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ABSTRACT 

 

 Current research on high school calculus instruction indicates that students often 

possess a procedural knowledge of differentiation and integration as opposed to a 

conceptual knowledge (Orton, 1983; Ferrini-Mundy & Graham, 1994). Given the 

prominence of traditional lecture and textbook-based calculus classes in the United 

States, students are not always given the opportunity to expand their conceptual 

knowledge of essential calculus concepts. This project introduces calculus students to a 

more active and communal method of teaching: Launch-Explore-Summarize (LES) 

(CMP, n.d.). This methodology places students at the center of their learning, and 

emphasizes inquiry-based thinking during a class. Specifically, two LES lessons are 

designed and taught in high school calculus classes in order to offer students a conceptual 

basis for thinking about differentiation and integration. Lesson data and student feedback 

are discussed in relation to traditional calculus instruction, and ultimately offer insight 

into the potential effectiveness of LES in high school calculus. The study finds that LES 

lessons are effective in collaboratively engaging students with calculus material, and that 

LES is largely effective in helping students conceptually learn differentiation and 

integration. Lastly, it finds that traditional calculus teachers are skeptical of LES-based 

curricula, and that these viewpoints contrast with student perceptions of LES.



1  

CHAPTER 1: INTRODUCTION 

As students progress through high school, they encounter a variety of teaching 

styles and methodologies. These teaching philosophies generally fluctuate between 

high school subjects, such as mathematics and history, but can also differ within a 

subject. For instance, two algebra teachers may differ in the way they present material 

and structure their classrooms. One teacher may emphasize the procedural components 

of algebra while the other focuses on the underlying geometric concepts of algebraic 

reasoning. Regardless of methodology, it is important to recognize that such 

distinctions exist and affect student learning and engagement (Stigler & Hiebert, 

2004). As a future mathematics educator, I find interest in gaining a firsthand account 

of how students perceive different forms of mathematics instruction and how well such 

instruction performs in terms of conceptual understanding. 

This research project focuses on the comparison of traditional methods of 

teaching high school calculus to a non-traditional method known as the Launch-

Explore-Summarize method of instruction. This non-traditional method places 

students at the center of their own learning as students work in a collaborative 

environment to build and explore conjectures, relate their findings to previously 

learned material, and discuss the implications of their results in a broader 

mathematical context. This structure is vastly different from traditional methods of 

lecture and decontextualized problems. 

  



2  

Launch-Explore-Summarize 

 The Launch-Explore Summarize (LES) method of mathematics instruction was 

developed by the Connected Mathematics Project (CMP) from Michigan State 

University (Connected Mathematics Project, n.d.). This lesson structure is divided into 

three phases: the Launch phase, the Explore phase, and the Summarize phase. While 

each phase relates to one another and the broader mathematical content in the lesson, 

they individually contain specific components that augment the overall structure. 

In the Launch phase, students are given the opportunity to access the lesson 

material in an appropriately contextualized manner. The teacher determines the context 

of the lesson, but it should allow students to engage with the task or problem without 

revealing key details or components of the activity. For instance, an example of an 

effective Launch could be a Do-Now task that revisits prior material that will become 

important for the current lesson. The CMP includes several considerations for the 

Launch phase, including knowing what prior knowledge a student might need to 

complete the LES lesson, how the current lesson connects to such prior knowledge, 

how the LES lesson can be personalized for each class, and how the material can be 

made accessible to all students. 

Once the Launch phase is complete, students move to the Explore phase. In this 

phase, students actively work on the problem to build mathematical understanding and 

make connections. It is important for the teacher to make any required materials 

available to the class and clearly communicate the class structure at this time. For 

example, are students collaborating in pairs or groups, or working collectively as a 
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class to solve a problem? Once these roles are established, the majority of learning and 

exploration is the students’ responsibility. The classroom teacher surveys the room, 

answering questions and offering appropriate scaffolding to students, while also 

preparing for the final phase of the lesson. Because groups may be at different stages of 

problem solving, the Explore phase is an excellent time to differentiate instruction for 

specific groups of students. Such differentiation can include effective selecting and 

sequencing of student responses (Smith & Stein, 2011), with the teacher purposely 

choosing specific groups to present their work in a logical order. 

As part of the Explore phase, students are responsible for transforming their 

mathematical discoveries into a presentable format in order to share their findings with 

the whole class. While visual representations, such as a poster or digital file, are 

encouraged if appropriate, it is worth noting that such presentations may also be 

verbally explained or physically modeled, among other options. This basic structure 

offers classroom teachers flexibility in how they organize the lesson, and may be 

molded to align with the needs and community of the classroom. Giving each group of 

students ample time to complete the task is also important, and having additional 

questions available for students who progress at faster or slower paces than anticipated 

is recommended to facilitate a solid LES lesson (CMP, n.d.). Once all groups are at an 

appropriate point in the lesson and are ready to share with the class, the Summarize 

phase begins. 

The Summarize phase is the final phase of an LES lesson and is used to build 

an overall class understanding of the problem. In this phase, students share their visuals 
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or explanations from the Explore phase and manage questions or comments from other 

groups of students. Because each group may have been at different parts of the problem 

in the Explore phase, it is important for each presenting group to explain what thought 

processes were used in problem solving. Students may also experiment with other 

groups’ problem solving strategies to test for consistency and correctness, given that 

they may be different from their individual strategies. This structure ultimately helps 

the entire class understand the essential concepts of the lesson, as it recapitulates 

students’ work from the previous phases. 

The teacher is responsible for facilitating an effective discussion in the 

Summarize phase (CMP, n.d.). As previously mentioned, a purposeful selecting and 

sequencing of presentations aids in this process, as students can hear different ideas 

about the problem in a logical order (Smith & Stein, 2011). Throughout this process, 

the classroom teacher must be prepared to ask and answer questions that may not be 

inherently obvious to the problem (CMP, n.d.). For instance, if an LES lesson is being 

used to introduce a new topic to the class, the teacher should be ready to ask questions 

that connect the lesson to the new topic. Additionally, time limitations remain a factor 

in the Summarize phase. When orchestrating the full class discussion, the classroom 

teacher will have to make decisions on which questions and conjectures need to be 

answered at the present time and which can be left until a future class period (CMP, 

n.d.). Such a practice is important to solidify student understanding of the problem and 

concepts associated with the lesson. Through effective planning and implementation of 

the Launch phase, Explore phase, and Summarize phase, the overall LES lesson is 
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designed to provide an interactive and rich mathematical learning environment for 

students. 

Why Calculus? 

The goal of this research project is to test the effectiveness of LES lessons in 

high school calculus. Much of the current literature on the LES method is either dated 

(e.g. Hirsch, Coxford, Fey, & Schoen, 1995), focused on middle school students (e.g. 

Karatas & Baki, 2013), or focused on other subjects outside of calculus such as 

geometry (i.e. Halat, Jakubowski, & Aydin, 2008). There is little to no research done 

on its effectiveness in high school calculus. Since calculus is an essential part of many 

high school mathematics curricula, it is important to analyze the current state of 

calculus education and how LES could be used in this process. 

Current literature suggests that in the calculus class, lecture continues to be the 

main form of instruction (Larsen, Glover, & Melhuish, 2015). Additionally, there are 

few research studies that explore actual teaching practices in calculus classrooms 

(Larsen, Marrongelle, Bressoud, & Graham, 2017). Consequently, there is a significant 

lack of understanding on differing methods of calculus teaching and how these methods 

affect student learning. This deficit is concerning and needs to be addressed. In an effort 

to minimize the literature gap, this project aims to understand the structure of current 

calculus education and provide evidence-based suggestions for improving calculus 

instruction. 

  



6  

CHAPTER 2: LITERATURE REVIEW 

The literature review begins with a broad overview of calculus instruction, 

followed by a more specific analysis of differentiation and integration instruction. This 

analysis will explicitly review instruction on the power and product rule for finding 

derivatives as well as instruction on integration as total area under a function with 

respect to the x-axis. Following this discussion, the literature on the LES method of 

instruction in the context of general problem-based learning strategies will be explored. 

This exploration will also include literature on the specific question types used 

throughout an LES lesson, and how these question types relate to student responses. 

Finally, the LES method will be discussed in context with current calculus instruction 

and how this connection leads to my research questions. 

Current Calculus Instruction 

Before beginning a broad analysis of calculus instruction, it is important to 

note that much of the available literature is not focused on high school courses. 

Instead, calculus research is largely conducted in college-level courses rather than the 

high school classroom (e.g. Wagner & Sharp, 2017; Bressoud, 2015; Aspinwall, 

Shaw, & Presmeg, 1997). While a discussion of calculus instruction in the university 

setting helps understand calculus teaching as a whole, it is concerning that only a few 

studies centered on high school calculus exist. This project will work to bridge this 

gap in the literature. 

Calculus is the study of limits, derivatives, and integrals. Though these are 

core topics of calculus, the literature suggests that students struggle with developing a 
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conceptual understanding of them. Epstein (2013) describes the Calculus Concept 

Inventory (CCI) which is a test of students’ conceptual understanding of fundamental 

topics in differential calculus. When administered in the United States and several 

other countries around the world, nearly every country reported that students lacked a 

conceptual understanding of calculus. Although Chinese students performed 

significantly better on the CCI, Epstein was able to discredit the misconception that 

Chinese students are adept at drill and practice procedures, noting that calculus 

instruction in China is more fundamentally based than instruction in the United States. 

Teaching and Learning Differentiation 

Literature on Students’ Understanding of the Derivative 

Although the concept of derivatives is a focal point in the study of calculus, 

student understanding of differentiation is not holistically strong. Rather, students are 

much more adept at the procedural skills involved with differentiation as opposed to 

the central underpinnings of the concept. Orton (1983a) initially observed this trend, 

as he concluded that students were largely capable of using procedures to find 

derivatives but encountered many more difficulties when they needed to apply their 

knowledge of the derivative to problems involving rates of change and the limit 

definition of the derivative. Ferrini-Mundy and Graham (1994) also observed this 

trend. For instance they found that students could not navigate different 

representations of the derivative as well as they could calculate derivatives using 

formulas. 
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Additionally, the literature suggests that students have trouble interpreting the 

graphs of derivatives and connecting these graphs to original functions. Nemirovsky 

and Rubin (1992) worked to understand how students perceived the relationship 

between a function and its derivative; however, they attempted to do so from the 

student’s point of view using a process similar to Tall and Vinner’s (1981) framework 

of concept images and concept definitions. Given the logic and complexity involved 

with learning mathematics, Tall and Vinner introduced a moldable framework for 

analyzing student understanding, both at the present moment and as new information 

becomes available to the student. For a given concept, they regard a concept definition 

as “a form of words used to specify that concept” (Tall & Vinner, 1981, p. 152). It is 

important to note that Tall and Vinner explicitly distinguish between a personal 

concept definition and a formal concept definition. A personal concept definition is 

that of a particular student at a particular time, and it may change as the student learns 

new information about the concept. Conversely, a formal concept definition is the 

widely accepted understanding of a concept by the mathematical community (Tall and 

Vinner, 1981, p. 152). 

In Nemirovsky and Rubin’s (1992) study of derivative graphs, the researchers 

wanted to compare the perceptions and understanding of derivative graphs from 

students’ personal concept definitions to that of a formal concept definition. In other 

words, the goal of the study was to determine how well students’ understandings of 

derivative graphs actually meshed with correct interpretations of the concept. 

Attributes involving the graphs of derivatives, including slope, rates of change, and 
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relations to original functions, were placed in various contexts. For many of the 

students involved with the study, it was difficult to connect given information about a 

function with its derivative, and to effectively utilize these tools to solve application 

problems. 

Despite the trend of students having a greater procedural knowledge base as 

opposed to a conceptual knowledge base, it is worth mentioning that the literature is 

lacking comprehensive studies of students’ understanding of the derivative. As Larsen 

et. al (2017) notes, 

The research on student understanding of the derivative is characterized by 

small, detailed studies of students’ thinking as they solve problems designed to 

probe their ability to carry out derivative computations, think about graphical 

representations, and make connections between multiple representations of the 

derivative (p. 535) 

Given the literature gap associated with the teaching and learning of differentiation, it 

is difficult to gain a comprehensive understanding of its current state in calculus 

education. In an effort to build some comprehension, it is worthwhile to review 

example lessons of core differentiation topics. It is also noteworthy that some of the 

following activities occur outside of high school classrooms. However, their setup and 

levels of student understanding are comparable to that of a high school classroom. 

Examples of Differentiation Tasks 

 Wagner and Sharp’s (2017) activity focused on the relation between secant and 

tangent lines. This activity was presented to a group of 61 first-semester calculus 
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students at a public university, and employed inductive reasoning to build connections 

between secant and tangent lines. The goal of the activity was for students to use 

GeoGebra software to graph secant and tangent lines, observe and change the slope of 

these lines, and build conjectures about how they compared. Ultimately, students 

began to offer suggestions about how to approximate the slope of a tangent line with a 

secant line, including bringing the intersecting points of the secant line closer together 

to mirror that of the tangent line. Wagner and Sharp concluded that, even at the end of 

the semester, a significant percentage of students were able to articulate the 

relationship between secant and tangent lines in a conceptual and precise manner. 

Although the Wagner and Sharp activity is just one example, it is important to 

understand its purpose in teaching differentiation. Such an approach was student-

centered, interactive, and discovery-based. While the researchers did not compare their 

findings with that of traditional instruction, they were able to assert that 74 percent of 

students could correctly and conceptually describe secant and tangent lines, and that 63 

percent could do so on the final exam twelve weeks after the lesson. This activity 

shows the potential for students developing a conceptual understanding of an essential 

derivative topic when taught in an active manner. 

While the Wagner and Sharp activity is encouraging, there are other 

differentiation lessons that fall under a more traditional lens. Consider Hurwitz’s 

(2001) activity involving the product rule for derivatives. Students in this activity had 

to determine if the derivative of a product is the product of the derivatives, as is the 

case for similar structures involving limits or square roots. The lesson proceeded with a 
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mix of conjectures and examples of derivatives with and without the product rule 

formula, as students worked to decipher if their initial conjectures were true. Although 

there was some conceptual work present in this activity, the majority of the lesson 

focused on formula manipulation and testing rather than understanding the concepts 

associated with the product rule. Such an activity offers support as to why students are 

more comfortable with procedural knowledge instead of conceptual knowledge, as the 

literature has concluded. 

Textbook Explanations of the Derivative 

Textbooks play a critical role in calculus classes and how the derivative is 

often presented. Nicol and Crespo (2006) note that, especially in North American 

classrooms, textbooks are a key component of mathematics education. Specifically, 

textbooks often dictate what material is taught in the classroom, how it could be taught 

to students, and when it could be taught in the curriculum (p. 331). Given the powerful 

role that textbooks can play in calculus courses, it is worthwhile to discuss how they 

introduce and explain derivative concepts.  

My study focuses on how three textbooks present the power rule and product 

rule for calculating derivatives. The three chosen textbooks are 1) Calculus: Ideas and 

Applications (Himonas & Howard, 2003), 2) Essential Calculus (Stewart, 2007) and 3) 

Calculus: Early Transcendentals (Rogawski & Adams, 2015), which could all feasibly 

be used in a high school calculus course. All three include chapters on the essential 

components of calculus, such as limits and continuity, differentiation, and integration, 

introduced in that order. After examination, all three textbooks are highly similar, 
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especially in their explanations of the power rule and product rule for derivatives. 

They each first introduce the derivative in the context of average and instantaneous 

rates of change before formally defining the derivative as a limit. The order of 

presentation shifts from here, but all three books cover basic derivative formulas, the 

chain rule, implicit differentiation, and related rates.  

There is a common theme in each of the books’ respective sections on the 

power rule: each book offers the reader some examples that use the power rule in order 

to see a pattern before presenting the generalized rule in a highlighted box. The 

product rule is nearly identical, as each book presents the generalized rule in an 

emphasized box. Textbook 2 includes an example of why the derivative of a product is 

not the product of the derivatives. After these explanations, students are supplied a 

series of problems where they use the power and product rules to find basic 

derivatives. 

A brief analysis of calculus textbooks support the literature discussed earlier: 

students can calculate derivatives using a variety of procedural rules, but struggle when 

needing to conceptualize or apply knowledge of the derivative. Given the procedural 

emphasis placed on derivatives in each of the textbooks, and the role of textbooks as 

explained by Nicol and Crespo (2006), it is understandable why such trends exist in the 

literature. Overall, the teaching and learning of derivatives lacks an applied and 

conceptual basis, which is only furthered by activities and explanations rooted in 

procedure. 
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Teaching and Learning Integration 

Literature on Students’ Understanding of the Integral 

Much like the literature on students’ understanding of differentiation, the 

current literature lacks a substantial amount of research on high school students’ 

understanding of integration. Orton (1983b) was again one of the first to study this 

topic. He presented a series of integration tasks to both high school and college 

students, which included questions on limits of sequences, area calculations, 

geometric areas under graphs, integration procedures, and applications of integration. 

Like his differentiation results, Orton found that high school and college students 

tended to perform similarly on the integration assessment. 

Further, the students were more successful in completing more procedural 

tasks, such as carrying out integration or calculating areas, as opposed to more 

conceptual tasks, such as the relationship between sequence limits and area or the fact 

that the integral of sums equals the sum of integrals. Orton also concluded that, in the 

context of a problem, many students knew what to do to solve the problem but were 

unsure why they were using such a procedure. Orton’s findings align with traditional 

calculus instruction, as the emphasis on procedural understanding often outweighs a 

solid conceptual basis. 

Although not an explicit study like Orton’s, Tall (1992) also discussed the 

difficulties that students face in learning calculus. Initially, Tall separated calculus into 

two realms: informal calculus and formal analysis. In the informal calculus session, 

Tall included general ideas of rates of change, rules for differentiation and integration, 
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and areas and volumes as applications of integration. Conversely, the formal analysis 

section portrays calculus with an emphasis on completeness. Such topics include 

formal definitions of limits, continuity, differentiation, Riemann integration, and the 

fundamental theorem of calculus (p. 13). Tall also notes that, while instruction 

obviously differs from classroom to classroom, there is a general dissatisfaction with 

the structure of calculus courses. Specifically, he echoed the common theme of the 

literature, arguing that a conceptual understanding of core calculus topics was not the 

focal point of instruction. 

With regard to integration, Tall meticulously explored the concept of limits and 

how they are used to define much of calculus. Specifically, he noted that limits tended 

to be conceptually difficult for students. Language such as “tends to” and “as small as 

we please” often interfered with formal concepts, and limit processes not done by 

arithmetic or algebra created a mysterious realm for students (p. 14). Tall also 

summarized how students often struggle with connections between concepts. Given 

the novelty of the essential topics in calculus, Tall explained that students either 

“reconcile the old and the new by re-constructing a new coherent knowledge structure” 

or “keep the conflicting elements in separate compartments and never let them be 

brought simultaneously to the conscious mind” (p. 15). Although the former is a solid 

learning strategy, its difficulty often pushes students to adopt the latter. Overall, with 

regard to integration and calculus instruction in general, Tall’s summary again 

confirms the theme of the literature that students struggle more with conceptual 

notions of key calculus topics. 
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Before exploring examples of integration instruction, it is helpful to discuss how 

students perceive the conceptual material of integration. Rasslan and Tall (2002) 

conducted a study with 41 high school students regarding the definition of the definite 

integral in an effort to answer this exact question. The students were given a short 

questionnaire with aspects of the definite integral concept, including calculations, 

connections to area and total quantity, and definitions. Specifically, Rasslan and Tall 

asked students to explicitly define the definite integral over a closed interval in the 

final question of the assessment. Out of the 41 students, 26 gave no answer to the 

question. The remaining 15 students either defined it as a procedure involving 

antiderivatives, formulas for definite integrals, or the area between the graph and x-

axis. Such a disparity led Rasslan and Tall to conclude that the majority of students 

struggle to apply meaning to the definite integral and have difficulty interpreting and 

applying this concept in context (p. 96). 

More recently, however, Sealy (2014) has developed a Riemann Integral 

Framework which decomposes total quantity problems into Riemann sums involving 

four layers: product, summation, limit, and function. Her methods were an attempt to 

help students observe and utilize the underlying structure of integration as opposed to 

limiting focus to the integral as area under a curve. Sealy presented a variety of 

different total quantity problems to students to engage them with the Riemann Sum 

Framework and noticed similarities in structure between the tasks. She found that 

students largely understood each of the problems and could utilize the framework 

effectively. Sealy noted that this was a surprising result, but also commented that 
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further research was necessary to fully assess the Riemann Sum Framework. Such an 

approach could be beneficial in helping students ascertain the essential components 

that define the integral, as well as offering tools to solve a multitude of contextualized 

integration problems. 

