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Abstract 

 Polymer processing techniques make and shape many of the products we use in 

our daily lives. Solid-state shear pulverization (SSSP) is a novel extrusion technique that 

has been shown to produce materials that have been historically difficult to manufacture, 

and has opened a new door to unique polymer products. The process employs cold 

temperatures and pulverizes solid plastics into fine powders, achieving morphological 

changes and physical property improvements via mechanochemical reactions. These 

reactions, along with concurrent solid-state interactions, generate a significant amount of 

heat. The interplay of this heat and cooling by the instrument formulates a unique heat 

transfer setting.  

 Understanding the intricate heat transfer phenomena in SSSP should rely on 

quantitative modeling, rather than trial-and-error methodologies. Previous modeling 

studies of similar extrusion systems have applied continuum mechanics as the basis, 

simultaneously considering the transfer of momentum, heat, and mass. Solving the 

balance equations leads to the development of functions that describe velocity and 

temperature within a given system.  

 This thesis applies the modeling techniques of continuum mechanics to SSSP 

with the goal of quantifying heat transfer characteristics within the extruder system. First, 

profiles of velocity for the varying screw element types are developed. The resulting 

velocity profiles suggest flow within the extruder is a combination of drag and pressure 

flows. Then, temperature profiles are constructed for each element type. The profiles 

describe the behavior of temperature within a single screw element, and show that the 
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system is of Graetz type flow. This study provides the necessary tools for compiling a 

temperature profile that describes the entire extruder, lending insight into the process 

parameters and material properties that are significant to the generation and removal of 

heat in the system.  
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1. Introduction 

Polymers are materials that have formed the functional backbone of modern 

society; they house our most delicate electronics, support our tallest mega-structures, and 

show promise in many biomedical applications. Polymers are effective because they can 

be processed in different physical and chemical ways. Physical processing, such as 

injection- and compression-molding, focuses on altering the shape and dimensions of a 

polymer. These physical modifications affect the material’s properties in a macroscopic 

and extrinsic fashion. For example, a single material can be made pliable and weak if it is 

thin, or strong and stiff if it is thick. In contrast, chemical processing, such as oxidation or 

vulcanization, alters the micro- and nano-scale structure of a polymer. These intrinsic 

modifications follow the fundamental structure-property relations of macromolecular 

science to affect the material’s behavior throughout all scales. Using a combination of 

chemical and physical processes allows for meticulous product design tailored to specific 

applications. 

Solid-state processing is a relatively new category of polymer processing 

developed in the late 1990’s, which is gaining significant scientific and industrial traction 

[1]. There have been over 50 journal papers and more than 20 patents covering this single 

technology. Originating from Northwestern University, the extruder-based solid-state 

technology encompasses solid-state shear pulverization (SSSP) and now solid-state/ melt 

extrusion (SSME), which was recently developed at Bucknell University. Institutionally, 

solid-state polymer processing is only available at these two universities. Figure 1.1 is an 

image of the extruder-based instrument for conducting SSSP and SSME.  
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Figure 1.1: SSSP / SSME instrumentation at Bucknell University 

 

Solid-state processing is extremely unique because of its drastically different 

approach of treating and mixing materials. In contrast to the traditional means of melt 

extrusion and compounding, which heats the material being processed (to allow for fluid 

phase mixing and kneading), solid-state processing cools the material and prevents 

melting, and therefore instigates intense mechanical shearing and compression between 

individual particles. These characteristic solid-solid interactions allow for the 

development of mechanochemical phenomena, through which the material’s physical 

morphology and chemical structure are simultaneously altered. Mechanochemical effects 

observed in polymers include chain scission, free-radical formation, short-chain 

branching, and inter-chain cross linking [2-4]. These mechanochemical effects in turn 

lead to favorable macroscopic changes in the materials, such as immiscible phase 

compatibilization, increased composite filler exfoliation, and increased blend phase 

dispersion [5, 6]. Based on these mechanochemical concepts, both SSSP and SSME 
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techniques have been successful in fabricating a wide range of polymer-based materials 

more effectively and efficiently than traditional processing methods. Homopolymer 

systems processed in the solid-state, such as polypropylene and polylactic acid, have been 

shown to exhibit improved material properties and crystallization kinetics [7, 8]. Polymer 

nanocomposites (PNCs) have also been effectively produced via solid-state extrusion; 

linear low density polyethylene-montmorillonite clay, polypropylene-graphite, and 

polypropylene-carbon nanotube PNCs all showed increases in material properties after 

solid-state processing [4, 9, 10]. SSSP and SSME have also shown promise in plastics 

recycling applications, namely in the recycling of high density polyethylene, 

polypropylene, and several other commingled postconsumer plastic mixtures [11, 12]. 

Polypropylene-eggshell biocomposites have been successfully developed using SSSP, as 

well as ultra-high molecular weight polyethylene / high density polyethylene composites 

[13, 14]. 

Solid-state processing has one very important working principle: in order to 

induce sufficient levels of shear and compression to properly alter the material, the 

process must be at a low temperature, and the materials must be in the solid-state phase. 

Relying on this principle is a difficult task, because the process involves an intricate 

balance of energy and heat inputs and outputs, as seen below in Figure 1.2.  
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Figure 1.2: Energy flows characteristic of twin screw extrusion methods [11] 

 

To date, there has been little to no theoretical modeling performed on the process. 

There has been limited effort in quantifying the process parameters which govern heat 

transfer in solid-state extruders, or to model the effects of temperature and velocity 

distributions in the equipment. Energy balances have been considered for the SSSP 

process on the macroscopic scale in terms of motor and chiller energies, as seen in Figure 

1.2 [11], but there have been no efforts to understand heat and momentum transfer 

characteristics of SSSP or SSME from a more fundamental, small-scale perspective. 

Because no adequate models exist to completely explain the transport phenomena within 

the flowing material, SSSP and SSME research has relied on past experience and trial-

and-error work. In addition, the exotic nature of the SSSP and SSME processes often 

attracts skepticisms and criticisms of the validity of the processes. Academics and 

industrial experts often question the cooling ability of the solid-state extruder. Cooling 

capacity, efficiency, and feasibility are almost universally debated when solid-state 
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technologies are introduced. Considering the broad potential of SSSP and SSME to 

develop a wide range of polymeric materials, a fundamental understanding of the process 

is needed.  

The proposed research study aims to theoretically model the heat transfer 

characteristics in solid-state polymer processing techniques. Fundamental chemical 

engineering principles of conservation and transport will be used to analyze the extruder 

system on different size scales. The developed model will effectively describe 

temperature profiles and heat transfer within the solid-state extruder through theoretical 

analyses. By understanding the interplay of process parameters, material properties, flow 

profile, and temperature profile, melt transition events could theoretically be predicted in 

SSSP and SSME. The work will not only provide quantitative answers to various 

inquiries, skepticisms, and criticisms from the members of the research community, but it 

will allow a better fundamental understanding of the process, and provide avenues of 

process optimization.  The results are expected to strengthen the case for the commercial 

use of solid-state processing methods, allowing for the possible growth of SSSP and 

SSME as industrially viable processes.  

This Honor’s thesis is structured to provide an in-depth and transparent study of 

transport phenomena within solid-state extrusion. Chapter 2 describes the general setup 

and functionality of Bucknell University’s twin screw extruder. Chapter 3 discusses 

relevant background theory and develops thesis questions that explicitly frame the main 

research work. The main investigation of the thesis is done in two steps. Chapter 4 

constitutes the first major step, and develops velocity profiles within the extruder. 
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Chapter 5 then moves on to the second step, which concerns the development of 

temperature profiles within the extruder. Chapter 6 summarizes the key findings of the 

study and provides recommendations for the best way to apply the modeling results to 

future research in this field.  
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2. Background 

2.1. Methods of Extrusion 

Solid-state shear pulverization is a variation of a type of polymer processing 

known as screw extrusion. Screw extrusion has been used since the 19th century [15-17]. 

Single screw extrusion (SSE), the most fundamental screw extrusion method first 

patented in the 1870’s, consists of a singular rotating screw housed inside a stationary 

heated barrel; material is fed to the upstream side of the screw, and is pumped down the 

length of the machine. Figure 2.1.1 is a schematic of a single screw extruder. 

 

 

Figure 2.1.1: Typical single screw extrusion set up (top-view) 

 

The screws in SSE instruments are helical conveying screws. As the screw rotates it 

moves material through the instrument and causes it to melt and transition to a fluid-like 

phase, allowing for light mixing. SSE is still widely used today as an industry standard, 

mostly for physical processing (shaping) of polymeric products.   

 Twin screw extrusion (TSE) methodology followed the rapid growth of plastic 

materials in the 20th Century, and was first patented by Roberto Colombo in 1939 [15, 16, 

18]. Twin screw extrusion is a more intense method of plastics processing, and uses two 
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rotating screws within a stationary barrel, rather than one [15-18]. Figure 2.1.2 illustrates 

the major differences between SSE and TSE. 

 

 

Figure 2.1.2: Typical twin screw extrusion setup (top-view) 

 

One main difference between TSE and SSE is that TSE uses two screws; consequently, 

TSE contains a screw-to-screw intermeshed zone. This zone has a higher mixing 

capability than the screw-barrel contact zone found in SSE. A second difference is screw 

type; TSE employs both helical conveying screws and bilobe kneading discs, whereas 

SSE employs only conveying elements. The kneading discs allow for very high shear to 

occur within TSE [15, 17, 20]. The combination of the intermeshed zone and kneading 

discs results in better blend dispersion, filler exfoliation in composites, and 

homogenization of mixtures [21-23]. 

 Up until the 1990’s, extrusion had been almost exclusively performed in the melt 

phase. Materials being processed would be heated above the melt or glass transition 

temperature, in order to allow for good mixing and uniform flow. Although very 

successful, melt extrusion suffers from some common issues such as incomplete 

mixing/dispersion, low blend quality (known as incompatibility), and thermal 

degradation [1, 24, 25]. In the mid-1990’s, researchers at Northwestern University 

developed an alternative approach to plastics processing and chose to cool materials 
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during processing rather than heat them [1]. This method keeps material below its melt or 

glass transition temperature, and imparts high levels of shear and compression in the solid 

state.  

Their process, called solid-state shear pulverization (SSSP), has been shown to 

produce certain materials that were difficult to manufacture using TSE [5, 6, 9, 12-14, 26, 

27]. Figure 2.1.3 shows the setup of an SSSP machine. 

 

 

Figure 2.1.3: Typical solid-state shear pulverization setup (top-view) 

 

SSSP methodology is rather unique and novel, and is only practiced at 

Northwestern University and Bucknell University. The process is geometrically identical 

to TSE and the two methods only differ in process temperatures (hot for TSE and cold for 

SSSP); however, there are significant consequences of this difference. Material processed 

via SSSP is in the solid state, and is therefore subjected to high impact and shear within 

the extruder. This intense action generates a significant amount of heat, which must be 

removed in order to keep the process material solid. The barrels of the extruder are thus 

cooled rather than heated. Solid, powder or flake output is produced in SSSP, in contrast 

to molten extrudate in TSE. Because of the significantly higher impact and shear levels in 

the solid state, SSSP is more effective than TSE at blending immiscible polymer systems 

and exfoliating fillers within composites [6, 9, 24, 25].  
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2.2 Instrumentation 

Bucknell University uses a KraussMaffei Berstorff ZE-25 UTX laboratory-scale 

extruder, shown in Figure 2.2.1, for both TSE and SSSP operation.  

 

 

Figure 2.2.1: The KraussMaffei Berstorff ZE-25 UTX extruder at Bucknell University 

 

The size of the extruder is typically expressed by the “length over diameter” 

(L/D) ratio, as well as the screw diameter. Under TSE operation the L/D ratio is 34, while 

under SSSP operation the L/D ratio is 36. The diameter of each screw is 25 mm for both 

TSE and SSSP cases. By design, this extruder is a co-rotating and self-wiping machine. 

This means that the screws rotate in the same direction and are intermeshed. Figure 2.2.2 

shows co- vs. counter-rotating and intermeshed vs. non-intermeshed (or tangential) 

designs.  
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Figure 2.2.2: Various classifications of twin screw machines [17] 

  

The co-rotating and intermeshed screws in the extruder are composed of a number 

of individual modular elements that can be configured in a variety of ways. Two major 

types of elements are used in the design of a typical SSSP screw. Conveying elements, as 

seen in Figure 2.2.3, are helical in shape, and are designed to quickly push material down 

the barrel of the extruder. They do not impart large forces to the material. Conveying 

elements can be thought of as a single long channel wrapped around a cylindrical rod. 

Material travels through this channel, spinning around the rod and moving down the 

barrel. 
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Figure 2.2.3: From left to right; small, medium, and large conveying elements used in 

Bucknell’s SSSP machine 

 

Kneading elements are designed to impart large mechanical energy to process 

material in SSSP. In TSE these elements are designed for intense mixing via stretch and 

flow (thus kneading), but in SSSP the elements are used to pulverize and grind the 

polymer. There is no pitched flight in a kneading element that forces a forward flow (as is 

the case for conveying elements). Instead, kneading elements are constructed from 

repeated and staggered bilobe discs, as can be seen in Figure 2.2.4. The orientation of the 

discs is designed to instigate forward, neutral, or reverse flow. 

 

 

Figure 2.2.4: Kneading elements used in Bucknell’s SSSP machine; from left to right, 

small forward, small neutral, small reverse, large forward 

 

The barrels of the extruder are also modular, and have two intermeshed 25mm diameter 

channels for the material to travel through, as seen in Figure 2.2.5.  
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Figure 2.2.5: Cross section of the ZE-25 extruder barrels 

 

There are 6 total zones, corresponding to the 6 serial modular barrels, in the 

extruder, and each can be set to a different temperature during operation. Bucknell’s 

extruder circulates an ethylene glycol-water mixture cooled to 11 °F (-12 °C) through the 

instrument. The coolant enters and coils around the intermeshed channels as shown in 

Figure 2.2.6, removing a significant amount of any heat that is generated. 

 

Figure 2.2.6: Location of the cooling lines in one of the modular barrels (zones) in the 

ZE-25 UTX extruder 
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Figure 2.2.6 shows the structure of a single zone of the extruder. Each zone can be 

assigned a setpoint temperature, and an onboard computer will circulate coolant and/or 

heat the zone as needed. Electrical induction cartridge-type heaters are used to heat the 

individual zones. The ZE-25 extruder is capable of controlling temperatures in the range 

of 11 °F (-12 °C) to higher than 600 °F (315 °C). 

 

2.3 Heat Transfer within SSSP 

The unique feature of the SSSP process is the intense grinding with high amounts 

of solid-state shearing done by the screws to the material. Raw materials, such as polymer 

pellets and powder fillers, are fed into the extruder and are subjected to repeated 

fragmentation and fusion. The intense physical pulverization and shear can then result in 

mechanochemical effects such as chain scission, chain branching, and compatibilization 

[2-14]. These physical and chemical effects can generate large amounts of heat, which is 

combated by SSSP’s cooling system. However, the chiller system is not always able to 

remove all of the heat generated by the polymer during operation, and so under certain 

conditions a melt transition can occur. In the case of a melt transition, the process 

material becomes fluid-like, and the process becomes akin to TSE. The actual operating 

temperature in an SSSP operation is dependent on the interplay of the amount of heat 

generated by the material and the amount of heat pulled away by the coolant. Heat is 

generated by the flow of material in the form of friction and viscous dissipation, physical 

deformation of the polymer, and mechanochemical alteration of the polymer’s molecular 
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structure. The balance of heating and cooling results in operating temperatures 

experienced by the powder as it flows through the extruder.  

