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Abstract

Tensor isomorphism is a hard problem in computational complexity theory. Ten-
sor isomorphism arises not just in mathematics, but also in other applied fields like
Machine Learning, Cryptography, and Quantum Information Theory (QIT). In this
thesis, we develop a new approach to testing (non)-isomorphism of tensors that uses
local information from “contractions” of a tensor to detect differences in global struc-
tures. Specifically, we use projective geometry and tensor contractions to create a
labelling data structure for a given tensor, which can be used to compare and distin-
guish tensors. This contraction labelling isomorphism test is quite general, and its
practical potential remains largely unexplored. As a proof of concept, however, we
apply the technique to a very recent classification of 4-qubit states in QIT.

Keywords: Tensor isomorphism, tensor contraction, projective geometry
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Chapter 1

Introduction

Tensors are multi-dimensional mathematical objects that can be represented as
multi-way arrays. Since data in real life have different variables or parameters, tensors
are often used in a lot of applied fields to record data. One fundamental problem
that arises is tensor isomorphism: how can we tell if two tensors are equivalent?

Tensor isomorphism is, in general, a hard problem to solve. However, it is also a
problem of considerable interest in many fields such as Machine Learning, Cryptogra-
phy, and especially Quantum Information Theory (QIT). In QIT, researchers want to
know when two states of quantum bits (qubits) are equivalent because, in principle,
equivalent states can perform the same computational function. By telling when the
qubit states are equivalent, researchers can eliminate redundancy. In 2008, W. Dür,
G. Vidal and J. I. Cirac provided a classification for 3-qubit states [2]. Some efforts
were made to classify 4-qubit states in the following years [4], but not until recently
was there a complete classification of 4-qubit system states [1].

Since tensor isomorphism is an important problem in a lot of fields, the aim of this
thesis is to develop a new approach to the tensor isomorphism problem. Specifically,
we want to construct a method to tell when two tensors are not equivalent. The thesis
will introduce the readers to our approach to the tensor (non)-isomorphism problem,
and, as a proof of concept, we will apply the method to 4-qubit states in QIT.

The outline of the thesis is as follows: In Chapter 2, we will go over the necessary
background on linear transformations and matrix equivalence. In Chapter 3, we
will introduce tensors and tensor concepts such as tensor isomorphism and tensor

8



contraction. We will apply those tensor concepts to derive a known classification
of tensors in K2 ⊗ K2 ⊗ K2 space in Chapter 4. In Chapter 5, we introduce our
contraction based approach to the tensor isomorphism. Then, in Chapter 6, we apply
our methods to both the 3-qubit classification problem and the 4-qubit inequivalence
problem, and present our results. Lastly, we summarize our work and discuss future
directions and improvements.
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Chapter 2

Background

In this chapter, we will expose the reader to the concept of linear transformation,
which leads naturally to a notion of matrix equivalence. As matrices are special cases
of tensors, being able to understand matrix equivalence will help with the reader’s
intuition of tensor equivalence.

For convenience, we will index coordinates of vectors, matrices, and tensors start-
ing from 0 to match with existing notations in our main application, quantum infor-
mation theory. In particular, we denote the entry in row i and column j of an m× n
matrix A by aij, where i ∈ [m] and j ∈ [n]. Here, [m] = {0, 1, . . . ,m− 1}.

A vector space is simply a set of vectors, equipped with addition and scalar multi-
plication operations that satisfy certain familiar properties. Vectors in a vector space
can be written uniquely as linear combination of some core vectors called a basis. The
size of the basis will determine the dimension of the vector space. A vector space
can have many bases and each basis will allow the vectors in the vector space to be
represented differently. In this thesis, we will work exclusively with Kn, which is the
vector space over a field K of column vectors of dimension n. For a vector space Kn,
{e0, e1, . . . , en} is called the standard basis for Kn with ei being a vector with 1 at
position i and 0 everywhere else.

10



2.1 Linear transformations

Let Km and Kn be two vector spaces. Let Bm = {u0, . . . , um−1} be the standard
basis forKm and Bn = {v0, . . . , vn−1} be the standard basis forKn. Let T : Km → Kn

be a linear transformation, meaning that ∀x, v ∈ Kn and ∀x ∈ K, T (u + xv) =
T (u) + xT (v). We can represent T as an m× n matrix A, such that, T (u) = A · u.

Since T (ui) ∈ Kn, T (ui) =
∑n−1

j=0 aijvj for some aij. Thus, let A be the matrix
with entries aij. In other words, the i-th column of A is T (ui). We claim that this
matrix A will give us our representation of T with respect to Bm and Bn.

Lemma 2.1.1. ∀u ∈ Km, there exists a matrix A such that T (u) = A · u.

Proof. Let u ∈ Km. Thus, u =
∑m−1

i=0 xiui for some xi ∈ K. Applying linear
transformation T to u, we obtain

T (u) = T (
m−1∑
i=0

xiui)

=
m−1∑
i=0

xiT (ui) (linearity).

On the other hand, let A be an m × n matrix such that its i-th column is T (ui).
Thus,

A · u =
(
T (u1) T (u2) . . . T (um−1)

)


x1
x2
...

xm−1


= x1T (u1) + x2T (u2) + · · ·+ xm−1T (um−1)

=
m−1∑
i=0

xiT (ui) = T (u)

Thus, A is the representation matrix of T relative to bases Bm and Bn.
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2.2 Matrix equivalence

Let T : Km → Kn be a linear transformation. By Lemma 2.1.1, there exists a
m × n matrix A that represents T relative to some bases Bm and Bn. Suppose we
changed our “reference frame” by selecting a different pair of bases B′m and B′n for
Km and Kn respectively. Then, T would be represented by a different matrix A′.
Since A and A′ are representations with respect to different bases, A and A′ have
different matrix entries. However, A and A′ are both matrix representations of the
linear transformation T ; therefore, A and A′ are considered equivalent. This difference
in the reference frame is due to changes of basis between Bm and B′m, and between
Bn and B′n, and so we define matrix equivalence as follows:

Definition 2.2.1. Let A, A′ be two matrices in Km×n. A and A′ are equivalent if
there exist invertible matrices P ∈ Km×m and Q ∈ Kn×n such that

A′ = PAQ.

Here, P and Q are change of basis matrices from Bm → B′m and from Bn → B′n
respectively. In the language of abstract algebra, P , Q are in the groups of invertible
matrices, GL(m,K) and GL(n,K), which act on the vector spaces Km and Kn,
respectively. In fact, GL(m,K) and GL(n,K) act on the sets of bases of Km and
Kn, and therefore bring about changes in the reference frame relative to which linear
transformations are recorded. In this thesis, we will frequently use the term “actions”
to describe the process of exchanging one reference frame for another.

It is straightforward to evaluate whether A and A′ are equivalent. We learn the
techniques in MATH 245, or any introductory Linear Algebra course. If A and A′

have the same rank (dimension of a matrix’s column space), then A and A′ are
equivalent. To find the changes of basis P and Q, we need to reduce both A and A′

to a row-reduced, column-reduced form R such that

R =

(
Ir 0r×(n−r)

0(m−r) 0(m−r)(n−r)

)

with Ir being the r×r identity matrix

(
1 ···
...
. . .

...
··· 1

)
(1 along diagonal, 0 elsewhere). This

form R is often called the Rank Normal Form. To obtain R, we first apply Gaussian
elimination to bring A and A′ to reduced-row echelon form. Then, we apply column
operations to eliminate all non-leading 1’s entries and swap columns to create an
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identity matrix block. Since all row and column operations can be represented as
some elementary matrices Ei and Fj, we have:

E1E2 . . . EiAF1F2 . . . Fj = E ′1E
′
2 . . . E

′
kA
′F1F2 . . . Fl = R

Thus, if we let P = (E ′1E
′
2 . . . E

′
k)
−1E1E2 . . . Ei and Q = F1F2 . . . Fi(F

′
1E
′
2 . . . E

′
k)
−1,

then P and Q are both invertible and PAQ = A′. The matrices E1, E2, . . . per-
form Elementary Row Operations (EROs) on A, and F1, F2, . . . perform Elementary
Column Operations (ECOs).

Bringing a matrix to a Rank Normal Form is not only easy in theory, but also
easy in practice as well. There are many algorithms available on standard computing
platforms created to reduce a matrix to its Rank Normal Form. In general, the
equivalence problem for matrices is completely solved, and the result can be easily
computed.
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Chapter 3

Tensors

In this chapter, we will explore the world of tensors. While not everyone is fa-
miliar with the definition, in its simplest form a tensor is just a multi-way array—a
high-dimensional data structure that we encounter on a daily basis. For example, a
spreadsheet containing different tables with multiple rows and columns is considered
to be a multi-way array. However, it is not the shape of the spreadsheet that makes
it a tensor, but rather its interpretation.

Let’s consider the following spreadsheet:

WeekendsWeekdays

BUS 3 10:33 10:36 10:40 10:48

BUS 2 8:33 8:36 8:40 8:48

BUS 1 6:33 6:36 6:40 6:48

Riverside Stover Mulberry Downtown

Figure 3.1: Timetable of bus routes (source: Transfort); retrieved from [6]

This bus schedule spreadsheet is an example of a multi-way array. There are two
main pages in this spreadsheet, “Weekdays” and “Weekends”. The current displayed
page is “Weekdays”, containing rows of different buses and columns of their desti-
nation. The entries record the time of arrival at the destinations of each bus. The

14



“Weekends” page also has the same exact structure of rows and columns.

