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ABSTRACT: 	

The hypothalamic-pituitary-gonadal (HPG) axis is responsible for the production 

of the hormones testosterone and estradiol, and testosterone is thought to contribute to 

regulation of the axis through a negative feedback mechanism. Regulation by negative 

feedback involves the product of a pathway turning off that pathway when enough 

product is made. However, because the enzyme P450 aromatase converts testosterone to 

estradiol, estradiol may also contribute to regulation of the HPG axis and other 

phenomena that have been attributed to testosterone, like the inhibition of immune 

function. Previous studies have injected birds with an aromatase inhibitor (presumably 

reducing estradiol production) and shown a subsequent increase in the immunity of the 

injected birds as compared to their controls, implying that estradiol was decreasing 

immune function. In order to support the hypothesis that it is estradiol, not testosterone, 

which is inhibiting immune function, it is important to show that a decrease in estradiol 

and not a subsequent increase in testosterone is what is leading to the decreased 

immunity. In order to test this hypothesis that estradiol is inhibiting immune function, it 

is important to determine whether estradiol is a contributor to negative feedback of the 

HPG axis. In this thesis, I tested the hypothesis that estradiol affects negative feedback in 

the HPG axis. Chicken embryos were injected with either Fadrozole, an aromatase 

inhibitor, or a vehicle solution on day 13 of incubation. Two days later, the embryos were 

bled for hormone quantification and genetic sexing. Genetic sexing was obtained through 

DNA extraction, PCR, and gel electrophoresis. Hormone levels were compared across 

treatment and sex through ELISA assays. By using embryos, the immediate effects of 
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Fadrozole on negative feedback of the HPG axis were assessed. In contrast, recent studies 

of looking at androgen exposure have mainly focused on the post-hatch stages of 

development. 	

Estradiol levels in female Fadrozole treated embryos were significantly lower 

than in female control embryos, but this pattern was not seen in males. This could be due 

to the greater amount of estradiol and aromatase in females as compared to males. 

Additionally, females had a significantly higher level of estradiol than males, which is 

consistent with published literature and is most likely due to the major role that estrogen 

plays in female development. There was no significant difference in testosterone levels 

between treatment groups or sexes, implying that it is the decrease in estradiol, and not a 

subsequent increase in testosterone, that lead to the increase in immunity in Fadrozole 

treated embryos in previous studies. This work also implies that estradiol is not affecting 

negative feedback in the HPG axis of chicken embryos but that it may in fact be affected 

by testosterone. 	
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I. INTRODUCTION: 
	
Introduction to Testosterone and Estradiol and their role in development: 	
	

Hormones are signaling molecules that circulate throughout the body until they 

reach their target tissues which they act on by binding to receptors expressed inside or on 

the surface of target tissue cells. Receptors are proteins that act as docking stations to 

which hormones bind in order to exert their effects. Testosterone (“T”) and estradiol 

(“E”) are steroid hormones present in both sexes, but they are seen in higher quantities in 

the male and female reproductive systems respectively, where they are known for their 

role in maturation and regulation. Steroid hormones exert their effects early on in 

development during “critical periods” (Carere & Balthazart 2007), which means that 

these hormones have the ability to affect an individual’s development before they are 

born. Although the exact roles of testosterone and estradiol in early development are still 

debated, they are known to have an impact on sexual differentiation. In general, 

testosterone is known for its role in masculinizing individuals especially through 

secondary sex characteristics, while estradiol is known for its role in feminizing 

individuals. Sexual differentiation is mainly genetic but, in birds, the main gene involved 

in sexual differentiation is the DMRT1 gene, whose activity leads to the masculinization 

of gonads (Chue & Smith 2011). In addition to the DMRT1 gene, testosterone and 

estradiol also participate in sexual differentiation. An extreme example was found by 

Abinawanto et al. (1997) who injected embryos with an inhibitor that blocked estradiol 

production and saw sex reversal in hatched chicks. The depletion of estradiol in genetic 

females led them to have the morphological features of males post hatch. Additionally, 
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steroid hormones also affect sexual behaviors or differences (Carere & Balthazart 2007), 

reproductive physiology, gamete production, and reproductive regulation in adult birds. 

More specifically, in birds, testosterone and androgens (a category encompassing all male 

sex hormones including testosterone) present in the egg affect early embryonic 

development as shown through earlier hatch time, increased neck muscle, faster post 

hatch growth and decreased early immune function (Carere & Balthazart 2007). 

However, due to a process called aromatization, it has been hypothesized that estradiol 

might actually be exerting some of the developmental effects that were previously 

attributed to testosterone (Owen-Ashley 2004).	

Aromatization 
	

During steroidogenesis, some testosterone is converted to estradiol through a 

process called aromatization. Cytochrome P9450 aromatase, an enzyme, is responsible 

for this normal conversion of testosterone to estradiol (Simpson et al. 2002). In the 

process of aromatization, the enzyme converts the non-aromatic ring in testosterone into 

an aromatic ring, making the steroid estradiol (Bardal et al. 2011). Converting androgens 

to estrogens is the only way estradiol can be produced and then goes on to bind to unique 

receptors on its specific target tissues. Estradiol and testosterone bind to different 

receptors on different target tissues, resulting in the stimulation and inhibition of different 

pathways thus triggering different consequences throughout the body. 	

