ dim ] = rand1−>Gaus ( 0 , 0 . 0 05 ) ;
l o gF i l e << nowPos [ dim ] << ” ” ;
nowVel [ dim ] = rand1−>Gaus ( 0 , 0 . 0 05 ) ;
pBestPos [ dim ] = nowPos [ dim ] ;
pBestObj = 1e9 ;

}
}
l o gF i l e << endl ;

} // wh i l e ( gBestObj >0.0)

}
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