Temperature is a thermal property that describes how hot or cold a system is, and 

can be related to the energy streams flowing into and out of that given system. Energy 

flowing into a system will make it hotter, while energy flowing away will make it colder. 

If a boundary is placed around the extruder, the net sum of energy streams into and out of 

the system should be zero, based on the law of conservation of energy [26]. This is 

known as an energy balance, the standard form of which is shown as Eq. 2.3.1. 

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝐼𝑛𝑝𝑢𝑡 − 𝑂𝑢𝑡𝑝𝑢𝑡 + 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛   Eq. 2.3.1 

Figure 2.3.1 was developed to describe SSSP in the form of a general, macroscale energy 

balance [11]. 

 

Figure 2.3.1: Overall, general energy balance for SSSP system [11] 

  

The diagram in Figure 2.3.1 illustrates the major energy flows in SSSP. Arrows pointing 

into the boxed region indicate input streams, where arrows pointing out of the boxed 
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region signify output terms. In the case of steady state operation, there is no accumulation 

of energy within the system. The model developed by Khait et al. also does not consider 

generation of heat within SSSP. As a result, Eq. 2.3.1 simplifies to Eq. 2.3.2. 

0 = 𝐼𝑛𝑝𝑢𝑡 − 𝑂𝑢𝑡𝑝𝑢𝑡      Eq. 2.3.2 

Eq. 2.3.2 can be more explicitly written by inserting the input and output streams as 

shown in Figure 2.3.1. Eq. 2.3.3 shows the net energy balance of SSSP. 

0 = [𝑄̇ + 𝑚̇ ∙ ℎ𝐸 + 𝑃𝐷]
𝑖𝑛𝑝𝑢𝑡

− [𝑚̇ ∙ ℎ𝐴]𝑜𝑢𝑡𝑝𝑢𝑡  Eq. 2.3.3 

𝑄̇ is the heat flux, 𝑚̇ is the mass flow rate, ℎ𝑖 is the enthalpy of either the incoming or 

outgoing material, and 𝑃𝐷 is the motor power. The heat flux, 𝑄̇, is positive for TSE (i.e. 

heating of the barrels) and negative for SSSP (i.e. cooling of the barrels).  

This simple model is useful in describing the flows of energy in the system and 

analyzing the amount of power needed to process a material. A rough approximation of 

process temperature can be derived from Eq. 2.3.3; however, it is not specific enough to 

describe the actual temperatures experienced by the material throughout the SSSP 

process. Eq. 2.3.3 draws a boundary around the entirety of the extruder, and does not 

pertain to individual zones or individual screw elements. Therefore, it is impossible to 

derive a temperature profile along the extruder from Eq. 2.3.3. 

In practice, parameters that operators would control in an SSSP operation, such as 

screw speed, feed rate, and coolant temperature, have direct relations on the temperature 

profile. The intrinsic physical properties of the material being processed also dictate the 

temperature profile. These ideas have historically been understood qualitatively and have 

been based on experience and trial-and-error practices. Therefore, in order to quantify the 
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effect of different transport phenomena on the operation of SSSP, there is a need to 

model the temperature profile on a finer scale. As discussed above, the current general 

energy balance is insufficient for this task; Eq. 2.3.3 does not consider or “see” individual 

zones or screw elements. Rather than considering macroscopic energy flows such as 𝑃𝐷 

and 𝑄̇, SSSP can be modeled by considering transport phenomena in a single screw 

element; this corresponds to placing the boundaries of the balance around a single 

element. The laws of conservation of mass, conservation of momentum, and conservation 

of energy can be applied to generate functions that describe the dependence of system 

properties on time and space [28]. Chapter 3 lays out this modeling approach and 

describes its use in this thesis. 
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3. Problem Definition and Modeling Approach 

3.1 Overarching Goals of the Thesis 

This thesis aims at quantifying the effects of changing process parameters and 

varying material properties on process temperature, in an effort to develop a deeper 

understanding of heat transfer within SSSP. Detailed modeling by way of continuum 

mechanics would give insight into when and why a material would experience a melt 

transition during operation. In particular, the resulting modelling platform should be able 

to answer the following two questions. 

1. What is the effect of processing and instrumentation parameters on the 

temperature profile and heat transfer? 

o Screw Rotation Speed 

o Feed Rate 

o Coolant Temperature 

o Set Temperature vs. Measured Temperature vs. Actual Temperature 

2. What is the effect of material properties on the temperature profile and heat 

transfer? 

o Viscosity 

o Thermal Conductivity 

o Heat Capacity 

This thesis approaches the above questions by modeling the system using the laws of 

conservation of mass, momentum, and energy, as discussed in the next section. 
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3.2. Modeling Technique 

Transport phenomena deals with the conservation of mass, momentum, and 

energy, and is based on continuum mechanics. SSE and TSE have frequently been 

modeled using this approach [29-31]. Continuum mechanics describes a body and how 

the conserved quantities (mass, momentum, energy) are transported in/through that body 

over space and time. Figure 3.2.1 shows a body with arbitrary volume in two different 

configurations; a reference configuration and a deformed configuration. 

 

 

Figure 3.2.1: Representation of an arbitrary volume of material moving through space 

and time [32] 

 

At 𝑡 = 0 and position 𝑋⃑, the volume is at an initial reference state. Γ𝑜 and Ω𝑜 are the 

volume’s reference boundary and reference configuration, respectively. As the volume 

moves with a velocity, 𝑢⃑⃑, it changes its configuration by deforming its boundary and 

moving in space. The new boundary is written as Γ and the new configuration is written 
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as Ω. Furthermore, the new position can be described by a new position vector, 𝑥⃑. 

Transforming from Γ𝑜 and Ω𝑜 to Γ and Ω is described by the function 𝜙(𝑋⃑, 𝑡). 𝜙 is useful 

in that it describes a given quantity in terms of space and time; this concept can be 

applied to SSSP and can be used to develop velocity and temperature profiles for the 

system. 

 Mass, momentum, and energy are always conserved in a given closed system and 

can be described using balance equations. Eqs. 3.2.1 – 3.2.3 are the differential balances 

on mass, momentum, and energy, respectively [28]. 

 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ 𝜌𝑣⃑ = 0       Eq. 3.2.1 

𝜌
𝜕𝑣⃑⃑

𝜕𝑡
+ 𝜌𝑣⃑ ∙ ∇𝑣⃑ = −∇𝑃⃑⃑ − ∇ ∙ 𝝉 + 𝜌𝑔⃑     Eq. 3.2.2 

𝜌
𝐷𝑣⃑⃑

𝐷𝑡
= −∇ ∙ 𝑞⃑ − 𝑃(∇ ∙ 𝑣⃑) − 𝝉 ∶ ∇𝑣⃑     Eq. 3.3.3 

 

Eq. 3.2.1 balances the accumulation of mass in a specific volume with the flow of mass 

through that volume; it is known as the equation of continuity. Eq. 3.2.2 is the equation of 

momentum and is a momentum balance on a given volume. It balances accumulation of 

momentum with inertia, stress, and external body forces. Eq. 3.2.3 is an energy balance 

and is known as the equation of energy. It considers convection, conduction, and 

generation of energy in a given volume. These three equations can be applied to any 

system and will always hold. Thus, they are powerful tools for describing a variety of 

physical systems. These equations are never solved outright; they are simplified and 



21 

 

reduced to more accessible equations through the use of various techniques, constraints, 

and assumptions that are specific to the system being described [28-31, 33]. In the 

context of SSSP, the equation of continuity and equation of momentum are used to 

develop a function for velocity in a screw channel. This velocity profile is then inserted 

into the equation of energy and is used to develop a temperature profile that can be used 

to analyze SSSP. The modeling specificities will be introduced and discussed in detail in 

Chapters 4 and 5. 

The balance equations consider scalar, vector, and tensor quantities. A scalar 

quantity, such as temperature, is described by a single number; it has only a magnitude 

and no inherent direction in space or time. In this thesis, scalar quantities are represented 

by a non-bold letter, such as µ for viscosity. A vector is a collection of components, and 

indicates a magnitude and a direction. Vectors are represented as a non-bold letter with 

an arrow above, such as 𝑣⃑ for velocity. A tensor is an object that describes higher order 

quantities within an object, such as stress within a solid. Tensors are shown as bold-faced 

letters, such as 𝝉. An in depth explanation of scalars, vectors, tensors, and their related 

operations can be found in Appendix A of Transport Phenomena: Revised 2nd ed., by 

Bird, Stewart, and Lightfoot [28]. 

Heat transfer within twin screw extruders has been thoroughly explored and 

modeled through the late 1900’s, and numerous researchers have produced models for 

velocity and temperature profiles within an extruder [30, 31, 33, 34] using Eqs. 3.2.1 – 

3.2.3. Although many of these models exist, they are for melt extrusion processes and are 

not directly applicable to SSSP. This thesis aims at adopting the approaches used to 
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model TSE in order to apply them to SSSP. Chapter 4 discusses the specific geometry of 

the screw elements and develops velocity profiles for SSSP. Chapter 5 uses these velocity 

profiles to develop temperature profiles. 
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4. Development of Velocity Profiles 

This section of the thesis develops the profiles of velocity for conveying and 

kneading elements. The balances and methodology presented in Chapter 3 are applied 

and simplified to determine the differential equations responsible for describing flow in 

the extruder. Assumptions are made to simplify the balances, and include no-slip, 

incompressible flow, and several scaling arguments. Boundary conditions are applied to 

produce the explicit profile for velocity in the screw channel region.  

 

4.1 Conveying Elements 

In SSSP, the conveying elements are responsible for transporting material down 

the barrel and through the extruder. These elements are helical in shape, and move 

material by dragging it forward with their pitched flights. The development in this section 

applies the equations of continuity and momentum to the specific geometry of a 

conveying element, and proposes a velocity profile that describes the flow of material 

through it.  

To begin, the geometry of the screw must be described in detail. Figure 4.1.1 is an 

image of the three conveying elements used in this study. 
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Figure 4.1.1: From left to right: small, medium, and large conveying elements used in 

Bucknell’s SSSP machine 

 

In practice, the elements are placed on a rotating rod (i.e. a cylinder), and thus cylindrical 

coordinates may be a default coordinate system to employ, as seen in Figure 4.1.2a; the r-

direction is perpendicular to the axis of screw rotation, the θ-direction moves with the 

rotation of the screw, and the z-direction is parallel to the axis of screw rotation. 

However, as shown further in Figure 4.1.2a and in Figure 4.1.2b, we choose Cartesian 

coordinates instead, by “unwinding” the element in the direction of the screw channel, 

based on previous work with TSEs [1,2]. Unwinding the helical screw converts the flow 

to a linear channel flow.  
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Figure 4.1.2: (a) Screw element with cylindrical and Cartesian coordinates and (b) 

“unwound” screw with Cartesian coordinates 

 

The x’-direction is along the channel height, and corresponds to the r-direction. The y’-

direction is perpendicular to the helical channel, and the z’-direction is parallel to the 

helical channel. As can be seen, the Cartesian coordinate system used to describe 

conveying elements is tilted at an angle equal to the complimentary angle of the flight 

angle, 𝜙. As seen in Figure 4.1.1, conveying elements have three different sub-types; 

small (𝜙= 13.43o), medium (𝜙= 17.66o), and large (𝜙= 21.70o). Because the flight angles 

differ for each of these elements, three different coordinate systems are generated. In the 

development of the velocity and temperature profiles of the whole screw, these three 

different “tilts” in individual screw element will be remapped to a non-tilted coordinate 

system.  



26 

 

The direction of material flow is aligned with the positive z’-direction. The 

Cartesian coordinates used in this section are all labeled with a prime symbol as a 

reminder of the tilt in the coordinate system relative to the non-prime system. The prime 

symbol indicates a rotation of the coordinate system about the x-axis, such that the x- and 

x’-directions are identical. The rotation is in the counter-clockwise direction around the x-

axis by the angle that is complimentary to the flight angle.  

Based on the unwound Cartesian coordinates, the rotating screw transforms into a 

simple parallel plate flow. Fixing these conditions to the screw, the screw is seen to be 

stationary while the barrel moves with a velocity equal and opposite to the tangential 

velocity of the screw. In other words, the barrel moves and pulls material in the positive 

z’ direction.  

Recalling that the instrument is a co-rotating, intermeshing twin-screw extruder, 

there are two flow regimes, shown in Figure 4.1.3. 

 

Figure 4.1.3: Cross-sectional view of intermeshed co-rotating twin-screws: solid line 

indicates Zone 1, or screw-barrel region; dotted line indicates Zone 2, or screw-screw 

region. D is the diameter of a single screw, N is the rotation rate of the screws.  

 

Zone 1 in Figure 4.1.3 is the screw-barrel zone; again, the barrel is in motion and the 

screw is stationary. Zone 2 is the intermeshed screw-screw zone; here, based on the 
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reference frame of one of the screws, the opposite screw moves at a speed twice that of 

the tangential velocity of the screw. This is because the screws each move at the same 

velocity, but move in opposite directions in the intermeshed region. Figure 4.1.4 

visualizes parallel plate flow in the two zones of a conveying element.  

 

Figure 4.1.4: Representation of parallel plate flow in an unwound SSSP conveying 

element for (a) Zone 1, screw-barrel region and (b) Zone 2, intermeshed screw-screw 

region. 

 

In Figure 4.1.4, the x’-direction extends from 0 to channel height, H; the z’-direction 

extends from 0 to channel length, L. The top plate, in this scenario, moves at the screw’s 

tangential velocity, 𝑣𝑠. 

To develop the velocity profile, we first begin with the equation of continuity 

(EOC). From Equation 3.2.1, the EOC is applied as a balance of mass on the flow of 

material through a single element channel. Incompressibility states that the density of a 

material does not change as it flows. Water is considered an incompressible fluid, as are 

polymer melts. Seeing as these two types of fluids are considered incompressible, it 

follows that a flow of solid material in SSSP is incompressible as well. Therefore, Eq. 

3.2.1 can be simplified to Eq. 4.1.1. 
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(∇ ∙  𝑣⃑)  =
𝜕𝑣𝑥′

𝜕𝑥′
+

𝜕𝑣𝑦′

𝜕𝑦′
+

𝜕𝑣𝑧′

𝜕𝑧′
= 0     Eq. 4.1.1 

In general, 𝑣⃑ is the velocity field of material in the screw flight, and can be expanded as 

shown in Eq. 4.1.2. 

𝑣⃑ = 𝑣𝑥′(𝑥′, 𝑦′, 𝑧′, 𝑡)𝑒𝑥′ + 𝑣𝑦′(𝑥′, 𝑦′, 𝑧′, 𝑡)𝑒𝑦′ + 𝑣𝑧′(𝑥′, 𝑦′, 𝑧′, 𝑡)𝑒𝑧′ Eq. 4.1.2 

Each coordinate direction is associated with a component of the field, and each of 

these components if a function of space and time. We continue by defining the following 

scale variables, which are used to non-dimensionalize the system. 