Hypothalamic-Pituitary-Gonad Axis 
	

One of the ways that testosterone production is regulated within the body is 

through the hypothalamic-pituitary-gonad (HPG) axis (Figure 1). The HPG axis starts 
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with the hypothalamus, a region of the brain, secreting gonadotropin releasing hormone 

(GnRH) which binds to GnRH receptors on the pituitary gland. In response, the pituitary 

then releases follicle stimulating hormone (FSH) and luteinizing hormone (LH) which 

bind to receptors on the gonads. In the testes, LH binds to Leydig cells to stimulate 

testosterone production while FSH binds to receptors on Sertoli cells to stimulate 

spermatogenesis (Whirledge & Cidlowski 2010). In the ovary, FSH binds to receptors 

leading to the production of estrogen (which requires the activity of aromatase) while LH 

stimulates oocyte maturation, ovulation, and follicular luteinization (Whirledge & 

Cidlowski 2010). Overall the HPG axis leads to the production of testosterone by the 

testes or estradiol by the ovaries, and the release of these hormones into general 

circulation (Figure 1).	
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Figure 1. Pathway of hormone secretion of HPG axis showing production of testosterone 
and estradiol and their possible inhibitory effects. Arrows represent a stimulatory effect 

on secretion while blunt-ended lines represent an inhibitory effect on secretion 

Negative Feedback in the HPG Axis: 
	

Physiological systems like the HPG axis are often regulated by negative feedback 

mechanisms, through which the product of a pathway is able to shut that pathway off 

when enough of that product is made. This mechanism prevents hyperactivity of 

physiological pathways and maintains homeostasis in the body. In addition to being 

upregulated by the hormonal cascade described above, testosterone and estradiol are 

strongly regulated by a negative feedback system within the HPG axis. For example, 

testosterone binds to receptors on the hypothalamus and pituitary gland to stop them from 

stimulating more testosterone production by reducing the amount of GnRH, LH, and FSH 

secreted. However, because aromatase converts testosterone to estradiol, a hypothesis has 

emerged that even in males, estradiol binds to the hypothalamus and pituitary gland and 

inhibits that axis, rather than testosterone (Tsai et al. 1994; Rochira et al. 2006). The 
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underlying mechanism of how androgens or estrogens might exert negative feedback on 

the axis remains unclear (O’Hara et al. 2015), but there are known estradiol receptors 

(mainly estrogen receptor !) on the hypothalamus, pituitary and gonads. These receptors 

allow estradiol to bind and reduce GnRH secretion from the hypothalamus and ultimately 

inhibit the axis (Couse et al. 2003; Dorling et al. 2003). Examples of estradiol inhibition 

of the HPG axis from mammalian models are well-understood, but it is still relatively 

unknown how this system works in birds. Therefore, further research is still necessary to 

explore the relative contributions of testosterone or estradiol to HPG axis regulation in 

birds. 	

Phenomena attributed to testosterone that could be due to estradiol: 
	

Research has shown some phenomena previously attributed to testosterone are 

likely due to estradiol. An example of one of these phenomena is decreased immune 

function (Owen-Ashley et al. 2004; Simkins et al. 2018). A large body of literature 

describes the ability of testosterone to suppress immune function in birds (Folstad & 

Karter 1993; Roberts et al. 2004; Cunningham and Gilkeson 2011). Owen-Ashley et al. 

(2004) injected birds with DHT (a steroid created from testosterone in steroidogenesis), 

testosterone or a control to see if there was a direct or alternative pathway between 

testosterone and immune response. Note that both testosterone and DHT bind to the same 

androgen receptors on target cells and exert their effects, but DHT binds with a much 

greater affinity than testosterone and, importantly, cannot be aromatized into estrogen 

(unlike testosterone). They found that injecting birds with DHT did not decrease immune 

function however, injecting birds directly with testosterone did. Note that testosterone is a 
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precursor for both DHT and estradiol (Figure 2a). These results suggest that there is an 

alternative pathway that testosterone is a part of, that does not involve DHT, that explains 

testosterone’s contribution to the decreased immune response seen. That alternative 

pathway is hypothesized to be aromatization into estrogen (Figure 2b).  

A. 

B. 	

	
	

	
Figure 2. A) Schematic showing testosterone as the precursor of estradiol and DHT. B) 
Schematic of Owen-Ashley et al. (2004) experimental results of testosterone and DHT 
injections. 

	
Studies supporting estradiol as the regulator of negative feedback: 
	

Many studies in other non-avian vertebrates have manipulated aromatization via 

aromatase inhibitors to study the role of T and E in HPG axis regulation. Rochira et al. 