In this spreadsheet, the entries are just discrete points, and their linear combina-
tions would not really make sense. For example, if a person wants to be at downtown
around 10 am, their only possible choice is to take BUS 2. It will be more convenient
for them to have an alternative bus that arrives between BUS 2 and BUS 3, i.e arrival
time = 1

2
BUS 2 +1

2
BUS 3, but the option does not exist in reality. In short, this

spreadsheet does not offer any more information other than the recorded entries.

On the other hand, the spreadsheet in Table 3.2 can provide more than just the
displayed information. Table 3.2 also has a similar layout to the bus schedule, where
it has two main pages, “Conventional” and “Organic”. Each page contains rows of
fruit and columns of nutrition type. The entries show how many grams or percent
daily values of each nutrition type are contained in each fruit. Even though the two
tables have the same page-row-column layout, the linear combinations of entries in
Table 3.2 actually make sense.

OrganicConventional

Apple 0.3g 0.2g 13.8g 2%

Peach 0.5g 0g 26g 2%

Strawberry 0.7g 0.3g 7.7g 70%

Protein Fat Carbs Vit. C

Figure 3.2: Nutrition table for cultivated fruits (source USDA); retrieved from [6]

Consider the scenario where a consumer wants to have at least 100% intake of
Vitamin C but not exceed 50g of carbs. Since they are not forced to take the whole
serving size of apples or strawberries, the consumer can make a portion out of a
variety of fruit. With these constraints, the consumer can have a serving size of s
strawberries, p peaches and a apples such that:

(70%)s+ (2%)p+ (2%)s ≥ 100% (3.1)

and
(7.7g)s+ (26g)p+ (13.8g)s ≤ 50g

Thus, taking linear combinations of the column entries gives us new information that
has meaning.

15



These two examples of a bus schedule spreadsheet and a nutrition spreadsheet
briefly show us that not all multi-way arrays should be interpreted in the same way.
While the bus schedule entries should be read as discrete points, the nutrition table
entries can be interpreted as base knowledge, and the reader can use those entries to
derive more information. To be considered as a tensor, the multi-way array needs to
provide more information than the surface level.

Definition 3.0.1 (Multi-way Array). A multi-way array is a function Γ : I1 × · · · ×
In → K, where

• K is a field in which the entries of the array live;

• I1, . . . , In are finite sets, called the axes of Γ;

• n is the valence of Γ; and

• |Ij| is the dimension of axis j.

We denote the entries of the array by Γi1,i2,...,in or Γi∗ for short.

If l = 2, we obtain a multi-way array Γ : I1 × I2 → K. This is another way to
express a |I1| × |I2| matrix with entries from K. When this interpretation of Γ as a
multi-linear map carries meaningful information, then Γ is said to be a tensor.

3.1 Tensor space intuition

For the purpose of our application, we are only interested in studying the tensor
space Tn = Kd1 ⊗Kd2 ⊗· · ·⊗Kdn , which is just an n-tensor space that we will define
later in the section. We will use Tn to indicate this n-tensor space throughout the
whole thesis. In this section, we will build up our intuition for what a tensor space
is and what an element in a tensor space looks like. We begin with examining the
tensor product of two vector spaces.

Let v = (v0, v1, . . . , va−1)
T ∈ Ka and w = (w0, w1, . . . , wb−1)

T ∈ Kb. The tensor
product is a function ⊗ : Ka ×Kb → Ka×b, where v ⊗ w = v · wT . Thus, v ⊗ w will
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have entry (v ⊗ w)ij = viwj.
v0
v1
...

va−1

⊗


w0

w1

...
wb−1

 =


v0
v1
...

va−1

·(w0 w1 · · · wb−1
)

=


v0w0 v0w1 · · · v0wb−1
v1w0 v1w1 · · · v1wb−1
...

...
...

...
va−1w0 va−1w1 · · · va−1wb−1


Example 3.1.1. Let v = ( 0

1 ) and w =

(
0
1
0
0

)
. Thus, v ⊗ w = v · wT = ( 0 0 0 0

0 1 0 0 )

Example 3.1.2. Let v =
(

2
0
1

)
and w = ( 4

3 ). Thus, v ⊗ w =
(

8 6
0 0
4 3

)
Notice that, when we take a tensor product of an a-vector and a b-vector, we

obtain an a × b matrix. Thus, the dimension of the resulting matrix space is the
product of the input vector space dimensions.

Let {e0, . . . , em−1} be a basis for Km and {f0, . . . , fn−1} be a basis for Kn. Then,
applying tensor product to the pair (ei, fj) for each pair of i, j, we get a matrix ei⊗fj.
We define Km⊗Kn to be the K-linear span of these matrices ei⊗fj. In other words,
if we take every linear combination of the vectors in the set {ei ⊗ fj} with scalars
from K, we will form the tensor space Ka ⊗ Kb. Notice that since Ka ⊗ Kb is the
linear span of {ei ⊗ fj}, and ei ⊗ ej is just the (i, j)-elementary matrix, Ka ⊗Kb is
isomorphic (in fact, equal) to the space Km×n of all a× b matrices.

Let us go one step further and evaluate the tensor product of a matrix with a
vector. Let M ∈ Ma×b and u ∈ Kc. By the same idea of “multiplying” dimension,
we obtain an a× b× c dimensional object, as follows:

M ⊗ v =


m00 m01 . . . m0(b−1)
m10 m11 . . . m1(b−1)
...

...
...

...
m(a−1)0 m(a−1)1 . . . m(a−1)(b−1)

⊗


u0
u1
...

uc−1


=
(
u0 ·M u1 ·M · · · uj ·M · · · uc−1 ·M

)
Visually, we can imagine M ⊗ v as a “stack of c multiples of M” as in Figure 3.3.

17



Figure 3.3: Visualization of 3-tensor with dimension a× b× c

Example 3.1.3. Let M = ( 0 1
3 2 ) and u = ( 2

3 ).

M ⊗ u =

((
0 2
6 4

)(
0 3
9 6

))
or more visually:

The result of a tensor product between a matrix and a vector is what we call a
3-tensor. As illustrated in the visualization, a 3-tensor has 3 main axes, and the
3-tensor can be associated with a 3-way array. A 3-tensor lives in the tensor space
T3 = Kd1 ⊗Kd2 ⊗Kd3 with d1, d2, d3 ∈ N. Using the same technique of “multiplying
dimension”, we can build an n-tensor space Tn : Kd1 ⊗Kd2 ⊗ · · · ⊗Kdn .

18



3.2 Actions on n-tensors

Tensor isomorphism is concerned with invertible linear transformations that act
independently on each axis of the tensor, effecting changes of basis like we saw in the
previous chapter for matrix equivalence. We will examine how tuples of matrices act
on tensor axes by defining their effect on the basis elements of the tensor space and
then extending linearly.

Let Tn be an n-tensor space with basis elements of the form |i1i2 . . . in〉, denoted
|i∗〉 for short. The tensor |i1i2 . . . in〉 can be interpreted as a multi-way array ei1 ⊗
ei2 ⊗ · · · ⊗ ein with eij being the j-th canonical basis vector of Kdj . This multi-way
array has entry 1 at position i1, i2, . . . in and 0 everywhere else.

Thus, each n-tensor can be written as a linear combination of the basis elements:

|φ〉 =
∑
i∗

α∗|i∗〉

When n = 1, Tn is just Kd1 , with basis |i1〉. Since Kd1 just a column vector space,
a tensor |φ〉 in T1 is a column vector. The action of a matrix A on |φ〉 is just the
matrix-vector product |φ〉 −→ A|φ〉.

Notice that A maps |i1〉 to a linear combination of |i∗〉. To demonstrate how this
mapping works, let’s examine A’s action on the basis elements of the 1-tensor space
K2. Let A = ( a bc d ) ∈ GL(2, K). With |0〉 and |1〉 being the basis vectors of K2,

A|0〉 = A · e0
= A · ( 1

0 )

= ( a bc d ) · ( 1
0 )

= ( ac )

Thus, |0〉 A−→ (a|0〉+ c|1〉). Similarly, |1〉 A−→ (b|0〉+ d|1〉).

If n = 2, our tensor space becomes T2 = Kd1⊗Kd2 with basis element of the form
|i1i2〉. This tensor space is again familiar: we saw earlier that it is just the matrix space
Kd1×Kd2 , with the basis element |i1i2〉 interpreted as a matrix ei1⊗ei2 = ei1 ·eTi2 . To
act on two axes, we will need two matrices. We can represent this action as a pair of
matrices such that (A1, A2)|i1i2〉 = (A1ei1)⊗ (A2ei2) = (A1ei1)(A2ei2)

T = A1ei1e
T
i2
AT2 .
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Extending the effect of (A1, A2) on the basis elements |i1i2〉 linearly, we obtain an
action on a 2-tensors. Let |φ〉 be associated with the matrix Mφ, then:

(A1, A2)|φ〉 = A1MφA
T
2

This equation is similar to the matrix equation equivalence in Definition 2.2.1. As we
mentioned, A1 can be thought of as performing a sequence of row operations on Mφ,
while AT2 can be thought of as performing a sequence of column operations. Notice
also that, by associativity of matrix multiplication, the actions on the first and the
second axes of the tensor space commute. In the language of abstract algebra, this
means there is an action of the direct product GL(d1, K)×GL(d2, K) on the tensor
space. This commutativity property extends to tensor spaces of higher valence.

In general, (A1, A2, . . . An)|i1i2 . . . in〉 := (A1ei1) ⊗ (A2ei2) ⊗ · · · ⊗ (Anein). This
again extends linearly to give an action on the entire tensor space.