Examples of Integration Tasks 

As in the differentiation section, a review of integration tasks is helpful in 

understanding how teachers introduce the integral to students. Jones’ (2013) 

introductory task allows students to build a meaningful understanding of area without 

the notational distractions involved with the integral. Jones placed his students in the 

context of a bursting water pipe leaking at a constant rate. This constant rate was a 

deliberate choice, as it allowed students to focus on area and not a complicated 

function. Since the water leaked in liters per minute, students also needed to make the 

conceptual leap of area as two-dimensional to volume which is three-dimensional. 

Students then worked on an extension of the pipe problem where the water leaked at 

varying rates. Again, no function or graph was given, but the students used a table of 

data to generate a sequence and approximation for the total amount of spilled water 

over time intervals. Finally, students connected this result to a graph of the situation 

and discussed how to improve methods of approximation. The activity concluded with 

a discussion about how limiting Riemann sums relate to the integral, all in the general 

context of the problem. 

The Jones task is an excellent example of effectively introducing integration, as 

it allowed students to explore and become familiar with the concept of the integral 
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without being limited by notation and formality. While the previously discussed 

literature encourages an understanding of this material, building a solid conceptual 

foundation will ultimately lead students to this point. Jones’ task is similar to Sealey’s 

(2014) Riemann Integral Framework, as it decomposes the Riemann sum into finer 

pieces in the context of a tangible situation. Students can also use their intuition and 

experimentation to build the integral definition rather than navigating a formal 

presentation from the beginning. 

For comparison, consider Ilaria’s (2014) activity that also introduced students to 

integration. Ilaria spent a week systematically introducing his students to the integral 

as the area under a curve and above the x-axis. Students initially made conjectures 

about how to calculate this area before drawing rectangles under the curve. For 

homework, students recreated this process using a larger number of rectangles. In the 

next class, students utilized different techniques for approximating areas, including the 

left and right hand methods. The week continued with a discussion regarding a 

generalized process for any number of rectangles before making the conceptual jump 

to limits of infinite rectangles. The final class periods were used to subtly introduce 

antiderivatives to students, as they were tasked with finding a function whose 

derivative yielded the class function. The class finished with a summary of their 

findings from the week before exploring the topic further in future lessons. 

Although Ilaria’s lesson was more concrete in terms of functions that Jones’, it 

did allow students to build their own understanding of the integral as well. A balance 

between formal notation and conceptual understanding allowed students to employ 
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intuition before formulas in many of the class periods. It was only at the end of the 

week that the class transitioned to conjectures about antiderivatives and limits of 

Riemann sums, although it appears this process was not as conceptual as Jones’ 

lesson. Despite their differences, both Jones and Ilaria’s lessons share some common 

themes. They both utilized student intuition and exploration as the primary learning 

method, while also emphasizing student conjectures throughout the class period. 

Allowing students to build their own connections and schemas in early integration 

lessons coincides the literature as well. In the next section, this approach will be 

examined in contrast with that of the three calculus textbooks from earlier. 

Textbook Explanations of the Integral 

 As with the section on differentiation, reviewing how integration is introduced 

to students in textbooks is also a worthwhile endeavor. Recall that Nicol and Crespo 

(2006) found that textbooks are largely responsible for what and how content is taught 

in the classroom. The introductory section on integration from the same three calculus 

textbooks will be discussed: 1) Calculus: Ideas and Applications (Himonas & 

Howard, 2003), 2) Essential Calculus (Stewart, 2007) and 3) Calculus: Early 

Transcendentals (Rogawski & Adams, 2015). 

All three textbooks place their chapter on integration after the chapters on 

differentiation. They each present properties and applications of derivatives, such as 

optimization and graph sketching, before beginning the fondly labeled chapters 

“Integration,” “Integrals,” and “The Integral,” respectively. All three textbooks 

contain a one paragraph introduction that prefaces the chapter. Interestingly, every 
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author includes an informal definition of the integral as an area, and also makes 

reference to the fundamental theorem of calculus which is described as a “connection” 

between differential and integral calculus. 

From here, the textbooks differ in the order of content. Textbooks 2 and 3 

begin with a section on approximating areas under a curve using rectangles. They also 

include information on total distances, similar to the context of Jones’ (2013) activity 

from earlier. Although both books make the transition from finite approximations to 

infinitely many rectangle approximations, Textbook 3 includes a brief section on 

summation notation. The books conclude with a series of practice problems involving 

area and distance calculations before beginning the next section on the definite 

integral. 

Textbook 1 differs in its sequence of integration topics. Its first three sections 

of the chapter are on indefinite integrals and rules for finding antiderivatives, 

integration by substitution, and finally integration by parts and partial fractions. It is 

not until the fourth section that area and the definite integral are discussed, again by 

rectangle approximations and Riemann sums. Textbook 1 briefly describes the 

fundamental theorem of calculus at this point, although a fuller explanation is given in 

a subsequent section. 

Similar to the differentiation sections, the textbook sections on integration are 

also alike. They all express the integral as an area under a curve obtained by a limiting 

Riemann sum of rectangular areas, and basic properties of integration, including 

integrals of constants and the linearity of integrals, are also found in each textbook. 
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Such a structure contributes to the existing literature on integration. The integral tends 

to be portrayed as an area, and procedures of integration compose a significant portion 

of each chapter. Finally, aside from the brief section in the Textbook 3, these 

textbooks fail to fully explain Riemann sums. Although they each heavily rely on 

Riemann sums to define the integral, it appears that each book assumes that students 

are familiar with this topic. Sealy’s (2014) framework for Riemann sums suggests 

otherwise, indicating another disparity in procedural and conceptual understanding. 

Given the hefty influence that textbooks have on mathematics classrooms (Nicol & 

Crespo, 2006), it is likely that such a textbook sequence only furthers conceptual 

difficulties that students have when learning integration. 

Launch-Explore-Summarize (LES) 

In the preceding sections, the literature focused on the current state of calculus 

instruction as a whole, methods of instruction for integration and differentiation, 

student perceptions of integration and differentiation, and the role of textbooks in this 

cycle. In what follows, a further investigation of the LES method of teaching is 

conducted, including research regarding this methodology, questioning types included 

in an LES lesson, and LES implications for calculus instruction. 

Research from the Connected Mathematics Project 

Although the structure of LES instruction was explored in chapter one, it is 

important to place this teaching method in context of other active learning strategies. 

The Connected Mathematics Project (2018) published a literature review of research 

on their resources and lesson design. The data that is available in the review contains 
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information on the entire project and not strictly LES; however, these data provide 

encouraging results. The project reported that students in CMP classrooms achieve 

greater conceptual gains in areas of mathematical modeling, reasoning, and 

articulation, and that these progressions continue from middle school to high school. 

Additionally, students’ perceptions of mathematics were more positive when exposed 

to continued CMP instruction. Finally, CMP students performed as well or better than 

non-CMP students on measures of procedural skills, indicating that the method is still 

effective in maintaining these requirements. 

The CMP research report also contains information on how teachers perceive 

this method of instruction. CMP classes tended to place a greater emphasis on student 

communication of mathematical ideas as opposed to traditional classroom structures. 

Students also reported higher levels of satisfaction in these mathematics classes 

compared to students in non-CMP classes. Once teachers had the opportunity to 

observe the types of mathematics students were capable of doing in CMP classes, they 

preferred to continue with CMP instruction instead of reverting back to traditional 

teaching. 

Despite the differences in the planning and implementation of CMP instruction 

methods and traditional mathematics teaching, teachers continued to improve with 

appropriate levels of professional development. Overall, general instruction techniques 

promoted by the CMP, including LES, have positive trends for students and teachers. 

Classes are more focused on student communication and conceptual understandings, 

and promote positive opinions of mathematics and mathematical learning. 
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Connections to Problem-Based Learning 

In an overview of problem-based learning (PBL), Savery (2006) defined PBL 

to be “an instructional (and curricular) learner-centered approach that empowers 

learners to conduct research, integrate theory and practice, and apply knowledge and 

skills to develop a viable solution to a defined problem” (p. 12). Within PBL 

environments, a significant amount of the learning responsibilities are placed on the 

students as they engage with the problem. In a collaborative effort, students utilize 

their current knowledge and experiences to make progress on the problem, often 

employing a wide range of disciplines and skills. 

The problems themselves must also be designed in such a way that structure is 

flexible. Because PBL places students at the center of learning, it is important that 

multiple solution paths to the problem exist. Savery (2006) noted that, when a 

problem is well-structured, students are actually less interested and motivated to 

develop solutions because a clear path is already in place (p. 13). Essentially, 

problems with a defined sequence of steps or structure are less interesting for 

students because they can simply follow a procedure to obtain an answer. Finally, 

upon completion of a PBL activity, the class should discuss what concepts were 

needed to solve the problem and what concepts had to be learned to make progress on 

the activity. In the midst of a problem, students may not actively be recording which 

strategies or concepts they utilized or needed to learn, so an analysis of problem 

solving can be incredibly beneficial for the class. 
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Given the structure of its activities, there are several similarities between LES 

instruction and PBL. Both introduce students to an activity during a Launch phase, 

which must be carefully designed to spark interest and curiosity while also not 

revealing too much about the lesson. Students then work collaboratively to answer 

the problem in an Explore phase. Finally, students discuss what conjectures and 

solutions they obtained during the Explore phase in the full class Summarize phase. 

Due to the lack of research on LES instruction specifically, it is helpful to 

briefly review the literature on the effectiveness of PBL instruction because the 

instructional methods are similar. Barron and Darling-Hammond (2008) recently 

reviewed the literature surrounding the overall results of PBL as part of a larger 

literature review on inquiry-based learning. The first significant finding of PBL 

instruction is that students performed at an equal or higher level on procedural skills. 

However, PBL students also showed significant improvement on measures of critical 

thinking and knowledge transfer when compared to students of traditional instruction. 

PBL students also demonstrated an increased ability to define and solve problems as 

well as articulate and support claims and arguments. Finally, PBL instruction was 

often more effective in teaching students who otherwise struggle in traditional 

environments, as it not only provides a new context to learn in, but a positive 

description and method of learning as well. Overall, the literature supports the 

overarching success of problem-based learning. Due to the similarities between PBL 

and LES, it is plausible that the PBL trends will continue for LES instruction. 
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Connections between LES and the Common Core 

While there are no universal standards for non-AP calculus, the Common Core 

(National Governors Association Center for Best Practices & Council of Chief State 

School Officers, 2010) outlines eight standards for students’ mathematical practice 

(SMPs) that apply to all levels of K-12 mathematics instruction. These standards are 

listed in Appendix A. Specifically, LES instruction allows students to employ all of 

the SMPs, depending on the design of the lesson. The LES structure is specifically 

designed to encourage collaboration and the construction of viable arguments in the 

context of precise pattern recognition. Students also utilize appropriate tools and 

models to increase their understanding of the activity and related concepts. Despite the 

lack of calculus Common Core standards, it is clear that LES instruction meets the 

standards for mathematical practice. 

Questioning and Student Responses in LES Environments 

A significant component of LES instruction is effective questioning and 

student responses. In an effort to maximize the benefits associated with LES teaching, 

consider Smith and Stein’s (2011) framework, 5 Practices for Orchestrating 

Productive Mathematics Discussions. This framework includes a variety of question 

types that correspond to different levels of cognitive demand. In the context of this 

project, cognitive demand is defined to be a measure of how much effort students 

need to make to understand a concept. Smith and Stein concur, noting the following: 
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Teachers can induce students to think harder about cognitively challenging 

tasks. Good questions certainly help. They can guide students’ attention to 

previously unnoticed features of a problem or they can loosen up their thinking 

so that they gain a new perspective on what is being asked. (p. 62) 

The framework also provided a foundation for the types of responses that students 

ideally supply. Table 1 offers a brief classification of how the question types 

corresponded to student comment types along with their associated level of cognitive 

demand. Rationale for these choices is explained in the following paragraphs. 

 

Table 1 

 

Relationships between Cognitive Demand, Question Types, and Student Responses 

Level of Cognitive 

Demand 

5 Practices Question 

Type 

Student Comment Types 

Lowest Gathering Information General Response 

Intermediate Probing Thinking Active Thinking 

Highest Exploring Mathematical 

Meanings/Relationships 

Extending Thinking 

Mathematical Inquiry 

 

Because LES lessons involve different levels of thinking and cognitive tasks, 

it is necessary to divide question types and student responses among these levels. 

The levels also correspond to Smith and Stein’s (2011) outline of good questions in 

the 5 Practices book. The first and least demanding questioning type is Gathering 

Information, which is used to elicit immediate answers, facts, or procedures. Answers 

to these questions do not require a significant level of thought, and are used primarily 

for a teacher to learn about students’ current state. Consequently, students tend to 
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give General Responses to Gathering Information questions. 

Probing Questions are the next level of question types, as they require more 

justification and thought when students respond. Probing Questions ask students to 

articulate, elaborate, or clarify their ideas, often in the context of a mathematical 

problem. In turn, students respond in a more active manner since they have to justify 

their thinking for a given question or conjecture. As a result, Probing Questions are 

often effective introductions to higher question levels, and regularly result in Active 

Thinking student responses. 

The next two levels of questioning are Exploring Mathematical Meanings 

and/or Relationships and Extending Thinking. These question types are highly related 

because they both invoke some of the highest thinking that students experience 

during an LES lesson. Specifically, Exploring Mathematical Meanings/Relationships 

questions are used to connect mathematical ideas and suggest underlying 

mathematical structure to students. Extending Thinking questions take this 

mathematical structure and connect it to other mathematical foci or similar situations. 

Both question types ask students to think deeply about mathematics, and often 

prompt students to exhibit Mathematical Inquiry during the lesson. 

The final question type from Smith and Stein’s framework is Generating 

Discussion questions. Although these types of questions can involve each of the other 

question types already discussed, the major difference is that Generating Discussion 

questions invoke responses from multiple members of the class. These student 

responses are usually to one another, and in turn create a rich conversation in the class. 
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These question types are revisited in chapter four, as there were essential for 

data analysis. A stronger connection between question types and student responses is 

also built in chapter four. However, it is helpful to presently introduce Smith and 

Stein’s framework as a foundation for the research questions and analysis of this 

project. 

Conclusion 

Through a careful analysis of calculus instruction and student learning, several 

significant literature trends emerged. Overall, calculus instruction tends to be 

traditionally taught using lecture and procedural approaches, and there is not a large 

amount of research dedicated to high school calculus instruction as a whole. 

Differentiation and integration are two major topics in calculus, yet students tend to 

struggle with conceptual understandings of this content. Students are adept, however, 

at the procedures involved with derivatives and integrals. Textbooks also perpetuate 

the literature trends, as they are heavily used in American classrooms. An analysis of 

textbooks revealed that instruction is mostly procedural and decontextualized, 

indicating a disparity between them and what has been shown to produce meaningful 

student learning. 

The literature also contains research on problem-based learning and the 

Launch-Explore-Summarize method of instruction. While LES lacks significant 

research, PBL has been shown to be effective in meeting conceptual goals of 

mathematics classrooms. It also engages students on multiple levels, including 

problem-solving, collaboration, and critical thinking. Since LES is similar to PBL, it is 
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expected that the results of LES instruction will be similar as well.  

Finally, the literature on effective questioning types is helpful in augmenting 

the structure of LES lessons. Specifically, connections are made between these 

question types and student cognitive demand. In turn, it is possible to relate student 

cognitive demand, teacher question types, and student responses. 
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CHAPTER 3: RESEARCH QUESTIONS 

The LES method of instruction is structured to maximize student engagement 

and problem solving during a lesson. Students are at the forefront of the learning, as 

they actively work with manipulatives, technology, and peers to understand and 

explore a given problem. LES lessons are also naturally adjustable, as each phase of 

the lesson can be adapted to meet a variety of students. Given the current lecture 

emphasis in high school calculus, both students and mathematical educators will 

benefit from research on the effectiveness of LES lessons in high school calculus. 

Motivation for the Project 

Each summer, Brown University sponsors Brown Summer High School. This 

program allows local Providence high school students to attend a summer session at 

the university. Students choose two of four classes in either history, English, science, 

or mathematics, and attend their two hour classes each day for three weeks. The 

history, English, and science classes are taught by master level Brown students as part 

of a yearlong certification program. However, no master’s program exists for 

mathematics at Brown, so this portion of Brown Summer High School is instead filled 

by undergraduate students. 

In a cooperative effort between Brown University and Vassar College, 

prospective mathematics educators apply to the Teaching Experience for 

Undergraduates (TEU) program. This program selects undergraduate students from 

several small liberal arts universities and offers them the opportunity to learn and teach 

as part of Brown Summer High School. Each TEU participant attends a pedagogy 
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course throughout the six week program and teaches in a team of three in one of the 

Brown Summer High School math classes. 

As part of the pedagogy course, TEU participants learn and practice using the 

LES method of instruction. Given that there are no curriculum requirements for Brown 

Summer High School classes, TEU students are responsible for choosing and 

implementing their own lesson topics. Although the LES method is the core of each 

Brown Summer High School math class, the actual mathematical topics are decided 

within individual teaching teams. Coupled with the heavily freshman and sophomore 

student body of Brown Summer High School, many teaching teams focused their LES 

lessons on algebraic reasoning. 

Research Questions 

My participation in the TEU program provided significant motivation for this 

research project. Using the LES method of instruction in practice was encouraging, but 

like much of the current literature, implementing it in calculus was not discussed. 

Consequently, a natural overarching research question was formed. How would LES 

instruction fair in the calculus classroom, both in terms of student engagement and 

student learning? To answer this broad question, this project assesses three specific 

research questions: 

1. What types of engagement do students display throughout two high 

school calculus lessons? 

2. How do students perceive the LES method of instruction, both in terms 

of mathematical learning and engagement? 
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3. How do teachers perceive the LES method of instruction, both in terms 

of mathematical learning and engagement? 

These research questions help address the aforementioned literature gap, as they 

primarily test how well the LES structure operates in teaching differentiation and 

integration in high school calculus. 
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CHAPTER 4: METHODOLOGY 

The Teaching Experiment Methodology 

The teaching experiment methodology was chosen due to its structural 

commonalities with the research project. A significant purpose of this methodology is 

to “experience, firsthand, students’ mathematical learning and reasoning” (Steffe & 

Thompson, 2000, p. 267). Because the goals of this project are centered on student 

engagement, discovery, and perceptions of the LES method, it is essential to gather 

data directly from students. The teaching experiment methodology systematically 

outlines this process and offers a rich data set for later analysis (Steffe & Thompson, 

2000). 

The general structure of a teaching experiment is as follows: individuals 

within a classroom are identified as teaching agents, students, and witnesses, and 

collectively interact throughout the duration of a lesson (Steffe & Thompson, 2000). 

For this specific project, I am the teaching agent and the students participating in the 

project are identified as the teaching experiment students. Finally, the witnesses are 

the classroom teachers participating in the project. 

Prior to beginning a teaching experiment, Steffe and Thompson (2000) indicate 

the need for research hypotheses. These hypotheses help choose the participants and 

structure of the teaching experiment, but do not affect the actual teaching of the 

teaching experiment. Rather, the hypotheses should be forgotten during teaching in 

order to fully immerse students in the lessons (Steffe & Thompson, 2000). Hypotheses 

may also be generated throughout the course of teaching, given the possibility for 
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unanticipated situations during a lesson. 

Data is collected throughout the teaching experiment. Specifically, each lesson 

should be documented in some manner to record the events that transpire throughout the 

duration of the class (Steffe & Thompson, 2000). This may be done using video and 

audio equipment, with the goal of obtaining a collective set of student interactions, 

thought processes, and engagements. The recordings should also include interactions 

between the teaching agent and students. 

At the conclusion of a teaching experiment, several processes are completed to 

analyze the data of the experiment. Steffe and Thompson (2000) note that 

Careful analysis of the videotapes [of the lessons] offers the researchers the 

opportunity to activate the records of their past experiences with the students 

and to bring them into conscious awareness. (p. 292) 

They continue by emphasizing that this process has the advantage of analyzing lesson 

interactions that may not have been apparent during the actual teaching. Finally, this 

analysis must be done in part from the prospective view of a student, as this is 

necessary in interpreting the significance of student work in completing the lesson 

(Steffe & Thompson, 2000). 