(2006) found that in humans, when aromatase deficient men were injected with estradiol, 

downstream effects on both the pituitary and hypothalamic levels of the axis were 
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observed. GnRH-stimulated secretion of LH decreased and the frequency of LH pulses 

decreased, both indications of inhibition of the axis by the estradiol injections. The 

hypothesis that estradiol is responsible for the inhibition was also supported by an 

experiment that gave healthy men an aromatase inhibitor and saw increases in LH and 

FSH, suggesting that the estradiol that was no longer present had been a main factor in 

inhibiting this axis. Additionally, Bulun (2016) injected pre-menopausal woman with an 

aromatase inhibitor and found that with a decrease of estradiol production, there was an 

increase in the HPG axis activity shown through increased GnRH secretion along with 

accompanying increasing LH and FSH levels. Tsai et al. (1993) also supported estrogen 

as the inhibitor with their work in sea turtles. They suggest that the lack of physiological 

involvement of testosterone in this negative feedback system parallels observations in 

mammals. 	

In avian species and domestic chickens in particular, similar results have been 

found. Rombauts et al. (1993) found that female chickens treated with an aromatase 

inhibitor exhibited an increase in FSH levels. In other experiments they also found that 

male chicks injected with estradiol exhibited a decrease in their FSH levels, suggesting 

that estradiol was inhibiting the FSH secretion (Rombauts et al. 1993). This supports the 

hypothesis that estradiol is the steroid hormone that leads to the inhibition of the HPG 

axis in both sexes in these instances. However, the body of literature investigating the 

role of androgens is still growing, and many suggest that testosterone is still responsible 

for phenomena like immunosuppression, although some more recent studies have shown 

that the hormone responsible could actually be estradiol (Owen-Ashley 2004; Simkins et 
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al. 2018). Therefore, it is important to consider the aromatization process which was not 

considered in Evans et al. (2000) and Duffy et al. (2000) leading them to suggest 

testosterone as a key regulator. Therefore, this thesis aims to test the role of aromatization 

during embryonic development in birds, and to see if there is negative feedback on the 

HPG axis due to estradiol. 	

Differences in males in females in hormone levels and Fadrozole effectiveness:  
	
 Differing levels of hormones in male vs. female chicken embryos have been 

reported for testosterone (Woods et al. 1975) and estradiol (Woods & Brazzill 1980). On 

day 15.5 of embryonic development levels of testosterone were found to be higher in 

males as compared to females (Woods et al. 1975) and levels of estradiol were found to 

be higher in females as compared to males (Woods & Brazzill 1980). Males and females 

have been seen to show different responses when exposed to Fadrozole, an aromatase 

inhibitor, during early development which is vital information to this experiment. 

Fadrozole is a competitive inhibitor with high selectivity for aromatase (Yue et al. 1997). 

Fadrozole inhibits aromatase activity and consequently decreases the aromatization of 

testosterone to estradiol. Adkins-Regan et al. (1996) found that newly hatched female 

Zebra finches injected with Fadrozole, an aromatase inhibitor, exhibited male like 

behavior while males treated with Fadrozole acted similarly to their controls. They 

explained these results by suggesting that females are more susceptible to estrogen as an 

organizational hormone early on in their lifetime while males may not be. Simkins et al. 

(2018) also found that Fadrozole treated females had increased immunity as compared to 

their controls as measure by IgY antibody levels. This increase in IgY levels was not seen 
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as strongly in Fadrozole males as compared to their controls (Simkins et al. 2018). This 

evidence led me to hypothesize that females may be more affected by Fadrozole, as 

compared to males. Therefore, by quantifying the amount of testosterone and estradiol 

present in the plasma, I can see the effects Fadrozole may have on these hormones in 

males compared to females. 	

Experiment Overview and Hypotheses: 
	

In this thesis, the hypothesis that estradiol affects negative feedback in the HPG 

axis was tested. This test was done through quantification of the levels of testosterone 

and estradiol in day 15 chicken embryos that were injected on day 13 with either a 

control or Fadrozole solution. This analysis made it possible to observe the extent in 

which testosterone and estradiol act as inhibitors of the HPG axis during the embryonic 

stage in birds. If the hypothesis that estradiol exerts negative feedback on HPG activity is 

correct, then embryos injected with an aromatase inhibitor, blocking the conversion of 

testosterone to estradiol, should show an increase in testosterone and a decrease in 

estradiol production compared to control embryos. This result will be referred to as 

outcome 1. If outcome 1 occurs, then we can confirm that the Fadrozole is blocking 

estrogen synthesis and the estradiol that is lacking would normally be exerting negative 

feedback on the HPG axis; because estradiol is not present, testosterone is being 

hypersecreted. Outcome 1 could also be interpreted to mean that the lack of aromatization 

has left a lot of testosterone behind that was originally destined to be converted to 

estradiol. An alternative hypothesis is that testosterone is exerting negative feedback. If 

this is correct then outcome 2 would be seen which is a decrease in estradiol in Fadrozole 
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treated embryos compared to control embryos, but testosterone will remain the same in 

Fadrozole compared to control groups (Table 1). If outcome 2 occurs, it would confirm 

that the Fadrozole is blocking estrogen synthesis but estradiol does not have inhibitory 

effects on the HPG axis. It could not be implied that it is then testosterone that is 

inhibiting the axis because it may be something else entirely. The final potential outcome 

would be that Fadrozole did not block estrogen synthesis or did not exert its effects long 

enough to be detected 2 days after administration, which would lead to outcome 3. 