𝜔′ =
𝑦′

𝑊
         Eq. 4.1.3a 

𝜉′ =
𝑥′

𝐻
          Eq. 4.1.3b 

𝜁′ =
𝑧′

𝐿
          Eq. 4.1.3c 

𝑈𝑗 =
𝑣𝑖′

𝑉𝑖
 𝑓𝑜𝑟 𝑖 = 𝑥′, 𝑦′, 𝑧′𝑎𝑛𝑑 𝑗 = 𝜉′, 𝜔′, 𝜁′      Eq. 4.1.3d 

where W is the width of the channel, H is the height of the channel, L is the length of the 

channel, and 𝑉𝑖 is an arbitrary scale velocity. Applying Eqs. 4.1.3a – 4.1.3d to Eq. 4.1.1 

gives 

𝑉𝑥′

𝐻

𝜕𝑈
𝜉′

𝜕𝜉′
+

𝑉𝑦′

𝑊

𝜕𝑈
𝜔′

𝜕𝜔′
+

𝑉𝑧′

𝐿

𝜕𝑈𝜁′

𝜕𝜁′ 
= 0     Eq. 4.1.4 

Equation 4.1.4 can be further reduced by comparing the coefficient of each term. With 

rearrangement, we find 

𝑉𝑥′ ~ 𝑉𝑧′
𝐻

𝐿
        Eq. 4.1.5 

𝑉𝑦′ ~ 𝑉𝑧′
𝑊

𝐿
         Eq. 4.1.6 
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Assuming that the screw channel length, L, is much larger than the channel height, H, and 

channel width, W, it follows that flows in the x’- and y’-directions can be ignored. That is 

to say, flows in the x’- and y’-directions are assumed to be insignificant when compared 

to flow in z’, because we assume L >> W, H. Therefore, the only component of the 

velocity field is in z’. 

𝑣⃑ = 𝑣𝑧′(𝑥′, 𝑦′, 𝑧′, 𝑡)𝑒𝑧′      Eq. 4.1.7 

Neglecting the flows in x’- and y’-directions reduces Eq. 4.1.1 to  

𝜕𝑣𝑧′

𝜕𝑧′
= 0        Eq. 4.1.8 

Eq. 4.1.8 states that the velocity in the z’-direction is not a function of the z’-direction. 

Applying the assumption of steady state along with Eq. 4.1.8 to Eq. 4.1.7 gives 

𝑣⃑ = 𝑣𝑧′(𝑥′, 𝑦′)𝑒𝑧′       Eq. 4.1.9 

The equation of momentum, shown as Eq. 3.2.2, can now be simplified to 

describe flow in a conveying element channel. The z’-component of the equation of 

momentum for an incompressible, Newtonian fluid can be written as shown by Eq. 

4.1.10. Although a Newtonian model does not completely describe the flow of material in 

the extruder, it does serve as a useful first approximation [35]. 

𝜌 (
𝜕𝑣𝑧′

𝜕𝑡
+ 𝑣𝑥′

𝜕𝑣𝑧′

𝜕𝑥′
+ 𝑣𝑦′

𝜕𝑣𝑧′

𝜕𝑦′
+ 𝑣𝑧′

𝜕𝑣𝑧′

𝜕𝑧′
) = −

𝜕𝑃

𝜕𝑧′
+ 𝜇 [

𝜕2𝑣𝑧′

𝜕𝑥′2 +
𝜕2𝑣𝑧′

𝜕𝑦′2 +
𝜕2𝑣𝑧′

𝜕𝑧′2 ] + 𝜌𝑔𝑧′  

         Eq. 4.1.10 

Reapplying the assumption of steady state and considering Eqs. 4.1.8 and 4.1.9, Eq. 

4.1.10 can be simplified to Eq. 4.1.11. 

𝜕𝑃

𝜕𝑧′
= 𝜇 [

𝜕2𝑣𝑧′

𝜕𝑥′2 +
𝜕2𝑣𝑧′

𝜕𝑦′2 ]       Eq. 4.1.11 
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Eq. 4.1.11 can be simplified further, and a more accessible velocity profile can be 

developed. Eq. 4.1.11 can be non-dimensionalized through x’, y’, z’, P, and 𝑣𝑧′, and 

subsequently simplified via the use of various scale factors. Eqs. 4.1.3a – 4.1.3d show the 

scale variables for x’, y’, z’, and 𝑣𝑧′. The scale variable for P is written as 

Γ =
𝑃

𝑃𝑜
          Eq. 4.1.12 

where 𝑃𝑜 is an arbitrary scale pressure. Using Eqs. 4.1.3a – 4.1.3d with Eq. 4.1.12, Eq. 

4.1.11 becomes Eq. 4.1.13. 

𝑃𝑜

𝜇𝐿

𝜕Γ

𝜕𝜁′
=

𝑣𝑜

𝐻2

𝜕2𝑈

𝜕𝜉′2 +
𝑣𝑜

𝑊2

𝜕2𝑈

𝜕𝜔2      Eq. 4.1.13 

Rearranging gives 

𝑃𝑜

𝜇𝐿

𝜕Γ

𝜕𝜁′
=

𝑣𝑜

𝐻2 (
𝜕2𝑈

𝜕𝜉′2 +
𝐻2

𝑊2

𝜕2𝑈

𝜕𝜔2)      Eq. 4.1.14 

Again considering the geometry of an individual screw, the width of the channel, W, is 

much larger than the height of the channel, and so 
𝐻

𝑊
≪ 1. Thus L >> W >> H is the basis 

of this analysis. Therefore, the last term in Eq. 4.1.14 can be dropped, giving  

𝑃𝑜

𝜇𝐿

𝜕Γ

𝜕𝜁′
=

𝑣𝑜

𝐻2

𝜕2𝑈

𝜕𝜉′2       Eq. 4.1.15 

Reintroducing the definitions of Eqs. 4.1.3a – 4.1.3d and 4.1.12 back into Eq. 4.1.15 

gives 

𝑑𝑃

𝑑𝑧′
= 𝜇

𝑑2𝑣𝑧′

𝑑𝑥′2         Eq. 4.1.16 

Eq. 4.1.16 is a differential equation that describes the pressure-dependent, drag 

flow of material in the screw channel. Revisiting Eq. 4.1.8, 𝑣𝑧′ is not dependent on z’, and 
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Eq. 4.1.16 is therefore separable in z’. Integrating through from 𝑃𝑜 to 𝑃𝐿 and from 𝐿𝑜 to 

𝐿1, gives 

∆𝑃

∆𝐿
=  𝜇

𝑑2𝑣𝑧′

𝑑𝑥′2         Eq. 4.1.17 

where ∆𝑃 is the change in pressure across a section of channel length ∆L. L is dependent 

on the type of screw element being considered. Eq. 4.1.17 is now a linear, differential 

equation, and has the following general solution. 

𝑣𝑧′(𝑥′) =
∆𝑃

𝜇∆𝐿

𝑥′2

2
+ 𝑐1𝑥′ + 𝑐2      Eq. 4.1.18 

Eq. 4.1.18 applies for flow within a conveying element screw channel, but must now be 

solved for two distinct zones; one full rotation of the screw passes through a barrel-screw 

contact zone (Zone 1) and an intermeshed screw-screw contact zone (Zone 2). Figure 

4.1.4 shows schematic representations of the boundary conditions that can be used to 

determine an exact solution for Zones 1 and 2 from Eq. 4.1.18. The boundary conditions 

can be written as follows for Zones 1. 

𝑣𝑧′,1(𝑥 = 0) = 0       Eq. 4.1.19a 

𝑣𝑧′,1(𝑥 = 𝐻1) = 𝑣𝑠       Eq. 4.1.19b 

Eqs. 4.1.19a and 4.1.19b apply to the screw-barrel contact region and are labeled 

with subscript 1. The tangential screw velocity, 𝑣𝑠, is  

𝑣𝑠 = 𝜋𝐷𝑁 cos 𝜙       Eq. 4.1.20 

This expression corresponds to the linear velocity of the screw at its outermost edge (i.e. 

the base of the channel). Figure 4.1.5 shows the full unwound surface of a single screw 

element through one rotation.  
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Figure 4.1.5: Flattened surface of a conveying element; diagonal lines represent the 

flights. The dashed arrows represent the velocity of the barrel in the negative y-direction 

and its components in the positive y’- and z’-directions. 

 

𝐷 is the diameter of the screw, N is the rotation rate of the screw, and 𝜙 is the angle of 

the screw flights. The 𝑐𝑜𝑠 𝜙 term accounts for the “tilt” in the coordinate system.  

Applying the Zone 1 boundary conditions to general solution, the velocity profile 

of material travelling through Zone 1 is found as 

𝑣𝑧′,1(𝑥′) = 𝑣𝑠
𝑥′

𝐻1
−

Δ𝑃1

𝜇∆𝐿1

𝐻1
2

2
(

𝑥′

𝐻1
−

𝑥′2

𝐻1
2)    Eq. 4.1.21 

Eq. 4.1.21 describes the flow of material through the extruder as a balance between drag 

flow and pressure flow. The first term on the right hand side characterizes drag effects 

and the second term on the right hand side characterizes pressure effects. In the case of 
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zero pressure rise or drop, the profile is purely drag flow and is linear. Increasing effects 

of pressure lead to a parabolic shape of the velocity profile.  

The boundary conditions can be written as follows for Zone 2. 

𝑣𝑧′,2(𝑥 = 0) = 0       Eq. 4.1.22a 

𝑣𝑧′,2(𝑥 = 𝐻2) = 2𝑣𝑠       Eq. 4.1.22b 

Eqs. 4.1.22a and 4.1.22b apply to the screw-screw contact region and are labeled with a 

subscript 2. Applying the Zone 2 boundary conditions to the general solution gives  

𝑣𝑧′,2(𝑥′) = 2𝑣𝑠
𝑥′

𝐻2
−

Δ𝑃2

𝜇∆𝐿2

𝐻2
2

2
(

𝑥′

𝐻2
−

𝑥′2

𝐻2
2)    Eq. 4.1.23 

These results are of similar form to velocity profiles in literature [34]. Eq. 4.1.23 is 

almost identical to Eq. 4.1.21, with the exception of the drag term. The drag effects in 

Zone 2 are larger than those in Zone 1 due to the competing motion of the intermeshed 

screws. These two velocity profiles are valid for two different zones in the screw.  

Moving forward, it would be convenient to collapse the two individual zone 

profiles into a single effective profile through appropriate approximations. In the 

operation of an SSSP instrument, the conveying elements are frequently starve fed. This 

means that material is fed at a flow rate such that the volume of the channel is never fully 

filled. As a result, pressure cannot develop, and the flow can be viewed as pure drag flow. 

Considering the specific case of zero pressure rise or drop, Eqs. 4.1.21 and 4.1.23 reduce 

to  

𝑣𝑧′,1(𝑥′) = 𝑣𝑠
𝑥′

𝐻
       Eq. 4.1.24 

𝑣𝑧′,2(𝑥′) = 2𝑣𝑠
𝑥′

𝐻
       Eq. 4.1.25 
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Revisiting the two zone split, Figure 4.1.6 illustrates the two regions that are 

described by Eqs. 4.1.24 and 4.1.25. 

 

Figure 4.1.6: Cross section of one of the twin-screws, showing Zones 1 and 2 

 

One full rotation of the screws occurs through the angle 2𝜋. We define a fraction of the 

rotation as  

𝜑 =
𝛼

2𝜋
         Eq. 4.1.26 

Therefore, for the fraction 𝜑 the material is in Zone 1, and for the fraction 1 − 𝜑 the 

material is in Zone 2. 

If the screw is unwound, Figure 4.1.6 can be transformed into Figure 4.1.7. 

 

Figure 4.1.7: Unwound screw representation of the two flow regions in a conveying 

element 
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Figure 4.1.7 shows that as material moves from Zone 1 to Zone 2, there is a 

change in channel height. When comparing Eqs. 4.1.21 and 4.1.23, it is also apparent that 

the effects of drag increase in Zone 2, leading to a higher shear rate.  

We define 𝐻𝑡 as the average height of the channel through a single rotation. This 

average height can be expressed as 

𝐻𝑡 = 𝜑𝐻1 + (1 − 𝜑)𝐻2      Eq. 4.1.27 

which is simply a weighted average of the heights in each zone. 

  

Figure 4.1.8: Representation of the effective velocity profile, 𝑣𝑡, of Zones 1 and 2 

through a full rotation 

 

The length of this effective zone is the sum of the individual lengths of Zone 1 

and Zone 2; it is the length of one full rotation. 𝑣𝑧′,1 is only defined in Zone 1 and 𝑣𝑧′,2 is 

only defined in Zone 2. The proposed averaged height can be used to define an 

alternative effective profile. 

This effective profile can be defined through the application of the equation of 

continuity, which requires that mass flowing through Zones 1 and 2 be conserved. 

𝑚̇1 = 𝑚̇2 = 𝑚̇𝑡       Eq. 4.1.28 
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Reapplying the assumption of incompressible flow gives 

𝑣̇1 = 𝑣̇2 = 𝑣̇𝑡        Eq. 4.1.29 

where 𝑣̇𝑖 is the volumetric flow rate through a given zone. The volumetric flow rate can 

be reduced to  

〈𝑣𝑧′,1〉𝑊𝐻1 = 〈𝑣𝑧′,2〉𝑊𝐻2 = 〈𝑣𝑡〉𝑊𝐻𝑡    Eq. 4.1.30 

The width of the channel in each zone remains constant, giving 

〈𝑣𝑧′,1〉𝐻1 = 〈𝑣𝑧′,2〉𝐻2 = 〈𝑣𝑡〉𝐻𝑡     Eq. 4.1.31 

with the average channel velocity for a given zone defined by  

〈𝑣𝑖〉 =
1

𝐻𝑖
∫ 𝑣𝑖(𝑥′)𝑑𝑥′

𝐻𝑖

0
      Eq. 4.1.32 

Eq. 4.1.31 gives the averaged effective velocity profile as a function of either the 

averaged Zone 1 velocity profile or the averaged Zone 2 velocity profile. In the case of 

conveying elements, where velocity profiles are linear, Eq. 4.1.32 allows us to write 

〈𝑣𝑧′,1〉 =
𝑣𝑠

2
        Eq. 4.1.33 

〈𝑣𝑧′,2〉 = 𝑣𝑠        Eq. 4.1.34 

Eqs. 4.1.32 and 4.1.33 thus give the result that 〈𝑣𝑧′,2〉 = 2〈𝑣𝑧′,1〉 for the specific case of 

no pressure development in conveying elements. Using this result and Eq. 4.1.34 gives 

〈𝑣𝑧′,1〉𝐻1 = 2〈𝑣𝑧′,1〉𝐻2      Eq. 4.1.35 

Eq. 4.1.35 can then be reduced to the following. 

𝐻1 = 2𝐻2        Eq. 4.1.36 

Eq. 4.1.36 provides a metric which we can appropriately apply to Eq. 4.1.31. It says that 

if the height of Zone 1 is twice that of Zone 2, then the averaged effective profile can be 
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calculated from either 〈𝑣𝑧′,1〉 or 〈𝑣𝑧′,2〉, with no difference between the results. For the 

case of Bucknell’s conveying elements, the Zone 1 channel height is approximately twice 

that of the Zone 2 height, fulfilling the condition prescribed by Eq. 4.1.36 (Zone 1 

channel height = ~4 mm and Zone 2 channel height = ~2 mm). 

 Continuing with this development, we use Eq. 4.1.32 to calculate the averaged 

effective velocity profile from the averaged Zone 1 profile, as follows. 