Hypotheses 

In keeping with the teaching experiment methodology, this research project 

has three main hypotheses. The first two hypotheses were developed prior to 

beginning the teaching experiment while the third was developed throughout the 

course of teaching. All three hypotheses correspond to the three central research 
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questions of the project, and are also built from existing literature on student 

engagement and student learning. 

Hypothesis 1: Students will report a higher level of engagement following the LES 

lessons as compared to traditional instruction, and this pattern will be supported by 

lesson analysis. 

 Although LES instruction is a specific type of teaching, it has similar qualities 

to problem-based learning (PBL). Current literature suggests that PBL encourages 

students to take a more active role in the learning process, and that this role supports a 

more genuine learning experience (Barron & Darling-Hammond, 2008). Additionally, 

the literature suggests that, because students have a more active voice in their learning, 

they are able to build mathematical understanding and connections themselves 

(Schettino, 2012). Given these findings and the similarities between PBL and LES, 

such a trend will likely continue for LES lessons in calculus. However, caution must 

be taken to avoid misrepresenting novelty for true mathematical engagement. Because 

the students in this study are experiencing an atypical class period with an entirely 

new teacher, it is possible that they engage with the lesson simply for its uniqueness. 

For this reason, student engagement was analyzed through multiple data sources. This 

process is discussed in the Data Analysis section at a later point in the chapter. 

Hypothesis 2: Students will positively perceive LES instruction, although student 

feedback on their engagement will be more positive than student feedback on their 

mathematical learning. 

 



35  

 Like the first hypothesis, this hypothesis also stems from literature on PBL. 

First, it is noteworthy that students learning in a problem-based environment learn 

factual information at a same or better rate than students in a traditional learning 

environment (Thomas, 2000). However, the literature suggests that PBL students are 

also more likely to develop and utilize abilities in problem definition (e.g. Gallagher, 

Stepien, & Rosenthal, 1992), the transferring of problem solving skills to other 

situations (e.g. Moore, Sherwood, Bateman, Bransford, & Goldman, 1986), and 

supportive reasoning (e.g. Stepien, Gallagher, & Workman, 1993). Given the 

similarities of LES and PBL, it is hypothesized that such student benefits would 

continue during the implementation of LES lessons in calculus. 

The second component of this hypothesis addresses direct student feedback, 

and specific distinctions between engagement feedback and learning feedback. 

Although it is hypothesized that students will positively react to LES calculus lessons 

in their entirety, it is expected that there will be more constructive or negative 

feedback with regard to actual mathematical learning and understanding. Students may 

be likely to report more positive feedback on engagement with the lesson for many of 

the same reasons discussed in the first hypothesis. The novelty and change of pace that 

comes with a new teacher and lesson style may naturally engage students more than 

traditional class periods, and students may positively report this change. 

However, there are limitations on assessing whether or not students actually 

gain a deeper understanding of mathematical content, at least through direct student 

feedback. It may be difficult for students to conceptualize whether or not they actually 
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made strides in mathematical understanding immediately following a lesson. 

Additionally, it may not always be obvious for students to know the purpose of a one 

or two day interim lesson outside of the research project, even if efforts are made to 

clarify the lesson’s mathematical purpose during teaching. Essentially, although 

student feedback is a valuable and necessary part of this project, it is important to 

recognize that students may not be fully equipped to answer such questions 

immediately following a lesson. For these reasons, the second hypothesis includes the 

small caveat that student feedback on mathematical learning will be less positive than 

student feedback on engagement. 

Hypothesis 3: Classroom teachers will find both LES lessons to be effective in 

engaging students and teaching calculus, but will be speculative about using the 

method in the future. 

Much like the students, classroom teachers will likely enjoy the novelty of 

LES instruction. They will also observe that students gain a greater conceptual 

understanding of differentiation and integration. However, given that classroom 

teachers generally teach calculus using lecture, it will be difficult for them to imagine 

regularly using LES instruction. While the rationale behind such a choice may vary 

between the time constraints of LES, preparation of LES lessons, and perceived 

student attitudes toward LES instruction, classroom teachers will report concerns 

with frequent LES instruction. 
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Participants 

In order to select a sample for this research project, contacts were made with 

seven school districts. Each school was asked whether or not students were offered 

honors calculus courses and whether classroom teachers would be willing to host a 

guest instructor for two LES lessons. AP Calculus courses were deliberately excluded 

in an effort to prevent instructional conflicts with the AP exam. The chosen courses 

cover the traditional topics of calculus, including limits, differentiation, and 

integration. Once responses were received from all seven school districts, two were 

conveniently chosen: Davenport Area High School and Shepherd High School 

(pseudonyms). 

Prior to teaching the LES lessons, students were given an assent form for 

themselves and a consent form for their parents. The forms are supplied in Appendix B 

and C, respectively, and offered students an opportunity to not participate in the study 

if desired. The actual data collection is explained further below, but it is important to 

note here as it affects the participants in each class. 

The Davenport class consisted of 13 students. Of the 13, 11 were female and 2 

were male with a mix of juniors and seniors. All but one student in the Davenport class 

agreed to participate in the study, bringing the final demographic count to 12 students 

with 1 being male. The Shepherd class was slightly larger as it consisted of 15 

students, again with a mix of juniors and seniors. Of the 15, 8 were female and 7 were 

male. All of the students agreed to participate in the study, and thus between the two 

schools, 27 students participated in the study. Each classroom had one teacher who was 
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present for both LES lessons. Troy, the Davenport teacher, and Ray, the Shepherd 

teacher (pseudonyms), had several years of teaching experience in their respective 

districts. 

Lesson Plans 

 Two LES lessons were designed to capture two of the most prominent topics in 

calculus: integration and differentiation. Each lesson plan is described in detail in the 

following sections. 

Integration Lesson 

The integration lesson was designed and taught in both classes first, as this fell 

naturally with the Davenport and Shepherd class timelines. This specific lesson was 

taught in Shepherd during one class period and then in Davenport over two 

consecutive days. Due to curriculum restrictions, only one class was allotted in 

Shepherd as opposed to two class periods in Davenport. In conjunction with the current 

literature, the lesson emphasized a conceptual understanding of integration as total area 

as opposed to the procedural understanding many students encounter (Rasslan & Tall, 

2002). The actual lesson plan is given in Appendix D along with the data table given to 

students during instruction. 

In designing the lesson, the overarching focus was granting students the 

opportunity to use their intuition to make conjectures about the integral. Prior to 

instruction, the Davenport students had never seen any integration material. The 

Shepherd students had begun learning how to solve definite and indefinite integrals but 

had not yet connected these procedures to a geometric understanding of integration. As 
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a result, the lesson heavily emphasized geometric intuition and was presented knowing 

each class was unfamiliar with integration as area. 

In the Launch phase, students were reintroduced to geometric areas by finding 

the area of several regular polygons. The polygons were made out of cardboard and 

included a rectangle, triangle, circle, parallelogram, and trapezoid. A set of all five 

polygons was supplied to each group along with some meter sticks for measurement 

and the data table at the end of Appendix D. Figure 1 displays the set of shapes given 

to each group.  

 

Figure 1. The set of shapes provided to each group. 

Not only would these shapes be used for the remainder of the lesson, but they 

were designed so that students could reconnect with the simplicity of finding the area 

of regular objects. While students worked, several functions made of string and tape 

were displayed around the classroom. Each group worked with a specific tape and 

string function during the Explore phase of the lesson. Once all measurements were 

made, a class discussion ensued about the simplicity of finding the area of regular 
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shapes and conjectures were made about how the same process could be done for 

functions. The class discussed what exactly was meant by the “area of a function” and 

how such a quantity could be systematically calculated across the variety of functions 

in the room. The class agreed that using the areas of their well-known shapes could be 

effective in formulating an approximation for the area of each function. 

Following the Launch, students took their collection of polygons to one of the 

functions around the room, tasked with determining the area of their function. Each 

function was slightly different; some functions had entirely positive outputs, some had 

entirely negative outputs, and some had a mix of positive and negative outputs. This 

was deliberate, as it gave students an opportunity to understand the area of a function 

as respective to the x-axis no matter how the function was arranged. Each group had to 

use all five shapes to approximate the area of their function. Using the measurements 

found in the Launch, students arranged their shapes to gather the best approximation 

possible and recorded the result in the data table. It is important to note that groups 

were instructed to use only one shape at a time; they could not mix triangles and 

rectangles for instance. This is because formal integration uses the function to generate 

the dimensions of shapes used to calculate the area, so only one type of shape is 

systematically calculated. Once the group obtained a numerical approximation for the 

area of their function, they turned their attention to the shape itself. Students recorded 

their thoughts about the effectiveness of each shape’s approximation, as well as what 

changes they would make to the shape to improve the approximation. For example, 

students noted that the circle was not ideal for approximating functions with defined 
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peaks due to its roundness, and suggested shrinking the circle to fit better. This process 

was completed for all five shapes with each group’s function. The purpose of the 

Explore phase was to have students actively working with a function and thinking 

intuitively about ways to improve their approximations. 

Finally, the class reconvened for the Summarize phase. Each group was asked 

to share what their favorite and least favorite shape was for approximating their 

function and justify their response. Once all groups had shared, the class discussed 

what improvements could be made to the shapes to gather a better approximation of 

the function’s area. The goal of the Summarize phase was to find common themes 

across all of the groups and extend these themes to conjectures about integration. 

Specifically, the class tried to ascertain which shape was the best for approximation, 

what qualities that shape had that led it to be the best, what could be done to the shape 

to improve the approximation even further, and how many shapes would yield the best 

approximation. Through a rich discussion, the Summarize phase was specifically 

designed to capture key aspects of the lesson that could be extended to the main 

conceptual understanding of integration. 

Differentiation Lesson 

The differentiation lesson was taught about one month after the integration 

lesson and focused on the conceptual understanding of many seemingly procedural 

derivative rules. Namely, students explored the power rule and product rule for 

calculating derivatives in a hands-on geometric manner. It is important to note that 

both classes had finished their units on differentiation at the time of this lesson. Both 
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lessons were only one day in length, so students had to take a brief hiatus from their 

current unit to return to differentiation. The switch in content was deemed useful 

because students would continue to need differentiation skills in future units, and so 

the lesson could serve as a review activity for these concepts. 

 Appendix E contains the full differentiation lesson plan along with both versions 

of the derivative activity. The original activity was modified following the Davenport 

lesson based on feedback from the Davenport students and observations of the lesson, 

and so Appendix E contains both documents. According to the current literature, 

students tend to grasp the procedural notion of differentiation but struggle when 

grappling with conceptual understandings of the derivative (Orton, 1983). 

Additionally, instruction on differentiation often results in rules that are committed to 

memory rather than concepts that are explored and interpreted (Habre & Abboud, 

2006). Consequently, the differentiation lesson focused on the underlying geometric 

intuition of both the power and product rules for derivatives. 

 In the Launch phase, students worked in pairs to create a definition for both the 

power rule and product rule. Many students shared how to do both of these rules but 

did not capture the true definition. Once each pair shared their definition, a class 

discussion ensued about how the rules could actually be defined without a procedure 

and what concepts might underlie such a potential definition. The pairs were then 

given the guided activity in Appendix E and the set of base-10 manipulatives shown in 

Figure 2. 
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Figure 2. Base-10 Manipulatives 

During the Explore phase, students worked to complete the guided activity 

using the manipulatives. The manipulatives were helpful in modeling functions 

geometrically; for instance, students used the square blocks to represent x2 and the 

cube to represent x3. In some cases, the class reconvened to address common 

challenges or misconceptions among the pairs, but for the most part, students worked 

to build their own intuition and understanding. This stage of the lesson was designed 

so that students could productively struggle in trying to visually understand 

derivatives. Difficulties were anticipated given the class’s prior procedural knowledge 

of differentiation, but the goal was to connect this knowledge to a new and intuitive 

way of thinking about the same concepts. Student questions were generally addressed 

within the pairs, although sometimes groups mingled and discussed their conjectures 

and findings. 

Finally, the class regrouped for the Summarize phase of the lesson. In this 

stage of the lesson, students discussed what exactly was discovered throughout the 

activity and how it related to their prior derivative knowledge. Specifically, students 

talked about how visually seeing where the power rule came from was helpful in 
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understanding its origin, but that the rule itself was more efficient in practical 

derivative problems. Overall, this section of the lesson, albeit, shorter than the 

Summarize phase of the integration lesson, highlighted the key findings from the 

activity and rephrased them in the context of differentiation concepts as a whole. 

Data Collection 

Data was collected to answer each of the research questions. Table 2 lists the 

data collected by research question, and the subsequent sections offer more detail 

about this data collection. 

Table 2 

 

Data Collected by Research Question 

Research Question Collected Data 

1: What types of engagement do 

students display throughout two high 

school calculus lesson? 

 

 

 

Classroom video 

MP3 recordings of each student group 

Written exit tickets following each 

lesson 

Focus group audio 

Transcriptions of all video and audio 

data 

 

2: How do students perceive the LES 

method of instruction, both in terms of 

mathematical learning and engagement? 

Classroom video 

MP3 recordings of each student group 

Written exit tickets following each 

lesson 

Focus group audio 

Transcriptions of all video and audio 

data 

 

3: How do teachers perceive the LES 

method of instruction, both in terms of 

mathematical learning and engagement? 

Google Form 

Audio from student group conversations 
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Research Question 1 

Video, audio, and written data were collected throughout this project. 

According to the teaching experiment methodology, each lesson should be 

documented in some manner to record the events that transpire throughout the 

duration of the class (Steffe & Thompson, 2000). Each of the two LES lessons were 

recorded from a stationary tripod camera in the corner of the classroom. Additionally, 

I wore a lapel microphone to record audio throughout the lesson. Each group of 

students had a small MP3 audio recorder that captured any discussion not recorded 

by the camera or my microphone. Finally, each student completed an exit ticket at the 

end of each lesson. The exit ticket, which can be found in Appendix F, allowed 

students an opportunity to document their reactions to the lesson. It also included a 

brief content check to assess how well students retained and understood the main 

concepts of the class period. Collectively, the video, audio, and written feedback 

provide a detailed record of each lesson that can be used for analysis. 

It is noteworthy that the order in which the lessons were taught reversed with 

subject. The integration lesson was first taught at Shepherd and then at Davenport, 

while the differentiation lesson was first taught at Davenport and then at Shepherd. 

Reversing the order was deliberate to be consistent, as changes to the lessons could be 

made following the first teaching. 

The other major methodological choice made was the inclusion of focus group 

interviews. A few days after each lesson, a random sample of five students was chosen 

from the Shepherd class to share feedback on the effectiveness of LES instruction. In 
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the Davenport classes, the focus group discussions occurred organically following the 

conclusion of each lesson and therefore it was decided to not repeat the process. Many 

of the questions stemmed from the protocol in Appendix G, but due to the nature of the 

focus group discussion, not all questions that were asked are found in the appendix. 

Because the majority of this research is exploratory, the focus group protocol is 

effective in obtaining a wide and honest selection of student responses (Vaughn, 

Schumm, & Sinagub, 1996). The focus group protocol was centered on how students 

liked or disliked the LES methodology, as well as how it compared with other forms of 

mathematical instruction. Students were also given the opportunity to discuss how they 

would improve the LES lesson during the focus group, allowing them an active voice 

in the learning process. 

All of the data described relates to the first research question. Specifically, the 

goal was to learn what types of engagement students display during an LES lesson. 

Having video and audio data of class discussions, individual group discussions, and 

focus groups allowed for the analysis of engagement themes. For instance, such 

themes included how often students conversed with one another and how much of the 

conversation was related to the lesson. 

Research Question 2 

The second research question asks how students perceive LES instruction in 

terms of learning and engagement. Given the fact that the second research question is 

focused on student perceptions of LES instruction, it was imperative to ensure that all 

analysis came directly from student data. 
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Like the first research question, the focus groups and exit tickets were a key 

source of data for the second research question. During the focus groups, students 

were asked to comment on their lesson engagement and learning. Specifically, they 

provided feedback on which parts of the lesson were the most engaging and helpful 

for learning, along with any changes they would make to improve engagement and 

learning. Similarly, the exit ticket asked if the lesson was engaging and how students 

would change the lesson if it was not engaging, as well as what the class learned about 

during the period. Using direct quotations from these exit tickets, as well overall 

themes from the focus group conversations, student perceptions of the lesson were 

gathered and available for qualitative analysis. Collective, this data provided an 

answer to the second research question. 

Research Question 3 

The third and final research question is concerned with how classroom teachers 

perceive the LES lesson both with regard to student engagement and student learning. 

While some teacher feedback is included in the class transcriptions of each lesson, 

both teachers were also asked to complete a feedback survey once both lessons were 

completed. The form, outlined in Appendix H, was sent via Google Forms to both 

teachers and responses were collected automatically. Their responses were useful in 

determining reactions and interpretations of the LES lessons. Additionally, there was at 

least one instance of teacher feedback during the class period in all four lessons. These 

instances also provided insight into how each teacher perceived the instruction. 
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Although the survey responses and classroom comments are relatively brief, 

they are incredibly revealing and effective for answering the third research question. 

Since there were only two classroom teachers involved in the project, no specific 

methodology was used to analyze the results. Instead, direct quotations and 

interpretation will be used to analyze this section of data. 

Data Analysis 

In the following section, the theoretical background of the coding process used 

for analysis, as well as specific developments of the codebook used in this project will 

be discussed. Following this discussion, the data that were used to answer each 

research question and how this data is outlined in the results will also be explained. 

Coding Process 

To analyze the data collected in the project, both an ongoing and retrospective 

analysis were performed. To do so, data-driven codes were developed based on student 

responses to LES instruction. This method is based in literature on analyzing interview 

and transcription data (Ryan & Bernard, 2003) and allows for the analyst to develop 

and update codes as the data is examined. Using ATLAS.ti software, transcripts of the 

audio and video data were openly coded to explore the data and search for themes. 

Specifically, open coding is the process by which data is systematically investigated to 

discover recurrent themes (Corbin & Strauss, 2008). For this particular project, the 

video and audio data collected from each lesson was transcribed before openly coded. 

Themes were discovered between lessons which continued to drive the types of codes 

that were used and allowed for a deeper analysis. 



49  

Each of the preceding components of the coding process also relate to Creswell’s 

(2007) constant comparative method of data analysis. In this methodology, information 

is taken from data collection and then compared to emerging categories of the data (p. 

64). For this specific project, the video and audio data produced two types of 

categories. The first is related to the coding itself, as the data was coded according to 

the types of comments that were shared throughout the lesson. The second type of 

category is directly related to the research questions. As the data was analyzed, it 

became clear which research question was addressed by different results. In turn, the 

data was categorized by research question, and the categories continued to develop as 

more results became clear. Collectively, the constant comparative method of analysis 

helped progress the analysis process and relate new information to preexisting data 

themes. 

The Development of the Codebook 

Prior to coding, the lesson transcripts were examined to determine the 

appropriate coding structure. Initially, the documents were to be coded freely, with 

codes being developed while reading the transcript. However, the content included in 

the transcripts related to Smith and Stein’s (2011) 5 Practices framework previously 

discussed in chapter two, and so it was decided that using this framework would be 

helpful in predetermining several codes. Recall that this framework is used by teachers 

to develop effective question types. Five of Smith and Stein’s question types were 

applied to my questions, and Table 3 includes these specific questions and 

relationships.  
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Table 3 

 

Use of 5 Practices (5P) Questions in the Codebook 

5P Question Type 5P Definition Coding Definition Coding Example 

Gathering 

Information 

Requires immediate 

answer, rehearses 

known 

facts/procedures 

Used to invoke a 

quick and 

straightforward 

answer from 

students. They 

often focus on the 

structure of the 

lesson or current 

thought process, 

and are usually 

asked to invoke 

quick recall of 

factual information 

“Are we kind of 

stuck” 

Probing  

Thinking 

Asks student to 

articulate, 

elaborate, or clarify 

ideas 

Used when talking 

with students either 

individually or in 

groups. The 

purpose is to the 

student(s) expand 

on current thinking. 

This is done to 

either aid my 

understanding of 

student thoughts 

and/or to subtly 

introduce addition 

things for the 

student(s) to think 

about 

Student: “What 

about the area of 

a function” 

Me: “Right, so 

what does that 

mean to you?” 

Generating 

Discussion 

Solicits 

contributions from 

other members of 

the class 

Used when I want 

to invoke a fuller 

group discussion 

about a concept or 

previously raised 

idea. May be with 

the whole class or 

within individual 

working groups. 