For 2-tensors, actions on axis 1 and 2 correspond to different EROs and ECOs
respectively. Similarly, the actions on 3-tensors represent 3 different kinds of “face”
operations. Similar to how we can swap rows, multiply a row by a scalar, or add a
row into another, we can swap tensor face, multiply a face by a scalar, or add a face
into another for 3-tensor. Later on, we will use this concept of face actions to prove
some important lemmas in Chapter 4.

3.3 Tensor isomorphism

Definition 3.3.1 (Tensor isomorphism). Let |φ〉, |ψ〉 ∈ Kd1⊗· · ·⊗Kdn . The tensors
|φ〉 and |ψ〉 are isomorphic if there exists (A1, . . . , An) ∈ GL(d1, K)×· · ·×GL(dn, K)
such that

(A1, A2, . . . , An)|φ〉 = |ψ〉

In other words, if |φ〉 and |ψ〉 are isomorphic, we can obtain |ψ〉 by applying various
actions to |φ〉. If |φ〉 and |ψ〉 are nonzero 1-tensors (vectors), they are isomorphic as
we can always find a transformation that takes one non-zero vector to another. If |φ〉
and |ψ〉 are 2-tensors, |φ〉 and |ψ〉 are isomorphic when they have the same rank as
matrices (see Chapter 2).

However, moving from 2-tensors to 3-tensors, the isomorphism problem becomes
extremely difficult in general. In fact, a recent result in computational complexity
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theory shows that the isomorphism problem for general tensors reduces to the 3-tensor
case [3]. Nevertheless, this thesis still contributes to the tensor isomorphism problem
by providing a practical, computational method to identify non-isomorphic tensors.

3.4 Tensor contraction

Let’s revisit the nutrition spreadsheet in the chapter introduction. To obtain the
inequality in Equation 3.1, we need to multiply our column of vitamin C amount in
the “Conventional” page with a vector vf = (s, p, a). We do the same thing with
the carbs amount column in the same page. The condensed information from the
nutrition spreadsheet thus obtained is known as a contraction of the spreadsheet.

As n-tensors are the tensor product of (n − 1)-tensors and column vectors, we
observe that for every |φ〉, there always exist |φi〉’s such that

|φ〉 =

d1−1∑
i=0

|i〉|φi〉

For example, consider the 2-tensor (matrix) |m〉 = ( a bc d ) ∈ K2 ⊗ K2. By tensor
construction, |m〉 = a|00〉 + b|01〉 + c|10〉 + d|01〉. Let |i〉|j〉 = ei ⊗ ej = |ij〉. At the
same time, |m〉 can also be written as:

|m〉 = a|0〉|0〉+ b|0〉|1〉+ c|1〉|0〉+ d|1〉|1〉
= |0〉(a|0〉+ b|1〉) + |1〉(c|0〉+ d|1〉)

=
1∑
i=0

|i〉|mi〉

for |m0〉 = a|0〉+ b|1〉 and |m1〉 = c|0〉+ d|1〉.

Definition 3.4.1. Let |φ〉 ∈ Tn be a tensor such that |φ〉 =
∑d1−1

i=0 |i〉|φi〉. Let
v = (α0, . . . αd1−1)

T ∈ Kd1 . The v-contraction along axis 1 of |φ〉 is defined to be:

〈v|φ〉 :=

d1−1∑
i=0

αi|φi〉 ∈ Tn−1

Note that since |φi〉’s are (n − 1)-tensors, 〈v|φ〉 is also an (n − 1)-tensor. This
definition can be extended to contractions along any axis, not just along axis 1. We
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denote the general v-contraction of |φ〉 along axis j as 〈v(j)|φ〉. If we don’t denote the
axis, we assume it is a contraction along the first axis, or the axis does not matter in
the context.

To visualize the process of forming contractions, we go back to our nutrition
spreadsheet example. This spreadsheet is a 4 × 3 × 2 multi-way array with 3 main
axes: fruit type, nutrition type, and cultivation. We denote our spreadsheet as |tfnc〉.
Our vf -contraction along the the fruit axis will yield the following 4 × 2 multi-way
array (colored part):

〈v(2)f |tfnc〉 =

Conventional Organic
Protein 0.7s + 0.5p + 0.3a . . .

Fat 0.3s + 0p + 0.2a . . .
Carbs 7.7s + 26p + 13.8a . . .
Carbs 70s + 2p + 2a . . .

Let’s visualize how we get this table. Since we are contracting along the “fruit
type” axis, we slice our spreadsheet to 3 different slices corresponding to 3 dimensions
in the axis. Each slice now will have dimension 4 × 2. Then, we form 〈v(2)f |tfnc〉 by
taking a linear combination of the slices with coefficients from vf . The visualization
of this contraction is described in Figure 3.4.

0.3 0.2 13.8 2

0.5 0 26 2

0.7 0.3 7.7 70

tfnc

s

p

a
vf

* * * *
* * * *

〈vf |tfnc〉

0.3a 0.2a 13.8a 2a

0.5p 0p 26p 2p

0.7s 0.3s 7.7s 70s

+

+

Figure 3.4: Visualization of tfnc contraction process along f axis; retrieved from [6]

To obtain the right-hand side of the inequality in 3.1, we need to contract once
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more along the cultivation axis. Specifically, we need to obtain just the “conventional”
section from our current contraction. As the “conventional” table is the first tab of
the spreadsheet, the “conventional” table is considered our first basis vector for the
spreadsheet. Let vc = (1, 0). Thus, the vc-contraction of 〈v(2)f |tfnc〉 is the following
4-vector:

〈v(3)c |〈v
(2)
f |φ〉 =

Conventional
Protein 0.7s + 0.5p + 0.3a

Fat 0.3s + 0p + 0.2a
Carbs 7.7s + 26p + 13.8a
Carbs 70s + 2p + 2a

(3.2)

From here, we can easily obtain our Vitamin C linear combination by taking the 3rd
entry of this contraction (the act of taking an entry from an array itself is also a
contraction).

Notice that the order in which we perform the contractions does not matter; we
can contract along the “fruit type” axis first or the “cultivation” axis first, and still
yield the same result. If we contract the vc-contraction of |tfnc〉 along the “cultivation”

axis first, we will obtain a 4× 3 multi-way array 〈v(3)c |tfnc〉 with “nutrition type” and

“fruit type” axes. Then, if we further contract 〈v(3)c |tfnc〉 with vf along the “fruit type”
axis, we would receive a 4-array that is identical to array in Table 3.2. This example
illustrates a general property of tensors, namely that contractions along different axes
commute:

〈v(i)|〈u(j)|φ〉 = 〈u(j)|〈v(i)|φ〉

for v ∈ Kdi , u ∈ Kdj , and |φ〉 ∈ Tn.

Additionally, for all axes, contractions along the same axis preserve addition and
scalar multiplication. That is,

〈v1|φ〉+ 〈v2|φ〉 = 〈v1 + v2|φ〉
α〈v|φ〉 = 〈αv|φ〉

Next, we study the behavior of contractions under basis changing actions. Let’s
revisit the case of a 2-tensor (matrix) in K2 ⊗K2.

Lemma 3.4.1. Let v ∈ K2, M ∈ GL(2, K) and |φ〉 ∈ T2. Then, 〈v|(M, I)|φ〉 =
〈MTv|φ〉 with I being the 2× 2 identity matrix.
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Proof. Let v = ( v0v1 ) and M = ( a bc d ). By definition,

|φ〉 =
∑
i∗

αi∗|i∗〉

= α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉
= |0〉(α00|0〉+ α01|1〉) + |1〉(α10|0〉+ α11|1〉)

Thus,

(M, I)|φ〉 = (a|0〉+ c|1〉)(α00|0〉+ α01|1〉) + (b|0〉+ d|1〉)(α10|0〉+ α11|1〉)
= |0〉(aα00|0〉+ aα01|1〉+ bα10|0〉+ bα11|1〉)
+ |1〉(cα00|0〉+ cα01|1〉+ dα10|0〉+ dα11|1〉), and

〈v|(M, I)|φ〉 = v0(aα00|0〉+ aα01|1〉+ bα10|0〉+ bα11|1〉)
+ v1(cα00|0〉+ cα01|1〉+ dα10|0〉+ dα11|1〉).

On the other hand, MTv =

(
v0a+ v1c
v0b+ v1d

)
, so

〈MTv|φ〉 = (v0a+ v1c)(α00|0〉+ α01|1〉+ (v0b+ v1d)(α10|0〉+ α11|1〉)
= v0(aα00|0〉+ aα01|1〉+ bα10|0〉+ bα11|1〉)
+ v1(cα00|0〉+ cα01|1〉+ dα10|0〉+ dα11|1〉)
= 〈v|(M, I)|φ〉

The following proposition expresses the general situation:

Proposition 3.4.1. Let v ∈ Kdj , Mj ∈ GL(dj, K) for j ∈ {1, 2, . . . , n} and |φ〉 ∈ Tn.
Then, 〈v(j)|(M1,M2, . . . ,Mn)|φ〉 = (M1, . . . ,Mj−1,Mj+1, . . . ,Mn)〈(MT

j v)(j)|φ〉

One other tool that will help us decide isomorphism is tensor radicals.

Definition 3.4.2 (Radical). Let |φ〉 ∈ Tn. We define the j-radical of |φ〉 to be
radj(|φ〉) = {v ∈ Kdj |〈v(j)|φ〉 = 0}.

Definition 3.4.3 (Non-degeneracy). |φ〉 is said to be nondegenerate when radj(|φ〉) =
0.
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Lemma 3.4.2. Let |φ〉 and |ψ〉 be isomorphic tensors. If (A1, . . . An) is an isomor-
phism from |φ〉 to |ψ〉 then v → A−Tj v is a linear isomorphism from radj(|φ〉) to
radj(|ψ〉).