〈𝑣𝑡〉 =
〈𝑣

𝑧′,1
〉𝐻1

𝐻𝑡
=

𝑣𝑠𝐻1

2𝐻𝑡
       Eq. 4.1.37 

Applying Eq. 4.1.36 to the definition of 𝐻𝑡 gives 

𝐻𝑡 =
𝐻1

2
(1 + 𝜑)       Eq. 4.1.38 

Inserting Eq. 4.1.38 into the right hand side of Eq. 4.1.37 then gives 

〈𝑣𝑡〉 =
𝑣𝑠

(1+𝜑)
        Eq. 4.1.39 

Eq. 4.1.39 is also the result of starting the calculation for 〈𝑣𝑡〉 with 〈𝑣𝑧′,2〉. If the form of 

the effective velocity profile 𝑣𝑡(𝑥′) is assumed to be of the same form as 𝑣𝑧′,1(𝑥′) and 

𝑣𝑧′,2(𝑥′), then it follows that 

𝑣𝑡(𝑥′) =
2𝑣𝑠

(1+𝜑)

𝑥′

𝐻
       Eq. 4.1.40 

Eq. 4.1.43 is linear, indicating that the flow is purely drag-induced; this is specifically 

valid only for the case of no pressure rise/drop in conveying elements. It is an effective 

profile that is derived from the application of conservation of mass to Zones 1 and 2, 

along with the definition of an average channel height, 𝐻𝑡. Figure 4.1.9 shows the general 

shape of conveying drag profiles. 
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Figure 4.1.9: Shape of the effective conveying velocity profile 

 

In preparation for Chapter 5, we redefine the dimensionless velocity as 

𝑈(𝜉) =
𝑣𝑡(𝑥′)

𝑣𝑠
        Eq. 4.1.41 

Applying Eq. 4.1.41 and the scale variable 𝜉′ to Eq. 4.1.40 gives 

𝑈(𝜉′) =
2𝜉′

(1+𝜑)
        Eq. 4.1.42 

 

4.2 Kneading Elements 

Kneading elements differ from conveying elements in that they are not built with 

the sole purpose of transporting material through the machine. These elements are more 

specialized, focusing on pulverizing and shearing the material. In that spirit, they are not 

pitched like conveying elements; the discs that make up kneading elements are more 

jagged, and are fully intermeshed. Figure 4.2.1 shows the various kneading elements used 

in this study:  
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Figure 4.2.1: Kneading elements used in Bucknell’s SSSP machine; from left to right, 

small forward, small neutral, small reverse, large forward 

 

Contrary to the development of conveying elements, cylindrical coordinates are 

used to describe flow in kneading elements. This is done because the kneading element-

barrel system can be approximated as two concentric cylinders. Figure 4.2.2 shows the 

relationship between the screw element and the cylindrical coordinate system.  

 

Figure 4.2.2: Illustration of the cylindrical coordinate system assigned to kneading 

elements 

 

Material flows in the positive z-direction, and is simultaneously sheared in the θ-

direction. As the screw rotates within the barrel of radius 𝑅𝑜, the low edges of the bilobe 

discs effectively form an inner radius, 𝑅𝑖, where the material flows in the gap between 𝑅𝑖 

and 𝑅𝑜. Figure 4.2.3 shows a cross-sectional view of a single screw element. 
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Figure 4.2.3: Axial view of the “smoothed” kneading element-barrel system; Zone 1 is 

the screw-barrel region, and Zone 2 is the screw-screw region 

 

The two zone concept still applies here, where Zone 1 is the screw-barrel region 

and Zone 2 is the screw-screw region. The inner radius 𝑅𝑖 is larger for Zone 2 than Zone 

1, corresponding to smaller gap in Zone 2 than in Zone 1. The inner radius for Zone 1 is 

can be written as 𝑅𝑖,1 and for Zone 2 as 𝑅𝑖,2. The outer radius 𝑅𝑜 is the same for both 

Zones 1 and 2. The following equations define the ratios 𝜅𝑖 [28]. 

𝜅1 =
𝑅𝑖,1

𝑅𝑜
        Eq. 4.2.1 

𝜅2 =
𝑅𝑖,2

𝑅𝑜
        Eq. 4.2.2 

These ratios allow us to define the inner radii as functions of the outer radii, given that we 

know the values of 𝜅𝑖. Eqs. 4.2.1 and 4.2.2 allow for a cleaner representation of the 

velocity profiles. 

As in the development of the conveying element velocity profiles, here we take 

the reference frame of the kneading screw element. As a result, the screw is stationary 

and the barrel moves at some angular velocity Ω𝑜. The starting point for this derivation 
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is, as with the conveying element development, the equation of continuity, Eq. 3.2.1. For 

an incompressible fluid, the cylindrical form of the equation of continuity is 

(∇ ∙  𝑣⃑) =
1

𝑟

𝜕(𝑟𝑣𝑟)

𝜕𝑟
+

1

𝑟

𝜕𝑣𝜃

𝜕𝜃
+

𝜕𝑣𝑧

𝜕𝑧
= 0     Eq. 4.2.3 

𝑣⃑ can be expanded into a more explicit representation of the flow field, shown as 

𝑣⃑ = 𝑣𝑟(𝑟, 𝜃, 𝑧, 𝑡)𝑒𝑟 + 𝑣𝜃(𝑟, 𝜃, 𝑧, 𝑡)𝑒𝜃 + 𝑣𝑧(𝑟, 𝜃, 𝑧, 𝑡)𝑒𝑧  Eq. 4.2.4 

Bird et al. [28] discusses flow in a Couette viscometer, which considers the flow of 

material in concentric cylinders. The kneading element system is analogous to the 

Couette viscometer, with the addition of an axial flow. Following the approach given by 

Bird et al. [28, 36], we can assume that the velocity components are 

𝑣𝑟 = 0         Eq. 4.2.5 

𝑣𝜃 = 𝑣𝜃(𝑟)        Eq. 4.2.6 

𝑣𝑧 = 𝑣𝑧(𝑟)        Eq. 4.2.7 

Eq. 4.2.4 thus reduces to  

𝑣⃑ = 𝑣𝜃(𝑟)𝑒𝜃 + 𝑣𝑧(𝑟)𝑒𝑧      Eq. 4.2.8 

where flow in the 𝜃- and z-directions are only dependent on r. 

 Applying Eq. 4.2.8 to Eq. 4.2.3 gives 

1

𝑟

𝜕𝑣𝜃

𝜕𝜃
+

𝜕𝑣𝑧

𝜕𝑧
= 0       Eq. 4.2.9 

Inserting Eqs. 4.2.6 and 4.2.7 into 4.2.9 shows that the equation of continuity holds, and 

mass is conserved. Moving forward, we now look at the equation of motion in cylindrical 

coordinates. According to Eq. 4.2.5, the r-component of the velocity field is zero, so only 
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the 𝜃- and z-components of the equation of motion are considered. Eq. 3.2.2 is thus 

transformed into 

𝜌 (
𝜕𝑣𝜃

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝜃

𝜕𝑟
+

𝑣𝜃

𝑟

𝜕𝑣𝜃

𝜕𝜃
+ 𝑣𝑧

𝜕𝑣𝜃

𝜕𝑧
+

𝑣𝑟𝑣𝜃

𝑟
) = −

1

𝑟

𝜕𝑃

𝜕𝜃
+ 𝜇 [

𝜕

𝜕𝑟
(

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝜃)) +

1

𝑟2

𝜕2𝑣𝜃

𝜕𝜃2 +
𝜕2𝑣𝜃

𝜕𝑧2 +

2

𝑟2

𝜕𝑣𝑟

𝜕𝜃
] + 𝜌𝑔𝜃         Eq. 4.2.10 

𝜌 (
𝜕𝑣𝑧

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑧

𝜕𝑟
+

𝑣𝜃

𝑟

𝜕𝑣𝑧

𝜕𝜃
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑧
+ 𝜇 [

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑣𝑧

𝜕𝑟
) +

1

𝑟2

𝜕2𝑣𝑧

𝜕𝜃2 +
𝜕2𝑣𝑧

𝜕𝑧2 ] + 𝜌𝑔𝑧  

          Eq. 4.2.11 

Considering the case of steady state flow, and applying Eqs. 4.2.5 and 4.2.6 to Eq. 4.2.10 

gives 

0 = 𝜇
𝜕

𝜕𝑟
(

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝜃))       Eq. 4.2.12 

Eq. 4.2.13 is valid for both Zones 1 and 2 in a kneading element, and has the following 

general solution. 

𝑣𝜃 =
𝑐1𝑟

2
+

𝑐2

𝑟
        Eq. 4.2.13 

 The boundary conditions on 𝑣𝜃 are dependent on the motion of the screw and 

barrel in 𝜃. As stated above, the screw is considered stationary in this development, and 

the barrel moves at an angular velocity of Ω𝑜. As a result, the boundary conditions on 𝑣𝜃 

for Zone 1 are 

𝑣𝜃,1(𝑟 = 𝑅𝑖,1) = 0       Eq. 4.2.14a 

𝑣𝜃,1(𝑟 = 𝑅𝑜) = Ω𝑜𝑅𝑜       Eq. 4.2.14b 

Applying the boundary conditions to the general solution gives the exact solution for 𝑣𝜃 

in Zone 1 of the kneading elements, which can be written as 
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𝑣𝜃,1 =
Ω𝑜

𝑟
[

(𝑟2−𝑅𝑖,1
2)

(1−𝜅1
2)

]       Eq. 4.2.15 

Eq. 4.2.15 suggests that flow for kneading elements in the 𝜃-direction is purely a drag 

flow, with no effects of pressure. 

  For Zone 2, the boundary conditions are as follows. 

𝑣𝜃,2(𝑟 = 𝑅𝑖,2) = 0       Eq. 4.2.16a 

𝑣𝜃,2(𝑟 = 𝑅𝑜) = 2Ω𝑜𝑅𝑜      Eq. 4.2.16b 

The condition at 𝑟 = 𝑅𝑜 for Zone 2 is twice that of Zone 1, as the screws are moving at 

the same angular velocity, yet in opposite directions. Applying the boundary conditions 

in Eqs. 4.2.16a and 4.2.16 to the general solution in Eq. 4.2.13 gives 

𝑣𝜃,2 =
2Ω𝑜

𝑟
[

(𝑟2−𝑅𝑖,2
2)

(1−𝜅2
2)

]       Eq. 4.2.17 

This result also suggests pure drag flow. The coefficient of 2 is a result of the 

intermeshed screws moving in equal and opposite directions. Figure 4.2.4 shows the 

general shape of these velocity profiles. 

 

Figure 4.2.4: Circumferential velocity profile for kneading discs; Ω𝑜 = 1 𝑠−1, 𝑅𝑖,𝑗 =

10.5 𝑚𝑚, 𝜅𝑗 = 0.84 
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The circumferential profiles have a slight bend to them, and are not perfectly straight. 

This is due to the dependence on 1/r.  

 The profile of velocity in the z-direction can be similarly developed by applying 

Eqs. 4.2.5 and 4.2.7 to Eq. 4.2.11. Doing so gives 

0 = −
𝑑𝑃

𝑑𝑧
+

𝜇

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑣𝑧

𝜕𝑟
)      Eq. 4.2.18 

In Eq. 4.2.18, 𝜇 and 𝑣𝑧 are independent of z. Therefore, we can integrate Eq. 4.2.18 

through z from 𝐿0 to 𝐿1 and through P from 𝑃0 to 𝑃1 to obtain the pressure drop, 
Δ𝑃

Δ𝐿
, 

where  

Δ𝑃 = 𝑃1 − 𝑃0        Eq. 4.2.19 

Δ𝐿 = 𝐿1 − 𝐿0        Eq. 4.2.20 

After integration, Eq. 4.2.18 can be written as 

Δ𝑃

Δ𝐿
=

𝜇

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑣𝑧

𝜕𝑟
)       Eq. 4.2.21 

The general solution to Eq. 4.2.21 is written as 

𝑣𝑧 =
Δ𝑃

Δ𝐿

𝑟2

4𝜇
+ 𝑐1𝑙𝑛(𝑟) + 𝑐2      Eq. 4.2.22 

 The boundary conditions here depend on the motion of the screw and barrel 

surfaces in the z-direction instead of the 𝜃-direction. The screw and barrel are both fixed 

in the z-direction, and are only free to move in the 𝜃-direction. As a result, the boundary 

conditions on 𝑣𝑧 for Zone 1 are homogeneous and written as 

𝑣𝑧,1(𝑟 = 𝑅𝑖,1) = 0       Eq. 4.2.23a 

𝑣𝑧,1(𝑟 = 𝑅𝑜) = 0       Eq. 4.2.23b 
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Applying the boundary conditions to Eq. 4.2.22 gives the exact solution for Zone 1, 

which is written as 

𝑣𝑧,1 = −
Δ𝑃1𝑅0

2

Δ𝐿14𝜇
((1 − 𝜅1

2) [
𝑙𝑛(

𝑟

𝑅0
)

𝑙𝑛(𝜅1)
] − (1 −

𝑟2

𝑅0
2))   Eq. 4.2.24 

The same set of boundary conditions can be applied to give the solution for Zone 2, 

instead considering 𝑅𝑖,2. This gives 

𝑣𝑧,2 = −
Δ𝑃2𝑅0

2

Δ𝐿24𝜇
((1 − 𝜅2

2) [
𝑙𝑛(

𝑟

𝑅0
)

𝑙𝑛(𝜅2)
] − (1 −

𝑟2

𝑅0
2))   Eq. 4.2.25 

Eqs. 4.2.24 and 4.2.25 thus represent the flow of material through the axial direction. 

Figure 4.2.5 shows the shape of these profiles. 

 

Figure 4.2.5: General shape of the axial pressure driven velocity profile in kneading 

elements; 
Δ𝑃𝑗

Δ𝐿𝑗
= 10 𝑃𝑎/𝑚, 𝑅𝑜 = 12.5 𝑚𝑚, 𝜅𝑗 = 0.84, 𝜇 = 1 𝑃𝑎 ∗ 𝑠 

  

 The axial flow in kneading elements is only pressure driven, and therefore is of a 

parabolic shape. Pressure drop must be negative in kneading elements in order to drive 
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forward flow. Material is sheared by the screw in the 𝜃-direction, and driven by pressure 

gradients in the z-direction. 

 In summary, flow in kneading elements can be described by the following four 

equations. 

𝑣𝜃,1 =
Ω𝑜

𝑟
[

(𝑟2−𝑅𝑖,1
2)

(1−𝜅1
2)

]       Eq. 4.2.15 

𝑣𝜃,2 =
2Ω𝑜

𝑟
[

(𝑟2−𝑅𝑖,2
2)

(1−𝜅2
2)

]       Eq. 4.2.17 

𝑣𝑧,1 = −
Δ𝑃1𝑅0

2

Δ𝐿14𝜇
((1 − 𝜅1

2) [
𝑙𝑛(

𝑟

𝑅0
)

𝑙𝑛(𝜅1)
] − (1 −

𝑟2

𝑅0
2))   Eq. 4.2.24 

𝑣𝑧,2 = −
Δ𝑃2𝑅0

2

Δ𝐿24𝜇
((1 − 𝜅2

2) [
𝑙𝑛(

𝑟

𝑅0
)

𝑙𝑛(𝜅2)
] − (1 −

𝑟2

𝑅0
2))   Eq. 4.2.25 

In preparation for Chapter 5, we now define the following dimensionless 

variables. Refer to Appendix A for a description of the dimensionless group 𝛽. 