(to class) “Do 

we agree or 

disagree with 

that?” 
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Table 3 (continued) 

 

5P Question Type 5P Definition Coding Definition Coding Example 

Exploring 

Mathematical 

Meanings and 

Relationships 

Points to underlying 

mathematical 

relationships and 

meanings. Makes 

links between 

mathematical ideas 

and representations 

Used when I 

explicitly structure 

my questions to 

explore specific 

mathematical 

concepts when 

talking with a 

student(s). I use what 

students say or are 

working on to form 

these questions. I also 

use them to relate 

student thinking to 

deeper mathematical 

concepts or reasoning 

 

“And you made a 

new square out like 

this. Okay, so if I 

make these a little bit 

longer by some dx, 

what is the area of 

each of those new 

pieces that you 

added?” 

Extending  

Thinking* 

Extends the situation 

under discussion to 

other situations where 

similar ideas may be 

used 

Used when I 

explicitly structure 

my questions to 

explore specific 

mathematical 

concepts when 

talking with students. 

I use what students 

say or are working on 

to form these 

questions, and also 

use them to extend 

student thinking to 

deeper mathematical 

concepts or reason. 

This code is a step 

above the last. Thus, 

if a quote can be 

coded with both, only 

this one will be used. 

Student: “But we 

can’t fill in all the 

tiny shapes either. 

Like if you have a 

really small shape, 

that’s going to be 

hard to get onto the 

board.” 

Me: “Right, so maybe 

if we take out the 

human part of it. 

What if we could do 

this automatically 

where we didn’t have 

to physically draw 

it?” 

 

*This code was introduced in Round 2 of the codebook development. 
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The last step in the coding process was to establish reliability of the codebook. 

The focus groups were coded for overall themes and therefore not subject to measures 

of reliability. To reach reliability, a portion of both differentiation lessons was 

chosen, including quotations from the full lesson transcript and individual group 

transcripts, and coded individually by my advisor and myself. My advisor and I 

compared our coding choices for each line of the transcriptions, and counted the 

number of identical and non-identical choices. This process was repeated three times 

until the number of identical choices was at least 80%, as is routine for research 

involving inter-rater reliability (Bernard, 2017). Table 4 outlines the progression of 

the codebook, while Appendix I contains the complete final codebook used for 

analysis. Critical codebook changes are explained in the following paragraphs. 

In the inaugural round of coding, the data were analyzed under four main 

categories: Lesson Feedback, Logistics, Personal Statements and Student Statements. 

The Personal Statements category contained all of my questions and comments 

throughout the lesson, and the Student Statements category contained all student 

questions and comments throughout the lesson. Through open coding and constant 

comparison, 17 codes emerged. 

For the second round of coding, my advisor and I applied these 17 codes to 

sections of the Shepherd differentiation lesson. These sections included components 

from both the full class transcript and individual group transcripts. During our 

reliability discussion, it quickly became apparent that the codebook needed more 

structure to be effective and accurate. Consequently, five categories were redefined 
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and extended to encompass 24 codes. The biggest change in this round of coding was 

the separation of comments and questions. Originally, student comments and questions 

were combined into one category, and my personal comments and questions were 

combined into another category. However, the new set of categories included Student 

Comment Types, Student Question Types, Personal Comment Types, and Personal 

Question Types. 

Table 4 

 

Codebook Development 

Round 1 Coding Round 2 Coding Round 3 Coding 

Lesson Feedback 
● Classroom 

Teacher 

Feedback or 

Explanation 

● Negative Lesson 

Feedback 

● Positive Lesson 

Feedback 

Logistics 
● Focus Group Directions 

● LES Explanation 

● Lesson Directions 

Personal Statements 
● Affective 

● Gathering Information 

● Probing Thinking 

● Exploring Math 

Meanings 

● Generating Discussion 

Student Statements 
● Lesson 

Confusion/Questions 

● Gathering Information 

● Building Connections 
● Mathematical 

Inquiry 

(comment) 

● Mathematical 

Inquiry 

(question) 

● Inserting Technology 

NEW 

Feedback/Logistics 
● Future Lesson Think 

About 

Personal Comment Types (PCT) 
● General Response PCT 
● Rephrasing and 

Extending PCT 

● LES Explanation 

● Lesson Directions 

● Affective PCT 

Personal Question Types (PQT) 
● Gathering Info PQT 

● Probing Thinking PQT 

● Rephrasing and 

Extending PQT 

● Generating Discussion 

PQT 

● Affective PQT 

Student Comment Types (SCT) 
● General Response SCT 

● Active Thinking SCT 

● Mathematical Inquiry 

SCT 

● Building Connections 

SCT 

● Lesson Confusion SCT 

● Off-Topic SCT 

 

NEW 

Feedback/Logistics 
● Off-Topic 

Personal Comment Types (PCT) 
● Exploring Math 

Meanings 

Relationships PCT 

Personal Question Types (PQT) 
● Exploring Math 

Meanings and 

Relationships PQT 

MERGED 

Personal Comment Types (PCT) 
● General Response PCT 
● Rephrasing and 

Extending PCT 

● LES Explanation 

● Lesson Directions 

● Affective PCT 

Personal Question Types (PQT) 
● Gathering Info PQT 

● Probing Thinking PQT 
● Rephrasing and 

Extending PQT 

● Generating Discussion 

PQT 

● Affective PQT 
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Table 4 (continued) 

 

Round 1 Coding Round 2 Coding Round 3 Coding 

 
Student Question Types (SQT) 

● Gathering Info SQT 

● Active Thinking SQT 

● Mathematical Inquiry SQT 
● Lesson Confusion 

SQT MERGED 

● Classroom Teacher 

Feedback/Explanations 

● Negative Lesson Feedback 

● Positive Lesson 

Feedback 

REMOVED 

● Inserting Technology 

● Focus Group Directions 

● Exploring Math Meanings 

Student Comment Types (SCT) 
● General Response SCT 

● Active Thinking SCT 

● Mathematical Inquiry 

SCT 

● Building Connections 

SCT 

● Lesson Confusion SCT 

Student Question Types (SQT) 
● Gathering Info SQT 

● Active Thinking SQT 

● Mathematical Inquiry 

SQT 

● Lesson Confusion SQT 

Feedback/Logistics 
● Future Lesson Think 

About 

● Classroom 

Teacher 

Feedback and 

Explanation 

● Negative Lesson 

Feedback 
● Positive Lesson 

Feedback 

REMOVED 

● Off-Topic SCT 

 

This distinction allowed for a deeper analysis of what types of questions students were 

asking, what levels of student thought my questions were invoking, and what levels of 

student thought occurred during student discussions. 

In the final stage of codebook development, only three new codes were added, 

bringing the total number of codes to 26. It was in this stage that definitions of codes 

were finalized and applied in a specific manner. For instance, the Off-Topic code was 

introduced to use whenever a quotation in the data was irrelevant to analysis. Rather 

than use an existing code that might have produced erroneous results, it was decided 

that such quotations would be ignored to avoid unintentionally skewing the data. 
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Additionally, the Exploring Math Meanings/Relationships code was reintroduced. 

Another key aspect of this stage was formally defining what the Mathematical 

Inquiry code meant. Prior to this round of reliability, defining student mathematical 

inquiry was challenging. After discussions, it was determined that, if a student made a 

comment or asked a question directly related to the central foci of the lesson, it would 

be coded as Mathematical Inquiry. For instance, a student in the integration lesson 

noted that “with the smaller shapes, we had more certainty with the estimation.” 

Noticing the benefits of using smaller shapes for area approximations is a key focal 

point in the integration lesson, and thus the student comment was coded as 

Mathematical Inquiry. 

Table 1 shows the pairing of the Gathering Information question type with the 

General Response student comment type. Since Gathering Information questions are 

used to recall factual information or procedures, there was not a significant level of 

cognitive demand placed on the student. Consequently, the corresponding student 

comments were general, often just stating the fact or procedure about which I asked. 

Since this question and response pair was largely recall, it is considered the lowest 

level of cognitive demand. It is worth noting however that, even though it is the least 

amount of cognitive demand, this question and response pair was important in the 

lessons. For instance, such questions were needed to help students who were 

struggling to get started on a task, as it was a way to remind them of something they 

already knew to begin considering a topic in a deeper manner. Such was the case in 

the differentiation lesson, as students were initially asked to define the power rule and 
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product rule before they used the manipulatives to explore these concepts in more 

detail. 

The middle level of cognitive demand involves the Probing Thinking question 

type and Active Thinking student response types. As noted in Table 3, Probing 

Questions were used to elicit more justified and developed student responses. These 

questions took a more concrete idea or inquiry and delved deeper into the meaning 

behind the concept or claim. As a result, students achieved a higher cognitive demand 

in answering such questions. Probing Questions and Active Thinking responses are 

matched, as they both involve a level of cognitive demand that is higher than a basic 

response but not as sophisticated as Mathematical Inquiry. 

The final level of cognitive demand involves two question types and one 

student response. In response to the Exploring Math Meanings and Extending 

Thinking question types, students often demonstrated levels of Mathematical Inquiry. 

Table 3 shows that both question types are meant to develop an understanding of 

underlying mathematical structure, and connect this structure to more holistic and 

complex mathematical ideas. For instance, in the differentiation lesson, students first 

discussed geometric areas of the manipulatives. Once they established this concept, 

they used it to explore rates of change, a much deeper idea and the central focus of the 

lesson. In general, because students had to think the most about the concepts included 

in the Exploring Math Meanings and Extending Thinking questions, and these 

concepts were the foci of the lesson, this personal question and student response 

pairing has the highest cognitive demand. 



57  

Data Analysis for Research Question 1 

The first research question asks what types of engagement students exhibit 

during the LES lessons. In order to answer this question, code frequencies were 

analyzed with respect to one another. The percentage of each code respective to the 

total number of codes from that code group and total number of codes overall was 

determined. From there, specific themes were explored that yielded insight into the 

research question. Specifically, it was of interest how often student discussion and 

deeper levels of thought generated other students’ thinking at the same level. Thus, 

one result is how often a student exhibited Active Thinking or Mathematical Inquiry 

following another student who also exhibited Active Thinking or Mathematical 

Inquiry. This analysis was important because LES instruction is meant to be 

communal and student-based. 

An additional result is the frequency of when the Exploring Mathematical 

Meanings or Rephrasing and Extending questions and comments elicited an Active 

Thinking or Mathematical Inquiry student response. In other words, did the highest 

cognitive demand questions invoke the highest level of students’ responses? 

Finally, the data were analyzed for all instances of Probing Questions and 

compared to what followed these inquiries. Because the Probing Questions were meant 

to be an intermediate question type, it was appropriate to determine how students 

responded. Additionally, this data helped answer the first research question because it 

provided insight into how students used an intermediate question in their discussion, 

and what types of engagement followed such a question. For instance, some students 
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used Probing Questions as a bridge to more Active Thinking, while other students 

asked additional questions regarding the content included in my Probing Questions. 

Data Analysis for Research Question 2 

The second research question asks how students perceive LES lessons, both in 

terms of engagement and mathematical learning. To answer this question, the method 

of constant comparison was used to look for major themes across the data from the 

focus groups, exit tickets of each class, and student comments about the lesson during 

teaching. In addition, qualitative analysis was employed to collect direct quotations 

that exemplified emerging themes. 

Data Analysis for Research Question 3 

The final research question is concerned with how the classroom teachers 

perceived LES instruction, both in terms of student engagement and student learning. 

This question is identical to the second research question, except all perceptions came 

from the participating classroom teachers. Because there were only two teachers, 

responses to the online form and teacher feedback during the lesson were summarized 

and analyzed for overall themes. Any direct quotations from the lesson transcripts are 

also included in the summary as supplementary information, and the summaries are 

separated by teacher. 
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CHAPTER 5: RESULTS 

 In this chapter, the data outlined in chapter four is supplied and separated by 

research question. Practical changes to both the differentiation and integration lesson 

based on the findings are then explored. 

Results by Research Question 

Research Question 1 

The first result is the total percentage of the codes in each category of the 

codebook. Table 5 contains the distribution of all project codes separated by code 

group. 

Table 5 

 

Percentage of Project Codes by Code Group 

Code Group Percent of All Project Codes 

Personal Comment Types 14.5% 

Personal Question Types 15.1% 

Student Comment Types 42% 

Student Question Types 13.4% 

Feedback and Logistics 14.7% 

 

From Table 5, the majority of codes in the project were student comments. All 

other code groups had similar percentages. Collectively, student quotations composed 

55.4% of all codes and personal quotations composed 29.6% of all codes. 

Table 6 includes the overall code counts for the Personal Comment Type 

category. The percentage of each code respective to the total number of codes from that 

group and total number of codes overall is also given. 
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Table 6 

 

Personal Comment Types Code Distribution 

Code Percent of Code Group Percent of Total Codes 

General Response PCT 101/368 = 27.5% 101/2542 = 4.0% 

Lesson Directions 109/368 = 29.6% 109/2542 = 4.3% 

LES Explanation 22/368 = 6.0% 22/2542 = 0.9% 

Affective PCT 59/368 = 16% 59/2542 = 2.3% 

Exploring Math 

Meanings and 

Relationships 

39/368 = 10.6% 39/2542 = 1.5% 

Rephrasing and 

Extending  

39/368 = 10.6% 39/2542 = 1.5% 

 

From Table 6, 57.1% of my personal comments were either general responses or 

lesson directions. About 21% of my comments were cognitively demanding, and 

14.5% of all codes in the project were my comments. 

Table 7 includes the overall code counts for the Personal Question Type category. 

 

The percentage of each code respective to the total number of codes from that group 

and total number of codes overall is also given. 

Table 7 

 

Personal Question Types Code Distribution 

Code Percent of Code Group Percent of Total Codes 

Affective PQT 6/387 = 1.6% 6/2542 = 0.2% 

Gathering Information  133/387 = 34.4% 133/2542 = 5.2% 

Probing Thinking  92/387 = 23.8% 92/2542 = 3.6% 

Exploring Math Meanings 

& Relationships  

90/387 = 23.3% 90/2542 = 3.5% 

Rephrasing and Extending  46/387 = 11.9% 46/2542 = 1.8% 

Generating Discussion 20/387 = 5.2% 20/2542 = 0.8% 
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From Table 7, about 64% of my personal questions at least reached the 

intermediate level of cognitive demand, and 40.4% of my questions reached the 

highest level. About 15% of the codes in the project were personal question types as 

well. 

Table 8 includes the overall code counts for the Student Comment Types 

category. The percentage of each code respective to the total number of codes from 

that group and total number of codes overall is also given. 

Table 8 

 

Student Comment Types Code Distribution 

Code Percent of Code Group Percent of Total Codes 

General Response 503/1066 = 47.2% 503/2542 = 19.8% 

Lesson Confusion 39/1066 = 3.7% 39/2542 = 1.5% 

Active Thinking 363/1066 = 34.1% 363/2542 = 14.3% 

Mathematical Inquiry 126/1066 = 11.9% 126/2542 = 5.0% 

Building Connections 35/1066 = 3.3% 35/2542 = 1.4% 

 

From Table 8, nearly 50% of student comments reached the highest level of 

cognitive demand, and the other 50% of comments were general responses. Only 

about 4% were associated with lesson confusion. Overall, nearly 20% of all codes in 

the project were intermediate or high cognitive demand student comments. 

Table 9 includes the overall code counts for the Student Question Types 

category. The percentage of each code respective to the total number of codes from 

that group and total number of codes overall is also given. 
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Table 9 

 

Student Question Types Code Distribution 

Code Percent of Code Group Percent of Total Codes 

Lesson Confusion 24/346 = 6.9% 24/2542 = 0.9% 

Gathering Information 165/346 = 47.8% 165/2542 = 6.3% 

Active Thinking 131/346 = 37.9% 131/2542 = 5.2% 

Mathematical Inquiry 26/346 = 7.5% 26/2542 = 1.0% 

 

From Table 9, 45.4% of student questions at least reached the intermediate level 

of cognitive demand. Only a small percentage of student questions were actually about 

lesson confusion. 

Now that an overall distribution of codes has been established, consider the 

specific coding patterns in each lesson. Table 10 separates the data by lesson, and 

reports the percentage of student Active Thinking or Mathematical Inquiry that was 

immediately followed by another student’s Active Thinking or Mathematical Inquiry. 

Essentially, this table shows how often higher levels of student cognitive demand led 

to equally high cognitive responses by other students. 

Table 10 

 

Ongoing Student Active Thinking and Mathematical Inquiry Discussions 

Lesson Active Thinking/Mathematical Inquiry 

Following Active Thinking or 

Mathematical Inquiry 

 

Davenport Differentiation 64/185 = 35% 

Davenport Integration 71/192 = 37% 

Shepherd Differentiation 77/227 = 34% 

Shepherd Integration 6/42 = 14% 
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Note that in Table 10, there were some technical issues with the audio recorders 

for each individual Shepherd integration group. Given the other lesson data, it is likely 

that there were more instances of Active Thinking or Mathematical Inquiry following 

other Active Thinking or Mathematical Inquiry, but since the recorders malfunctioned, 

it is not certain. All of the other lessons have relatively equal percentages of Active 

Thinking and Inquiry followed by Active Thinking and Inquiry, and these percentages 

are between 34% and 37%. 

Because one of the goals of LES instruction is to discover underlying 

mathematical concepts and principles, and since higher level questioning types are 

specifically meant to accomplish this goal, it was useful to determine how often these 

deeper questions generated deeper student responses. Table 11 again separates the 

data by lesson and reports the percentage of Exploring Math Meanings and 

Rephrasing and Extending question types that were immediately followed by a 

student’s Active Thinking, Mathematical Inquiry, or Building Connections response. 

The final column is all other codes that followed the Exploring Math Meanings and 

Rephrasing and Extending questions. 
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Table 11 

 

High Cognitive Questions followed by High Cognitive Responses 

Lesson Total 

Exploring 

Math 

Meanings & 

Rephrase 

and 

Extending 

PCT/PQT 

Single Active 

Thinking, 

Mathematical 

Inquiry, Building 

Connections 

following 

Exploring Math 

Meanings, 

Rephrase and 

Extending PCT 

or PQT 

Multiple 

Active 

Thinking, 

Mathematical 

Inquiry, 

Building 

Connections 

following 

Exploring 

Math 

Meanings, 

Rephrase and 

Extending 

PCT or PQT 

 

Other Codes 

following 

Explore 

Math 

Meanings or 

Rephrase and 

Extend PCT 

or PQT 

Davenport 

Differentiation 

66 25/66 = 38% 6/66 = 9% 35/66 = 53% 

Davenport 

Integration 

33 15/33 = 46% 11/33 = 33% 7/33 = 21% 

Shepherd 

Differentiation 

90 44/90 = 49% 10/90 = 11% 36/90 = 40% 

Shepherd 

Integration  

21 17/21 = 81% 2/21 = 9.5% 2/21 = 9.5% 

 

Table 11 indicates that the majority of my highest cognitive demand questions 

in each lesson resulted in an intermediate or high cognitive demand student response 

in every lesson except the Davenport differentiation lesson. This lesson was nearly 

the majority at 47%. 

In an effort to ascertain how effective Probing Questions were in generating at 

least intermediate levels of student cognition, Table 12 reports what codes followed the 

Probing Questions in each lesson. These results are given as percentages of all Probing 

Questions by lesson. 
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Table 12 

 

Codes that followed Probing Questions 

Lesson General 

Response 

SCT 

Gathering 

Information 

SCT 

Active Thinking 

SCT/SQT 

Mathematical 

Inquiry 

SCT/SQT 

Building 

Connections 

SCT/SQT 

Negative 

Lesson 

Feedback 

Davenport 

Differentiation 

3/28 = 

11% 

1/28 = 3.6% 19/28 = 67.9% 2/28 = 7.1% 2/28 = 

7.1% 

1/28 = 

3.6% 

Davenport 

Integration 

6/24 = 

25% 

2/24 = 8.3% 7/24 = 29.2% 9/24 = 37.5% 0 0 

Shepherd 

Differentiation 

5/37= 

13.5% 

3/37 = 8.1% 23/37 = 62.2% 6/37 = 16.2% 0 0 

Shepherd 

Integration 

3/14 = 

21.4% 

0 1/14 = 7.1% 10/14 = 71.4% 0 0 

 

According to Table 12, the majority of codes that followed Probing Questions 

were either Active thinking or Mathematical Inquiry. In the four lessons, these were 

75%, 67%, 78%, and 79%, respectively. The second highest response was either a 

General Student Response or a Gathering Information student question. 