Outcome 3 shows no change in testosterone or estradiol production in Fadrozole treated 

embryos as compared to the control (Table 1). 	

In addition to illuminating the role of testosterone and estradiol in negative 

feedback of the HPG axis, this study also has an additional application. Jeff Simkins (‘19) 

conducted a similar study in order to measure how aromatase inhibitors and consequently 

testosterone and estradiol concentrations affect immune function in developing chickens 

(Simkins et al. 2018). He tested whether testosterones conversion to estradiol is involved 

in immune function development in birds. However, Simkins did not quantify the actual 

levels of testosterone and estradiol in the embryonic chicks to ensure that Fadrozole 

inhibited estradiol production, and to determine whether testosterone levels were altered. 

He found that chicks treated with Fadrozole did have an increase in immune function but 

was not able to show that those effects were due to a decrease in estradiol and not an 

increase in testosterone. Therefore, this study augments Simkins’ data and provides the 

information on the levels of the hormones at embryonic day 15. 	
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Table 1. Potential outcomes and interpretations 

Outcome Difference in testosterone 
and estradiol in Fadrozole 
treated embryos compared 

to control 

Interpretation Effectiveness of 
Fadrozole 

1 Estradiol decreases and 
testosterone increases 

Estradiol exerts negative 
feedback so testosterone is being 

hypersecreted 

Effective 

2 Estradiol decreases and 
testosterone remains the 

same 

Estradiol does not exert negative 
feedback on the axis and negative 
feedback by testosterone cannot 

be inferred. 

Effective 

3 Estradiol and testosterone 
remain the same 

Fadrozole is not working and did 
not stop the aromatization 

process 

Ineffective or did not 
persist through our time 

period of injection to 
bleeds. 

	
II. MATERIALS AND METHODS: 
	
Egg Care: 
	

97 fertile, unincubated, fertile White Leghorn domestic chicken eggs (Gallus 

gallus) were obtained from Moyer’s Chicks in Quakertown, PA and incubated at 37.5 °C 

and 47-51% humidity in an Ova-Easy Advance Incubator (Brinsea, Titusville, FL, USA). 

The eggs were placed on a 90-minute turn cycle (Simkins et al. 2018) and checked twice 

daily to monitor temperature and humidity. These eggs were divided into two batches. 

Batch one was incubated in September 2018 and Batch 2 was incubated in February 

2019. Within each batch there were 2 groups in order to stagger the eggs and make 

injections and blood sampling manageable and timely. The first group in batch 1, made 

up of 24 eggs, was put in the incubator followed by the second group of 24 eggs 2 days 
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later. This ensured that we were only injecting or bleeding 24 eggs at a time. Eggs were 

also rotated to different shelves of the incubator to ensure that no shelf or egg group was 

given more or less humidity than another. The same strategies were employed in batch 2.	

Fadrozole/Control Injections: 
	

Eggs were weighed, sorted into ascending weight order, then assigned to either 

the control or Fadrozole group based on this pattern starting with the lightest to the 

heaviest: CFFCCFFCC (where C is control and F is Fadrozole). This sorting was chosen 

in order to make sure that the control and Fadrozole groups were of similar weight 

distributions and weight could not be explaining any treatment differences. The control 

group had an average weight of 56.96 ± 4.32 g and the Fadrozole group had an average 

weight of 56.71 ± 3.66 g. The weights of the two groups were not significantly different 

(t=1,96.18, p=.86, ! =0.05).	

On day 13 of embryonic development, the eggs in the Fadrozole group were 

injected into the air sac with 0.1 mg of Fadrozole (Sigma-Aldrich, St Louis, MO, USA; 

F3806) in 0.1 mL of 0.9% NaCl solution using a 0.5 in, 27 g needle as described in 

Abinawanto et al. (1997). The air sack is located on the blunt end of the egg and provides 

an easily accessible area to inject into and ensure that either the Fadrozole or control 

solution will be taken up by the embryo without harming the embryo. The eggs in the 

control group were injected into the air sac with 0.1 mL of 0.9% NaCl solution as a 

control. The injection holes were sealed with super glue and eggs were placed back in the 

incubator. Embryos were bled and euthanized 2 days post-injection, on day 15 of 

incubation (Simkins et al. 2018). 	
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Blood Sampling: 
	

On day 15 the embryos were sacrificed for blood sampling and tissue collection. 

Upon removal from the incubator, the egg was broken open exposing the embryo and its 

blood vessels, and a syringe was used to prick a major visible blood vessel, allowing 

blood to flow out freely. Blood was then collected with capillary tubes and centrifuged 

down on a tabletop centrifuge for ~5 minutes at 6,000 rpm to separate into red blood cells 

and plasma. The plasma was then collected and placed in a separate microcentrifuge tube. 

Blood was collected from the embryos until it was impossible to collect anymore or the 

blood appeared to be diluted with albumin. After the blood was collected and separated it 

was placed in the -20°C freezer.	