Proof. Without loss of generality, let j = 1. Let u ∈ Kd1 such that u = (A−T1 )v.
Thus,

〈u|ψ〉 = 〈u|(A1, . . . , An)|φ〉
= (A2, . . . , An)〈AT1 u|φ〉
= (A2, . . . , An)〈(A1)

T (M−T
1 )v|φ〉

= (A2, . . . , An)〈Iv|φ〉
= (A2, . . . , An)〈v|φ〉 = 0

Hence, there exists a radical point u along axis 1 of |ψ〉.

Thus, (non)-degeneracy is a tensor isomorphism invariant. In particular, if two
tensors |φ〉 and |ψ〉 are isomorphic and |φ〉 has a non-trivial radical along axis j, then
|φ〉 also has a non-trivial radical along axis j. Similarly, |φ〉 is nondegenerate if and
only if |ψ〉 is nondegenerate.
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Chapter 4

Classification of K2 ⊗K2 ⊗K2

We have already noted that 3-tensor isomorphism is as hard as the general tensor
isomorphism problem. However, if we restrict to the tensor space K2 ⊗ K2 ⊗ K2,
not only can we solve the isomorphism problem, but we can also give an effective
classification of 3-tensors up to isomorphism. The result is folklore in mathematics
and would likely have been known by Kronecker in the late nineteenth century. The
result for this tensor space over complex field C has also been reproved in QIT in the
context of 3-qubit states. In this chapter, we revisit this result for completeness, and
to pave the way for our application of tensor contraction to 4-qubit states.

For consistency, we will establish some notations for tensors and tensor visualiza-
tion. Let |φ〉 ∈ Tn = Kd1⊗· · ·⊗Kdn . We denote the multi-way array representations
for the contractions 〈e0|φ〉, . . . 〈ed1−1|φ〉 along axis 1 by Φ0, . . . ,Φd1−1. We think of,
and often refer to the Φi as “basis contractions” along axis 1 of |φ〉 as well. When
needed, the basis contractions along another axis will have a superscript indicating
the axis, e.g. Φ

(j)
0 . Furthermore, for 3-tensors, we denote the directions of the axes

in our visualization as in Figure 4.1.

Assume we have a 3-tensor |φ〉 ∈ K2 ⊗K2 ⊗K2 represented by a cube in Figure
4.2. Hence, Φ0 and Φ1 will be the following matrix representations:

Φ0 =

(
0 1
2 3

)
Φ1 =

(
4 5
6 7

)
.
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Figure 4.1: Axis direction for 3-tensor visualization.
This is similar to how our computational tool denotes axis.

Figure 4.2: General 3-tensor representation

4.1 Degenerate 3-tensors

Let |φ〉 be a non-zero degenerate 3-tensor; this means that

∃v 6= 0, v ∈ Kdj 〈v|φ〉 = 0. (4.1)

Recall that, without superscript, 〈v|φ〉 denotes a contraction along axis 1. In this
section, we will work with axis 1 only; other axes are handled identically.

Lemma 4.1.1. If |φ〉 has a radical along axis 1, there exists an isomorphic tensor
|ψ〉 to |φ〉 that has 〈e0|ψ〉 = 0.

Proof. Since |φ〉 has a radical along axis 1, there exists non-zero v = ( ab ) such that
〈v|φ〉 = 0. Thus, a〈e0|φ〉+ b〈e1|φ〉 = 0. Let |ψ〉 = (A, I2, I2)φ. For each case of v, we
want to find A such that 〈e0|ψ〉 = 0.
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If a = 0, then |φ〉 has b〈e1|φ〉 = 0. Let A = ( 0 b
1 0 ). Then, AT e0 = ( 0 1

b 0 ) · ( 1
0 ) =

( 0
b ) = b · e1. Thus, 〈e0|ψ〉 = 〈e0|(A, I2, I2)|φ〉 = 〈AT e0|φ〉 = 〈b · e1|φ〉 = b〈e1|φ〉 = 0.

If b = 0, then |φ〉 has a〈e0|φ〉 = 0. Let A = ( a 0
0 1 ). Then, AT e0 = ( a 0

0 1 ) · ( 1
0 ) =

( a0 ) = a · e0. Thus, 〈e0|ψ〉 = 〈e0|(A, I2, I2)|φ〉 = 〈AT e0|φ〉 = 〈a · e0|φ〉 = a〈e1|φ〉 = 0.

Lastly, assume a, b 6= 0. Then, a〈e0|φ〉 + b〈e1|φ〉 = 0, or similarly, 〈e0|φ〉 +
b
a
〈e1|φ〉 = 0. Let A =

(
1 b

a
0 1

)
. Then, AT e0 =

(
1 0
b
a

1

)
· ( 1

0 ) =
(

1
b
a

)
= e0 + b

a
e1. Thus,

〈e0|ψ〉 = 〈e0|(A, I2, I2)|φ〉 = 〈AT e0|φ〉 = 〈e0 + b
a
e1|φ〉 = 〈e0|φ〉+ b

a
〈e1|φ〉 = 0.

Since A in every case is an invertible matrix, |ψ〉 ∼= |φ〉. Therefore, there is always
an isomorphic tensor to |φ〉 such that its e0-contraction is 0.

We can assume by Lemma 4.1.1 that the contraction 〈e0|φ〉 = 0, so that Φ0 =
0. Notice that however we act on axis 2 and axis 3, we will still have Φ0 = 0.
From Chapter 2, we know that there exist matrices A2 and A3 that take Φ0 to its
corresponding Rank Normal Form. Equivalently, we can act on axis 2 and axis 3 of
|φ〉 to obtain Φ1 = ( 0 0

0 0 ) , ( 0 0
0 1 ), or ( 1 0

0 1 ). The three potential Rank Normal Form
matrices correspond to three different classes for |φ〉.

1. Suppose Φ1 = ( 0 0
0 0 ). Then, |φ〉 = 0 as Φ0 = 0 as well.

2. Suppose Φ1 = ( 0 0
0 1 ). Then, |φ〉 can be represented as in Figure 4.3.

Figure 4.3: Visualization of 3-tensor with radicals in 3 axes.

Notice that |φ〉 now also has radicals along axis 2 and 3. We refer to this case
of |φ〉 as the 3 radical class.

3. Suppose Φ1 = ( 1 0
0 1 ). We obtain the following visualization for |φ〉 in Figure 4.4.
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Figure 4.4: Visualization of 3-tensor with a radical along axis 1.

Here, |φ〉 has no nontrivial radical along the other axes.

A similar analysis of radicals on the other two axes leads to the same trichotomy.
However, notice that the first two cases (where Φ1 has rank 0 or 1) are common
to all three axes; only the rank 2 case leads to a new isomorphism class for each
axis.

Since |φ〉 can have radicals along one of 3 axes or along all three axes, there are 4
classes of |φ〉 that are degenerate. Overall, we obtain the following classes of non-zero
degeneracy in Figure 4.5:

a) |φ〉 has radicals along all axes, denoted |R∗〉

b) |φ〉 has a radical along axis 1, denoted |R1〉

c) |φ〉 has a radical along axis 2, denoted |R2〉

d) |φ〉 has a radical along axis 3, denoted |R3〉

Figure 4.5: Different types of 3-tensor with radical(s).
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4.2 Nondegenerate 3-tensors

We now assume that |φ〉 is nondegenerate: there are no nontrivial radicals along
any axes. In particular,

∀j ∈ {1, 2, 3}, ∀v ∈ K2, 〈e(j)0 |φ〉 6= 0. (4.2)

Similar to Lemma 4.1.1, we will state the following lemma with respect to axis 1, and
later expand our result to other axes as well.

Lemma 4.2.1. If |φ〉 is nondegenerate, there exists at least one v ∈ K2 such that
〈v|φ〉 is invertible.

Proof. Let |φ〉 be a nondegenerate 3-tensor, so Φ0 = 〈e0|φ〉 is non-zero. If Φ0 is
invertible, we are done, so assume Φ0 is not invertible and therefore, Rank(Φ0) = 1.
Since we can row-reduce any rank 1 matrix to ( 1 0

0 0 ) using a tuple of invertible matrices
(I2, A2, A3), we can replace |φ〉 with an isomorphic tensor that has Φ0 = ( 1 0

0 0 ).

Let Φ1 = ( a bc d ). As every ERO and ECO action affects Φ0 and Φ1 simultaneously,
to keep Φ0 = ( 1 0

0 0 ), we can only add multiples of the second row to the first row.
Let’s consider two cases, d = 0 and d 6= 0.

Suppose d = 0. If either b = 0 or c = 0, Φ1 will have a column or a row of 0’s,
which makes |φ〉 have a radical in another axis. Since Det(Φ1) = ad− bc = −bc 6= 0,
Φ1 is invertible.

Suppose d 6= 0. Thus, with suitable EROs and ECOs, we can add multiple of d to
eliminate b and c. If a = 0, we can add multiple of Φ0 to Φ1 to make a 6= 0. Hence,
Det(Φ1) = ad 6= 0, and so, Φ1 is invertible.

Thus, we can assume Φ0 is invertible. Moreover, using row and column-reduce
actions on axis 2 and 3, we can further assume that Φ0 = ( 1 0

0 1 ).

To complete the classification, we can again perform EROs and ECOs simultane-
ously on Φ0 and Φ1. To keep the classification process simple, we wish to keep Φ0 as
the identity matrix and manipulate Φ1 without changing Φ0. That means we can only
“conjugate” by a single invertible matrix, i.e. Φi 7→ CΦiC

−1. Restricting attention
now to Φ1, this means we must consider its possible Rational Canonical Forms.
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Rational Canonical Form (RCF) is a special form of matrix that can be obtained
by conjugation by invertible matrices. A n × n matrix can only be reduced to one
form of RCF, meaning that matrix M and matrix M ′ are similar/equivalent if they
have the same RCF. RCF is also defined in terms of minimal polynomials. In the
2× 2 matrices context, for each type of minimal polynomial, we get a different RCF.