Research Question 2 

The results for the second research question are partially qualitative and 

partially quantitative. Table 13 displays the overall percentages of each code in 

the Feedback and Logistics code group. This table also includes the percentages 

of each code with respect to the entire project. 
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Table 13 

 

Feedback and Logistics Code Distribution 

Code Percent of Code Group Percent of Total Codes 

Future Lesson Think About 52/375 = 13.9% 52/2542 = 2.0% 

Positive Lesson Feedback 47/375 = 12.5% 47/2542 = 1.8% 

Negative Lesson Feedback 17/375 = 4.5% 17/2542 = 0.7% 

Off-Topic 193/375 = 51.5% 193/2542 = 7.6% 

Classroom Teacher 

Feedback/Explanation 

66/375 = 17.6% 66/2542 = 2.6% 

 

From Table 13, about half of the Feedback and Logistics codes were Off-Topic 

and therefore of no relevance to analysis. These codes made up about 8% of the total 

codes in the project. Only 3% of codes in the project came from classroom teachers, 

and the percent of positive feedback is nearly triple that of negative feedback. 

Next, student feedback about their engagement and learning is summarized. All 

information in the summary came explicitly from the exit tickets and focus groups. For 

more detail about these results, see Appendix J. With regard to engagement, the 

majority of students agreed that both lessons were highly engaging and interactive. 

Several students reported that they were engaged because they “like hands-on 

learning” and because it was different than other classes since “there aren’t a lot of 

classes that make you do hands-on things and get up with other people.” Students 

reported that the integration lesson was more engaging than the differentiation lesson 

because the differentiation lesson “needed to be more understandable.” Finally, several 

students noted that both lessons were more engaging than traditional instruction. For 

example, one students said “I liked it because we were learning something new but not 

in a boring way” while another said that “it was a fun activity that was more 
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entertaining than sitting at a desk staring at a piece of paper.” Overall, student feedback 

on lesson engagement was positive, but there were some areas that could be improved. 

Student feedback regarding learning the essential concepts of each lesson was 

more varied than engagement feedback. For the integration lesson, many students felt 

that the visual aspects of the lesson helped them learn. For instance, one student noted 

that “I liked being able to use the shapes. We weren’t just given a formula and told to 

plug numbers in” while another said that “it wasn’t a forced application” of the 

concepts. However, some students noted that they “learn better with formulas, 

numbers, and examples” and that the approximations made it difficult because they 

“like actual answers.” 

The differentiation lesson had similar patterns. Students again reported that the 

visuals helped understand the concepts. Additionally, one student reported that it was 

helpful for learning because “it was a challenge to think about what derivatives 

actually mean.” Many students felt that they could not fully learn the concepts from the 

lesson because they either “already had an understanding” or because they were 

confused. Students also found it difficult to use the manipulatives because they 

“wanted to associate them with a number rather than the concept itself.” Between both 

lessons, student feedback on learning was certainly more scattered. However, there was 

a decent amount of positive feedback as well as constructive feedback for future lesson 

use. 
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Finally, the feedback generated entirely within each lesson is reported. All 

data are quotes from the lesson transcripts that were coded with Positive Lesson 

Feedback, Negative Lesson Feedback, or Future Lesson Think About. A full report of 

this data is found in Appendix K. 

With regard to positive feedback, many student comments expressed 

excitement about the lesson or amazement about a mathematical result. For instance, 

one student said “I just had a mathematical breakthrough” while several others 

responded to major lesson results with an astonished “What?!” or “Whoa.” Several 

students also commented on how it was “nice knowing that the math we’re doing 

actually means something.” 

In terms of negative feedback, one student commented “give me an equation, 

I’ll do the math and figure it out. I’m never going to need this in life.” Other instances 

of negative feedback included frustration or giving up, as well as a lack of care. For 

instance, one student noted that “after today we won’t have to remember it [the 

lesson]” while others said that they should “give up” or “quit.” 

Research Question 3 

First, Ray’s (the Shepherd teacher) feedback is summarized. Prior to this 

project, Ray did not have any knowledge of LES instruction. He was skeptical of the 

method following the lessons, arguing that “most students want you to tell them what 

to know and how to complete a process.” Ray also said that students “get frustrated if 

you ask them to do something you haven’t previously walked them through.” In terms 

of engagement, he noted that LES instruction can be effective with good preparation. 
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However, lessons that “do not explain expectations may lead to a lot of frustration and 

wasted time.” In terms of student learning, Ray “absolutely” thought the LES lessons 

were effective. He also noted that the “students in the class that Nate completed an 

integration activity with connect definite integrals with area much better than the class 

he did not teach.” For future lessons, Ray shared that ongoing LES instruction may be 

challenging and time consuming for the teacher. It may better serve as a “great 

compliment to traditional teaching, as students may get frustrated with constantly 

‘discovering’ a concept.” Finally, Ray expressed concern with absent students, as it 

would be difficult to make up an LES lesson as opposed to copying notes. 

Next, Troy’s (the Davenport teacher) feedback is summarized. Troy also did 

not have any prior knowledge of the LES method, but said he has seen similar 

strategies in his experience. His biggest concern following the lesson was the amount 

of time it would take to structure a curriculum as an LES environment. He felt that it 

“would be hard to get through the entire curriculum doing it with LES method.” In 

terms of engagement, Troy noted that students were “into the [integration] lesson very 

much,” but that the differentiation lesson “seemed to frustrate them more.” However, 

he also shared that this is “not always a bad thing.” With regard to student learning, 

Troy thought that LES instruction helped students “because they now had a visual and 

hands-on idea of the concepts.” For future lessons, he classified LES as a “great 

theory-based idea, but not very practical because of our 42 minute class periods.” He 

was unable to see how to complete an entire curriculum using LES instruction. 

Finally, despite his inclination that LES would enhance students’ critical thinking 
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abilities, Troy figured that many students would grow tired of the method by the third 

or fourth lesson. 

Comparatively speaking, Troy and Ray both expressed concerns with the 

longevity of LES instruction in high school classes. They felt the structure of the 

lessons and amount of preparation needed for each lesson would be too much to 

sustain a full curriculum. Both Ray and Troy felt that LES instruction helped students 

learn, although they differed on specific concepts. Ray felt that students learned the 

most about connection between definite integrals and area under curves, while Troy 

felt that LES instruction best helped students’ critical thinking abilities. 

Practical Changes to Each Lesson 

Before discussing the results of each research question and the theoretical 

implications this study has for teaching and learning calculus, an overview of changes 

to each lesson must be considered. These adaptations are considered a practical result 

of the data analysis because, although the purpose of this study was to determine the 

effectiveness of LES instruction in teaching calculus, two rich calculus lessons were 

developed and are available for future use. These changes are in direct response to 

both the data collected and personal reflection following each lesson. 

Integration Lesson Changes 

Between both lessons, the integration lesson is certainly the more complete 

design, as there are only a few changes that need to be made to this lesson before using 

it again. The first is allotting at least two class periods for the activity. Although the 

logistics of this project restricted the amount of class time spent on each lesson, more 
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time should be devoted to students’ exploration and discussion of their early 

understandings of the definite integral. This was most evident in the difference 

between the Summarize phase of the lesson at Shepherd and the Summarize phase at 

Davenport. Although both discussions yielded good insight and student thought, the 

Davenport students experienced a richer debate that involved multiple conjectures 

about improving approximations, justification for these improvements, and concerns 

with calculating the area of infinitely many shapes. The Shepherd students briefly 

touched on each of these points, but because the entire lesson had to be completed in 

one class period, there was not enough time to fully develop ideas. The Davenport 

lesson spanned over two class periods and therefore allowed the class to methodically 

conceptualize and discuss the findings of the lesson. 

Further, an explicit distinction between a large shape and a small shape should 

be made. Although students were given a parallelogram with an area of 600 square 

centimeters (the largest of the five shapes) and a triangle with an area of 200 square 

centimeters (the smallest of the five shapes), not all students compared these specific 

shapes in their analysis. Rather, students often noted that they liked the triangle 

because it was small, and not necessarily because it was the smallest. The size of the 

parallelogram should be exaggerated to invoke a more direct comparison. 

The final change is with regard to the actual area approximations that each group 

made. Specific function graphs were built to have interesting properties, including 

sharp peaks, rounded curves, and positive and/or negative sections. While the peaks 

and curves of the graphs were effective in helping students thinking about which 
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shapes were best for approximation, the groups neglected to use signed measurements 

when calculating their approximations. This essentially negated the rationale for 

creating the graphs in this manner, even though the rationale was explained before 

beginning the Explore phase. During the lesson, it was ultimately decided that an 

understanding of improved approximations was more important for an introduction to 

integration as opposed to revisiting the signed approximation discussion. In a future 

lesson, students should be reminded about this discussion, thus providing substance to 

the deliberate function creation. 

Differentiation Lesson Changes 

The differentiation lesson had a wider range of student responses and feedback 

than the integration lesson, and is therefore more susceptible to change. Like the 

integration lesson, at least two class periods should be allocated for this lesson. 

Although the original differentiation lesson plan included a section on the power rule 

and another section on the product rule, none of the groups at either school got to the 

product rule section. Moreover, each class only had a limited amount of time at the 

end of the lesson to collectively discuss its findings. Rather, the class quickly 

summarized the activity and its implications, and therefore could not discuss the 

lesson as much as originally planned. Having at least two class periods would allow 

each group to complete and think about the entire activity while preserving time at the 

end of class to make deeper connections with the material. 

The second change to the differentiation lesson would be its place in the 

overarching calculus curriculum. At the time of teaching this lesson, both classes were 
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in the middle of an integration unit and had already completed their differentiation 

unit. While this activity still served as a nice review of some essential differentiation 

concepts, many students reported that they would rather have completed it when they 

first learned about the power rule and product rule. One student in particular noted 

that it was difficult to see the purpose of a more in-depth activity because the class 

already knew how to use the derivative rules. Rather, this activity would fit in 

conjunction with other power and product rule lessons to help students understand the 

concepts behind each rule, as well as why the rules are used in practical situations. 

The third change to this lesson involves the language and wording of the 

guided activity in Appendix E. Both the original activity and the revised version 

appear in this appendix, but further changes are still necessary. In the focus groups for 

this lesson, students reported that the clarity of the activity was a large barrier to 

understanding its concepts and purpose. Specifically, it seemed that students were 

uncomfortable using Leibniz notation to describe changing quantities. For instance, the 

activity asks students to consider a small change in the length of x2 by representing it 

as dx. Many groups struggled with this question, and in turn could not use such 

quantities for later algebraic manipulation. Students should first be familiar with 

Leibniz notation prior to teaching this lesson. 

The other main issue with the guided activity involved the algebraic 

manipulation of changing quantities. This question specifically asked students to 

describe how df changes proportionally to dx. The purpose of this question was to 

illustrate how small changes in x affect large changes in the function f. In context of 
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the activity, this involved changing the side length of one of the square manipulatives 

and building a new square from these revised dimensions. 

Many students were uncomfortable with the concept of proportions, and 

therefore needed some scaffolding to realize that df/dx was the quantity of interest. 

Again, this stems slightly from an unfamiliarity with Leibniz notation, but the question 

should be reworded as follows: Finally, try to algebraically manipulate your 

expression to isolate the ratio of how f changes over how x changes. (Hint: Think 

about which of the previous quantities represent the change in f and the change in x!). 

Finally, the manipulatives themselves must be changed. Students reported that 

they struggled with abstract measures of length and width using the base-10 blocks 

shown in Figure 2. As one student pointed out, “it was confusing because I wanted to 

associate the blocks with numbers rather than concepts.” Using physical base-10 

blocks as opposed to digital base-10 blocks is more valuable because students can 

actually manipulate changing quantities with their own hands. Consequently, actual 

manipulatives should still be used rather than a digital equivalent. However, the base-

10 blocks should not have notches meant for counting. In other words, the new 

manipulatives should have the same dimensions as base-10 blocks, but eliminate the 

possibility of students counting the blocks to obtain a length or width. This way, 

abstract quantities for length and width make sense for an unknown measurement 

rather than trying to fit a variable to an already known quantity. 
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CHAPTER 6: DISCUSSION 

Interpretation of the Results 

 In this section, the results of each research question are discussed in context of 

the project. The interpretations are separated by research question. 

Research Question 1 

 The first research question asks about what types of engagements students 

displayed during each lesson. From Tables 5 through 9, an explanation of the overall 

understanding of student lesson engagement is demonstrated, and this broad picture is 

helpful in beginning to answer the first research question. Of all the codes used in the 

project, over 50% were student comments or student questions. Less than 30% of 

codes were my questions and comments, while the remaining 20% came from 

feedback or logistics. In terms of engagement, this is an encouraging distribution of 

codes. The majority of conversation in each lesson was generated by the students, and 

many groups worked through the activities with little input from me. Instead, students 

were actively working to understand and discover the concepts associated with each 

lesson, asking strong questions to aid in this understanding, and conversing with one 

another to build insight. The following transcript is an example of two Shepherd 

students working through the differentiation activity with the codes included in 

brackets for reference. 

S8: Now that you’ve conquered 𝑓(𝑥) = 𝑥2, try to do a similar process with 

 𝑓(𝑥) = 𝑥3. [General Response SCT] 

S9: Hmm. [General Response SCT] 

S8: Oh this deals with volume. Again imagine changing 𝑥 by some little 

amount. How would 𝑓(𝑥) change? Huh. [Active Thinking SCT] 
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S9: So it’d be like this? (puts 𝑥2blocks on sides of the 𝑥3 block) [Active 

Thinking SQT] 

S8: Yeah there’d just be one on each side right? [Active Thinking SQT] 
S8: And I guess we’d have to put… [Active Thinking SCT] 

S9: We need these blocks there, and one on the back. [Active Thinking SCT] 

Notice that these students are asking each other questions as they work with the 

manipulatives to model the derivative of 𝑥3. This conversation also occurred 

independently of my comments or questions, again offering support that student 

engagement during the lesson was largely between students. Compared to traditional 

lectures where the majority of dialogue is teacher-based, the data suggests an opposite 

trend and in turn supports the notion that LES instruction is effective in promoting 

student engagement. 

In addition to rich student dialogue, the results for the first research question 

indicate that a significant amount of student discourse reached the intermediate or 

highest levels of cognitive demand. From Table 10, more than 30% of student Active 

Thinking or Inquiry led to additional student Active Thinking or Inquiry, being aware 

of the fact that there were technological issues during the Shepherd integration lesson 

that limited analysis. Not only were students actively engaged and talking to one 

another throughout the course of the lesson, they were engaged in high level 

mathematical conversations. Additionally, this trend is consistent among all lessons. 

This suggests that the LES structure may be more responsible for high levels of 

discourse as opposed to the actual topics of the lessons. Although the previous 

transcript example also demonstrates a highly cognitive student conversation, the 

following transcript example provides another example from the Davenport integration 
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lesson for comparison. These students were discussing which shapes offered the best 

estimation of the area of their function, and how they would improve the shapes that 

were not effective estimators. 

S7: I’d change the rectangle to a square. [Active Thinking SCT] 

S11: I don’t know, maybe make it smaller? [Mathematical Inquiry SCT] 

S7: I feel like the triangle was a good size. [Active Thinking SCT] 

S2: Okay, parallelogram. Make it a square? [Active Thinking SQT] 

S7: I think this one would be better if we could make it smaller to fit better in 

here. [Mathematical Inquiry SCT] 

S11: Yeah smaller for sure. [Active Thinking SCT] 

Smith and Stein (2011) found that teachers can help students with cognitively 

challenging tasks by asking good questions. This goal was accomplished in the project 

using the Exploring Math Meanings/Relationships and Rephrasing and Extending 

question types. Table 11 indicates how often these deepest questions elicited an 

intermediate or high cognitive student response. In three out of the four lessons, the 

majority of these questions yielded higher response. The integration and differentiation 

lessons differed slightly in percentages, with both integration lessons reaching 78% 

and 89% while the differentiation lessons reached 45% and 60%. This is likely do to 

the structure and clarity of the differentiation lesson. Many students reported that the 

questions in the derivative activity were unclear and that it was difficult to fully engage 

with the lesson. Consequently, there was a need to use a larger number of low 

cognitive demand questions to help students progress through the activity. Despite 

these differences, higher level questions were effective in invoking intermediate or 

high level student responses. The following transcript from the Davenport integration 

lesson is an example. Here, I am talking with two students about how to use the shapes 
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they measured to make approximations about their functions. 

I: You could guess, you could make up a number. How could you make a good 

guess? A good approximation? Okay, what areas do I know out of these 

functions and out of the shapes that you have? [Exploring Math 

Meanings/Relationships PQT] 

S5: You know the areas of like the triangle and things like that. And you could 

possibly use it for like, that one. [Active Thinking SQT] 

S9: So like that one, you would find the radius of… [Active Thinking SQT] 

I: Well these aren’t nice shapes like the ones you have. But you do have a nice 

circle. Alright, you do have those nice shapes that you know the area of. How 

could I use those shapes…?  [Rephrasing and Extending PQT] 

S9: Oh just fill them in! [Mathematical Inquiry SCT] 

S5: Oh! [Mathematical Inquiry SCT] 

S9: Like a puzzle. [Mathematical Inquiry SCT] 

Notice that this transcript includes an Exploring Math Meanings/Relationships and 

a Rephrasing and Extending question. Initially, S5 and S9 are working to build 

conjectures about how to find the area of the function without using the shapes. The 

Rephrasing and Extending question combines their thinking with the availability of the 

shapes, and ultimately results in three instances of Mathematical Inquiry. 

Finally, considering the effectiveness and use of Probing Questions in 

engaging students with mathematical concepts is necessary. Table 12 outlines all of 

the responses that immediately followed one of my Probing Questions. In each lesson, 

at least 60% of these questions produced an Active Thinking or Mathematical Inquiry 

student response. Given that all four lessons demonstrate similar trends, the data 

suggests that Probing Questions were effective in eliciting at least an intermediate 

level of student cognition. Despite initially matching Probing Questions with Active 

Thinking student responses (see Table 1), a significant number of Probing Questions 

were able to help students reach the level of Mathematical Inquiry. Such results 
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indicate that Probing Questions certainly engaged students, both with each other and 

with the content. The next transcript is a section of the Shepherd integration lesson 

when a Probing Question about improving the shapes in area approximations leads to 

two instances of Mathematical Inquiry and one instance of Active Thinking. Students 

were discussing what qualities each shape had that made it an effective or ineffective 

estimator. S6 for instance noted that he would not use one of the shapes because he 

was unable to accurately position it in the function, which is a key finding in the 

context of the problem. S13 highlighted a feature of trapezoids that made them better 

estimators than other shapes. 

I: How would you make it better? [Probing Thinking PQT] 

S6: I would not use it. [Mathematical Inquiry SCT] 

S13: At least the trapezoid had some angles. [Mathematical Inquiry SCT] 

S8: The circle was pretty good. [Active Thinking SCT] 

Overall, the data for the first research question indicates that LES instruction 

engages students in a variety of ways. The lesson structure itself, including group 

work, discussions, and manipulatives encourages students to work together and 

generate conjectures about the material. Additionally, students have conversations 

about the focal mathematical concepts, and these conversations lead to additional 

conjectures and justification. Finally, the questions that were aimed at generating 

higher levels of student thought achieved their goal, and this helped students engage 

with the lesson and concepts as well. Collectively, these results are encouraging, as 

they indicate that the LES structure engages students on multiple levels, both with each 

other and with the mathematics. They also support the first hypothesis that data 

analysis will show more engagement than traditional instruction. 
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Research Question 2 

The second research question asks how students perceive LES instruction 

both in terms of engagement and learning. Quantitatively, Table 13 indicates that 

students offered positive feedback three times more often than negative feedback. 

This ratio is encouraging because the data came directly from the lesson transcript 

and occurred naturally throughout the lessons. Additionally, this feedback was related 

to both engagement and learning. In many cases, positive feedback stemmed from a 

surprising or interesting mathematical result, or throughout the course of an 

interactive portion of the activity. For example, the Davenport students in the 

following transcript were shocked when they learned that it was possible to calculate 

the area of an infinite region. From a teaching standpoint, observing students get 

excited about the concepts they are learning about is a positive outcome. Not only 

does it increase student motivation to ask questions and continue learning, but it 

reconnects students to the innate joy of learning that is often lost in traditional forms 

of instruction. 

I: So if we make our shapes super small, and have some precise way of 

orienting them, and we put an infinite number of them in our function… 

S12: Infinity? 

I: Well that’s exactly what you just figured out is how to get that answer, it’s 

your… 

S10: But if they’re infinite then they just keep going! 

I: Right… 

S8: So there’s no way to calculate it. 

I: Ah, but there is! 

Class: What!? (laughter) 

S5: Shh, listen to him. Just listen! 