𝛾 =
𝑟

𝑅𝑜
   for 𝑅𝑖 < 𝑟 < 𝑅𝑜    Eq. 4.2.26 

𝑈𝑖,𝑗(𝛾) =
𝑣𝑖,𝑗

𝑣𝑠
  for 𝑖 = 𝜃, 𝑧 and 𝑗 = 1, 2   Eq. 4.2.27 

𝛽𝑘,𝑗 =

Δ𝑃𝑗𝑅0
2

Δ𝐿𝑗4𝜇

𝑣𝑠
   for 𝑗 = 1, 2 and where 𝑣𝑠 = Ω𝑜𝑟  Eq. 4.2.28 

The variable 𝛽𝑘,𝑗 is the dimensionless ratio of drag and pressure flows, defined in 

Appendix A, adjusted to fit the cylindrical coordinate system. Applying these scale 

variables to Eqs. 4.2.15,  4.2.17, 4.2.24, and 4.2.25 gives 

𝑈𝜃,1(𝛾) =
1

𝛾
[

(𝛾2−𝜅1
2)

(1−𝜅1
2)

]       Eq. 4.2.29 
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𝑈𝜃,2(𝛾) =
2

𝛾
[

(𝛾2−𝜅2
2)

(1−𝜅2
2)

]       Eq. 4.2.30 

𝑈𝜁,1(𝛾) = −𝛽𝑘,1 ((1 − 𝜅1
2) [

𝑙𝑛(𝛾)

𝑙𝑛(𝜅1)
] − (1 − 𝛾2))   Eq. 4.2.31 

𝑈𝜁,2(𝛾) = −𝛽𝑘,2 ((1 − 𝜅2
2) [

𝑙𝑛(𝛾)

𝑙𝑛(𝜅2)
] − (1 − 𝛾2))   Eq. 4.2.32 

Eqs. 4.2.29 – 4.2.32 thus describe the dimensionless flow of material through the two 

zones of a kneading element. 

The velocity profiles produced in Sections 4.1 and 4.2 are used to describe the 

flow of material within conveying and kneading elements, respectively. These profiles 

are used in Chapter 5 to develop explicit solutions for temperature profiles in the 

extruder. It is shown in the next chapter that these profiles are Sturm-Liouville weight 

functions; thus, they are required to follow the constraints given by Sturm-Liouville 

theory. The most significant constraint is that there can be no negative portion to the 

weight functions. This corresponds to no negative velocity, or no backflow within a 

screw element. If they are negative, then the temperature profiles produced through the 

methodology applied in Chapter 5 are not guaranteed to be correct. This thesis considers 

velocity profiles that show no backflow, in order to ensure the temperature profiles are 

“protected” by Sturm-Liouville theory. 
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5. Development of Temperature Profiles 

This chapter focuses on the development of temperature profiles within the 

extruder. As in Chapter 4, the balances of momentum, heat, and mass transfer are applied 

to individual screw types in order to develop approximations of temperature. The velocity 

profiles developed in Chapter 4 are important in describing the convective transport of 

temperature, and are incorporated into the development described in this chapter. Explicit 

balances are simplified through the use of scaling arguments and the application of 

dimensionless groups. 

 

5.1 Conveying Elements 

The temperature of a polymer processed by SSSP varies greatly with its position 

in the extruder, and is also dictated by material properties and experimental parameters. 

Typically, high temperatures are observed in kneading zones. Pressure builds up at these 

zones, and crushing and shearing of the polymer dissipates large amounts of energy in the 

form of heat. Conversely, conveying zones have lower temperatures, because no 

pulverization occurs and yet the polymer is still cooled. As polymer moves through the 

extruder it passes through multiple kneading and conveying zones, being repeatedly 

heated and cooled. The polymer eventually develops a steady state temperature profile 

within the extruder.  

Generally, temperature of the material can vary in each of these directions as well 

as time, and is expressed as 
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𝑇 = 𝑇(𝑥, 𝑦, 𝑧, 𝑡)       Eq. 5.1.1 

Each individual screw element contributes a certain change in temperature that can be 

modeled using a method similar to the one employed in modeling the velocity profile. 

The equation of energy is used to develop temperature profiles for a given system in the 

same way the equation of momentum is used to develop velocity profiles.  

 In Section 4.1, conveying elements are modeled using a “tilted” coordinate 

system, marked with prime symbols. The development of temperature profiles for 

conveying elements follows this same coordinate system. The x’-direction is the screw 

channel height, the y’-direction is the cross-wise channel direction, and the z’-direction is 

parallel to the unwound helical channel. Figure 4.1.2 still holds and can be used as a 

reference for screw geometry. The equation of energy for an incompressible Newtonian 

fluid with constant thermal conductivity is given as Eq. 5.1.2.  

𝜌𝐶̂𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑣𝑥′

𝜕𝑇

𝜕𝑥′
+ 𝑣𝑦′

𝜕𝑇

𝜕𝑦′
+ 𝑣𝑧′

𝜕𝑇

𝜕𝑧′
) = 𝑘 [

𝜕2𝑇

𝜕𝑥′2 +
𝜕2𝑇

𝜕𝑦′2 +
𝜕2𝑇

𝜕𝑧′2] + 𝜂Φ𝑣  Eq. 5.1.2 

In the above equation, 𝜌 is density, 𝐶̂𝑝 is heat capacity, 𝑇 is temperature, t is time, 𝑣𝑖 is a 

given component of the velocity vector, k is thermal conductivity, 𝜂 is the viscosity, and 

Φ𝑣 is the dissipation function for a Newtonian fluid. The dissipation function is the 

source of energy due to internal fiction in the polymer flow. 

Eq. 5.1.2 represents a balance of convective, conductive, and generational terms 

that will provide the temperature profile. The term on the left hand side characterizes the 

convection of heat down the extruder due to the flow of material. The first term on the 

right hand side represents the conduction of heat from the screw to the barrel (x’-

direction), conduction across the element channel (y’-direction), and conduction of heat 
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down the channel (z’-direction). The last term quantifies any heat generation by viscous 

dissipation. If heat is generated by another mechanism, such as a chemical reaction, it can 

be added on to the equation.  

At this point, it is unknown as to what mechanism(s) causes heat to be generated 

within SSSP, and so all potential generation terms are represented by the variable S, 

where S can be either a constant or a function of position. Eq. 5.1.2 becomes 

𝜌𝐶̂𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑣𝑥

𝜕𝑇

𝜕𝑥′
+ 𝑣𝑦′

𝜕𝑇

𝜕𝑦′
+ 𝑣𝑧′

𝜕𝑇

𝜕𝑧′
) = 𝑘 [

𝜕2𝑇

𝜕𝑥′2
+

𝜕2𝑇

𝜕𝑦′2
+

𝜕2𝑇

𝜕𝑧′2
] + 𝑆 Eq. 5.1.3 

In Section 4.1, the velocity vector was determined to be only in the z-direction. 

𝑣⃑ = 𝑣𝑧′(𝑥)𝑒𝑧′        Eq. 5.1.4 

In addition, at steady state operation, time-dependence is dropped. Thus, Eq. 5.1.3 

reduces to 

𝜌𝐶̂𝑝𝑣𝑧′
𝜕𝑇

𝜕𝑧′
= 𝑘 [

𝜕2𝑇

𝜕𝑥′2 +
𝜕2𝑇

𝜕𝑦′2 +
𝜕2𝑇

𝜕𝑧′2] + 𝑆    Eq. 5.1.5 

 Recall that the y-direction represents the width of the screw channel. It is 

reasonable to assume that there is little to no variation of temperature in y’, as the order 

analysis presented in Section 4.1 still holds here. Eq. 5.1.1 becomes 

𝑇 = 𝑇(𝑥′, 𝑧′)        Eq. 5.1.6 

Combining Eqs. 5.1.5 and 5.1.6 results in 

𝜌𝐶̂𝑝𝑣𝑧′
𝜕𝑇

𝜕𝑧′
= 𝑘 [

𝜕2𝑇

𝜕𝑥′2
+

𝜕2𝑇

𝜕𝑧′2
] + 𝑆     Eq. 5.1.7 

Convection and conduction both operate in the z’-direction. These two 

mechanisms of heat transfer are acting in parallel, transporting heat down the length of 
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the extruder. The Péclet number is a dimensionless group that compares these two 

processes. 

Pe =
𝐿𝑣

𝛼
=

𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 𝑖𝑛 𝑧′

𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 𝑖𝑛 𝑧′
      Eq. 5.1.8 

L is the characteristic length, v is the velocity, and 𝛼 is the thermal diffusivity. Large 

values of Pe indicate that convective processes dominate over conductive processes. 

Smaller values of Pe indicate that conductive processes dominate. The thermal 

diffusivities of polymers are typically quite small, and so Péclet numbers for polymeric 

systems are generally large [37]. The molecular process of axial conduction is therefore 

assumed to be insignificant when compared to the macroscopic process of convection. As 

a result, Eq. 5.1.7 becomes 

𝜌𝐶̂𝑝𝑣𝑧′
𝜕𝑇

𝜕𝑧′
= 𝑘

𝜕2𝑇

𝜕𝑥′2 + 𝑆      Eq. 5.1.9 

Eq. 5.1.9 states that the convection of heat in the z’-direction is balanced by the 

conduction of heat in the x-direction and the generation of heat throughout the material.  

The following variables are defined to non-dimensionalize Eq. 5.1.9.  

𝜉′ =
𝑥′

𝐻
         Eq. 5.1.10a 

𝜁′ =
𝑧′

𝐿
          Eq. 5.1.10b 

𝜃 =
[𝑇−𝑇𝑏]

[𝑇𝑠−𝑇𝑏]
         Eq. 5.1.10c 

𝜓 =
𝑆

𝑆𝑐
          Eq. 5.1.10d 

Applying Eqs. 5.1.10a – 5.1.10d to Eq. 5.1.9 gives 

𝜌𝐶̂𝑝𝑣𝑧′
[𝑇𝑠−𝑇𝑏]

𝐿

𝜕𝜃

𝜕𝜁′
= 𝑘

[𝑇𝑠−𝑇𝑏]

𝐻2

𝜕2𝜃

𝜕𝜉′2 + 𝜓𝑆𝑐    Eq. 5.1.11 
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With rearrangement, we have 

𝜌𝐶̂𝑝𝑣𝑧′(𝑥′)𝐻2

𝑘𝐿

𝜕𝜃

𝜕𝜁′
=

𝜕2𝜃

𝜕𝜉′2
+

𝑆𝑐𝐻2

𝑘[𝑇𝑠−𝑇𝑏]
𝜓     Eq. 5.1.12 

In the above equation, 𝑣𝑧′ is a function of x’ (𝜉′, as well). Therefore, 𝑣𝑧′ must also be non-

dimensionalized, and has the following dimensionless form. 

𝑈(𝜉′) =
𝑣𝑧′(𝑥′)

𝑣𝑠
        Eq. 5.1.13 

Where 𝑣𝑠 is a scale velocity, and with rearrangement 𝑣𝑧′ becomes 

𝑣𝑧′ = 𝑣𝑠𝑈(𝜉′)        Eq. 5.1.14 

The dimensionless function 𝑈(𝜉′) characterizes the general shape of the velocity profile 

within conveying elements, and is derived in section 4.1 (Eq. 4.1.45). 

Inserting Eq. 5.1.14 into Eq. 5.1.12 leads to 

𝜌𝐶̂𝑝𝑣𝑠𝑈(𝜉′)𝐻2

𝑘𝐿

𝜕𝜃

𝜕𝜁′
=

𝜕2𝜃

𝜕𝜉′2 +
𝑆𝑐𝐻2

𝑘[𝑇𝑠−𝑇𝑏]
𝜓     Eq. 5.1.15 

The final term can be bundled into one variable, Ω, for the sake of book keeping. 

A discussion on Ω is included in Appendix B. H, k, 𝑇𝑠, and 𝑇𝑏 are all constants; 𝜓 is 

unspecified at this point, and as discussed earlier for the variable S, can be either a 

constant, a function of 𝜉′, a function of 𝜁’, or a function of both. At this point, we will 

consider constant generation such that S is independent of position. With some 

rearrangement, Eq. 5.1.15 then becomes  

𝜌𝐶̂𝑝𝑣𝑠𝐻2

𝑘𝐿
𝑈(𝜉′)

𝜕𝜃

𝜕𝜁′
=

𝜕2𝜃

𝜕𝜉′2 + Ω      Eq. 5.1.16 

The coefficient of the first term can be expressed in terms of the Graetz number, 

denoted by Gz 



53 

 

𝐺𝑧 =  
𝐻

𝐿
𝑅𝑒 𝑃𝑟 =

𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑧′

𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑥′
     Eq. 5.1.17 

This number characterizes the thermal development of a given flow system and is a 

function of the Reynolds and Prandtl numbers. Smaller Graetz numbers indicate higher 

thermal development for a system, and large values indicate no thermal development. 

The Reynolds number, 𝑅𝑒, characterizes the flow-type of a system as laminar, 

transitional, and turbulent flow, and is the ratio of inertial to viscous forces. 

𝑅𝑒 =  
𝜌𝐻𝑣

𝜇
=

𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠
      Eq. 5.1.18 

The Prandtl number, 𝑃𝑟, characterizes a given system and its ability to diffuse 

momentum versus its ability to diffuse heat.  

𝑃𝑟 =  
𝐶̂𝑝𝜇

𝑘
=

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛
      Eq. 5.1.19 

Inserting Eqs. 5.1.18 and 5.1.19 into Eq. 5.1.17 gives the following expression for Gz. 

𝐺𝑧 =  
𝜌𝐶̂𝑝𝑣𝑠𝐻2

𝑘𝐿
=

𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑧′

𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑥′
     Eq. 5.1.20 

As can be seen, Eq. 5.1.20 is exactly the coefficient found preceding the first term in Eq. 

5.1.16. The equation can be written in the following form.  

𝐺𝑧 𝑈(𝜉′)
𝜕𝜃

𝜕𝜁′
=

𝜕2𝜃

𝜕𝜉′2 + Ω      Eq. 5.1.21 

Incidentally, the Péclet number used earlier is also defined as the product of the Reynolds 

and Prandtl numbers. Pe describes convection and conduction in parallel, whereas Gz 

describes perpendicular convection and conduction. The 
𝐻

𝐿
 coefficient is responsible for 

translating the parallel Pe to the perpendicular Gz. Figure 5.1.1 compares the Péclet and 

Graetz scenarios relevant to this study. 
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Figure 5.1.1: Péclet versus Graetz flow types; Péclet considers heat transfer competing in 

parallel, Graetz considers perpendicularly competing heat transfer 

 

Both the Péclet number and Graetz number are important for this study, as they give 

insight to the characteristics of flow within the extruder.  

Graetz numbers are functions of material and flow properties as shown by Eq. 

5.1.20. A flow can be considered thermally developed when the Graetz number is 

approximately 1000 or less (see Eq. 5.1.35; when the Gz is greater than ~1000, the 

exponential given in Eq. 5.1.35 does not decay quickly enough to give a thermally 

developed flow.) In these thermally developed situations, it is more reasonable to apply a 

separation of variables method to solve Eq.5.1.21 [28]. Separation of variables does well 

at characterizing the solution farther away from the initial conditions. When the Graetz 

number is greater than 1000, the flow cannot be considered thermally developed, and 

therefore the method of combination of variables is more useful for solving Eq. 5.1.21. 

Combination of variables does well at characterizing the initial development of a flow, 

and is less precise farther from the initial conditions [38]. The Gz in SSSP is predicted to 

be below 1000 for SSSP elements; for example, polypropylene moving through a 
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conveying element has a Gz of approximately 100 [calculated using Eq. 5.1.20]. As a 

result, separation of variables is appropriate to apply to solve Eq. 5.1.21.  

Eq. 5.1.21 requires three boundary conditions in order to be solved. Two of these 

are in x’, and one of these is in z’. The dimensional boundary conditions on the system 

are as follows. 