The embryos were then dissected and visual inspection of the gonads was used to 

determine gonadal sex of each embryo. The presence of 2 small gonads (testes) indicates 

male and 1 large gonad and 1 smaller gonad (ovaries) indicating a female. The reason one 

ovary is larger than the other is because only one ovary undergoes differentiation in 

chickens. 	

Genetic Sexing of Embryos 
	

For genetic sexing, the DNA found in red blood cells of the chicken embryos was 

used to determine the sex. Genetic sexing was determined with PCR and gel 

electrophoresis using Platinum Green Mastermix (Applied Biosystems, Waltham, MA, 

USA; L00192), primers AvianSex 2550F (GTTACTGATTCGTCTACGAGA) and 

AvianSex2718R (ATTGAAATGATCCAGTGCTTG) (Fridolfsson and Ellegren 1999), 

and 2.5 high-resolution agarose gels. In chickens, females are the heterogametic sex 
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(ZW) while males are the homogametic sex (ZZ). Heterogametic means that the sex 

chromosomes are different (Z and W) while homogametic means that the two sex 

chromosomes are the same (2 Z chromosomes). In humans we see the opposite where 

males are heterogametic (XY) and females are homogametic (XX). Therefore, due to the 

ZW, ZZ nature of birds, Fridolfsson and Ellegren (1999) found 2 genes, 1 that was 

specific to the Z chromosome and one specific to the W chromosome, and developed 

primers that could amplify Z and W specific regions during PCR. The genes that they 

found were CHD1W and CHD1Z. The primers listed above are specific to regions of 

introns that flank the CHD1W and CHD1Z regions. Therefore, if the chick is a female, 

both of those genes will be amplified (Z and W gene) and shown on the gel as two 

different bands, and if it is a male only 1 gene will be amplified (the Z gene) and shown 

on the gel as a single band (Figure 3). 	

	

Figure 3. Gel Image for genetic sexing using gel electrophoresis 
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Hormone Extraction from Plasma 
	

In order to extract the hormones from the plasma and to prevent other lipids from 

interfering in the assay, a dichloromethane extraction was done. 80 samples were 

separated into testosterone and estradiol groups. Sex, treatment, experiment number, and 

batch were distributed evenly between hormones. 40 samples were set aside for 

testosterone extraction and 40 were set aside for estradiol extraction. For this experiment 

the range of plasma available for extraction was from 20-200 "L.	

During extraction some amount of hormone is always lost, and it is important to 

quantify that proportion lost in order to factor that into the final concentration 

calculations. This proportion remaining in each sample after extraction is referred to as 

the individual recovery. To determine recoveries, 20 "L of radioactive T or E was then 

added to the sample, as the radioactive hormone is expected to be lost in the same 

proportions as the hormone present in the sample that I am trying to quantify. The 

average CPM/20"L was counted on a scintillation counter, in triplicate, to give us total 

recoveries (the amount of radioactivity that would be recovered if no hormone was lost). 

300 "L of distilled water was added to each sample. The samples were then vortexed and 

set to equilibrate overnight at 4°C to ensure that the radioactivity was evenly distributed 

throughout the sample. The following day 5 mL of distilled dichloromethane was added, 

vortexed and incubated at room temperature for 2 hours. The supranatant was then 

removed and dried down in a water bath using nitrogen gas. The samples were then 

reconstituted in either 250 "L or 350 "L of PBSg (phosphate buffered saline with gelatin) 

for testosterone and estradiol respectively, vortexed and left to sit for 24 hours at 4°C. 
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They were then vortexed and 100 "L was removed and counted on a scintillation counter 

to determine individual hormone recovery for each sample. The scintillation counter 

measures the amount of radioactivity in each sample and report that value which we then 

can classify as individual recovery. Each individual recovery is converted to the percent 

of the total recovery (from above) recovered from the sample. The individual recoveries 

were then used to correct the raw concentration values from the EIA to determine how 

much testosterone and estradiol was present in each individual sample. 	

Quantification of Testosterone and Estradiol: 
	

The amount of testosterone and estradiol in the samples was then quantified using 

Salivary Testosterone (Salimetrics, State College, PA, USA 1-2312) and Salivary 

Estradiol (Salimetrics, State College, PA, USA 1-4702) kits. After running a serial 

dilution, a 50% dilution of the samples was determined to be optimal for both the 

testosterone and estradiol assays. Testosterone was measured in duplicate but estradiol 

was assayed without duplicates due to the shortage of sample. The average % CV for the 

testosterone assay was 6.05%. %CV for estradiol were not able to be determined because 

the samples were not run in duplicate. However, the relatively low %CV obtained from 

the testosterone EIA gave confidence in the estradiol values despite the lack of replicates. 	

Validation of ELISA 
	

Validations were conducted on both testosterone and estradiol ELISA kits. 