I: What you just--what you just kind of described to me and intuitively figured 

out is what’s called an integral. 
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With regard to student perceptions of engagement, the focus groups and exit 

tickets indicate that students did feel like LES instruction was engaging. The majority 

of student responses identified that LES teaching is hands-on, visual, and 

collaborative. Students also highlighted the fact that they became the central factors of 

the lessons. For instance, one Davenport student said that the lesson was engaging 

because “we had to come up with mostly everything on our own.” Another student 

agreed that she “liked being able to do it myself.” Comparatively speaking, students 

in both schools reported higher levels of engagement during the integration lesson as 

opposed to the differentiation lesson. One student mentioned that it was difficult to 

engage fully with the activity because he “needed more explanation to figure out the 

questions.” Interestingly, however, there were students that struggled during the 

differentiation lesson that still reported high levels of lesson engagement. This 

suggests that students often still engage with LES lessons even if the concepts are 

challenging. Additionally, student perceptions of engagement can increase, provided 

the structure of the lesson effectively enables students to grapple with challenging 

concepts. 

Student perceptions of learning are more varied than perceptions of 

engagement. The majority of students felt like the visual aspects of both lessons 

helped understand central concepts, and that actively working to understand the 

material was more effective than “just memorizing how to do something.” Students 

also appreciated that both lessons attributed meaning to integration and differentiation. 

As one student mentioned, the lessons “show us what we’re doing [rather than a 
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problem] telling us do to this equation to figure out an answer.” Another student 

offered similar input, noting that she “likes seeing connections like the ones we made 

in class.” Like the engagement feedback, more students felt that the integration lesson 

was better for learning as opposed to the differentiation lesson. Specifically, students 

felt the differentiation lesson was more confusing and therefore not as helpful for 

learning. A Shepherd student reported that “it was hard to learn since I couldn’t 

understand it,” indicating a need for clarity within the lesson. Since students are 

working independently for the majority of class, the expectations for an LES lesson 

should be communicated and understandable. 

Finally, some students felt that the lessons were not helpful for learning 

because they differed from traditional instruction. One student commented that she 

“didn’t see the point [of the lessons] and was frustrated. Eventually we’ll get an 

equation and then it’s all algebra.” Such a response is intriguing because it appears 

that this student is so accustomed to traditional instruction that any variation in 

teaching methodology is not important. It also highlights what traditional instruction 

emphasizes, and how little student engagement and active thinking is present in class 

on a daily basis. 

Overall, the data for this research question supports the hypothesis that the 

majority of students would positively perceive LES instruction, but engagement 

feedback would be more positive than learning feedback. It is encouraging that 

students were still engaged with the activities even if the concepts were not 

completely clear. Working to understand these concepts in the collaborative LES 
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environment increased positive feedback on learning, indicating the need for precise 

language choices for activities. While the majority of students also found LES 

instruction to be effective for learning, there was a slight disconnect between it and 

student perceptions of traditional instruction. Most students reported that they would 

enjoy and prefer to see LES instruction more in classes, but some were familiar with 

traditional teaching and instead preferred a more procedural approach to learning. It is 

suspected that, if students were exposed to LES instruction consistently from the 

beginning of the school year, such opinions would dissolve. 

Research Question 3 

The final research question again asks about student engagement and learning, 

but this time from the perceptions of the classroom teachers. Both teachers reaffirmed 

their commitment to traditional instruction when discussing LES. Given that this is 

the daily structure of their classes, such a result was not incredibly surprising. 

However, despite reporting that LES instruction was effective in promoting students’ 

critical thinking, understanding of integrals, and understanding of derivatives, both 

teachers continued to preface their responses with a concern about “the time it takes” 

and the difficulties in “getting through the entire curriculum.” It is telling that, even 

when presented with “absolute” evidence that LES instruction helped students engage 

with and learn calculus concepts, teachers who are accustomed to traditional 

instruction will remain consistent in their methodologies. Rather, both teachers agreed 

that LES activities would better serve as a “compliment to traditional teaching.” In 

keeping with this trend, it is worth noting that Troy said he was going to “steal from 
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Mr. Mattis. I’m going to do this” with regard to the integration lesson despite his 

commitment to traditional instruction. 

Additionally, there is an interesting disconnect between student perceptions of 

engagement and learning and teacher perceptions of engagement and learning. In their 

feedback, Ray reported that “students may get frustrated with constantly ‘discovering’ a 

concept” while Troy believed that “a lot of students by the third or fourth time of doing 

an LES lesson would get tired of it.” These responses are in stark contrast to the student 

feedback that was gathered. In fact, students reported that they would rather see LES 

instruction more in mathematics and other classes because “there aren’t a lot of classes 

that make you do hands-on things and get up with people.” Moreover, several students 

commented on how it was refreshing to “come up with mostly everything on our own.” 

From these results, it appears that both classroom teachers thought that students would 

grow tired of LES instruction when in fact students were asking for more of this type of 

teaching. Such a disconnect reaffirms the idea that student input is valuable within the 

classroom, and that listening to students and their perceptions of engagement and 

learning can provide key implications for future instruction. In this case, it appears that 

more communication is necessary between teachers and students, and that traditional 

teachers should be open to a sustainable, student-based method of teaching such as LES. 

Professional development for LES may also be useful in helping traditional teachers 

transition to the new method of instruction. 
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A Return to the Literature 

In this section, comparisons between the obtained data and expected findings 

of the literature are discussed. Specifically, this includes an analysis of student 

responses to LES instruction as compared to their traditional classroom instruction 

and teacher perceptions, how the structure of each LES lesson compared to the 

findings of PBL, and how student perceptions of differentiation and integration 

compare with the procedural themes found in the literature. 

LES Instruction vs. Traditional Instruction 

Prior to teaching at either school, I had the opportunity to observe both 

classroom teachers and typical class routines. Both instructors taught in a style that 

mirrored the findings of the literature, as they would directly explain a concept before 

assigning a series of practice problems for students to complete. Students would 

finish these textbook problems for homework and discuss their answers in the 

following class period, at which point the cycle generally repeated. Such a trend is 

consistent with the literature on current calculus teaching methods, as lecture and 

textbook assignments tend to dominate instruction. 

During both of my lessons, there were a small number of instances where the 

classroom teachers actually interacted with students. Student responses drastically 

changed when they were discussing with the classroom teachers compared to when 

they discussed with me or other students. For example, notice the following 

conversation between the Davenport teacher, Troy, and two students during the 

differentiation lesson. 
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T: Did you understand it? 

S7: I was getting there, yeah. 

T: So the cube now think of it the same way. So to do the cube, because when 

you do the cube, do you agree this is 𝑥3? 

S7/S8: Yeah. 

T: So to make it, wouldn’t we have 3 lengths? 

S7/S8: Yeah. 

T: Well actually it’d be going that way. So if we increase it by 1 like you 

wanted to do, well we’d have to put that block in to find the new height. That 

little block is your difference. And as that gets smaller and smaller that goes 

away and so we’ll still have 3 blocks. So that’s why the derivative of 𝑥3is 3𝑥. 

 

Observe that, even though S7 notes that she is actively working to understand a 

component of the lesson, Troy immediately begins explaining the concept to her. In 

turn, both S7 and S8 give very submissive responses, and any indication of active 

thinking vanishes. Such a pattern is indicative of common classroom tendencies, and 

unfortunately confirm the existing trends of the literature. It is also noteworthy that 

Troy incorrectly interprets the problem, claiming that the derivative of 𝑥3  is 3𝑥. He 

later returned to this group to correct the mistake. 

Comparing LES and PBL 

Given the literature gap surrounding LES instruction, research on PBL was 

utilized as a comparable source of information. Students in PBL environments showed 

an increase in critical thinking, knowledge transfer, problem-solving, and justification 

skills while retaining the procedural skills found in traditional classrooms. While this 

project includes only as a sample of four LES lessons, the data supports this finding. 

Table 8 and Table 9 indicate that, of the 1,412 student comments and questions 

throughout all four lessons, 48% are direct instances of Active Thinking, 

Mathematical Inquiry, or Building Connections. It is noteworthy that the 1,412 
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comments also contains 503 general student responses, which in some instances occur 

during periods of critical thinking, teamwork, and justification as well. Additionally, it 

is worth noting that a significant number of the General Response codes were used for 

students’ measurements in the integration lessons. This lesson component was 

necessary for students’ approximations and still discussion based, but many of the 

comments were low cognitive demand measurements of each shape. Overall, this 

small sample of LES instruction seems to support the trends originally found in PBL 

instruction. 

Students’ Procedural and Conceptual Knowledge 

 The final component of the literature that became apparent in analysis was the 

distinction between students’ procedural and conceptual knowledge of the derivative 

and integral. Research findings indicate that students are more adept at procedural 

skills involved with differentiation and integration and tend to struggle with 

conceptualized notions of these topics. Although this trend emerged in the data, it was 

not as drastic as the literature presented. Students certainly reported for instance that 

the definition of the power and product rules were the actual procedures, but the LES 

activity quickly revealed the true meaning of both rules. As a result, students gained a 

greater conceptual understanding of the derivative, lessening the observed gap in the 

literature. 

Students made similar strides in the integration lesson. Although this lesson 

was taught as part of an introduction to the integral, the Shepherd class had briefly 

begun studying this concept prior to my teaching. Following the order of a textbook 
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comparable to Textbook 1 discussed previously, Shepherd students began by 

calculating definite integrals using the fundamental theorem of calculus without ever 

discussing the meaning of an integral or the rationale behind the theorem. Rather, they 

memorized a procedure and used it to solve decontextualized problems. In the 

classroom teacher feedback form, the Shepherd teacher reported that “to this day, the 

students in the class that Nate completed an integration activity with connect definite 

integrals with area under a curve much better than the class he did not teach.” Again, 

this result aligns with the literature, as students in traditional calculus environments 

were more adept at the procedures involved with integration while students in an LES 

environment were more comfortable with the conceptual meaning of the integral. 

Limitations 

This project had several limitations given its structure and logistics. The first 

limitation involved the classes that were taught. Both classes had similar demographics 

and structure, and therefore it was not possible to discuss how LES instruction 

appealed to various students. Rather, classes were selected based on the fact that they 

were not AP courses and therefore not logistically restricted by the AP exam. It is 

therefore possible that different students, such as those with learning accommodations, 

socioeconomic barriers, or behavioral tendencies, may perceive LES instruction in a 

different manner than what was found in this project. 

The second limitation is the lack of community between me and both classes. 

Although I observed both classes several times prior to teaching, discussed both the 

project and general mathematics with the students, and included community-driven 
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comments in my teaching, it was not possible to build classroom community from the 

beginning. Both lessons were taught in February and March which are two months that 

are well into the school year. Consequently, I could not develop the strong 

relationships with students that I would have liked. Given the collaborative nature of 

LES teaching, classroom community and student comfort are critical in effective 

instruction. Since I did not have the ability to establish this, it is likely that my LES 

instruction was not as rich as it could have been with a more developed classroom 

community. 

The third limitation is related to analysis and is concerned with the 

technological difficulties encountered in some of the lessons. In the Shepherd 

integration lesson, the audio devices for each individual group failed, and therefore a 

significant portion of data was lost. Specifically, it was not possible to fully analyze 

student conversations for instances of Active Thinking and Mathematical Inquiry 

within groups. Instead, only conversations that either the classroom camera or my 

individual microphone recorded could be analyzed. As a result, it is likely that more 

relevant examples of student discourse occurred in the Shepherd integration lesson. 

Implications 

In this section, the results of this project that can be used for future 

mathematical practice and mathematics education research are discussed. These 

implications can also help overcome the limitations of this particular study. 
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For Practice 

Perhaps the most obvious implication for practice is the creation and testing of 

two thorough calculus lessons. Both lessons, aside from the actual manipulatives 

needed for each activity, are complete and available for use. Additionally, these 

lessons cover two of the most important topics in calculus, and these topics are also 

commonly difficult for students in traditional learning environments. Teachers can use 

the results of this study to adjust the presentation of each lesson if desired, and modify 

the content to best coincide with their classes. 

One of the most significant implications for mathematics education is the 

reported student perceptions of LES instruction. Contrary to the belief of classroom 

teachers, the majority of students found LES teaching to be engaging and effective for 

learning integration and differentiation. Students also enjoyed learning in this manner, 

making the overall learning experience more productive and meaningful. Teachers can 

use this information as a basis for lesson structure, as students are not only enjoying 

such a strategy, but deeply learning critical concepts of calculus as well. 

Finally, teachers can feel confident migrating from a traditional, teacher-focused 

classroom to a more dynamic, student-centered classroom. It is noteworthy that 

students who learned in a Connected Mathematics Project (CMP) classroom with a 

less experienced teacher who attended more professional development had higher 

mathematics scores than their non-CMP counterparts (CMP, 2018). This indicates 

that, with LES-focused professional development, teachers with varied experiences 

can effectively utilize LES instruction. While the transition may be difficult or 
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unnatural at first, especially for long-standing traditional teachers, this project offers 

reassuring evidence that students can thrive at the center of learning. Not only does 

discourse and engagement increase when students are the main generators of 

information, but conceptual understanding does as well. This study suggests that 

students are more than capable of discovering and seriously understanding conceptual 

aspects of calculus. Teachers should be equally confident in their ability to facilitate 

such an outcome, especially given the positive results of this project. 

For Research 

Although the results of this study are encouraging for LES instruction, they are 

accompanied by a series of future research questions that should be addressed. The first 

is a more longitudinal study of LES instruction in high school calculus. While a series 

of two LES lessons taught in two different classrooms produced promising results, a 

more sustained study of LES teaching would be useful. This would especially address 

the concerns raised by classroom teachers that LES would not be effective as the basis 

for a curriculum. Projects that assess the validity of these curricular claims are 

encouraged. 

The second research implication involves LES instruction in other disciplines. 

For mathematics education, LES could be tested in other high school courses such as 

geometry, trigonometry, and statistics. For educational research in general, it would 

be interesting to modify the structure of LES to best fit classes in the sciences, social 

studies, and arts. Although ambitious, it would be incredibly telling to compare the 

performance of a school district taught entirely using LES to a traditional school 
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district. Regardless of the scale, research of LES in other classes is necessary to fully 

assess its effectiveness as an instructional method. 

Lastly, additional research is needed on the perceptions of educators who 

teach using the LES method. This study is focused on my perceptions having taught 

with this method, but the perceptions of other LES instructors regarding the method’s 

effectiveness should be gathered and analyzed. Such results could uncover the 

common aspects of each methodology to gain a greater understanding of why certain 

LES components are effective and others are not. 

Conclusion 

The overall goal of this research study was to determine the effectiveness of the 

Launch-Explore-Summarize method of instruction in calculus. Specifically, it explored 

the various types of engagement that students display throughout an LES lesson on 

integration and another on differentiation. Additionally, it focused on both student and 

teacher perceptions of engagement and content learning. Overall, the results of the 

study are encouraging, and indicate that LES instruction is effective in promoting high 

levels of student engagement as well as cognitively rich student discourse, thought, and 

inquiry about the essential components of integration and differentiation. More 

research is needed to fully understand the intricacies of LES, but this project provides a 

solid foundation. In addition to learning about an engaging and effective method of 

teaching calculus, readers hopefully recognize and appreciate the essential bridge 

between students and teachers, as well as rediscover the intrinsic love of learning that 

we all possess. 
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Appendix A: The Common Core Standards for Mathematical Practice 

The Common Core Standards for Mathematical Practice 

SMP Number SMP Description 

1 Make sense of problems and persevere 

in solving them 

 

2 Reason abstractly and quantitatively 

 

3 Construct viable arguments and critique 

the reasoning of others 

 

4 Model with mathematics 

 

5 Use appropriate tools strategically 

 

6 Attend to precision 

 

7 Look for and make use of structure 

 

8 Look for and express regularity in 

repeated reasoning 
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Appendix B: Student Assent Form 

Student Informed Consent Agreement 
Please read the following agreement carefully before choosing to sign. 

 

Hello! 

My name is Nate Mattis, and I am currently an undergraduate student at Bucknell 

University. I am pursuing a degree in mathematics, and also earning my secondary 

teaching certification. I am currently working on an honors thesis project studying how 

students react to a specific teaching method. Over the summer, I participated in a 

teaching program at Brown University where we used the Launch-Explore-Summarize 

(LES) method of instruction. 

 

I will be teaching 2 LES based lessons in your calculus class. Please note that these 

lessons will be videotaped and audio recorded for later analysis in my research. In 

no way will this data affect your grades or performance in the class. Your work and 

contributions will only be used if you choose to participate in the research. In order to 

protect confidentiality, I will assign you a pseudonym, as I am ultimately concerned 

with the lesson itself and not your personal information. Even if you choose not to be a 

part of the research study, you may still participate the lessons that I teach, but I will 

not analyze your data. 

 

In addition, I will ask a subset of the class to meet with me following the lessons for 

time to debrief the experience and share your thoughts on the teaching method. No one 

outside of the discussion group other than the researchers will know what you share. 

 

I am extremely excited to begin working with your class, and am hopeful that my 

research will help math education overall! If you have any questions at any time, 

please do not hesitate to contact me at njm013@bucknell.edu . You may also contact 

Matthew Slater, the chair of the Bucknell Institutional Review Board, at 

mhs016@bucknell.edu. Thank you! 
 

 
 

When I sign my name, this means that I agree to participate in the study and that all of 
my questions have been answered. I have also been given a copy of this form. 
 

 

 

 

Signature_______________________  Date________________ 

  

mailto:njm013@bucknell.edu
mailto:mhs016@bucknell.edu
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Appendix C: Parent Consent Form 

Parent/Guardian Informed Consent Agreement 

Please read the following agreement carefully before choosing to sign. 
 

Hello! My name is Nate Mattis, and I am currently an undergraduate student at 

Bucknell University. I am pursuing a degree in mathematics, and also earning my 

secondary teaching certification. I am currently working on an honors thesis project 

studying how students react to a specific teaching method. Over the summer, I 

participated in a teaching program at Brown University where we used the Launch-

Explore-Summarize (LES) method of instruction. This method focuses heavily on 

discovery-based learning, and allows students to solve math problems in a variety of 

ways and then share their findings with the class in a way that promotes communal 

growth and learning. I became quite interested in seeing how this method of instruction 

would work for students in high school calculus classes. 

 

In order to meet this goal, I will be teaching 2 LES based lessons in your child’s 

calculus class. Your child may also be chosen to debrief with me following the 

completion of the lesson. Your child’s education is my primary focus, and I will strive 

to ensure that the lessons are both effective in learning calculus, and engaging for the 

class as a whole. Please note that these lessons will be videotaped and audio 

recorded for later analysis in my research. In no way will this data affect your 

child’s grades or performance in the class. Your child’s work and contributions will 

only be used if you choose to participate in the research. In order to protect 

confidentiality, I will assign a pseudonym for your child. I am ultimately concerned 

with the lesson itself and not your child’s personal information. If you choose not to 

participate in this research, I will not use your child’s contributions anywhere in my 

research, and will destroy any previously collected data if you opt out of the research 

project. While I cannot remove your child from the actual class, I will remove any ties 

to the project. 

 

I am extremely excited to begin working with your class, and am hopeful that my 

research will help math education overall! If you have any questions at any time, 

please do not hesitate to contact me at njm013@bucknell.edu. You may also contact 

Matthew Slater, the chair of the Bucknell Institutional Review Board, at 

mhs016@bucknell.edu. Thank you! 

 

___ I agree for my child to participate in all aspects of the study 

 

___ I agree for my child to participate in the study, but prefer not to have their face in the video 

 

___ I choose for my child to not participate in this study 

 

Parent Signature___________________________ Date_______________ 

mailto:mhs016@bucknell.edu
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Appendix D: LES Integration Lesson Plan 

Lesson Plan: Integration using LES 

Grade Level: High school calculus 

Teacher(s): Nate Mattis 

 Mathematical Goal(s): Students will develop strategies for approximating 

area under a curve, discuss which strategies are the most effective and why, 

and begin developing a formal understanding of these processes 

 

 Related Standards of Mathematical Practice from CCSSM: 

o Use appropriate tools strategically: Including meter stick and data 

tables to make accurate and detailed measurements 

o Look for and express regularity in repeated reasoning: Students will 

compute a variety of measurements using multiple shapes (i.e. 

rectangular, triangular, circular, etc.) to determine which is most 

effective. After doing so, students may notice shortcut of using same 

shape over and over, and therefore could create a formula that models 

the physical modeling process. 

o Construct viable arguments and critique the reasoning of others: 

During the discussion of which techniques are most effective, students 

will need to make conjectures and defend these conjectures. 