𝑇(𝑥′ = 0, 𝑧′) = 𝑇𝑠       Eq. 5.1.22a 

𝑇(𝑥′ = 𝐻, 𝑧′) = 𝑇𝑏        Eq. 5.1.22b 

𝑇(𝑥′, 𝑧′ = 0) = 𝑇𝑜        Eq. 5.1.22c 

In dimensionless form, the boundary conditions are: 

𝜃(𝜉′ = 0, 𝜁′) = 1       Eq. 5.1.23a 

𝜃(𝜉′ = 1, 𝜁′) = 0       Eq. 5.1.23b 

𝜃(𝜉′, 𝜁′ = 0) = 𝜃𝑜        Eq. 5.1.23c 

 Eq. 5.1.21 is an inhomogeneous partial differential equation due to the source 

term Ω, with boundary conditions that are also inhomogeneous. Direct application of 

separation of variables will not work in such a setting, and so the PDE must be further 

manipulated. The principle of superposition is applied here, where the complete solution 

for dimensionless temperature is decomposed into two individual solutions. The 

dimensionless temperature, 𝜃, can be broken into two separate parts; one is dependent on 

both 𝜉′ and 𝜁′, where the other is only dependent on 𝜉′ and is independent of 𝜁′. That is, 

𝜃(𝜉′, 𝜁′) = 𝜃1(𝜉′) + 𝜃2(𝜉′, 𝜁′)      Eq. 5.1.24 

The two distinct differential equation problems, derived by applying Eq. 5.1.24 to Eq. 

5.1.21 and Eqs. 5.1.23a – 5.1.23c, are shown in Table 5.1.1. 
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Table 5.1.1: Decomposition to ODE and PDE problems 

Full PDE 𝜃(𝜉′, 𝜁′) Problem 1 𝜃1(𝜉′) Problem 2 𝜃2(𝜉′, 𝜁′) 

𝐺𝑧 𝑈(𝜉′)
𝜕𝜃

𝜕𝜁′
=

𝜕2𝜃

𝜕𝜉′2 + Ω  

5.1.21 

0 =
𝑑2𝜃1

𝑑𝜉′2 + Ω  

5.1.25 

𝐺𝑧 𝑈(𝜉′)
𝜕𝜃2

𝜕𝜁′
=

𝜕2𝜃2

𝜕𝜉′2   5.1.26 

𝜃(𝜉′ = 0, 𝜁′) = 1  

5.1.23a  

𝜃1(𝜉′ = 0) = 1  

5.1.27a 

𝜃2(𝜉′ = 0, 𝜁′) = 0  5.1.28a 

𝜃(𝜉′ = 1, 𝜁′) = 0  

5.1.23b 

𝜃1(𝜉′ = 1) = 0  

5.1.27b 

𝜃2(𝜉′ = 1, 𝜁′) = 0  5.1.28b 

𝜃(𝜉′, 𝜁′ = 0) = 𝜃𝑜 

5.1.23c 

-- 
𝜃2(𝜉′, 𝜁′ = 0) = 𝜃𝑜 − 𝜃1(𝜉′) 

5.1.28c 

 

Problem 1 is solved by integrating Eq. 5.1.25 twice with respect to 𝜉′ and then 

applying the boundary conditions in Eqs. 5.1.27a and 5.1.27b. The result is 

𝜃1(𝜉′) = (1 − 𝜉′) (1 +
Ω

2
𝜉′)      Eq. 5.1.29 

Problem 2 focuses on a partial differential equation that can be solved using a 

separation of variables approach. Proposing the separated solution as 

𝜃2(𝜉′, 𝜁′) = 𝑋(𝜉′)𝑌(𝜁′)      Eq. 5.1.30 

converts Eq. 5.1.26 to 

𝐺𝑧 𝑈(𝜉′)𝑋(𝜉′)
𝑑𝑌(𝜁′)

𝑑𝜁′
=

𝑑2𝑋(𝜉′)

𝑑𝜉′2 𝑌(𝜁′)     Eq. 5.1.31 
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Rearranging Eq. 5.1.31 gives two distinct, yet connected, ordinary differential equations 

for 𝑋(𝜉′) and 𝑌(𝜁′) 

𝑑2𝑋(𝜉′)

𝑑𝜉′2

1

𝑈(𝜉′)𝑋(𝜉′)
= 𝐺𝑧 

1

𝑌(𝜁′)

𝑑𝑌(𝜁′)

𝑑𝜁′
= 𝜇     Eq. 5.1.32 

Although the result is completely separated, the two sides of Eq. 5.1.32 are still equal to 

one another. Consequently, they are both then equal to some constant value, written as µ. 

The functions 𝑋(𝜉′) and 𝑌(𝜁′) are now be broken into the two distinct ODE’s. 

𝑑2𝑋(𝜉′)

𝑑𝜉′2 − 𝜇𝑈(𝜉′)𝑋(𝜉′) = 0      Eq. 5.1.33 

𝐺𝑧
 𝑑𝑌(𝜁′)

𝑑𝜁′
− 𝜇𝑌(𝜁′) = 0      Eq. 5.1.34 

Eq. 5.1.34 has the following general solution 

𝑌(𝜁′) = 𝐴𝑒
𝜇𝜁′

𝐺𝑧⁄
       Eq. 5.1.35 

Where A is a constant of integration.  

Eq. 5.1.33 can be solved for positive, zero, or negative values of 𝜇. In this 

particular case, 𝜇 is set equal to the value −𝜆2. This is done because the dependence of 

the complete dimensionless temperature profile is expected to evolve into a function of 

only 𝜉′ at large values of 𝜁′ (i.e. the system becomes thermally developed and 
𝜕𝜃

𝜕𝜁′
|

𝜁′→∞
→

0). Revisiting Eq. 5.1.24 shows that all dependence on 𝜁′ is contained to 𝜃2, and thus 

𝜃2(𝜉′, 𝜁′) → 0 as 𝜁′ → ∞. This gives 

𝑑2𝑋(𝜉′)

𝑑𝜉′2 + 𝜆2𝑈(𝜉′)𝑋(𝜉′) = 0      Eq. 5.1.36 

The boundaries on this particular situation are homogeneous, as follows. 

𝑋(𝜉′ = 0) = 0        Eq. 5.1.37a 
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𝑋(𝜉′ = 1) = 0        Eq. 5.1.37b 

Eq. 5.1.36 is a Sturm-Liouville eigenvalue problem. Eqs. 5.1.37a and 5.1.37b were 

derived by applying Eq. 5.1.30 to Eqs. 5.1.28a and 5.1.28b.  

 Solutions to Sturm-Liouville eigenvalue problems have an infinite set of 

solutions, defined by a series of corresponding eigenvalues and eigenfunctions. Eq. 

5.1.38 shows the structure of the complete solution to Eq. 5.1.36 

𝑋(𝜉′) = ∑ 𝐴𝑛𝐹𝑛(𝜆𝑛; 𝜉′)∞
𝑛=1       Eq. 5.1.38 

Where 𝜆𝑛 is an eigenvalue, 𝐹𝑛(𝜆𝑛; 𝜉′) is the corresponding eigenfunction, and 𝐴𝑛 is a 

constant. The eigenfunctions generated by Sturm-Liouville equations are defined to be 

orthogonal, which allows 𝐴𝑛 to be calculated by  

𝐴𝑛 =
〈𝜃𝑜−𝜃1(𝜉′),𝐹𝑛〉

〈𝐹𝑛,𝐹𝑛〉
       Eq. 5.1.39 

The term 𝜃𝑜 − 𝜃1(𝜉′) is generated by the boundary condition given above as Eq. 5.1.28c. 

The inner products in Eq. 5.1.39 are defined by 

〈𝐹𝑛, 𝐹𝑚〉 = ∫ 𝐹𝑛
1

0
(𝜆𝑛; 𝜉′)𝐹𝑚(𝜆𝑚; 𝜉′)𝑈(𝜉′)𝑑𝜉′    Eq. 5.1.40 

where inner product measures the projection of one function onto another. 𝐹𝑛 are 

orthogonal (i.e. linearly independent) such that the calculation in Eq. 5.1.40 is equal to 

zero for 𝑛 ≠ 𝑚. The function 𝑈(𝜉′) is the dimensionless velocity profile, which is written 

as 

𝑈(𝜉′) =
2𝜉′

(1+𝜑)
        Eq. 4.1.42 

In Eq. 5.1.36, by Sturm-Liouville theory, 𝑈(𝜉′) is a weight function which must 

always be positive. If the weight function is not always positive, then the orthogonality of 
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the resulting eigenfunctions is not guaranteed, rendering this solution methodology 

ineffective. Generally speaking, this limit translates into a prohibition of backflow in the 

extruder; that is, no material can have a negative velocity (𝑈(𝜉′) is always positive). For 

the case of conveying elements, it is known that material never flows backwards in the 

helical channel; after passing a particular point in space, a particle will not return to that 

point [17]. In terms of the variable 𝛽 from Appendix A, 𝛽 = 1 is the upper limit on 

values of 𝛽 for conveying elements. For this case the weight function 𝑈(𝜉′) is thus 

always positive and orthogonality of the eigenfunction solutions to Eq. 5.1.36 is 

guaranteed. The case with 𝛽 = 0 corresponds to pure drag flow with no effects of 

pressure on the system, and the weight function remains positive. Negative values of 𝛽 

are possible, but unlikely in conveying elements, as this indicates a forward pushing 

pressure (conveying elements exhibit competing forward drag and reverse back pressure 

flows). Therefore, 𝛽 can be limited to the range of 0 to 1 for conveying elements, 

although in the case of SSSP most scenarios will reflect 𝛽 = 0. This discussion will 

concern pure drag flow, where 𝛽 = 0. The case of 𝛽 = 1 and its effects on velocity and 

temperature are discussed in Appendix A. Using the value of 𝛽 = 0 for 𝑈(𝜉′) in Eq. 

5.1.36 gives 

𝑑2𝑋(𝜉′)

𝑑𝜉′2 + 𝜆2𝜉′𝑋(𝜉′) = 0         for 𝛽 = 0    Eq. 5.1.43 

Eq. 5.1.43 is of the form 

𝑦′′(𝑥) + 𝑘𝑥𝑚𝑦(𝑥) = 0      Eq. 5.1.44 
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where 𝑘 = 𝜆2, y is X, x is 𝜉′, and m is either 1 or 2. The solution to Eq. 5.1.43 can be 

represented by Bessel functions [39]. Differential equations of the form of Eq. 5.1.44 

have the following general solution 

𝑦(𝑥) =  𝑐1√𝜉𝐽 1

𝑚+2

(
2√𝑘

𝑚+2
𝑥

𝑚+2

2 ) + 𝑐2√𝜉𝐽
−

1

𝑚+2

(
2√𝑘

𝑚+2
𝑥

𝑚+2

2 )  where 𝑚𝑘 ≠ −2𝑘  

         Eq. 5.1.45 

The solution is expressed in terms of Bessel functions, 𝐽𝑝, of order p, where 

𝑝 =
1

𝑚+2
        Eq. 5.1.46 

Applying Eq. 5.1.46 to Eq. 5.1.45 gives the general solution for the case of 𝛽 = 0 as 

𝑋(𝜉′) =  𝑐1√𝜉′𝐽1

3

(
2

3
𝜆𝜉′

3

2) + 𝑐2√𝜉′𝐽
−

1

3

(
2

3
𝜆𝜉′

3

2)    Eq. 5.1.47 

At 𝜉′ = 0, Bessel functions of positive order are equal to 0 and Bessel functions of 

negative order are 1. The boundary condition thus leads to 

𝑋(𝜉′) =  𝑐1√𝜉′𝐽1

3

(
2

3
𝜆𝜉′

3

2)      Eq. 5.1.48 

Eq. 5.1.48 states the eigenfunction relation for the case of 𝛽 = 0 as roots of 𝐽1

3

. Applying 

the second boundary condition, Eq. 5.1.28b, gives the following relationship 

0 =  𝑐1𝐽1

3

(
2

3
𝜆𝑛)       Eq. 5.1.49 

Non-trivial solutions exist for values of 𝜆𝑛 which correspond to the zero roots of 

the appropriate order Bessel function. Bessel functions naturally oscillate about zero, and 

thus pass through an infinite amount of roots as the function increases. Each of these 

roots contribute an eigenvalue that then provides an eigenfunction. The resulting infinite 

set of eigenfunctions fulfills the series solution proposed in Eq. 5.1.38. Revisiting Eq. 
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5.1.30 shows that the eigenfunction series (i.e. 𝑋(𝜉′)) is balanced by a decaying 

exponential (i.e. 𝑌(𝜁′), or, Eq. 5.1.35), and the product of these two functions is the 

solution for 𝜃2(𝜉′, 𝜁′). The solution for 𝜃2(𝜉′, 𝜁′) for the specific case of 𝛽 = 0 is thus 

𝜃2(𝜉′, 𝜁′) = ∑ 𝐴𝑛exp (
−𝜆𝑛

2𝜁′

𝐺𝑧
) √𝜉′𝐽1

3

(
2

3
𝜆𝑛𝜉′

3

2)∞
𝑛=1    Eq. 5.1.50 

Applying Eqs. 5.1.24 and 5.1.29 to Eq. 5.1.50 gives 

𝜃(𝜉′, 𝜁′) = (1 − 𝜉′) (1 +
Ω

2
𝜉′) + ∑ 𝐴𝑛exp (

−𝜆𝑛
2𝜁′

𝐺𝑧
) √𝜉′𝐽1

3

(
2

3
𝜆𝑛𝜉′

3

2)∞
𝑛=1    

         Eq. 5.1.51 

Eq. 5.1.51 gives the analytical solution for the dimensionless temperature profile in the 

channel of a conveying element, for the specific case of 𝛽 = 0.  

This analytical solution and the solution for the case of 𝛽 = 1 are the lower and 

upper bounds on the behavior of flow within a conveying element, respectively. In many 

applications, the first eigenvalue and first eigenfunction are sufficient in approximating a 

system’s general behavior, as the exponential rapidly devolves to unity. As the flow 

develops in the 𝜁′-direction, the exponential term collapses to zero and the system only 

varies in 𝜉′. In this particular case, the Graetz number controls the rate of decay of the 

exponential. As Graetz numbers decrease in value (i.e. transverse conduction outweighs 

axial convection) the exponential decays faster and the profile approaches 𝜃1(𝜉′) more 

rapidly. The expected Graetz numbers for this scenario are expected to be no higher than 

~250. At this value, the exponential does not appreciably vanish through 𝜁′ until the 

eighth eigenvalue and eigenfunction pair.  
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The first eight eigenvalues and the corresponding constants 𝐴𝑛 are given in Table 

5.1.2 for the case of 𝛽 = 0. The constants 𝐴𝑛 are evaluated using Eq. 5.1.39. 

Table 5.1.2: First eight eigenvalues and corresponding constants  

 β = 0 

n λn An 

1 4.35388… 0.3535… 

2 9.04912… -1.2785… 

3 13.75576… 0.3747… 

4 18.46529… -1.0910… 

5 23.17597… 0.3737… 

6 27.88723… -0.9965… 

7 32.59881… 0.3703… 

8 37.31060… -0.9353… 

 

The first eight eigenfunctions for 𝛽 = 0 are then given in Figure 5.1.2. 

 

Figure 5.1.2: First eight eigenfunctions that contribute to the series solution for 𝑋(𝜉′) for 

𝛽 = 0 
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The eigenfunctions shown in Figure 5.1.2 are the first eight of an infinite set of 

functions. As the number of the term increases the overall summation approaches the full 

solution. The first eigenfunction gives an approximation of the variation of 𝑋(𝜉′) with 𝜉′. 