For 2×2 matrices over a general field K, there are just 4 different cases of minimal
polynomials m(t): m(t) = (t − a), m(t) = (t − a)(t − b), m(t) = t2 − at − b, and
m(t) = (t− a)2 with a 6= b.

Since Φ1 cannot be a scalar multiple of Φ0, or the identity, there are only 3 cases
for the minimal polynomial m(t) and the corresponding matrix for Φ1.

1. m(t) = (t− a)(t− b), a, b 6= 0 ∈ K

Φ0 =

(
1 0
0 1

)
Φ1 =

(
a 0
0 b

)
. (4.3)

2. m(t) = t2 − at− b, a, b 6= 0 ∈ K; m(t) is irreducible over K

Φ0 =

(
1 0
0 1

)
Φ1 =

(
0 1
a b

)
. (4.4)

3. m(t) = (t− a)2, a 6= 0 ∈ K

Φ0 =

(
1 0
0 1

)
Φ1 =

(
a 1
0 a

)
. (4.5)

Therefore, over a general field K, there are 8 different classes of 3-tensors: The zero
tensor, 4 classes of non-zero degenerate tensors, and three classes of nondegenerate
tensors.

31



Figure 4.6: Complete classification of 3-tensors in K2 ⊗K2 ⊗K2

1. Zero class 2. Degenerate classes 3. Non-degenerate classes
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Chapter 5

Contraction labelling

In this chapter, we will develop a general contraction-based approach to the n-
tensor isomorphism problem. The method assumes access to an effective “labelling” of
(n− 1)-tensors that is invariant under isomorphism. Labelling all of the contractions
of a tensor along each of its axes produces an isomorphism invariant that we call a
“contraction label”. In particular, if two tensors are isomorphic, one should easily
be able to verify that their contraction labels along all axes are compatible. Let
λ : Tn−1 → Λ be a labelling function for (n − 1)-tensors such that if |t1〉 ∼= |t2〉 then
λ(|t1〉) = λ(|t2〉).

Let’s observe two contractions 〈v|φ〉 and 〈αv|φ〉 of |φ〉 ∈ Tn. Since 〈αv|φ〉 =
α〈v|φ〉, it is clear that 〈v|φ〉 ∼= 〈αv|φ〉. As mentioned, our method relies on prior
knowledge of (n− 1)-tensor labels. Let Λ be the set of labels for (n− 1)-tensors. In
particular, for the contractions 〈v|φ〉 and 〈αv|φ〉 of |φ〉, we have λ(〈v|φ〉) = λ(〈αv|φ〉).
Since v-contractions of |φ〉 are isomorphic up to the scalar multiple of v, we don’t need
to consider contractions against every single vector v in Kdj . Instead, we only need to
compute contractions against a representative for each 1-space 〈v〉. That is, instead
of labelling contractions for all 0 6= v ∈ V , we label the points in the projective space.

Projective geometry, or projective space, is the set of all subspaces of a vector
space V , denoted as PG(V ). The subspaces of dimension 1 (1-spaces) in PG(V ) are
called “projective points” of V . We denote the set of “projective points” of V as
PG0(V ). Since subspaces of dimension 1 can be generated by a single vector v ∈ V ,
we associate PG0(V ) with the set of all the generator vectors for the 1-spaces of
v. Since projective points of V represent different 1-spaces of V , we only need to
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contract the tensors against these projective points to determine the local structure
of the tensor.

We can easily compute contractions for any tensor. The question is how can we
use contractions of two given tensors to try to distinguish them? We continue to work
just with axis 1, but again, all observations may be adapted to any axis. First, we
observe that if |φ〉 and |ψ〉 are isomorphic n-tensors, for each contraction of |φ〉 there
is an isomorphic contraction of |ψ〉.

Lemma 5.0.1. Let |φ〉 and |ψ〉 be isomorphic tensors in Tn. If we let 〈v|φ〉 be a
contraction of |φ〉, then there exists u such that 〈u|ψ〉 ∼= 〈v|φ〉.

Proof. Let |φ〉, |ψ〉 ∈ Tn such that |φ〉 ∼= |ψ〉. Thus, there exists (M1,M2, . . .Mn) with
Mj ∈ GL(dj, K) such that (M1,M2, . . . ,Mn)|φ〉 = |ψ〉. Let 〈v|φ〉 be a contraction of
φ along the first axis, and let u = (M−1

1 )Tv. Then,

〈u|ψ〉 = 〈u|(M1, . . . ,Mn)|φ〉
= (M2, . . .Mn)〈MT

1 u|φ〉
= (M2, . . . ,Mn)〈v|φ〉

Since M2, . . . ,Mn are invertible, 〈u|ψ〉 ∼= 〈v|φ〉

Since the two contractions 〈v|φ〉 and 〈u|ψ〉 from Lemma 5.0.1 are isomorphic,
they must also have the same label. Thus, we know that for any two tensors to be
isomorphic, the multi-sets of their contraction labels must be identical. Put another
way, if the contraction labels do not line up, the two tensors are not isomorphic. This
is the essence of our test for non-isomorphism.

We will now construct a new data structure to store the labelling of the individual
projection points called Label. We define Label

(j)
|φ〉 to be the set of tuples (l, S) such

that l ∈ Λ and S = {p ∈ PG0(K
dj) : λ(〈p|φ〉) = l}. We also write Label

(j)
|φ〉[l] := S

when (l, S) ∈ Label(j)|φ〉. Again, if there is no clear subscript for the axis, we assume
Label|φ〉 to be the contraction labelling along axis 1.

We can easily decide tensor non-isomorphism by comparing how many contrac-
tions yield a specific label. Specifically, if we are trying to determine whether |φ〉 and

|ψ〉 are isomorphic, we first compute Label
(j)
|φ〉 and Label

(j)
|ψ〉 for every axis j. Then, for

each axis j and for each l in Λ, we will compare the sizes of Label
(j)
|φ〉[l] and Label

(j)
|ψ〉[l].
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If there is any mismatch among the axes labels, we will know for sure that |φ〉 and
|ψ〉 are not isomorphic.

However, comparing sizes of axis labels is not enough to guarantee isomorphism
between |φ〉 and |ψ〉. By just comparing the cardinals of the axis labels, we only take
permutations of projective points into consideration. For |φ〉 and |ψ〉 to be isomorphic,
we need a label-preserving permutation that is also a collineation of the projective
geometries. A collineation of PG(V ) is a bijection from PG0(Vφ) → PG0(Vψ) that
preserves geometry incidence. Here, geometry incidence means collinear points in
one projective geometry get mapped to collinear points in the other. In particular,
a collineation will always map sets of collinear points (points that are on the same
line) to sets of collinear points. Since invertible linear transformations always in-
duce collineations, if |φ〉 ∼= |ψ〉, there is a collineation that maps one label set to
another. Therefore, even if there is a label-preserving permutation of points, if no
such permutation is a collineation then |φ〉 and |ψ〉 will not be isomorphic.

Figure 5.1: Visualization of a collineation g.
Here, we mark different labels for contractions with colors and numbers. A collineation
preserves the permutation of labels, while respecting the linearity of the points. All the

points that are collinear are mapped to new points that are also collinear.

Despite being quite straightforward, our method’s efficacy depends on a lot of
other factors. Firstly, this method is built on the assumption that we have a good
labelling function for (n−1)-tensors. For this method to be useful, the (n−1)-tensor
labelling function not only needs to be accurate, but also needs to be refined. For
instance, if Λ size is small or λ maps almost every contraction to the same label,
using local information will not be enough to detect any differences among the global
tensor structures. Furthermore, there are potentially lots of projective points to be
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covered, especially in higher dimension tensors. It is impractical or even impossible
to list all the projective points, not to mention compute the contractions.

Nevertheless, there are still ways to implement this method without relying on
the perfect labelling functions nor listing all the projective points. One workaround
is to generate a statistical report for each tensor, with a large sample size from the
projective points. With a large enough sample size, it is possible that we will be
able to discern tensor structures with some statistical certainty. Another case where
this method can be implemented is when we have “nicer” tensor spaces. In such
“nice” tensor spaces, we are able to have a perfect labelling for (n − 1)-tensors, and
we don’t have to compute every projective point contraction to detect tensor non-
isomorphism. One of those situations is the application to 4-qubit states, discussed in
the next chapter. There already exists a perfect labelling for 3-tensors, and there are
ways to determine “special contraction” without exhausting the entire set of points.

The discussion so far can be summarized by the following theorem, which estab-
lishes the correctness of our contraction labelling algorithm to detect non-isomorphism
of tensors.

Theorem 5.0.1. Any isomorphism (A1, A2, . . . , An) from n-tensor |φ〉 to n-tensor
|ψ〉 induces on each axis a label-preserving collineation of projective geometries. In
particular, if it is determined that no such label-preserving collineation exists, then
|φ〉 and |ψ〉 belong to distinct isomorphism classes.
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Chapter 6

Applications to Quantum
Information Theory

6.1 Tensor representation in QIT

Quantum computing studies systems of interacting particles and their states. Be-
cause of the particles’ entanglement property, the states are inherently correlated,
and they are typically represented as tensors.