Additionally, students will hear arguments from other groups, and have 

the opportunity to test these arguments. 

 

 Related Advanced Placement Calculus AB Standards 

o L.O 3.2A (a): Interpret the definite integral as the limit of a Riemann sum 

 E.K 3.2A1: A Riemann sum, which requires a partition of an 

interval I, is the sum of products, each of which is the value of 

the function at a point in the subinterval multiplied by the length 

of that subinterval of the partition. 

o L.O 3.2B: Approximate a definite integral 

 E.K 3.2B1: Definite integrals can be approximated for functions 

that are represented graphically, numerically, algebraically, and 

verbally. 

 E.K 3.2B2: Definite integrals can be approximated using a left 

Riemann sum, a right Riemann sum, a midpoint Riemann sum, 

or a trapezoidal sum. 

o L.O 3.4D: Apply definite integrals to problems involving area. 
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 Assessment 
o Informal during lesson: As students test their theories and perform their 

measurements, I will be able to observe their procedures and quickly 

look at data tables. In doing so, I can assess early conjectures and the 

logic behind these conjectures, and observe if students are making 

adequate progress and contributions to our overall goals. 

o Formal on students’ progress on objectives: This will be done via an exit 

ticket, which addresses specific content standards, and our full class 

discussion in the summarize phase of the lesson. The exit ticket will ask 

which method of measurement was most effective and why, and the 

discussion will be largely geared toward this same idea and the goals of 

the lesson. 

 

 Prior Knowledge 
o Build on previous knowledge: Students need to utilize their knowledge of 

basic geometric areas as well as basic measuring skills 

o Needed definitions, concepts, or ideas: We will need to first understand 

what is meant by “area of a function” as opposed to “area of a geometric 

shape,” and then how these concepts can be related to solve our ultimate 

problem. 

 

 Materials: String for curves, tape for axis, meter sticks, data tables/sequence of 

questions, “do-now” review of geometric areas, exit ticket, objects to measure 

with (perhaps cardboard shapes or classroom items) 

 

 Anticipating what Students will do before the Lesson 
o All ways that the task can be solved: 

 Technically, any of the shapes can be used to solve the 

problems, but some will be more effective than others of course. 

Students may orient the shapes in multiple ways (i.e. a rectangle 

could be oriented so that its longer side is parallel to x-axis vs y-

axis). If students reach the stage of developing formulas, they 

could be represented differently. For instance, some groups may 

factor out a common measurement while others include it in 

every term of the calculation. 

o Which methods will students use? 

 I think students will orient their shapes or objects in such a way 

that maximizes the area covered by the object. This means that, 

if a triangle is being used for measurement, students may rotate 

the triangle to “fill in gaps” as opposed to repeating an 

orientation over and over. With regard to formula construction, 

my guess is that students will initially repeat factorable terms in 

their representation, but could simplify their calculation with a 

bit of prompting. 



105  

o Possible Misconceptions 

 That there is only one correct answer or technique to 

solving this problem, and how we can create “an infinite 

number of shapes” to approximate with. 

o Possible Errors 

 My biggest concern is measurement errors or incorrect 

recordings of data 

 

 Phase One: The Launch 
o Prior to/as students enter the classroom, there will be several shapes 

(circle, triangle, rectangle, trapezoid, and parallelogram) around the 

room. Students will work in small groups to compute the area of each 

using measurements. Meter sticks will be made available to complete 

the measurements. 

o A short class discussion will ensue to discuss comfort levels with this 

process. We will discuss potential reasons for the importance of this 

activity in calculus. The discussion will conclude with a formal class 

conjecture about what the “area of a function” means. We would write 

down our class goals for the lesson on the board to refer back to 

throughout the lesson. 

o Students will be made aware of the various curves placed around 

the classroom as well as resources available for measurement (i.e. 

shapes from do-now). Data tables will be distributed and groups 

will be assigned (note: I have “random” ways of doing this if I 

have the opportunity to get to know students prior to this lesson, 

and therefore can assign specific groupings), before each group is 

left to explore their curve. 
o Confirm directions by asking for groups to quickly summarize the 

directions and goals of the lesson prior to the exploration 

 
 Phase Two: The Explore 

o As students are working independently, in pairs, or small groups, 

what questions will you ask to focus their thinking? 
 What is your rationale for orienting your objects in this way? 
 Are there any ways you could simplify your procedure to 

increase efficiency? (given answer) Why do you think so? 

 Are there any patterns you can find in your data table? How do 

these patterns relate to our goals? 

 (Later in lesson) Can you generate some conjectures using your 

data that reflect the goals of our lesson? 
 

o What will you see or hear that lets you know how students are thinking 

about mathematical ideas? 

 Early discussion about which procedures work more effectively 
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than others, possible orientations for the shapes that increase 

accuracy of approximations, shortcuts to measurements. 
 

o What questions will you ask to assess students’ understanding of key 

mathematical ideas, problem-solving strategies, or representations? 

 How do you know your measurements are effective and accurate? 

 What patterns can you find in your data that could be useful in 

understanding our goals? 

 Can you discuss/test any strategies that could make your 

measurements more accurate? Why do you think these strategies 

will do this? 
 

o What questions will you ask to advance students’ understanding of the 

mathematical ideas? 

 Are there any topics we’ve talked about this year that could be 

used to formalize the conjectures you’re making? (i.e. limits to 

get to integrals) 

 How can we generalize these processes to any curve? 

 How do your findings relate to our goals? 
 

o What questions will you ask to encourage students to share their 

thinking with others or to assess their understanding of their peers’ 

ideas? 

 How do their conjectures relate to yours? Are they the same ideas? 

Why or why not? 
 Can we test their conjectures? 
 Are both answers valid? Why or why not 

 
 Phase Three: The Summarize 

o Which solution paths do you want to have shared during the class 

discussion in order to accomplish the goals of the lesson? 

 Depending on progress of the groups, I would like to have 

at least one demonstration of rectangular approximation, 

and how it compares with other group approximations using 

other shapes. Additionally, perhaps later in the discussion, I 

would have groups that thought about/tested how to 

improve approximation accuracy share their findings. 

o What will you see or hear that lets you know that students in the class 

understand the mathematical ideas being shared? 

 After a conjecture or answer is posed, I could ask each group to 

take a minute to discuss it with their group members (while I 

listened and circulated), and then report back on whether or not 

they agree with the conjecture and why. 

o What questions will you ask and statements will you make so that students: 
 Make sense of the mathematical ideas being shared? 
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 Make connections between their solution strategy and the one 
shared? 

 Look for patterns and form generalizations? 

 How can we finalize our conjectures to reach a formal and 

complete approximation? 

 Note that each of your approximation methods are 

valid! Some are just more effective and accurate than 

others. For instance, can I approximate the area with 

just one shape? How does this affect my 

approximation? Is it still valid? 

 Summarize and discuss the proposed conjecture within 

your individual groups. 

 Differentiation 
o For high achieving students, I could challenge them to develop a 

formula that represents their measurements. Additionally, I could 

encourage them to use their previous calculus knowledge to transition 

their formula from a specific case to a generalized and formal 

representation. 

o For students that struggle, I could have them focus solely on the 

measurement process and which shapes work better than others. Instead 

of prompting a more formal discussion (at least at first), let’s just 

understand what exactly is going on when we measure and whether or 

not circles are easier to work with than triangles (just an example) 

o There are no accommodations for special needs students as per the 

classroom teacher. 
 

 Justification for High Cognitive Demand 
o Students will be required to incorporate a variety of techniques and tools 

to reach a common goal. They will be utilizing several measurements and 

have to make inference on a data set, and then transition this concrete 

data to a more generalized and abstract representation. Finally, students 

will need to make conjectures about things they possibly cannot test (i.e. 

infinite rectangles). 

 

 Justification for Mathematical Discourse 
o Much of the lesson will be discussion based, whether this be in small 

groups or with the entire class. The conjectures that students make will 

necessarily be grounded in mathematical discourse terminology. 

Additionally, it will be emphasized that these are conjectures, and 

therefore it is perfectly okay for them to be incorrect. I will make the 

point that learning a conjecture is wrong is just as important as learning 

that it is correct. As a result, each conjecture will be regarded solely as a 

conjecture, and testing it can help make our decision. Doing so will help 

increase the discourse community and progress overall. 
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Finding the “Area of a Function” 
As you explore your functions and measurements, record your findings the 

data table below. Have fun! 

 

Shape Area of Shape 
Area of 

Function 

Reactions to 

using Shape 

Suggestions 

for 

Improvement 

Circle     

Rectangle     

Trapezoid     

Triangle     

Parallelogram     
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Appendix E: LES Differentiation Lesson Plan 

Lesson Plan: Differentiation Using LES 

 
Grade Level: High School Calculus 

 

Teacher(s): Nate Mattis 

 

 Mathematical Goal(s): Students will geometrically understand the intuition 

and logic behind seemingly procedural derivative rules, including the power 

rule and product rule, and compare these understandings with their prior 

knowledge of the derivative techniques. 

 

 Related Standards of Mathematical Practice from CCSSM: 

o Use appropriate tools strategically: Including base-10 blocks to 

visually depict 𝑥2 and 𝑥3, as well as tangible changes in area. 

o Reason abstractly and quantitatively: Working with actual functions 

will allow students to make conjectures about the derivatives of these 

functions, which can then be applied to general power rule and product 

rule situations. 

o Look for and make use of structure: Students can notice the underlying 

structure of how multiplication can be represented as area and how the 

derivative corresponds to a slight change in area when the side of the 

structure changes slightly. 

 

 Related Advanced Placement Calculus AB Standards 

o LO 2.1C: Calculate Derivatives 

 EK 2.1C3: Sums, differences, products, and quotients can 

be differentiated using derivative rules. 

o LO 2.3A: Interpret the meaning of the derivative within a problem 

o LO 2.3D: Solve problems involving rates of change in applied contexts 

 EK 2.3D1: The derivative can be used to express information 

about rates of change in applied contexts. 

 Assessment 

o Informal during lesson: I will be able to check the progress each pair 

makes on the guided sheet, and discuss the questions on the sheet 

with the students. Additionally, I can ask for demonstrations 

involving the manipulatives coupled with explanation. 

o Formal on students’ progress on objectives: This will be done via an exit 

ticket, which addresses specific content standards, and our full class 

discussion in the summarize phase of the lesson. The exit ticket will ask 

which method of measurement was most effective and why, and the 

discussion will be largely geared toward this same idea. 
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 Prior Knowledge 
o Build on previous knowledge: Students need to utilize their knowledge of 

geometric areas as well as their already learned knowledge of the power 

and product rule 

o Needed definitions, concepts, or ideas: We’ll need to understand how to 

visually represent a function in other ways aside from a graph. 

Additionally, we may need to discuss how to abstractly represent area 

using functions (i.e. what is 𝑥2sin (𝑥) as a picture?) 

 

 Materials: Guided sheet, base-10 blocks, scratch paper if necessary 

 

 Anticipating what Students will do before the Lesson 
o All ways that the task can be solved: 

 Some students may attempt to draw the functions in terms of 

area while others use the manipulatives to represent. A 

combination of these strategies is also an option, as some 

functions are easier to draw than others. 

o Which methods will students use? 

 I think students will use a mix of manipulatives and 

drawing, but lean on the manipulatives. This technique 

allows students to physically see which pieces were added 

and how the area changes as a result of this addition 

o Possible Misconceptions 

 Since the base-10 blocks are not variable, students may 

perceive the change in area as some constant amount. It will 

be important to make this clear in the beginning: that the 

blocks are here as an aid and not necessarily abstract. 

o Possible Errors 

 Students may incorrectly add area or volume to the 

original function, or interpret the variables in the wrong 

context. 

 

 Phase One: The Launch 
o When students enter the room, a do-now will be presented that asks 

them to write definitions of the power and product rule, and create 

an example of each rule. 

o Students will then share their definitions and examples with a 

neighbor, and based on their conversation, formalize a definition of 

each rule. 

o Each pair will then share their definitions out to the class and we 

will collectively decide which final definition we want to use for 

each rule 
o I anticipate these being largely procedural, at which point I will 

challenge students to interpret each rule in a different, non-
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procedural way 
o Pairs will be assigned (“randomly” if possible), materials will be 

made available and explained, and the guided sheets will be 

distributed 
o Confirm directions by asking for groups to quickly summarize the 

directions and goals of the lesson prior to the exploration 

 
 Phase Two: The Explore 

o Questions to focus thinking during student work 
 What is your rationale for defining the functions in this manner? 
 What do each of your variables represent? Can you show me 

these in your model? 

 Will you explain your thought process so far? Where do you plan 

to go next? 

 What added pieces contribute the most to the change in volume or 

area? How is this reflected in the terms that remain in your 

expression? 

o What will you see or hear that lets you know how students are thinking 

about mathematical ideas? 

 How the visuals translate to actual algebraic expressions 

 How the discoveries in the exploration compare to their already 

known concepts of the power and product rule 

o What questions will you ask to assess students’ understanding of key 

mathematical ideas, problem-solving strategies, or representations? 

 How could this process generalize to any function? 

 Why can we ignore these specific terms? 

 Can we apply this process to any constant value? 

o What questions will you ask to advance students’ understanding of the 

mathematical ideas? 

 What is the actual interpretation of this function? 

 By how much do each of these functions change when we 

slightly adjust 𝑥? 

o What questions will you ask to encourage students to share their 

thinking with others or to assess their understanding of their peers’ 

ideas? 

 How do their conjectures relate to yours? Are they the same ideas? 

Why or why not? 
 Are your representations the same? What can you learn from each 

one? 
 Are both answers valid? Why or why not? 
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 Phase Three: The Summarize 
o Which solution paths do you want to have shared during the class 

discussion in order to accomplish the goals of the lesson? 

 Depending on progress of the groups, I would select and 

sequence the questions on the sheet to groups that feel 

comfortable explaining the process and/or have an 

interesting/valuable insight on a particular problem 

o What will you see or hear that lets you know that students in the class 

understand the mathematical ideas being shared? 

 After a conjecture or answer is posed, I could ask each group to 

take a minute to discuss it with their group members (while I 

listened and circulated), and then report back on whether or not 

they agree with the conjecture and why. 

 

o What questions will you ask and statements will you make so that students: 
 Make sense of the mathematical ideas being shared? 
 Make connections between their solution strategy and the one 

shared? 
 Look for patterns and form generalizations? 

 Note that, while you might not do this when taking a 

derivative in the context of a problem, it is helpful to 

understand the logic and rationale behind each rule. 

 When the rules were first presented, what backing did you 

have for each of them? How does this compare now that 

you’ve done some exploration? 

o How will you help students reflect back on what they have learned? 

 I would frequently refer back to our class goals and ask students 

why their work reflects these goals. Additionally, I could ask 

them to summarize their process so as to not lose sight of the goal 

and rationale for using it. 

 Differentiation 
o For high achieving students, I have included a challenge problem that 

focused on the same process but with a different function. This is 

certainly not intuitive, and working through it is a bit tricky but 

rewarding. 

o For students that struggle, I could have them focus solely on the simpler 

functions and heavily use the manipulatives. I can also pair each step 

with an algebraic step to ultimately develop the rationale behind each 

rule 

o There are no accommodations for special needs students as per the 

classroom teacher. 
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 Justification for High Cognitive Demand

o Students will be required to incorporate a variety of techniques and tools

to reach a common goal. The rules we are focusing on are largely taught

in a procedural manner, and often only used in this manner. Asking

students to visually justify a rule they likely never thought of visually

will challenge their cognitive demand.

 Justification for Mathematical Discourse

o Much of the lesson will be discussion based, whether this be in small

groups or with the entire class. The conjectures that students make will

necessarily be grounded in mathematical discourse terminology.

Additionally, it will be emphasized that these are conjectures, and therefore

it is perfectly okay for them to be incorrect. I will make the point that

learning a conjecture is wrong is just as important as learning that it is

correct. As a result, each conjecture will be regarded solely as a conjecture,

and testing it can help make our decision. Doing so will help increase the

discourse community and progress overall.



Name:
Date:

A Geometric Exploration of Derivative Rules
With your partner(s), explore the questions below using the manipulatives. Have fun!

• Let’s start with a simple function, f(x) = x2. Represent this function using the
manipulatives.

• In the context of the manipulatives, what do x and f(x) represent?

• Now imagine increasing x, just a little bit, by some small dx. How does f(x) change?
Model this with the manipulatives!

• Let’s call the change in f(x), df . Using your interpretations in question 2, try to
describe this change algebraically.

• Finally, try to manipulate your expression to obtain a result in how df changes
proportionally to dx. What would happen to your expression if your initial increase
in x was super small?

• Now compute the derivative of f(x) = x2, and compare this to your findings in the
other questions. Jot down your thoughts!

• Now that you’ve conquered f(x) = x2, try to do the same process with f(x) = x3.
Jot down some more thoughts and findings!
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• So that was the power rule! Crazy! Time to ramp it up a notch with the product
rule! Using the manipulatives or a diagram, try to visually model the product
f(x) = x2 sin(x).

• Once again, imagine increasing x by some some small dx. How does f(x) and your
model change?

• Let’s keep calling this change df like before. Using your diagram, try to describe df
algebraically.

• Finally, try to manipulate your expression to obtain a result in how df changes
proportionally to dx. What would happen to your expression if your initial increase
in x was super small? Again, how does this compare to your findings if you simply
took the derivative of f(x)?

A Challenge: Consider the function f(x) = 1
x . Using a similar process as before, try to

reason through the derivative of f . How does this compare with the derivative you’d get if
you just applied the power rule?
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Name:
Date:

A Geometric Exploration of Derivative Rules
With your partner(s), explore the questions below using the blocks. Have fun!

Concept 1: The Power Rule.

• Let’s say that one of the sticks has length x. How do we make x2 using the other
blocks?

• You’ve now made the function f(x) = x2. What’s the area of this function?

• Now imagine increasing the length of x, just a little bit, by some small dx. How
does the area of f(x) change? Try to model this with the blocks.

• What is the area of each new piece that you added in terms of x’s and dx’s?

• Let’s call the change in area of f(x) df . Using the last question, how do we alge-
braically describe df?

• Finally, try to algebraically manipulate your expression to obtain a result in how df
changes proportionally to dx. What would happen to your expression if your initial
increase in x was super small? (Hint: Think about if the lim dx→ 0)

• Now compute the derivative of f(x) = x2, and compare this to your findings in the
other questions. In the context of the blocks, what does the derivative of f(x) = x2

represent?
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• Now that you’ve conquered f(x) = x2, try to do a similar process with f(x) = x3.
If f(x) = x2 dealt with area, what would f(x) = x3 deal with?

• Again, imagine changing x by some little amount, dx. How would f(x) change? Try
to model this with the blocks.

• Let’s keep calling this change in f(x) df like before. Can you algebraically describe
this change in terms of x’s and dx’s? (Hint: Think about doing this for f(x) = x2.
What did we do before, and how does that process change for x3?)

• Finally, try to algebraically manipulate your expression to obtain a result in how df
changes proportionally to dx. What would happen to your expression if your initial
increase in x was super small?

• Now compute the derivative of f(x) = x3 and compare this to your findings in the
other questions. In the context of the blocks, what does the derivative of f(x) = x3

represent?

117 



Concept 2: The Product Rule

• So that was the power rule! Crazy! Time to ramp it up a notch with the product rule!
Using the blocks or a drawing, try to visually model the product f(x) = x2 sin(x).

• What does f(x) represent in the context of your model?

• Now let’s increase x by some little amount dx like before. How does your model
change?

• Let’s keep calling this change in f(x df like before. Using your diagram, try to
describe df algebraically.

• Finally, try to manipulate your expression to obtain a result in how df changes
proportionally to dx. What would happen to your expression if your initial increase
in x was super small? Again, how does this compare to your findings if you simply
took the derivative of f(x)?

A Challenge: Consider the function f(x) = 1
x . Using a similar process as before, try to

reason through the derivative of f . How does this compare with the derivative you’d get if
you just applied the power rule?

118 



119  

Appendix F: Student Exit Ticket 

 

Feedback Form! 
Please answer the questions honestly! Thank you! 

 

 
1. Briefly summarize the lesson. What did you learn about? 

 

 

 

 

 

 

 

 

 

 

2. Was the lesson engaging? If not, what would you have changed to make it 

engaging? 