Validations are done through serial dilutions of the plasma in order to confirm that with 

each dilution the concentration of hormone in each sample is changing proportionally to 

the dilution. A serial dilution was done for testosterone and estradiol for each sex (Figure 
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4) with each subsequent dilution being half the concentration of the previous. Dilutions 

were validated by ensuring that the concentration found was half the concentration of the 

previous well. These validations were also conducted to ensure that the dilution chosen 

would fall on the standard curve. The dilution of 50% was selected for both T and E 

samples after ensuring those values met the needed requirements.	
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Figure 4. (A) Validation data for estradiol in males where blue square markers represent 
a perfect dilution and black diamond markers represent actual dilution values. (B) 
Validation data for estradiol in females where blue square markers represent a perfect 
dilution and black diamond markers represent actual dilution values. (C) Validation data 
for testosterone in males where blue square markers represent a perfect dilution and black 
diamond markers represent actual dilution values. (D) Validation data for testosterone in 
females where blue square markers represent a perfect dilution and black diamond 
markers represent actual dilution values. 
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Data Analysis and Statistics 
	

There was negative relationship between plasma volume and final concentration, 

which suggests that samples with lower plasma levels had inflated final concentrations 

(Figure 5). Therefore, samples with <100 "L were removed from the data set and all 

further analyses. The remaining samples were used for analysis. (Table 2). 	

Hormone concentrations were tested for normality using a Shapiro Wilkes W test 

by genetic sex and by hormone. There was no significant deviation from normality and 

therefore we proceeded with parametric analyses. A full linear model was run with JMP 

Pro 14 to test for sex, treatment, and sex by treatment interaction effects. Post hoc t-tests 

were then run to identify effects indicated by significant sex by treatment interactions. 

Effects of batch and group were also analyzed and although there was a suggestion that 

Fadrozole had different effects on what? seasonally, there was no significance in the 

overall model. Need to say clearly somewhere that batch and group were not significant  

	
	

A	
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Figure 5. (a) A negative relationship between amount of plasma and final testosterone 
concentration suggested that lower plasma concentrations had an inflated final 
concentration. Samples <100"L were left out of all analyses. (b) A negative relationship 
between amount of plasma and final estradiol concentration suggested that lower plasma 
concentrations had an inflated final concentration. Samples <100"L were left out of all 
analyses. 

Table 2. Final sample sizes for testosterone and estradiol used in analysis 

	

III. RESULTS: 
	
Development of Embryos: 

There was no significant difference in the survival of Control vs. Fadrozole embryos 

(Z1,96=.547, p=.58, !=0.05) (Table 3).	

Table 3. Development success of embryos at day 15 in both control and Fadrozole 
groups.  

B	
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Group Developed Undeveloped % Developed 

Control 41 
(26 females, 15 males) 

7 85.4% 

Fadrozole 39  
(19 females, 20 males) 

9 81.2%  

	
Male and Female Distribution between Treatment  
	
This experiment included 15 control males, 26 control females, 20 Fadrozole males and 

19 Fadrozole females (Table 3). There was no significant difference in the distribution of 

males and females between control and Fadrozole groups. (X2
1,1= 1.75, p= 0.185, !=0.05). 	

Linear Model 
	
For estradiol, there was a significant effect of the treatment by sex interaction (t3,35=2.87, 

p=0.0072, !=0.05) (Figure 6). There was also significant effect due to treatment alone 

(t3,35=2.13, p=.0411, !=0.05). There were no significant effects with testosterone of sex, 

treatment, or sex by treatment interactions (Figure 7). 	

Post-Hoc tests: 
	
Post-hoc t-test revealed a significant difference in estradiol concentrations in control vs 

Fadrozole females (t1,16=-4.98, p<0.0001, !=0.05) (Figure 6). Post hoc t-test reveal a 

significantly higher level of estradiol in control females as compared to control males 

(t1,16=-3.57, p=0.0025, !=0.05) and that significant difference disappeared in the Fadrozole 

females as compared to Fadrozole males (t1,12=1.27, p=0.226, !=0.05) further illustrating 

the effects of Fadrozole on estradiol levels in females. 	
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Figure 6. Estradiol concentration in female vs. male embryos. The estradiol 
concentration of the control females was significantly higher than that of Fadrozole 
females, control males or Fadrozole males. A and B represent groups that are 
significantly different from each other. 

	

	
Figure 7. Testosterone concentration in female vs. male embryos. There was no 
significant difference in the testosterone concentration by sex or treatment. 
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IV.  DISCUSSION: 
	
Summary: 
	
 The goal of this thesis was to quantify the amount of testosterone and estradiol in 

Fadrozole treated vs. control embryonic chicks in order to see if testosterone or estradiol 

affects regulation of the HPG axis through negative feedback. Estradiol concentrations 

were significantly affected by the treatment by sex interaction, in which estradiol 

concentration was significantly lower in female embryos treated with Fadrozole as 

compared to controls, but males did not show this difference. There were no significant 

effects with testosterone in sex, treatment, or sex by treatment interactions. This evidence 

suggests that estradiol does not affect regulation of the HPG axis through negative 

feedback. There is also no definite role of testosterone in regulation seen through these 

results. 	

Effect of Fadrozole on Development: 
	

No significant difference was found in the development of chicks treated with 

Fadrozole as compared to those in the control group (Table 3). This confirms that 

Fadrozole did not significantly affect the development of the embryos. Although this 

same dosage of Fadrozole was used by Simkins et al. (2018), there was still the fear that 

those embryos treated with Fadrozole may have significantly lower rates of development. 