The simplest component of a quantum system is the qubit. Different from a
classical state, where the bit can only be either 0 or 1, a qubit can have probability
of being 0 or 1. More technically, a qubit is a superposition of the state of 0 and 1.
Thus, a qubit is a state vector in two-dimensional state space with two basis vectors
|0〉 and |1〉. An arbitrary state vector in the state space can be written as

|ψ〉 = a|0〉+ b|1〉

where a, b ∈ C and |ψ〉 is a unit vector, such that |a|2 + |b|2 = 1.

A quantum system can have more than just 1 qubit. For example, a 2-qubit
system state is a linear combination

|ψ〉 = a0|00〉+ a1|01〉+ a2|10〉+ a3|11〉

Similarly, an n-qubit state is a linear combination of 2n basis state vectors of
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|i1i2 . . . in〉 where each ij ∈ {0, 1}. Since we can represent the system data in a multi-
way array, and linear combinations of these basis states carry physical meaning, it is
natural to represent the n-qubit systems as n-tensors.

In quantum computing, it is important to know whether two states are equivalent
since equivalent quantum states are, in principle, able to perform the same quantum
computations. In QIT, these equivalent quantum states are considered “stochas-
tic local operation and classical communication (SLOCC) equivalent”. The SLOCC
equivalence problem has been a topic of interest in the QIT community [2, 4, 5, 7].
In tensor context, SLOCC equivalence means the same as tensor isomorphism. Thus,
this question of quantum state equivalence can be answered using tools from tensor
algebra.

6.1.1 Projective Geometry for C2

Our method requires us to use the projective geometry PG(C2). Since C2 has
dimension 2, every projective point lies on a single line, so preserving incidence is a
non-issue.

Let v = ( ab ) be a non-zero vector in C2. If a = 0, ( ab ) = ( 0
b ). Thus, v is in the

1-space 〈( 0
1 )〉. If a 6= 0, then v is in the space 〈( 1

c )〉 with c = b
a
. Since PG0(C2)

contains all the 1-spaces for C2, 〈v〉 ∈ PG0(C2) has the form 〈( 0
1 )〉 or 〈( 1

c )〉 with
c ∈ C. Therefore, we only consider contractions of tensors against v = ( 0

1 ) and ( 1
c )

with c ∈ C in our contraction-based method.

6.2 3-qubit classification

In the case of K = C, m(t) = t2 − at− b is always reducible. Thus, over C, m(t)
will always have roots, and be of the form m(t) = (t− a)(t− b) or m(t) = (t− a)2. In
the 3-qubit system context, these two non-degenerate cases for nondegenerate tensors
correspond to the states |GHZ〉 and |W〉, respectively.
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Figure 6.1: |GHZ〉 = |000〉+ |111〉 Figure 6.2: |W〉 = |001〉+ |010〉+ |100〉

Lemma 6.2.1. In our classification of K2⊗K2⊗K2, the first nondegenerate class—
where m(t) has distinct roots—corresponds to the 3-qubit state |GHZ〉.

Proof. Let |φ〉 be a 3-tensor of the first class of nondegenerate tensor such that

Φ
(1)
0 =

(
1 0
0 1

)
Φ

(1)
1 =

(
a 0
0 b

)
. (6.1)

By equivalence, we can let Φ
(1)
1 = −aΦ

(1)
0 + Φ

(1)
1 = ( 0 0

0 b−a ). Let c = b − a. Let

M1 =
(

1 − 1
c

0 1
c

)
. Thus,

(M1, I, I)〈e(1)0 |φ〉 = 〈MT
1 e0|φ〉 = 〈v0|φ〉, v0 =

(
1
− 1

c

)
(M1, I, I)〈e(1)1 |φ〉 = 〈MT

1 e1|φ〉 = 〈v1|φ〉, v1 =
(

0
1
c

)

Notice that 〈v0|φ〉 = Φ
(1)
0 − 1

c
Φ

(1)
1 = ( 1 0

0 0 ) = |GHZ〉(1)0 and 〈v1|φ〉 = 1
c
Φ

(1)
1 = ( 0 0

0 1 ) =

|GHZ〉(1)1 .

Thus, (M1, I, I)|φ〉 = |GHZ〉. Since M1, I ∈ GL2(K), |φ〉 is equivalent to |GHZ〉.

Lemma 6.2.2. In our classification of K2⊗K2⊗K2, the third nondegenerate class—
where m(t) has a repeated root—corresponds to the 3-qubit state |W〉.

Proof. Let |φ〉 be a 3-tensor of the third class of nondegenerate tensor such that

Φ
(1)
0 =

(
1 0
0 1

)
Φ

(1)
1 =

(
a 1
0 a

)
. (6.2)
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Replace |φ〉 with an equivalent tensor such that Φ
(1)
0 = ( 1 0

0 1 ) and Φ
(1)
1 = −aA(1)

0 +

A
(1)
1 = ( 0 1

0 0 ). With M1 = ( 0 1
1 0 ), we obtain |ψ〉 = (M1, I, I)φ that is equivalent to φ.

〈e(1)0 |ψ〉 = 〈MT
1 e0|φ〉 =

(
0 1
1 0

)
= |W〉(1)0 〈e(1)1 |ψ〉 = 〈MT

1 e1|φ〉 =

(
1 0
0 0

)
= |W〉(1)1

(6.3)

Since the system of forms of |ψ〉 along axis 1 is the same as |W〉, |ψ〉 is equivalent to
|W〉. Thus, |φ〉 is also equivalent to |W〉.

Overall, there are 7 distinct classes for 3-qubit states:

label 3-qubit state description

0 Zero zero tensor
1 |R∗〉 degenerate: radicals in all three directions
2 |R1〉 degenerate: radical along 1-axis
3 |R2〉 degenerate: radical along 2-axis
4 |R3〉 degenerate: radical along 3-axis
5 |W〉 nondegenerate: repeated eigenvalue
6 |GHZ〉 nondegenerate: distinct eigenvalues

Table 6.1: The complete list of 3-qubit equivalence classes

Now, we are going to construct a procedure for identifying the class of a 3-qubit
state |φ〉. If |φ〉 = 0, the problem is trivial. Thus, let |φ〉 be a non-zero tensor. Firstly,
we want to compute whether |φ〉 has a radical in any of the axes.

We start with checking whether |φ〉 has a radical in axis 1. We will have to find
if there exists a point x ∈ PG0(C2) that give us a zero contraction. Equivalently, we
need to know if there is an x = 〈(x0, x1)T 〉 ∈ PG0(C2) such that x0|φ0〉+ x1|φ1〉 = 0.

As mentioned in the previous chapter, we can associate |φ0〉 with the 2× 2 “face”
matrix Φ0, and similarly for |φ1〉 with Φ1. Moreover, x ∈ PG0(C2) only has the form
( 0
1 ) or ( 1

x ) for x ∈ C. Hence, we only need to check when Φ1 = 0 or Φ0 + xΦ1 = 0. It
is easy to check whether Φ1 = 0. To check if there exists an x for Φ0 + xΦ1 = 0, we
simply check whether Φ0 and Φ1 are linearly dependent. If either Φ1 = 0 or Φ0 and
Φ1 are linearly dependent, then |φ〉 has a radical in axis 1.
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Similarly, we can compute whether |φ〉 has a radical in axis 2 and axis 3. If |φ〉
has radical in just one of the axes, then |φ〉 belongs to either class |R1〉, |R2〉 or |R3〉
respectively. Otherwise, if |φ〉 has radicals in all axes, |φ〉 belongs to |R∗〉.

On the other hand, |φ〉 might not have a radical in any axis. In that case |φ〉 is
nondegenerate, and hence isomorphic to |W〉 or |GHZ〉. Recall that basis vectors for
|GHZ〉 along axis 1 has the following matrix representation:

|GHZ〉0 =

(
1 0
0 0

)
|GHZ〉1 =

(
0 0
0 1

)
Hence, with PG0(C2), our contractions will have the form:

0 · |GHZ〉0 + 1 · |GHZ〉1 = |GHZ〉1 =

(
0 0
0 1

)
for x = ( 0

1 )

or

1 · |GHZ〉0 + x · |GHZ〉1 =

(
1 0
0 x

)
for x = ( 1

x ) .

Notice that when x = ( 0
1 ), the x-contraction has rank 1. Similarly, when x = 0,

or x = ( 1
0 ), the x-contraction also has rank 1. For other x’s that have x 6= 0, x-

contraction yields a matrix representation of rank 2. Thus, |GHZ〉 has two contraction
points that give us rank 1 matrix representation.

However, it is a different case for |W〉. The basis vectors of |W〉 along axis 1 are
represented by the following matrices:

|W〉0 =

(
0 1
1 0

)
|W〉1 =

(
1 0
0 0

)
Here, there is only one case of x that gives us a contraction with a rank 1 matrix
representation. In particular, when x = ( 0

1 ), x-contraction becomes |W〉1 = ( 1 0
0 0 ),

which is a singular matrix. For other cases of x, we obtain an x-contraction of ( x 1
1 0 ).

With every x ∈ C, that x-contraction always yields a rank 2 matrix representation.

Consequently, if we want to decide whether |φ〉 is in |W〉 or |GHZ〉, we compute
how many contraction points result in rank 1 matrices. From linear algebra, we know
that a nonzero 2 × 2 matrix has rank 1 if it has determinant of 0. Hence, we can
compute the determinant of the contractions to compute the rank of the contractions.
Firstly, we want to check the determinant of the contraction against x = ( 0

1 ). This
is straightforward as we already have a formula for computing the determinant. For
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general case of x = ( 1
x ), it is more complicated due to the constant x. Since we do

not want to evaluate every contraction, we consider x to be a variable. As a result,
we obtain the general contraction

Φ0 + xΦ1 =

(
p00 p01
p10 p11

)
+

(
xq00 xq01
xq10 xq11

)
=

(
p00 + q00x p01 + q01x
p10 + q10x p11 + q11x

)
=

(
f00(x) f01(x)
f10(x) f11(x)

)
Each entry f(x) in this contraction can be regarded as a polynomial with variable
x. Since each entry can only be degree 1 or degree 0 polynomial, the determinant
δ = f00(x)f11(x)− f01(x)f10(x) is also a polynomial of x with degree up to 2. Then,
we compute the roots of δ. The number of roots of δ, together with the evaluation of
( 0
1 )-contraction, will determine how many points of rank 1 matrix contraction. From

that, we can tell which non-degenerate class |φ〉 is in.