The inclusion of higher order eigenfunctions modifies the profile, and the sum of the 

infinite set eigenfunctions yields the exact variation of 𝑋(𝜉′) with 𝜉′. The sum of each of 

the first eight eigenfunctions is shown in Figures 5.1.3. 

 

Figure 5.1.3: [∑ 𝐴𝑛𝐹𝑛(𝜆𝑛; 𝜉′)8
𝑛=1 ] Sum of the first eight eigenfunctions that contribute to 

the solution for 𝑋(𝜉′) for 𝛽 = 0  

 

Figure 5.1.3 shows an oscillatory profile that does not fully represent 𝑋(𝜉′) for 

𝛽 = 0 (or 𝛽 = 1, as discussed in Appendix A). These oscillations are a result of 

overlaying a small number of eigenfunctions, and will appear to distort the resulting 

solution until 𝑛 → ∞; however, the utility of these first eight eigenfunctions lies in their 

averages through 𝜉′. The averages are useful because they capture the general magnitude 
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of each eigenfunction, but help dampen any oscillations that appear due to the small 

number of overlaid terms. Eq. 5.1.51 shows that the eigenfunctions only vary in the 𝜉′-

direction, while flow is in the 𝜁′-direction.  

The evolution of temperature in the 𝜁′-direction can be approximated through 

taking the average of Eq. 5.1.51 through 𝜉′, resulting in a function that only varies in 𝜁′. 

The resulting average through the first eight eigenfunctions is written as 

𝜃̅(𝜁′) = (
1

2
+

Ω

12
) + ∑ 𝐴𝑛exp (

−𝜆𝑛
2𝜁′

𝐺𝑧
) 𝐹̅𝑛(𝜆𝑛)8

𝑛=1    Eq. 5.1.52 

The first eight terms are expected to adequately approximate the full solution. By Sturm-

Liouville theory, the complete solution to the differential equation is a converging infinite 

series of functions. It is assumed that partial sums of this series do converge as well; 

however, future work can focus determining the validity of this assumption. 

The averaged eigenfunctions 𝐹̅𝑛(𝜆𝑛) are constant values that are paired with their 

respective eigenvalues. They are given in Table 5.1.3. 

 

Table 5.1.3: Average values of the first eight eigenfunctions for conveying element flow 

 

 β = 0 

n 𝑭̅𝒏(𝝀𝒏) 

1 0.26075… 

2 0.04655… 

3 0.04928… 

4 0.02042… 

5 0.02343… 

6 0.01242… 

7 0.01448… 

8 0.00868… 

 



65 

 

 The values of the averaged eigenfunctions in Table 5.1.3 can be used with Eq. 

5.1.52 to produce profiles of dimensionless temperature as a function of 𝜁′. Figure 5.1.4 

shows how increasing the number of terms in the series solution increases the accuracy of 

the predicted profile.  

 

Figure 5.1.4: Comparison of the effectiveness of various series solutions for 𝛽 = 0 

 

As the value of n increases (i.e. more terms are included in the eigenfunction series), the 

average dimensionless temperature approaches a relatively consistent final value. 

Although the profiles vary initially, they all converge to approximately the same value 

when 𝑛 > 4, marked with an “X” in Figure 5.1.4. This final value is the exit temperature 

of material when it leaves a single screw element, and therefore is the initial condition, 
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𝜃𝑜, for the next element in the screw. The solutions converge to a consistent value, 

indicating that the “new” 𝜃𝑜 can be confidently calculated with a relatively small number 

of terms.  

 The averaged solution proposed in Eq. 5.1.54 can be applied to the cases of 𝛽 =

0, 𝛽 = 1, and any value of 𝛽 between the two. A numerical solution can be applied to the 

same effect for the values of 𝛽 that do not yield analytical solutions (i.e. any value that is 

between 0 and 1). The analytical result proposed in this section and the result discussed in 

Appendix A serve as a basis for any numerical calculations.  

 

5.2 Kneading Elements 

 In Section 4.2, the flow profiles of kneading elements are developed on the basis 

of a cylindrical coordinate system. In order to develop temperature profiles for kneading 

elements, a cylindrical coordinate system is once again applied. We begin, as in Section 

5.1, with the equation of energy. The equation of energy in cylindrical coordinates is 

written as 

𝜌𝐶̂𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑣𝑟

𝜕𝑇

𝜕𝑟
+

𝑣𝜃

𝑟

𝜕𝑇

𝜕𝜃
+ 𝑣𝑧

𝜕𝑇

𝜕𝑧
) = 𝑘 [

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
) +

1

𝑟2

𝜕2𝑇

𝜕𝜃2
+

𝜕2𝑇

𝜕𝑧2
] + 𝜂Φ𝑣   

        Eq. 5.2.1 

The kneading elements are thought to rotate such that they can be approximated by 

concentric cylinders, as described in Section 4.2. The magnitude of velocity in the 𝜃-

direction is much larger than that in the z-direction, such that no gradients of temperature 
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can develop through 𝜃. Therefore, all dependence of temperature on 𝜃 can be ignored. 

We also assign the heat generation to a more general term, S. This reduces Eq. 5.2.1 to 

𝜌𝐶̂𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑣𝑟

𝜕𝑇

𝜕𝑟
+ 𝑣𝑧

𝜕𝑇

𝜕𝑧
) = 𝑘 [

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
) +

𝜕2𝑇

𝜕𝑧2] + 𝑆  Eq. 5.2.2 

 Section 4.2 develops the governing velocity profiles for kneading elements. In 

that section, the velocity field is found to have components only in the 𝜃- and z-

directions, such that there is no r-component to the velocity. While also considering 

steady state, Eq. 5.2.2 becomes 

𝜌𝐶̂𝑝𝑣𝑧
𝜕𝑇

𝜕𝑧
= 𝑘 [

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
) +

𝜕2𝑇

𝜕𝑧2] + 𝑆     Eq. 5.2.3 

This equation is similar to Eq. 5.1.7, where conduction operates both in parallel with and 

perpendicular to the convective flow of heat. The same Pe argument can be made here, 

and convection in z can be assumed to greatly outweigh conduction in z. As a result, Eq. 

5.2.3 transforms into 

𝜌𝐶̂𝑝𝑣𝑧
𝜕𝑇

𝜕𝑧
= 𝑘 [

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
)] + 𝑆     Eq. 5.2.4 

With the exception of the first term on the right hand side, Eq. 5.2.4 is identical to the 

governing equation for conveying elements. 

 The boundary conditions on flow in kneading elements are the same as for flow in 

conveying elements. 

𝑇(𝑟 = 𝑅𝑖 , 𝑧) = 𝑇𝑠       Eq. 5.2.5a 

𝑇(𝑟 = 𝑅𝑜 , 𝑧) = 𝑇𝑏        Eq. 5.2.5b 

𝑇(𝑟, 𝑧 = 0) = 𝑇𝑜        Eq. 5.2.5c 
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 We continue with this temperature profile development in a similar manner to that 

of conveying elements. In order to approach analytical results, we apply the principle of 

superposition and propose 

𝑇(𝑟, 𝑧) = 𝑇1(𝑟) + 𝑇2(𝑟, 𝑧)      Eq. 5.2.6 

The principle of superposition formulates two complete boundary value problems, which 

are shown in Table 5.2.1. 

Table 5.2.1: Decomposition to ODE and PDE problems 

Problem 1 𝑇1(𝑟) Problem 2 𝑇2(𝑟, 𝑧) 

0 = 𝑘 [
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇1

𝜕𝑟
)] + 𝑆  

5.2.7 

𝜌𝐶̂𝑝𝑣𝑧
𝜕𝑇2

𝜕𝑧
= 𝑘 [

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇2

𝜕𝑟
)]  5.2.8 

𝑇1(𝑟 = 𝑅𝑖) = 𝑇𝑠  5.2.9a 𝑇2(𝑟 = 𝑅𝑖 , 𝑧) = 0  5.2.10a 

𝑇1(𝑟 = 𝑅𝑜) = 𝑇𝑏  5.2.9b 𝑇2(𝑟 = 𝑅𝑜 , 𝑧) = 0  5.2.10b 

-- 𝑇2(𝑟, 𝑧 = 0) = 𝑇𝑜 − 𝑇1(𝑟) 5.2.10c 

 

 The problems formulated in Table 5.2.1 are similar to those proposed in Table 

5.1.1, and the solution methodology follows the same path. We begin by determining the 

solution to the “steady” profile, 𝑇1(𝑟). Eq. 5.1.7 is of the same form as the differential 

equation that governs the circumferential velocity profile. It considers S rather than the 
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pressure drop, k rather than 𝜇, and 𝑇1 rather than 𝑣𝑧. Therefore, the general solution is the 

same as that proposed in Eq. 4.2.22, with the replacements prescribed above. 

𝑇1 =
𝑆𝑟2

4𝑘
+ 𝑐1𝑙𝑛(𝑟) + 𝑐2      Eq. 5.2.11 

Applying the boundary conditions prescribed in Eqs. 5.1.9a and 5.1.9b gives 

𝑇1 = 𝑇𝑏 +
𝑆𝑅𝑜

2

4𝑘
[(1 − 𝜅2) [

𝑙𝑛(
𝑟

𝑅0
)

𝑙𝑛(𝜅)
] − (1 −

𝑟2

𝑅0
2)] + [𝑇𝑠 − 𝑇𝑏] (

𝑙𝑛(
𝑟

𝑅0
)

𝑙𝑛(𝜅)
)   

         Eq. 5.2.12 

We now define the following scale variables 

𝜃1 =
𝑇1−𝑇𝑏

𝑇𝑠−𝑇𝑏
        Eq. 5.2.13a 

𝛾 =
𝑟

𝑅𝑜
   for 𝑅𝑖 < 𝑟 < 𝑅𝑜    Eq. 5.2.13b 

Ω =
S𝑅0

2

4𝑘[𝑇𝑠−𝑇𝑏]
         Eq. 5.2.13c 

𝜁 =
𝑧

𝐿
         Eq. 5.2.13d 

Applying these scale variables to Eq. 5.2.12 gives the dimensionless “steady” 

temperature profile 

𝜃1 = [
𝑙𝑛(𝛾)

𝑙𝑛(𝜅)
] + Ω [(1 − 𝜅2) [

𝑙𝑛(𝛾)

𝑙𝑛(𝜅)
] − (1 − 𝛾2)]   Eq. 5.2.14 

 We now move on to the second problem given in Table 5.2.1, which describes the 

“unsteady” portion of flow. As with conveying elements, the flow here is a balance of 

perpendicular conduction and convection, Graetz-type flow. Consequently, we must 

define a Graetz number for these cylindrical coordinates. The cylindrical Graetz number 

is  
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𝐺𝑧 =
𝜌𝐶̂𝑝𝑣𝑠𝑅𝑜

2

𝑘𝐿
        Eq. 5.2.15 

Using the above dimensionless groups we can non-dimensionalize Eq. 5.2.8, giving 

𝐺𝑧 𝑈𝜁(𝛾)
𝜕𝜃2

𝜕𝜁
=

1

𝛾

𝜕

𝜕𝛾
(𝛾

𝜕𝜃2

𝜕𝛾
)      Eq. 5.2.16 

Eq. 5.2.16 is a partial differential equation the radial and axial directions. We can further 

simplify this differential equation in a similar way to Section 5.1. We assume the solution 

𝜃2(𝛾, 𝜁) is separable as follows 

𝜃2(𝛾, 𝜁) = 𝑋(𝛾)𝑌(𝜁)       Eq. 5.2.17 

Applying Eq. 5.2.17 to Eq. 5.2.16 gives two separate differential equations in 𝛾 and 𝜁. 

They are written as 

𝑌′(𝜁) − 𝜇 𝐺𝑧 𝑌(𝜁) = 0      Eq. 5.2.18 

𝑑

𝑑𝛾
(𝛾𝑋′(𝛾)) − 𝜇γ𝑈𝜁(𝛾)𝑋(𝛾) = 0     Eq. 5.2.19 

The differential equation describing 𝑌(𝜁) is identical to that discussed in Section 5.1. Its 

general solution is an exponential, and if we assume 𝜇 = −𝜆2 (same logic as in Section 

5.1), then it can be written as 

𝑌(𝜁) = 𝑐1𝑒𝑥𝑝 (
−𝜆2𝜁

𝐺𝑧
)       Eq. 5.2.20 

 The remainder of the solution is treated almost identically to that in Section 5.1. 

This system is also a Sturm-Liouville eigenvalue problem, and the discussion in Section 

5.1 still applies. The axial velocity profiles 𝑈𝜁(𝛾) are again the weight functions, which 

cannot be negative. They are given as Eqs. 4.2.31 and 4.2.32. In the case of kneading 

elements, flow is expected to be driven forward by pressure gradients, such that these 
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profiles do satisfy their role as weight functions. Eq. 5.2.19 can be solved using 

numerical methods in MATLAB.  

 The solution to Eq. 5.2.16 is developed from the individual solutions of 𝑋(𝛾) and 

𝑌(𝜁). Where we know the analytical form of 𝑌(𝜁), we assign the solution for 𝑋(𝛾) as 

some function 

𝑋(𝛾) = ∑ 𝐴𝑛𝐹𝑛(𝜆𝑛; 𝛾)∞
𝑛=1       Eq. 5.2.21 

The constants 𝐴𝑛 are determined via the same calculation as presented in Section 5.1, 

which is rewritten here as 

𝐴𝑛 =
〈𝜃𝑜−𝜃1(𝛾),𝐹𝑛〉

〈𝐹𝑛,𝐹𝑛〉
       Eq. 5.2.22 

Combining this proposed form of 𝑋(𝛾) with the solution for 𝑌(𝜁), we find 

𝜃2(𝛾, 𝜁) = ∑ 𝐴𝑛𝑒𝑥𝑝 (
−𝜆2𝜁

𝐺𝑧
) 𝐹𝑛(𝜆𝑛; 𝛾)∞

𝑛=1     Eq. 5.2.23 

This result is identical to the one found in Section 5.1 for conveying elements. The 

difference here lies in the numerical calculation of the eigenvalues and eigenfunctions, as 

they result from a different differential equation. Reapplying the definition of 

superposition, we find the solution for the dimensionless temperature profile in kneading 

elements is 

𝜃(𝛾, 𝜁) = [
𝑙𝑛(𝛾)

𝑙𝑛(𝜅)
] + Ω [(1 − 𝜅2) [

𝑙𝑛(𝛾)

𝑙𝑛(𝜅)
] − (1 − 𝛾2)] + ∑ 𝐴𝑛𝑒𝑥𝑝 (

−𝜆2𝜁

𝐺𝑧
) 𝐹𝑛(𝜆𝑛; 𝛾)∞

𝑛=1  

          Eq. 5.2.24 

 The characteristics of this equation are quite similar to Eq. 5.1.51. The first two 

terms on the right hand side describe the “steady” portion of the temperature profile, the 

approach to which is characterized by the last term, the “unsteady” portion. The same 
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averaging concept is applied here, where the profile is “smoothed” in the radial direction. 

The resulting averaged profile for temperature in a kneading element is 

𝜃̅(𝜁) = −
1

𝑙𝑛(𝜅)
[1 + Ω(1 − 𝜅2)] −

2

3
Ω + ∑ 𝐴𝑛𝑒𝑥𝑝 (

−𝜆2𝜁

𝐺𝑧
) 𝐹̅𝑛(𝜆𝑛)∞

𝑛=1    

       Eq. 5.2.25 

The value of 𝜅 is between zero and one, and thus the natural logarithm in the first term 

cancels out the first negative. This ensures a positive, steady temperature profile. Eq. 