However, this was not the case in the present study affirming that the dose of Fadrozole 

used is sufficient enough to exert effects on the embryos without lethal effects. 	

Expected Concentrations as compared to actual concentrations: 
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The comparative concentrations for testosterone at embryonic day 15.5 were 

210.1 ± 3.6 pg/mL for males and 116.2 ± 2.2 pg/mL for females. (Woods et al. 1975). 

Our results showed an average of 267.11 ± 79.35 pg/mL for control males and 309.24 ± 

64.60 pg/mL for control females. The comparative concentrations for estradiol at 

embryonic day 15.5 were 716.6 ± 8.8 pg/mL for males and 1229.6 ± 26.9 pg/mL for 

females. (Woods et al. 1981). Our results showed an average of 40.41 ± 10.18 pg/mL for 

control males and 62.45± 15.99 pg/mL for control females. The plasma testosterone 

levels found in the present study differ than the literature cited. However as described by 

Weniger (1991) there has been a range of testosterone values seen during embryonic 

development that differs across labs. Additionally, day 15 is a crucial day for production 

of these hormones by the gonads. Guichard et al. (1977) explained that up until day 15, 

the pairs of gonads in females produce more testosterone than the males. After day 15 

however, the production of testosterone by the pairs of gonads is higher in males than 

females. (It is important to realize however that the relative production of testosterone 

compared to other steroids produced is higher in males than females for all of 

development. For females, the highest relative steroid produced is estrogens). The plasma 

estradiol levels found in the present study are higher in females than males, which is 

consistent with the literature. However, the concentration values obtained in this study 

are not as high as those cited in the literature which could be due to the use of an EIA as 

compared to the RIA used in Woods et al. (1981), the breed of chicken and the 

seasonality. It is also highly possible that the variation seen in testosterone levels across 

labs as describe in Weniger (1991) is applicable to estradiol levels as well. 	
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Testosterone Levels in control vs. Fadrozole embryos: 
	

There was no significant difference in testosterone levels for Fadrozole males or 

females as compared to their controls. Because testosterone did not change significantly 

in either sex, it is difficult to make a conclusion about the role of testosterone in negative 

feedback of the HPG axis. Rombauts et al. (1993) found a large increase in FSH levels in 

chicks treated with an aromatase inhibitor suggesting that estradiol is a key regulator of 

negative feedback. They also found a large decrease in FSH levels in those chicks 

injected with estradiol (Rombauts et al 1993), but this same effect of inhibition by 

estradiol at the level of testosterone production was not seen. An explanation for the lack 

of rise in testosterone concentrations, implying that estradiol may not regulate the 

negative feedback of HPG axis, could be that most studies up to date have dealt with 

chicks (Rombauts et al. 1993) and not embryos. Additionally, studies that have suggested 

that aromatase inhibitors increased testosterone levels have been done in either non-avian 

species or post hatch chicks. The present study is a novel study in the sense that embryos 

were injected with Fadrozole and the immediate, not post-hatch, effects of the aromatase 

inhibitor on steroid concentrations was observed. Other studies looked at the hormone 

levels after the chicks had hatched (Simkins et al 2018). Some possible explanations for 

these results could include that the negative feedback mechanism is regulated differently 

at this stage or that the negative feedback mechanism is not fully in place yet for these 

embryos. Further studies could help answer this discrepancy by repeating this experiment 

but also injecting the eggs with DHT, an androgen that binds androgen receptors but 

cannot be aromatized, to see how testosterone and estradiol levels change. If testosterone 
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levels decrease with DHT injection then that supports the hypothesis that testosterone is 

the regulating hormone. However, if testosterone does not change with DHT injection, 

that supports that testosterone does not affect regulation of the HPG axis. 	

Testosterone and Immune Function: 
	
 As explained before, one of the goals of this thesis was to serve as a follow up to 

Simkins et al. (2018). Simkins et al. (2018) tested the hypothesis that estradiol leads to 

decrease immune function in chicks. He injected embryos on day 13 with either 

Fadrozole or a control and then put the chicks through a series of immune function tests. 

He found that overall, those chicks that were injected with Fadrozole saw an increase in 

immune function suggesting that estradiol, that was now absent, was originally 

suppressing immune function. However, lacking in the Simkins et al. (2018) study was 

the quantification of hormone levels in the day 15 embryos. Without quantification, 

Simkins et al. (2018) cannot be sure that it was the decrease in estradiol that was leading 

to the increase in immune function or whether it is something else such as an increase in 

testosterone. Without confirming that there is no change in testosterone levels, Simkins 

cannot be certain that the decrease in estradiol is leading to the improvement in immune 

function. Since the present study saw no significant change in testosterone concentration 

between control and Fadrozole embryos for both sexes, the results found in Simkins et al. 