Overall, to classify 3-qubit state |φ〉, we need to know whether the state is de-
generate. If it is degenerate, it can be in one of the four classes |R1〉, |R2〉, |R3〉 or
|R∗〉, determined by the existence of radicals along different axes. Otherwise, |φ〉 is
non-degenerate. Then, |φ〉 can be classified as |W〉 or |GHZ〉, depending on how many
rank 1 contractions there are in |φ〉.

6.3 4-qubit state inequivalence

Our method can be applied to 4-qubit states and, at least for certain families of
states, can distinguish inequivalent states. Since 4-qubit states’ contractions are just
3-qubit states, we can apply the results and ideas from 3-qubit classification to 4-qubit
context. Let |φ〉 be a 4-qubit state in C2 ⊗ C2 ⊗ C2 ⊗ C2. We will now describe the
procedure of constructing the contraction labelling for |φ〉. The general idea is that,
for each axis, our procedure will try to find “special” projective points for each class,
and put them in the contraction label structure discussed in Chapter 6. For example,
we will find the projective points that give us |GHZ〉 3-tensor contractions. Then,
we will put those projective points in the |GHZ〉 label set within our contraction
label structure. More interestingly, we will present some sub-procedures to obtain
the special points for each type without having to compute every contraction.
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6.3.1 Procedure

Similar to the procedure of 3-tensor classification, we first see if |φ〉 is a zero tensor.
If |φ〉 = 0, |φ〉 is in the zero tensor class, and is clearly inequivalent to other non-zero
tensors.

With |φ〉 being non-zero, we will a construct contraction labelling Label
(j)
|φ〉 along

each axis. We will demonstrate our procedure by building the contraction labelling
Label|φ〉 for axis 1. Because we are only talking about |φ〉, we denote Label|φ〉 as Label
for short. Since there are 7 classes for 3-tensor states, there will be 7 labels that we
assign to the projective points.

Since we are contracting 4-tensors against the points x in PG0(C2), our contrac-
tion has the form Φ1 if x = ( 0

1 ) or Φ0 + xΦ1 if x = ( 1
x ). As we have to treat some

arbitrary 4-tensor contractions later in our procedure, it is more convenient to eval-
uate v = ( 0

1 ) separately, then generalize arbitrary contractions as Φ0 + xΦ1. We use
the procedure from 3-tensor classification to label the point ( 0

1 ). After labelling ( 0
1 ),

we can assume that the contractions always have the form Φ0 + xΦ1.

The first class we will examine is the Zero class. We start with evaluating |φ〉’s
radicals along all axes to acquire contractions that are in the Zero class. This can
be easily computed as we can always check if any of the two basis vectors, Φ0 and
Φ1, is 0, or if they are linearly dependent. If Φ0 = 0, then ( 1

0 ) ∈ Label[Zero]. If
Φ1 = 1, then ( 0

1 ) ∈ Label[Zero]. Finally, if c0Φ0 + c1Φ1 = 0 for c0, c1 6= 0, then(
1
c1
c0

)
∈ Label[Zero].

We will now move on to finding projective points that yield contractions of the
non-zero, degenerate classes. Since the methods of finding points for |R1〉, |R2〉, or
|R3〉 are the same, we will focus on the process for the |R1〉 class. To figure out which
contractions would yield |R1〉, we would need to contract again along axis 1 of the
contractions. Let C be the contraction 〈x|φ〉 with x = ( 1

x ). Thus, C = Φ0 + xΦ1.
Here, C is represented as a 3-way array with entries containing x. Since we are finding
x such that x is in Label[|R1〉], we consider x as a variable. Then, C can be denoted
as C(x) to indicate that we are treating x as a variable. Notice that, with x as the
variable, C(x) has entries of polynomial of degree at most 1.

From here, we need to take another contraction of C(x) along axis 1. Thus, C0(x)
and C1(x) are matrices with entries of polynomials with variable x. Now we need
to know for which x that C0(x) and C1(x) are linearly dependent. Compared to the
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Figure 6.3: Visualization of C(x) as contraction

process of evaluating |R1〉 in 3-tensors classification, this process is a bit trickier as
our matrices have the variable x. First of all, we have to evaluate if there exists any
x such that C0(x) or C1(x) is 0. If there is, we add the point x = ( 1

x ) to Label[|R1〉].

Now, we can assume that C0(x) and C1(x) 6= 0. In particular, there are two
cases to consider. The first case is that, as polynomial vectors, C0(x) and C1(x)
are linearly dependent. For example, ( x 2

1 3x ) and ( 2x 4
2 6x ) are linear dependent as

polynomial vectors. Then, C(x) will have a radical along axis 1 regardless of the
value of x, and every points x will be labeled |R1〉. The other case is when C0(x)
and C1(x) are not linear independent as vectors. Yet, we can still find an x such
that C0(x) and C1(x) are scalar multiple of each other. For example, ( 0 3x

x+2 5 ) and(
x−2 6
2x 2x+1

)
are not scalar multiples of each other. However, if we evaluate those

matrices at x = 2, the two matrices become the same, and clearly, linear dependent.
Again, if there exists such an x, we will add x = ( 1

x ) into our Label[|R1〉].

Following the same procedure for other axes, we obtain some values for Label[|R2〉]
and Label[|R3〉]. If there is any point in all three radical class labels, it belongs to
Label[|R∗〉] instead. At this stage, we have completed finding the projective points
that result in degenerate 3-tensors.

We move on to identify the points for non-degenerate classes, |GHZ〉 and |W〉. As
we described in the previous section, |GHZ〉 and |W〉 differ in their number of rank 1
contractions. Just like how we rely on determinants to decide whether a matrix has
rank 1, we will do the same here. Again, there needs to be some extra steps as our
contractions now contain “variable”. We use the same notation C(x) for our general
contractions, and C0(x) and C1(x) for our basis vector contraction along axis 1.

We first evaluate the rank of C1(x), as C1(x) is the ( 0
1 ) contraction of C(x). C1(x)

has the following form

C1(x) =

(
p00(x) p01(x)
p10(x) p11(x)

)
44



with pij(x) being polynomials of degree at most 1 with variable x. Thus, δ =
Det(C1(x)) = p00(x)p11(x) − p01(x)p10(x). As pij(x) has degree at most 1, δ has
degree at most 2. Hence, to calculate which x will yield a determinant of 0, we can
compute the root of the determinant. Based on the degree of δ, we have the following
cases:

1. Degree(δ) = −1: This means δ = 0. If δ = 0 for every x, then every point x
has a contraction of rank 1 at ( 0

1 ).

2. Degree(δ) = 0: This means δ 6= 0 and δ is a constant polynomial. Then, there
is no x that has a contraction of rank 1 at ( 0

1 ).

3. Degree(δ) ≥ 1: This means δ is either a linear polynomial or a quadratic
polynomial. We can easily compute the roots for δ, and for every root, we have
a corresponding point x that has a contraction of rank 1 at ( 0

1 ) .

Thus, we have found all the points x having ( 0
1 )-contraction of rank 1 (*).

Then, we continue to evaluate other general contractions of C(x). We denote the
contraction of C(x) as C, and C = C0(x) + y ·C1(x) with y ∈ C. If we consider y as a
variable as well, then C can be considered as the matrix with two variables x, y. We
denote C as C(x, y), and

C(x, y) = C0(x) + yC1(x) =

(
f00(x) + yp00(x) f01(x) + yp01(x)
f10(x) + yp10(x) f11(x) + yp11(x)

)
with fij, pij being polynomials with variable x of degree at most 1. Then,

δ = Det(C) = [f00(x)+yp00(x)][f11(x)+yp11(x)]− [f01(x)+yp01(x)][f10(x)+yp10(x)].

Thus, we can consider δ as a polynomial in y of degree at most 2. Our goal is to
see how many more rank 1 contractions a point x can have, then together with (*),
compute the total number of rank 1 contraction at each point. Depending on different
possible degrees of δ, we use a different method to determine the number of rank 1
contractions at each point. Thus, we obtain the following cases:

1. Degree(δ) = −1: This case is not possible as this means every contraction C(x)
of C(x, y) is singular. Since C(x) is a non-degenerate 3-tensor, by Lemma 4.2.1,
C(x) has at least one invertible contraction. This is a contradiction.
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2. Degree(δ) = 0: This means that there is no x that has other rank 1 contractions.
Hence, every point in (*) belongs to Label[|W〉], and other non-radical point
belongs to Label[|GHZ〉].

3. Degree(δ) = 1: We can consider δ = b(x) + a(x) · y. If a(x) 6= 0, then δ = 0

will always have a solution y = −b(x)
a(x)

. Thus, we find x such that a(x) = 0 to
find out which point does not have rank 1 contraction when contracted against(
1
y

)
. Combined with (*), we will be able to compute which x gives us only 1

rank 1 contraction.