 

 

 

 

 

 

 

 

 

 

3. Do you feel this lesson/teaching style helped you learn? Why or why not? 

 

 

 

 

 

 

 

 

 

 

4. Please write any other comments you have here! 
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Appendix G: Focus Group Protocol 

 

Focus Group Protocol 
The purpose of this focus group is to gather information from a student perspective on 

the LES method of instruction. Specifically, we hope to understand how students 

engaged with the lesson and their motivation for doing so, as well as how such a 

method of teaching compares with traditional and familiar instruction that students 

receive. This protocol will be largely discussion based and focus on the questions 

below. However, because this is a discussion format and will include 5-6 students, 

some questions may be asked that are not listed below, or may be asked in a slightly 

different way. 

 

Questions: 

 

1. What initial thoughts did you have following the lesson? What did you like and 

dislike, and why? 

 

2. How does this style of teaching compare with other styles of teaching you have 

seen? Specifically, have you seen this style of teaching in math? 

 

3. Moving forward, would you like to see this style of teaching more in your math 

classes? Why or why not? 

 

4. How do you think this style of instruction helped with your understanding of the 

actual mathematical concepts? Why do you think so? 

 

5. What improvements could be made to this lesson and style of teaching that would 

help you as a student? 

 

6. Do you have any other questions for me regarding the lesson or research moving 

forward? 
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Appendix H: Classroom Teacher Reflection Form 

Classroom Teacher Reflection 
The purpose of this form is to gather reactions and observational information from an 

experienced teacher following the LES lessons. This information will be helpful in 

assessing the engagement of students and comprehension of material from an outside 

source, and noting aspects of the lesson that may not be apparent from a teaching 

perspective. I greatly appreciate your responses! 

 

Questions: 

 

1. Did you have any prior knowledge of the Launch-Explore-Summarize (LES) 

method of teaching? If so, what information did you know? 

 

2. What initial thoughts did you have following both LES lessons? 

 

3. How did you observe your students engage with both lessons? Do you think LES 

is effective in promoting student engagement? 

 

4. Do you think LES was effective in promoting student learning and 

comprehension? Why or why not? 

 

5. How might you envision the LES teaching strategy in a long-term setting? 

Specifically, could this method be incorporated routinely or be the basis for a 

curriculum? Why or why not? 

 

6. What long-term effects (either positive or negative) might arise from a consistent 

use of LES teaching? 

 

7. Please include any additional questions or comments here. Thank you again for 

your responses! 
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Appendix I: The Final Codebook used for Analysis 

 
Code Name Code Group Definition Example from Davenport Differentiation 

Lesson Transcript 

Classroom Teacher Feedback/Explanation Feedback/Logistics 

This code is used when the classroom teacher 

either gives feedback about the lesson or 

explains a concept to a student. In the lessons, I 

did not explicitly give the classroom teacher 

participation directions. Rather, many of these 

comments/questions were individually done. 

"Well you do because, let’s think about the 

square. Because it’s reducing on this side and 

this side at the same amount, so you’re retaining 

the square. Does that make sense?" -page 21 

Future Lesson Think About Feedback/Logistics 

These are either comments or questions made by 

any person in the classroom that need to be 

considered for future LES lessons. They often 

include things I didn’t think about in the lesson 

planning stage, but could/should be included in 

another implementation of the current LES 

lesson. 

So I said at the beginning, try not to get bogged 

down on the numbers. These are all length 10 

which makes it difficult. But if I call this some 

arbitrary length, call it x, how do I make x 

squared?" -page 7 

Negative Lesson Feedback Feedback/Logistics 

This code is solely used for student comments 

about the lesson that are constructive. They may 

be made at any time in the lesson and to anyone. 

Contents of such comments often include 

structural dislikes, learning imbalances, and the 

like. 

“...just give up. Pretend like you didn’t come 

today." -page 21 

Positive Lesson Feedback Feedback/Logistics 

This code is solely used for student comments 

about the lesson that are positive. They may be 

made at any time in the lesson and to anyone. 

Contents of such comments often include 

structural likes, learning balances, and the like. 

“I’m excited about these." -page 4 

Off-Topic Feedback/Logistics 

This code is used when anyone in the class 

discusses something unrelated to the lesson. 

These comments do not affect the lesson or 

research. 

“It’s hollow?" -page 4 

General Response SCT Student Comment Types 

SCT refers to “student comment type.” This 

code is used when students give a general 

answer to a question from anyone in the class. 

This included myself, the classroom teacher, 

other peers, or the individual student. Such 

responses tend to be affirmative and basic, and 

require the lowest level of thought. 

"Kinda." -page 2 
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Code Name Code Group Definition Example from Davenport Differentiation 

Lesson Transcript 

Active Thinking SCT Student Comment Types 

SCT refers to “student comment type.” This 

code is used when students are working to 

understand a part of the lesson, whether 

mathematically or not. These are often early 

stages of understanding or thought processing, 

but it’s clear that the student is thinking at a 

more than superficial level. The question must 

be on topic as well; off-topic questions are not 

coded. This code is meant to be the “middle” 

between the mathematical inquiry and gathering 

info student comment types. It is also often a 

response to the exploring math 

meanings/relationships questions and comments. 

S11: Whaaat...x is, x is the block. S2: No, x is 

the side of the block. -page 5 

Mathematical Inquiry SCT Student Comment Types 

SCT refers to “student comment type.” These 

comments involve higher levels of student 

thought about specific mathematical concepts or 

patterns. The thoughts may be incomplete but 

active levels of thinking are present. This code 

involves the highest level of thought. Inquiry is 

achieved when students comment on one or 

more of the central foci of the lesson. 

S5: Yes. And then I knew that these were xdx 

and this was dx squared so I basically took that 

up there but then added these.  

S6: That's not what I did. I did what you did up 

there [on the board] but you add another xdx. 

Because it increases here too. -page 17 

Building connections SCT Student Comment Types 

SCT refers to “student comment type.” This 

code is used when students connect the foci of 

the current mathematical lesson to either 

different mathematical foci or an entirely 

different subject of study. At least two distinct 

topics must be present to build connections 

between 

"We're confused." -page 6 

Lesson Confusion SCT Student Comment Types 

SCT refers to “student comment type.” This 

code is used when students specifically 

comment about the lesson itself. Such comments 

may involve lesson procedures, directions, or 

next steps, and may be asked to anyone in the 

class (me, other students, classroom teacher, or 

the student themselves). This code is not used 

for quotes involving math content. 

"Oh it would’ve been so much easier just to do it 

that way." (referring to using the power rule 

instead of manipulatives) -page 14 
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Code Name Code Group Definition Example from Davenport Differentiation 

Lesson Transcript 

Gathering Info SQT Student Question Types 

SQT refers to “student question type.” This code 

is used when students specifically inquire about 

procedural or factual components of the lesson. 

Such questions usually invoke a straightforward 

response, and may be asked to anyone in the 

class (me, other students, the classroom teacher, 

or the student themselves). They involve the 

lowest level of thought. 

"What do you mean by the manipulatives? Is 

that these things?" -page 5 

Active Thinking SQT Student Question Types 

SQT refers to “student question type.” This code 

is used when students are working to understand 

a part of the lesson, whether mathematically or 

not, and asking questions about their thinking. 

These are often early stages of understanding or 

thought processing, but it’s clear that the student 

is thinking at a more than superficial level. The 

question must be on topic as well; off-topic 

questions are not coded. This code is meant to 

be the “middle” between mathematical inquiry 

and gathering info student question types. It is 

also often a response to exploring math 

meaning/relationships comments and questions. 

So like x is the variable and f(x) is the function 

right? -page 5 

Mathematical Inquiry SQT Student Question Types 

SQT refers to “student question type.” These 

questions involve higher levels of student 

thought about specific mathematical concepts or 

patterns and are actively being asked either 

within groups, to the entire class, or to me. 

Thoughts may be incomplete but evidence of 

active thinking is present. This is the highest 

level of thought. Inquiry is achieved when 

students' questions directly reflect one or more 

of the central foci of the lesson. 

"Could you make that 2xdx?" -page 12 

Lesson Confusion SQT Student Question Types 

SQT refers to “student question type.” This code 

is used when students specifically inquire about 

the lesson itself. Such questions may involve 

lesson procedures, directions, or next steps, and 

may be asked to anyone in the class (me, other 

students, classroom teacher, or the student 

themselves). This code is not used for quotes 

involving math content. 

"What do you mean by describe it algebraically? 

Like with an equation?" -page 8 
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Code Name Code Group Definition Example from Davenport Differentiation 

Lesson Transcript 

General Response PCT Personal Comment Types 

PCT stands for “personal comment type.” This 

code is used when I respond to a comment or 

question from another individual in the class. 

This may be a student, the classroom teacher, a 

group, or the class as a whole. These responses 

tend to be affirmative and basic, such as “okay." 

"Okay" -several places 

Lesson Directions Personal Comment Types 

This code is used when I explicitly give 

directions to either the class or specific groups 

of students. These are often structurally based 

and involve transitions within the lesson. Lesson 

directions are not related to content. 

Okay, and in your group, you can pair up 

however you’d like, try to come up with a 

definition for both the power rule and the 

product rule. Alright and when you’ve got one, 

give me a hand or a holler or something and I’ll 

come over and see what you’ve got, and we’ll 

go from there. -page 2 

LES Explanation Personal Comment Types 

This code is used when I explain either 

components or purposes of the LES lesson 

structure. This may be used for transparency 

within the classroom, rationale for a specific 

lesson component, or the like. These comments 

extend beyond lesson directions as their goal is 

to explain the purpose of a lesson component. 

Last time I was here we did a discovery lesson 

on integration. It wasn’t a topic that you were 

real familiar with at the time but we kind of used 

our intuition to guide us where we wanted to go. 

Today we’re going to do another discovery 

activity but, based on some of the feedback you 

gave me last time, it’s going to be on a topic that 

you’re already pretty familiar with and that I’d 

be willing to bet is probably pretty easy. -page 1 

Affective PCT Personal Comment Types 

PCT stands for “personal comment type.” This 

code is used when I offer encouragement, praise, 

or motivation to a student or students. Such a 

comment may be used to assign competence to a 

student or simply reaffirm his/her work or 

attitude. These comments are more than one 

word responses (ex. right, yeah, nice). 

Right! Yeah! -page 5 

Exploring Math Meanings/Relationships PCT Personal Comment Types 

This is adapted from the 5 practices book. PCT 

refers to “personal comment type.” This code is 

used when I structure my comments or 

responses in such a way to talk about underlying 

math relationships and meanings, or to link 

mathematical ideas and representations. 

"Okay, which is exactly what you have right 

there. I literally make a square" 
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Code Name Code Group Definition Example from Davenport Differentiation 

Lesson Transcript 

Rephrasing and Extending PCT Personal Comment Types 

PCT refers to “personal comment type.” This 

code is used when I explicitly structure my 

responses to students to explore specific 

mathematical concepts. I use what students say 

or are working on to form these responses, and 

also use them to extend student thinking to 

deeper mathematical concepts or reasoning. 

There is a distinction between comments and 

questions, and this code is reserved only for 

comments. Rephrasing and extending is a step 

above exploring math meanings/relationships. If 

a quote can be coded with both, only rephrasing 

and extending will be used. 

Okay and even in terms of the actual blocks. 

You originally had this, and now you have this. 

So what’s different? What blocks are different? -

page 8 

Affective PQT Personal Question Types 

This code is used when I ask a student how 

he/she feels or his/her personal reactions to 

something. These questions are not inherently 

mathematical and instead extend to a more 

personal basis. 

These are often in the focus group transcriptions 

Gathering Info PQT Personal Question Types 

PQT stands for “personal question type.” This is 

a question type from 5 practices and are used to 

invoke a quick and straightforward answer from 

students. They often focus on the structure of the 

lesson or current thought process, and are 

usually asked to invoke quick recall or factual 

information. 

Are we kind of stuck? -page 11 

Probing Thinking PQT Personal Question Types 

PQT stands for “personal question type.” This 

question type is from 5 practices and is used 

when talking with students either individually or 

in groups. The purpose of such a question is to 

have the student(s) expand on current thinking. 

This is done to either aid in my understanding of 

student thoughts and/or to subtly introduce 

additional things for the student(s) to think 

about. 

S6: That is not what I did.  

N: What did you do? -page 17 

Exploring Math Meanings/Relationships PQT Personal Question Types 

PQT refers to “personal question type.” This 

code is used when I explicitly structure my 

questions to explore specific mathematical 

concepts when talking with a student or 

students. I use what students say or are working 

on to form these questions. I also use them to 

relate student thinking to deeper mathematical 

concepts or reasoning. 

And you made a new square out like this. Okay, 

so if I make these a little bit longer by some 

dx, what is the area of each of those new pieces 

that you added? 
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Code Name Code Group Definition Example from Davenport Differentiation 

Lesson Transcript 

Rephrasing and Extending PQT Personal Question Types 

PQT refers to “personal question type.” This 

code is used when I explicitly structure my 

questions to explore specific mathematical 

concepts when talking with a student or 

students. I use what students say or are working 

on to form these questions. I also use them to 

extend student thinking to deeper mathematical 

concepts or reasoning. Rephrasing and 

extending is a step above exploring math 

meanings/relationships. If a quote can be coded 

with both, only rephrasing and extending will be 

used. 

Yeah. So we’re working three-dimensionally. I 

like that you said we’ve got this way, that’s x, x, 

dx. But these are the same thing. We have x, 

how thick is it? -page 17 

Generating Discussion PQT Personal Question Types 

PQT stands for “personal question type.” This is 

a question type from 5 practices and are used 

when I want to invoke a fuller group discussion 

about a concept or previously raised idea. Group 

discussion may be with the whole class or within 

individual working groups. 

But originally we said what if this change in x 

was super small? It’s a little bigger in your 

blocks because they’re actually able to be seen, 

but what if I made this really really small? Very 

very tiny, and I made my square this way. And 

even tinier and tinier and tinier. What happens to 

this term? -page 13 (these questions were posed 

to the whole class) 
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Appendix J: Student Feedback on Lesson Engagement and Learning 

 

Note: This data came entirely from the exit tickets and focus groups 

 

Lesson Feedback for Engagement Feedback for Learning 

Davenport Differentiation 

“I enjoyed using the shapes 

(I am a hands-on learner)” 

 

“I guess but I didn’t know what 

I was doing” 

 

“Yes because I like hands-on 

learning” 

 

“Explain how to start the process 

so we know what direction to go 

in” 

“Yes because I used a physical 

figure to help me” 

 

“If we didn’t already know how 

to take the derivative before 

doing this” 

 

“I think it was a hard concept to 

learn”  

 

“No” 

“No, already had an understanding” 

 

“Yes and no. We knew the easy 

way but if we didn’t we might 

have understood” 

 

“No I was confused” 

 

“Yes. Using things that are there 

helps me visualize what I am 

doing” 

 

“Yes because being able to see 

pieces instead of numbers 

drills it into my brain” 

    Davenport Integration 

“Yes. I was able to really see what 

I was finding the area of and it 

tied in well to introducing 

integrals” 

 

“Yes, we had to come up with 

mostly everything on our own” 

 

“Yes, I liked being able to do it 

myself” 

 

“Yeah it was cool. It would 

have been cool to try the other 

functions to see how they 

compare yourself” 

 

“It was a fun activity that was 

more entertaining than sitting at a 

desk staring at a piece of paper” 

 

“I liked being able to use the 

shapes. We weren’t just given 

a formula and told to plug 

numbers in” 

 

“I learn better with formulas, 

numbers, and examples. I like to 

see something be solved. I like 

actual answers and not 

approximations.” 

 

“I was able to teach myself 

without knowing. Very 

creative way.” 

 

“Yes because I don’t understand 

math in the slightest but I kinda 

get what was going on here” 

 

“Kind of. I wasn’t really sure 

what we were doing at first. I 

didn’t understand the reason as to 

why we were doing it” 
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Lesson Feedback for Engagement Feedback for Learning 

Davenport Integration (continued) 

 

“I liked it because we learning 

something new but not in a boring 

way” 

 

“It was interesting. I haven’t 

learned like that in a long time” 

 

“Yes because it was hands on 

and gave a visual of what we 

were doing” 

 

“I liked having the ability to do 

it and talk through it” 

 

“Instead of just memorizing how 

to do something we found out 

why we need to do it” 

 

“I like seeing connections like 

the ones we made in class” 

 

“It wasn’t a forced application of 

it” 

 

    Shepherd Differentiation 

“Yes” (many exit tickets) 

 

“No, need it more understandable” 

 

“I thought the use of the blocks 

made it engaging” 

 

“I needed more explanation to 

figure out the questions” 

 

  “Yes, very” 

“Yes but it was confusing with 

the blocks because I wanted to 

associate them with a number 

rather than the concept itself” 

 

“Yes, I would not have been 

able to figure it out alone” 

 

“No, I did not understand”  

 

“WHY!!” 

 

“Yes, it was a challenge to 

think about what derivatives 

really meant” 

 

“Yes because it allowed me to 

visually see what was going 

on” 

 

“No, I couldn’t really follow 

what was going on” 

 

“Kinda, it was hard to learn 

since I couldn’t understand it” 
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Lesson Feedback for Engagement Feedback for Learning 

Shepherd Integration 

 

“Definitely. There aren’t a lot of 

classes that make you do hands-

on things and get up with 

people” 

 

“Yes it was fun to work with 

friends” 

 

“Yes it required us to work as a 

team and actively participate” 

 

“Yes” (many exit tickets) 

 

“Working through the problems 

with physical shapes made the 

estimation easier to understand. 

 

“Yeah it helped me visualize 

what we were doing” 

 

“Yes it helped me learn because 

it was very hands on” 

 

“Yes because I learn by looking 

and being interactive” 

 

“Eh I would of figured it out 

with or without it” 

 

“I didn’t see the point and was 

frustrated by it. Eventually we’ll 

get an equation and then it’s all 

algebra” 

 

“It didn’t help me with the 

concept but now I understand 

what was going on because I 

could see it go” 

 

“ It like shows us what we’re 

doing like sometimes it just tells 

like do this equation to figure 

out an answer but we actually 

have to solve to see what we’re 

finding out when we solve an 

equation 
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Appendix K: Student Feedback on the Lessons and Future Considerations 

 

Note: This data came explicitly from the Positive Lesson Feedback, Negative Lesson 

Feedback, and Future Lesson Think About codes. 

 

Lesson Positive Feedback Negative Feedback Future Lesson Think About 

Davenport Differentiation 

“I’m excited about these” 

 

“No I know how to do the 

problem” 

“I don’t like these kinds of 

questions. Answering a 

question with a question” 

 

“Just give up. Pretend like 

you didn’t come today” 

 

“I mean after today we won’t 

have to remember it” 

“We did not have that in the first 

place” 

 

“My brain’s a little fried after 

that AP stats test yesterday” 

 

“I think the problem for me is I 

already knew how to do it the 

other way” 

 

“Is this what it feels like to not 

understand something? I don’t 

like it” 

 

“I think I understand it I just 

don’t know how to word it” 

Davenport Integration 

“This is interactive. I enjoy 

this activity” 

 

“I just had a mathematical 

breakthrough” 

 

“What?!” (shock at being 

able to calculate infinite 

areas) 

 

“Shh, listen to him. Just 

listen!” 

 

“I like the activity because 

then the notes make sense” 

 

“I feel like I’m back in 

geometry. I love this” 

 

“Our function. We should be 

proud” 

“I feel like a guinea pig right 

now. Like doing this whole 

experiment thing is weird” 

“I feel like it has something to 

do with derivatives” 

 

“I like having the notes first” 

 

“I’m getting there. Just a little 

slow today” 

 

“Ah I call not speaking” 

 

 

  



132  

Lesson Positive Feedback Negative Feedback Future Lesson Think About 

Shepherd Differentiation 

“2x. What?!” (shock over the 

change in area matching the 

derivative) 

 

“Whoa” (same context as 

above) 

 

“It’s nice knowing that it 

actually means something, 

the math we’re doing.” 

“It’s a trick question” 

 

“Honestly, give me an 

equation. I’ll do that math 

and figure it out. I’m never 

going to need this in life” 

 

“I mean honestly it’s a little 

confusing” 

 

“I don’t know. I don’t 

really care” 

 

“Oh my gosh. Alright, I 

quit.” 

“I’m really trying to take this 

seriously but I don’t 

understand” 

 

“2xdx plus...I lost it. That’s 

what I heard someone say” 

Shepherd Integration 

“I’d like to see this more.” 

 

“It like shows us what we’re 

doing like sometimes it just 

tells like do this equation to 

figure out an answer but we 

actually have to solve to see 

what we’re finding out when 

we solve an equation.” 
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