(2018) can be attributed to the decrease in estradiol and not a decrease or increase in 

testosterone. This holds true especially for the females in which Simkins found a 

significant increase in immune function of females treated with Fadrozole accompanied 

with the significant decrease in plasma estradiol concentration found in this study. This 
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confirms that the significant decrease in estradiol is the only significant change that is 

occurring among testosterone and estradiol levels and therefore can be the cause for the 

results seen. Therefore, this study has supported Simkins’ et al. (2018) results, and shows 

that the decreased immune function that was previously attributed to testosterone can 

now be attributed to estradiol. 	

Estradiol Levels in Control vs. Fadrozole embryos in both males and females 
	

There was a significant difference in the levels of estradiol for control vs. 

Fadrozole treated females. This difference shows that Fadrozole was able to decrease 

estradiol synthesis in females. This effect was not seen in males treated with Fadrozole 

which suggests a difference in the way Fadrozole may affect male vs. female embryos. 

One reason for this difference could be that the overall concentration of estradiol in males 

as compared to females is much lower and so Fadrozole does not exert the dramatic 

effects as seen in females. Another possibility could be attributed to the higher levels of 

testosterone found in females as compared to males. Since there is a greater amount of 

testosterone in females as compared to males, aromatase will be more active and seen in 

higher quantities in females. Therefore, when aromatase inhibitors are present, they are 

inhibiting a greater amount of aromatase activity in females as compared to males so we 

see more potent inhibition in females. In a future study, it would be interesting to look at 

the decrease in estradiol and compare that to the aromatase expression seen in male vs. 

female embryos. This would allow us to correct for the amount of aromatase present in 

each sex and see if Fadrozole is inhibiting aromatase to the same degree in both sexes or 

if it is more potent in one sex. 	
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Simkins et al. (2018) also saw a stronger effect of Fadrozole in females as 

compared to males. In their study, Fadrozole exposure increased day 18 IgY levels in 

females for given bursal mass; however, males did not show as strong of a relationship 

and Fadrozole only dampened the already existent negative trend. IgY antibodies are the 

major immunoglobulin in birds and an increased level of IgY would imply a stronger 

acquired immunity (Simkins et al. 2018). An increase in IgY levels in those females 

treated with Fadrozole indicates an increase in immunity as well, implying that the 

decrease in estradiol with Fadrozole injections subsequently increased immunity. This 

trend was not seen in males implying that the Fadrozole did not exert as great of an effect 

on the males as it did for the females. This is similar to the results found in the present 

study in which Fadrozole significantly decreased estradiol biosynthesis in females but not 

in males. This evidence in Simkins et al. (2018) supports the present study’s results that 

Fadrozole affects males and females differently, and therefore helps explain why we also 

saw discrepancies in estradiol’s biosynthesis in male vs. female embryos. 	

The decrease in estradiol in the female embryos, however, accompanied by no 

significant change in testosterone, is Outcome 2 (Table 1). Outcome 2 shows that 

Fadrozole is working but that estradiol does not exert negative feedback on the system 

due to the consistent levels of testosterone. These results also suggest that testosterone 

may be inhibiting the axis from over-secreting testosterone, because levels did not 

significantly increase, but in order to confirm this an additional experiment with DHT 

should be done as mentioned above. If embryos injected with DHT do not show a change 
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in testosterone levels, then that would provide information that there may something else 

altogether that is inhibiting the axis that is not an androgen or estrogen. 	

Estradiol Levels in Control Females vs. Control Males  
	

The levels of estradiol were significantly higher in control females as compared to 

control males, which is consistent with the data presented in the literature (Woods et al. 

1981). This likely is due to the crucial role that estradiol has in female development that 

that is not as apparent in male development of chicken embryos (Carere & Balthazart 

2007). The embryonic stage is an important window in organizational development and 

the concentrations of the sex specific hormones will be key in the sexual development of 

these embryos. There is also a higher level of aromatase protein expression in female 

ovaries as compared to male testes during avian development (Shimada 1998). This 

explains the increased levels of estradiol found in females as compared to males because 

an increase in aromatase activity would lead to an increase of estradiol biosynthesis. 	

Major Conclusions: 
	

There are three major conclusions that can be gathered from the results found in 

this thesis.	

1. Fadrozole significantly decreased estradiol levels in females but testosterone 

levels remained the same. This, along with the results in Simkins et al. (2018) 

showing an increase in immunity in Fadrozole treated embryos, supports the 

hypothesis that estradiol, not testosterone, decreases immunity in chicks. 

2. In the present study, Fadrozole was effective but it cannot be concluded that 

estradiol exerts negative feedback. Testosterone could be the steroid that is 
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affecting negative feedback in the HPG axis in these embryos but further tests, 

preferable with DHT, would be needed to confirm. 

3. Fadrozole can successfully exert its effects on chick embryos, but has a stronger 

effect in females as compared to males, which may be due to the larger 

concentration of estradiol in females as compared to males. 

 Through these conclusions, this thesis was able to show that estradiol does not 

affect negative feedback of the HPG axis during development. Additionally, after adding 

the results of the present study to the results found in Simkins et al., it was seen that 

estradiol affects immunity post hatch. This study served as a foundation for the effects of 

steroid hormone exposure during development and laid the ground work for future 

research in the role of testosterone and estradiol during development.   	
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