4. Degree(δ) = 2: Here, δ = c(x) + b(x) · y + c(x) · y2. We want to find x such
that δ = 0 only at one point y. This means δ has only one repeated root. Thus,
we can evaluate when the discriminant ∆(δ) = 0. If ∆(δ) = 0 for every x,
every x has a contraction of rank 1 in the general contraction case. If not, we
compute the roots for ∆(δ). These roots will correspond to points x that have
a contraction of rank 1. Together with (*), we will be able to tell which points
have only 1 rank 1 contraction.

After these sub-procedures compute degenerate and non-degenerate contraction points,
we obtain a complete axis label for |φ〉 along axis 1. If we do the same for other axes,
we will get labels of every contraction point along every axis. Consequently, when we
compare two tensors |φ〉 and |ψ〉, we only need to compare Label

(j)
|φ〉 and Label

(j)
|ψ〉 for

every axis j.

6.3.2 Application to nilpotent classes

We applied our procedure to test non-isomorphism among the nilpotent classes
in [1]. The nilpotent classes are listed in Table 6.3.2. Our procedure managed to
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Orbit Representative S-conjugate to
1 |1100〉 N2

2 |1100〉+ |0000〉 N3

3 |1100〉+ |1001〉 N3

4 |1100〉+ |1010〉 N3

5 |1101〉+ |0100〉 N3

6 |1110〉+ |0100〉 N3

7 |1110〉+ |1101〉 N3

8 |1101〉+ |0100〉+ |1000〉 N6

9 |1110〉+ |0100〉+ |1000〉 N6

10 |1110〉+ |1101〉+ |1000〉 N6

11 |1110〉+ |1101〉+ |0100〉 N6

12 |0101〉+ |1100〉+ |1001〉+ |0000〉 N9

13 |0110〉+ |1100〉+ |1010〉+ |0000〉 N9

14 |1111〉+ |1100〉+ |1001〉+ |1010〉 N9

15 |0111〉+ |1110〉+ |1101〉+ |0100〉 N9

16 |1110〉+ |1101〉+ |0100〉+ |1000〉 N4

17 |1110〉+ |1101〉+ |0000〉 N5

18 |1110〉+ |0100〉+ |1001〉 N5

19 |1101〉+ |0100〉+ |1010〉 N5

20 |0101〉+ |1110〉+ |1000〉 N5

21 |0110〉+ |1101〉+ |1000〉 N5

22 |1111〉+ |0100〉+ |1000〉 N5

23 |1110〉+ |0100〉+ |0000〉+ |1001〉 N8

24 |0110〉+ |1101〉+ |1000〉+ |0000〉 N8

25 |1111〉+ |0100〉+ |1000〉+ |1001〉 N8

26 |1111〉+ |0100〉+ |1000〉+ |1010〉 N8

27 |0101〉+ |1110〉+ |0000〉+ |1001〉 N7

28 |0110〉+ |1101〉+ |0000〉+ |1010〉 N7

29 |1111〉+ |0100〉+ |1001〉+ |1010〉 N7

30 |1111〉+ |0110〉+ |0101〉+ |1000〉 N7

31 0

Table 6.2: Nilpotent classes for 4-qubit states from [1]
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distinguish all the nilpotent classes using their contraction label by axis. We can look
at orbit 17 and orbit 18 for example. Table 6.3.2 contains our procedure outputs
for orbit 17 and orbit 18. It is obvious that orbit 17 and orbit 18 are in different
classes. Specifically, apart from axis 3, all other axes have mismatch in their label
sets. For example, while orbit 17 has only a |R∗〉 type contraction and all the other
points are |GHZ〉, orbit 18 has one |R∗〉, one |R2〉, and other points are W . However,
even though they are supposed to be in different equivalence class, orbit 17 and orbit
18 are in the same equivalence class if we allow axis permutation. If we ignore the
mismatch between each axis label, we notice that the structure of orbit 17 and orbit
18 line up: any axis that has an 1-radical and a 3-radical contraction also has other
points labeled as |W〉. On the other hand, any axis that has only a 3-radical has
other points labeled as |GHZ〉. This similarity in structure might be due to the axis
permutation that maps orbit 17 to orbit 18. Upon further manual investigation, we
notice that our labels have potential to discern (non)-isomorphism up to permutation
for other equivalence up to permutation classes as well.
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Axis 1:

Label Orbit 17 Orbit 18
Zero
|R1〉 (0, 1)
|R2〉
|R3〉
|R∗〉 (1, 0) (1, 0)
|W〉 other points
|GHZ〉 other points

Axis 2:

Label Orbit 17 Orbit 18
Zero
|R1〉 (0, 1)
|R2〉
|R3〉 (0, 1)
|R∗〉 (1, 0) (1, 0)
|W〉 other points other points
|GHZ〉

Axis 3:

Label Orbit 17 Orbit 18
Zero
|R1〉
|R2〉
|R3〉
|R∗〉 (0, 1) (0, 1)
|W〉
|GHZ〉 other points other points

Axis 4:

Label Orbit 17 Orbit 18
Zero
|R1〉
|R2〉 (1, 0)
|R3〉
|R∗〉 (0, 1) (0, 1)
|W〉 other points
|GHZ〉 other points

Table 6.3: Axis labels of orbit 17 and orbit 18
* In this table, we denote the points with row vector for better presentation. The blank

space entries indicate empty sets; there are no points with those labels in that axis.
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Chapter 7

Conclusion

In this thesis, we introduced the reader to tensors, drawing upon similar concepts
from linear algebra. We defined tensor concepts like tensor isomorphism, actions on
tensors, and tensor contractions. Using tensor contractions, we derived the known
classifications of 3-tensors, showing that there are 8 different equivalence classes for
a 3-tensor over an arbitrary field.

More importantly, we developed a new contraction-based approach for the tensor
isomorphism problem. From 3-tensor isomorphism classification, we generalized to
n-tensor isomorphism. We construct a new method to compare n-tensors using tensor
contraction, projective geometry, and contraction labels. Projective geometry helps
decide what contraction points we should include in our contraction labelling process.
Then, we described how to build contraction label for each axis of a tensor.

To confirm the validity of our method, we proved that if two tensors |φ〉 and |ψ〉
are isomorphic, and if a v-contraction of |φ〉 is in some classification χ, then there
exists u-contraction of |ψ〉 whose classification is also χ. Thus, to distinguish two
tensors, our method suggested that we can build contraction labels along every axis
of those tensors, and compare the axis contraction labels. If there is a mismatch along
any axis, the two tensors are not isomorphic.

Lastly, as a proof of concept, we applied our method to QIT. In particular, we
re-confirmed 3-tensor classifications in [2]. Then, we devised a general procedure to
tell 4-qubit state inequivalence. We tested our procedure on the nilpotent classes in
[1], and we were able to discern all the nilpotent classes. Moreover, we also spotted
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some contraction structure similarity up to permutation class.

In the future, we wish to apply this method to more scenarios. Firstly, we can ex-
pand our procedure to accommodate isomorphism up to axis permutation. Secondly,
we can apply this to semi-simple and mixed states in [1] to have a more concrete re-
sult. Last but not least, if our method is good enough for the 4-qubit case, it can be
used to quickly compute 5-qubit inequivalence by random sampling the contraction
labels, and compare the statistical results of any two tensors.
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Appendix A

Procedure for 4-tensor labelling

Here are the main functions from the Magma implementation. Available on
GitHub.

1: function Label(t)
2: if t eq 0 then
3: return “Zero”
4: else
5: l := AssociativeArray(); . container for Label(j)(t), j ∈ [1..4]
6: for axis in [1..4] do
7: rads := FindAxisRadical(t, axis)
8: if rads is not empty then
9: l[axis][“Zero”] := rads

10: end if
11: assign point (0, 1) to the right label
12: c := Compute Contraction(t)
13: l[axis][“R1”] := FindAxisRadical(c, 1)
14: l[axis][“R2”] := FindAxisRadical(c, 2)
15: l[axis][“R3”] := FindAxisRadical(c, 3)
16: l[axis][“R∗”] := R1 ∩R2 ∩R3
17: remove elements in R∗ from R1, R2 and R3
18: DEG := set of all degenerate points
19: l[axis][“W”], l[axis][GHZ] := FindNonDegeneratePoints(c, DEG)
20: end for
21: end if
22: return l
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23: end function
24:

25: function FindAxisRadical(t, axis)
26: v1, v2 := SliceTensor(t, axis)
27: if v1 and v2 are linearly dependent then
28: return “all”
29: else
30: if exists an x such that v1 and v2 are linearly dependent then
31: return {(0, x)}
32: else
33: return {}
34: end if
35: return {}
36: end if
37: end function
38:

39: function FindNonDegeneratePoints(t, DEG)
40: v1, v2 := SliceTensor(t, 1) . the slice axis does not matter here
41: m1,m2 := Matrix(v1),Matrix(v2)
42: d := Det(m2) . d is a polynomial with variable x
43: all point := false . keeping track of rank 1 point
44: if Degree(d) eq −1 then . d is 0
45: all inf := true
46: else if Degree(d) eq 0 then
47: C := {}
48: else
49: C := {Roots(d) : d /∈ DEG}
50: end if
51: p := m1 + y ·m2 . y ∈ PolynomialRing
52: d := Det(p)
53: if Degree(d) eq 0 then . d = a(x) + b(x)y
54: roots := {Roots(a(x)) : x /∈ DEG}
55: if all inf then
56: return roots, “all”
57: else
58: return “all”, roots 4 C
59: end if
60: else . d is quadratic
61: dis := Discriminant(d)
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62: if dis eq 0 then
63: if all inf then
64: return {}, “all”
65: else
66: return “all”, C
67: end if
68: else
69: roots := {Roots(dis) : r /∈ DEG}
70: if all inf then
71: return “all”, roots
72: else
73: return roots, “all”
74: end if
75: end if
76: end if
77: end function
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