5.2.25 can be used much like Eq. 5.1.52, in that it describes the development of 

temperature in the element as only a function of the axial direction.  

In order to simulate the temperature profile in the extruder, the above solution 

methodology is applied on an element-wise basis. The temperature profiles developed in 

this chapter are used to approximate the temperature profile for both conveying and 

kneading elements. The exit temperature of one element is the initial condition for the 

next element. The calculation continues down the length of the extruder, and changes 

depending on the type and size of the element. 
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6. Comparisons and Future Work 

6.1 Comparisons 

 The SSSP process is an alternative method of extrusion that has recently been 

applied to a variety of polymeric systems and successfully produced unique materials. A 

prescribed condition is that the process is performed on the material in its solid state; 

intense cooling with chillers and coolant lines is employed to remove the heat generated 

from the pulverizing action of the polymeric material. This balance between the internal 

heating and external cooling leads to an interesting heat transfer phenomenon. The goal 

of this thesis was to develop a mathematical model that describes the development of 

temperature within the extruder so that the heating and/or melting behavior of materials 

in an SSSP operation could be predicted.  

 Chapter 4 developed velocity profiles for material being processed in an SSSP 

instrument. These profiles describe individual screw elements, and are thus applied on an 

element-wise basis. The effective velocity profile that describe flow in conveying 

elements is written as 

𝑣𝑡(𝑥′) =
2𝑣𝑠

(1+𝜑)

𝑥′

𝐻
       Eq. 4.1.40 

which describes the motion of material in a tilted Cartesian coordinate system. The tilt is 

associated with the flight angle of the screw, and is oriented such that the flow of material 

is in line with the z’-direction. The dimensionless form of Eq. 4.1.43 is written as 

𝑈(𝜉′) =
2𝜉′

(1+𝜑)
        Eq. 4.1.42 
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where flow is pure drag induced flow. The velocity profile is linear, and specifically 

describes flow in starve-fed conveying elements. 

In kneading elements, the velocity profiles are described by two orthogonal 

components. One is driven by drag, and one is driven by pressure. 

𝑣𝜃,1 =
Ω𝑜

𝑟
[

(𝑟2−𝑅𝑖,1
2)

(1−𝜅1
2)

]       Eq. 4.2.15 

𝑣𝑧,1 = −
Δ𝑃1𝑅0

2

Δ𝐿14𝜇
((1 − 𝜅1

2) [
𝑙𝑛(

𝑟

𝑅0
)

𝑙𝑛(𝜅1)
] − (1 −

𝑟2

𝑅0
2))   Eq. 4.2.24 

The velocity field is thus deconstructed into a drag portion in 𝜃 and a pressure portion in 

𝜁. In dimensionless form, the profiles can be written as 

𝑈𝜃,1(𝛾) =
1

𝛾
[

(𝛾2−𝜅1
2)

(1−𝜅1
2)

]       Eq. 4.2.29 

𝑈𝜁,1(𝛾) = −𝛽𝑘,1 ((1 − 𝜅1
2) [

𝑙𝑛(𝛾)

𝑙𝑛(𝜅1)
] − (1 − 𝛾2))   Eq. 4.2.31 

 The above velocity profiles gave insight into the behavior of flow within the 

extruder, and were used in the derivation of temperature profiles. Chapter 5 provides the 

solution for temperature profiles. There is variation of temperature through both the 

channel height and the axial direction, but the profile is averaged through the former, and 

presented solely as a function of the latter. Temperature in conveying elements can be 

calculated using 

𝜃̅(𝜁′) = (
1

2
+

Ω

12
) + ∑ 𝐴𝑛exp (

−𝜆𝑛
2𝜁′

Gz
) 𝐹̅𝑛(𝜆𝑛)8

𝑛=1    Eq. 5.1.52 

The temperature profile for kneading elements is written in cylindrical coordinates as 
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𝜃̅(𝜁) = −
1

𝑙𝑛(𝜅)
[1 + Ω(1 − 𝜅2)] −

2

3
Ω + ∑ 𝐴𝑛𝑒𝑥𝑝 (

−𝜆2𝜁

𝐺𝑧
) 𝐹̅𝑛(𝜆𝑛)∞

𝑛=1    

         Eq. 5.2.25 

Eq. 5.2.25 is a function of 𝜁 rather than 𝜁′, and the heat generation term considers two 

components of velocity rather than one (as is the case for conveying). Furthermore, the 

eigenfunctions for Eqs. 5.1.52 and 5.2.25 are different, as they depend on the individual 

velocity profiles for each screw. 

Eqs. 5.1.52 and 5.2.25 therefore are the main tools with which we can build the 

temperature profile for the entire extruder. The calculation begins with the first element 

on the screw, closest to the motor. This element is always a conveying element, so every 

calculation will begin with applying Eq. 5.1.52. The initial temperature of the material is 

incorporated into the constant 𝐴𝑛, as given in Eq. 5.1.39. The calculation is completed for 

the first conveying element, and the temperature at 𝜁 = 1 (the end of the element) is used 

as the initial temperature for the next element in the screw. If the element is conveying 

then Eq. 5.1.52 is used and, if kneading, Eq. 5.2.25 is used. This process then continues 

down the length of the screw, and a temperature profile for the entire extruder is 

generated. 

 

6.2 Future Work 

Although individual screw profiles were developed in this thesis, a full extruder 

model was not compiled. Using MATLAB, a script should be written that performs these 

calculations. Screw configuration, geometry of each element, feed rate, screw speed, and 
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material properties are all taken as inputs to the code. This script can then use these 

inputs to predict and approximate profiles of temperature in SSSP. Predicting these 

profiles lends insight into the appropriate processing parameters for a given material.  

 Comparisons between experiment and model can then be made, and the accuracy 

of the model can be assessed. Experiments should then be performed that mimic the 

conditions input to the MATLAB code. Temperature probes are located along the SSSP 

barrel, and can measure the evolution of material temperature along the extruder.  

 Discrepancies between the model and experiments can arise from numerous 

places. For example, this thesis considered viscous dissipation as the only mechanism of 

heat generation in SSSP; however, depending on the material being processed, viscous 

dissipation may not capture the full effects of heat generation. Viscous dissipation 

characterizes the transformation of kinetic energy (i.e. flow energy) into heat, and is a 

volumetric process that occurs throughout a flowing system. Particle size reduction, 

where millimeter size-pellets are pulverized into micron scale flakes, can lead to large 

surface energy changes. Mechanochemical reactions such as chain scission and chain 

branching are known to occur within the extruder, and may contribute to energy 

dissipation due to the breaking and forming of chemical bonds. Another potentially 

important mechanism of heat generation is friction between powder particles. The current 

model considered those extra heat generation sources to be insignificant, but they should 

be investigated and incorporated into the generation term Ω as necessary. Including these 

heat generation mechanisms could improve the accuracy and robustness of the 

temperature profile in SSSP. 
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 The development of a full extruder model and associated experiments are in 

progress currently, using polypropylene as a model material. Figure 6.2.1 shows the 

screw design used in these experiments.  

 

Figure 6.2.1: Screw design used in this study; mild configuration with four separate 

kneading zones 

 

Large kneading elements are placed in Zone 2, and small kneading elements are placed in 

Zones 4 and 6. Both types of kneading elements are included in Zone 3, and no kneading 

elements are present in Zone 5. 

Experiments have been conducted for varying flow rates and screw speeds, and 

the resulting temperature profiles are shown in Figures 6.2.2a and 6.2.2b. 

 

Figure 6.2.2a: Experimental temperature measurements for varying flow rates 
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Figure 6.2.2b: Experimental temperature measurements for varying screw speeds 

 

As can be seen, temperatures in the kneading zones (Zones 2, 3, 4, and 6) are higher than 

those in the conveying zone (Zone 5). The kneading zones are effectively heat sources, 

whereas the conveying zones are heat sinks. Increasing the flow rate of material is seen to 

increase temperature within the extruder, where increasing screw speed seems to have no 

effect. 

 The current iteration of the MATLAB code produces temperature profiles for 

SSSP; however, modeling varying feed rates and screw speeds produces results that do 

not behave realistically; the MATLAB code predicts temperatures of conveying zones 

that are higher than kneading zones. These results are shown in Figures 6.2.3a and 6.2.3b.  
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Figure 6.2.3a: Temperature predictions for various feed rates at 200 rpm; arrows point to 

kneading zones 

 

 

Figure 6.2.3b: Temperature predictions for varying screw speeds at 400 g/hr; arrows 

point to kneading zones 

 

The current script correctly predicts increasing temperatures with increased flow 
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kneading elements are predicted to be flow rate invariant. The script also correctly 

predicts that temperatures are independent of screw speed, yet the issue of conveying 

temperatures versus kneading temperatures remains. Further modification to the 

MATLAB script is underway, with the goal of generating realistic and acceptable 

temperature profiles for a wide range of process parameters.  

In summary, this study produces the foundation of a model that aims to predict 

temperatures in SSSP. Continuum mechanics and material balances are applied to solid-

state extrusion in order to generate functions that could be used to approximate the 

development of temperature in SSSP. As SSSP is applied to different types of materials, 

these functions can be used to predict a feasible operating range for process parameters 

such as feed rate and screw speed. Trial-and-error practices common in current SSSP 

practices can be replaced by a numerical approximation, potentially leading to a more 

efficient design of experiments, as well as reducing the amount of wasted materials and 

energy. 
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Appendix A: Discussion of Pressure Effects on Velocity and Temperature Profiles 

A.1 Development of Velocity Profiles for Various Pressure Effects 

A new scale variable is introduced here as 

𝛽 =

∆𝑃𝐻2

2𝜇𝐿

𝑣𝑠
=

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑓𝑙𝑜𝑤 𝑖𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑧

𝑑𝑟𝑎𝑔 𝑓𝑙𝑜𝑤 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑧
     Eq. A.1.1 

This dimensionless group characterizes pressure induced flow in the negative z-direction 

versus drag induced flow in the positive z-direction [17]. It is for Cartesian systems. A 

cylindrical version of this group can be written as  

𝛽𝑘,𝑗 =

Δ𝑃𝑗𝑅0
2

Δ𝐿𝑗4𝜇

𝑣𝑠
   for 𝑗 = 1, 2 and where 𝑣𝑠 = Ω𝑜𝑟  Eq. 4.2.28 

Larger values of 𝛽 indicate larger pressure effects within the system. Figure A.1.1 shows 

the dimensionless velocity profile, 𝑈(𝜉), for several values of 𝛽. 

 

Figure A.1.1: Dimensionless velocity profiles for various values of 𝛽 
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As can be seen, larger values of 𝛽 develop larger amounts of backflow within the 

channel. Negative values of 𝛽 instigate forward flow. The case of 𝛽 = 1 is of particular 

interest, as this is the largest value of 𝛽 which exhibits no negative flow in the entirety of 

the channel. 

 Applying the appropriate scale variables to Eqs. 4.1.21 and 4.1.23, the 

dimensionless velocity profiles for Zone 1 and Zone 2 are 

𝑈(𝜉) = 𝜉′ − 𝛽(𝜉′ − 𝜉′2)  for Zone 1    Eq. A.1.2 

𝑈(𝜉) = 𝜉′ − 2𝛽(𝜉′ − 𝜉′2)  for Zone 2    Eq. A.1.3 

 

A.2 Development of Temperature Profiles for Various Pressure Effects 

For the case of 𝛽 = 1, there exists another analytical solution for the temperature 

profile in a screw element (the analytical solution for the case of 𝛽 = 0 is presented in 

Section 5.1). Using the value of 𝛽 = 0 for 𝑈(𝜉′) in Eq. 5.1.36 gives 

𝑑2𝑋(𝜉′)

𝑑𝜉′2 + 𝜆2𝜉′2𝑋(𝜉′) = 0       for 𝛽 = 1     Eq. A.2.1 

The same approach of using Eq. 5.1.44 to generate a Bessel function solution is applied 

here, and gives  

𝜃(𝜉′, 𝜁′) = (1 − 𝜉′) (1 +
Ω

2
𝜉′) + ∑ 𝐴𝑛exp (

−𝜆𝑛
2𝜁′

𝐺𝑧
) √𝜉′𝐽1

4

(
1

2
𝜆𝑛𝜉′2)∞

𝑛=1    

          Eq. A.2.2 

The constants 𝐴𝑛 are given in table A.2.1. 
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Table A.2.1: First eight eigenvalues and corresponding constants  

 β = 1 

n λn An 

1 5.56178… 0.4946… 

2 11.81229… -1.0223… 

3 18.08477… 0.4456… 

4 24.36268… -0.8157… 

5 30.64274… 0.4149… 

6 36.92385… -0.7181… 

7 43.20557… 0.3938… 

8 49.48765… -0.6571… 

 

The first eight eigenfunctions are then given in Figure A.2.1. 

 

Figure A.2.1: First eight eigenfunctions that contribute to the series solution for 𝑋(𝜉′) for 

𝛽 = 1 
 

 

As in Section 5.1, the sum of these eigenfunctions is shown in Figure A.2.2 
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Figure A.2.2: [∑ 𝐴𝑛𝐹𝑛(𝜆𝑛; 𝜉′)8
𝑛=1 ] Sum of the first eight eigenfunctions that contribute to 

the solution for 𝑋(𝜉′) for 𝛽 = 1 

 

The averaged eigenfunction series is shown here in Figure A.2.3. The same averaging 

suggested in Section 5.1 is used here to calculate the averaged eigenfunctions 𝐹̅𝑛(𝜆𝑛). 

 

Figure A.2.3: Comparison of the effectiveness of various series solutions for 𝛽 = 1 
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These averaged solutions are similar to those for the case of 𝛽 = 0. The 

discussion in this appendix presents the application of the same solution methodology 

used in Chapter 5 to the limiting case of pressure driven flow in conveying elements. 

Flow in standard SSSP operation is expected to be starve fed, so the results given in 

Section 5.1 are more applicable. 
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Appendix B: Discussion of Heat Generation, 𝛀 

 The variable Ω represents the generation of heat within SSSP. It is written 

explicitly as  

Ω =
𝑆𝑐𝐻2

𝑘[𝑇𝑠−𝑇𝑏]
𝜓        Eq. B.1 

where 𝑆𝑐 is some scale heat generation, H is the channel height, k is thermal conductivity, 

𝑇𝑠 is the screw temperature, 𝑇𝑏 is the barrel temperature, and 𝜓 is dimensionless heat 

generation. Eq. 5.1.10d allowsus to write Eq. B.1 as 

Ω =
𝑆𝐻2

𝑘[𝑇𝑠−𝑇𝑏]
        Eq. B.2 

where S is dimensional heat generation. This term can be represented by viscous 

dissipation, chemical reaction, etc. Any process that generates heat can be incorporated 

into S. This development considers viscous dissipation as the only source of heat 

generation in SSSP. This can be written as 𝜂Φ𝑣, where Φ𝑣 is a function of the velocity 

gradients (shear) in the system. This allows us to write dimensionless heat generation as 

Ω =
𝐻2

𝑘[𝑇𝑠−𝑇𝑏]
𝜂Φ𝑣       Eq. B.3 

All of the values on the right hand side of Equation B.3 are known, therefore Ω can be 

calculated. Ω is a balance of heat generation and heat conduction through the system.  
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