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ABSTRACT 

Design by advanced second-order elastic analysis (DEA) is based on the premise 

that reliance on approximate methods to account for parameters in design can be reduced 

by directly modeling them in the analysis. Current analysis methods often rely on equations 

based on effective buckling lengths to determine the axial capacity of beam-columns; 

however, complex systems may not possess clearly defined effective-lengths or the axial 

force may vary significantly within such lengths. By employing a rigorous second-order 

(geometric nonlinear) analysis that explicitly models system and member initial geometric 

imperfections and reduces member stiffness to account for partial yielding within the 

analysis, it has been established that a simplified form of the axial capacity can be 

employed in the design process. Instead of using buckling-length-based column strength 

equations that consider member out-of-straightness imperfections and the effect of residual 

stresses on partial yielding, the engineer is granted the ability to use the axial cross-

sectional strength. Twelve benchmark frames were analyzed using design by advanced 

second-order elastic analysis and the results were compared to current analysis methods in 

the 2010 American Institute of Steel Construction’s Specification for Structural Steel 

Buildings. The research described herein and studies performed by other form the basis for 

the revised Appendix on Design by advanced elastic analysis appearing in the forthcoming 

2016 American Institute of Steel Construction’s Specification for Structural Steel 

Buildings. This method effectively removes the need to consider member length when 

calculating the axial strength of beam-columns. 
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CHAPTER 1: INTRODUCTION 

1.1. Thesis Statement 

By directly modeling system and member initial geometric imperfections within the 

structural analysis, adequate designs can be obtained that are comparable to those 

obtained using current methods appearing in the 2010 American Institute of Steel 

Construction’s Specification for Structural Steel Buildings. 

 

1.2. Research Purpose 

Structural steel members tend to be slender by virtue of their relatively high 

stiffness and strength to weight ratios, thereby emphasizing the importance of designing 

for stability. The factors affecting stability that need to be considered include: (1) flexural, 

shear and axial member deformations; (2) second-order effects; (3) system and member 

initial geometric imperfections; (4) stiffness reduction due to inelasticity accentuated by 

residual stresses; and (5) including uncertainty in strength and stiffness terms. Off of these, 

this thesis shall focus on member and system deflections and their resulting second-order 

effects. Both effects are increased due to initial geometric imperfections such as system 

imperfections due to erection tolerances, also called out-of-plumbness, and member 

imperfections, or out-of-straightness, which occur during the manufacturing process. It is 

noted that out-of-plumbness is the relative displacement of the top and bottom of a frame 

whereas out-of-straightness is the deflection of a member between end connections, usually 

in the form of single curvature bending (Ziemian, 2010, p.27, 41). An additional factor that 



2 

CHAPTER 1: INTRODUCTION 

can reduce the rigidity of the system and impact stability is the presence of residual stresses, 

which is caused by the differential cooling of hot-rolled steel at the end of the rolling 

process (Ziemian, 2010, p.29).  

The presence of deflections that produce additional moment requires the use of 

second-order analysis, i.e. an analysis that formulates equilibrium on the deformed shape. 

In fact, modern stability design provisions are based on the premise that internal forces are 

calculated using this type of analysis (AISC, 2010, p.275). Second-order analysis can 

account for deflections, the resulting second-order effects and, if explicitly modeled, the 

impact of initial geometric imperfections. Although yielding and residual stresses can be 

explicitly modeled through material-inelastic analysis procedures, they are currently 

computationally prohibitive for designing large structural systems. Consequently, AISC’s 

current analysis method employs a reduced material stiffness coupled with a yield surface 

criterion in lieu of directly modeling partial and full-yielding, which may be accentuated 

by the presence of residual stresses. Using a yield surface criterion is called a concentrated 

plasticity or plastic-hinge analysis, whereas direct modeling of yielding and residual 

stresses along the length and cross-section is referred to as distributed plasticity analysis 

(See Appendix A for further explanation). If the plastic-hinge analysis does not allow force 

redistribution beyond the first plastic-hinge, it may be called a material linear and reduced 

elastic analysis. The focus of this research is to verify that by explicitly modeling initial 

geometric imperfections and using a reduced material stiffness, a proposed plastic-hinge 

second-order material-linear analysis can accurately estimate the results from a rigorous 

second-order inelastic analysis. 
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Traditional U.S. design approaches do not directly account for the aforementioned 

factors that influence stability.  Instead, they use effective-length K-factors and a column 

strength curve, which is defined in Section 2.3, that reduces member strength with 

increased slenderness (Ziemian, 2010, p.48). This is coupled with a carefully calibrated 

beam-column interaction equation to account for the destabilizing effects of out-of-

plumbness, residual stresses and partial yielding on the system (Surovek-Maleck and White, 

2004a, p.1186). To ensure stability, the American Institute of Steel Construction (AISC)’s 

Specification for Structural Steel Buildings (2010), henceforth called the 2010 

Specification, stipulates the use of a member-by-member design check, which is presented 

in Section 2.2, that compares internal second-order forces and moments to member axial 

and bending strengths. If all member checks conform to the requirements of the design 

equation, then the system is assumed stable (Maleck and White, 2004a, p.1187).  

In 2005, AISC introduced the design by direct analysis method, often abbreviated 

as design by DM, which simplifies the design process by no longer requiring the calculation 

of an effective-length K-factor. Instead, this method requires modeling out-of-plumbness, 

either by offsetting the coordinates of the nodes of the top of each story with respect to the 

bottom of the story or using notional loads to achieve the same effect, and reducing the 

flexural stiffness, EI, of members by 0.8 and a τb factor to account for the effect of member 

initial imperfections, partial yielding, residual stresses and uncertainty in stiffness on the 

system behavior. In comparison to the effective-length method, design by DM provides a 

more transparent design methodology by granting the engineer the ability to use the 

unbraced length of the members as the effective-length thereby removing the reliance on 
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effective-length K-factors, which can involve cumbersome and error prone calculations 

(Ziemian, 2010, p.48). However, a column strength curve defined in terms of the unbraced 

member length is still employed to account for member out-of-straightness and cross-

section partial yielding caused by residual stresses. 

The method explored herein, design by advanced second-order elastic analysis; or 

simply, design by advanced elastic analysis, which will be incorporated in AISC’s 2016 

Specification (AISC, 2015, App.1), grants the engineer the ability to avoid reliance on the 

column-curve and instead use the cross-section axial strength as the member’s compression 

strength. The requirements of this method include accounting for partial yielding and 

residual stresses, albeit with a reduction factor, and explicitly modeling out-of-straightness. 

In proving this method, design by advanced elastic analysis achieves three main 

goals, which were originally suggested by Surovek-Maleck and While (2004a, 1186): (1) 

the development of a more streamlined design procedure, (2) more transparent design 

calculations that use estimates of the actual internal forces and resistances, and (3) a more 

natural extension from simple elastic analysis to higher-tiered methods. This method not 

only provides an alternative analysis method, but the opportunity to design more complex 

structures, and to perform a relatively simple verification of the results of design by 

advanced second-order inelastic analysis, or simply, design by advanced inelastic analysis, 

present in both the 2010 and 2016 Specification, which in turn can be used to address 

extraordinary issues with greater confidence. 
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The overarching goal of the research was to review the AISC’s 2016 Specification 

proposed revision to Appendix 1, Section 1.2 Design by advanced elastic analysis. This is 

done by comparing the results from twelve frames analyzed with the proposed method 

against the results obtained using design by DM, and design by advanced inelastic analysis. 

MASTAN2, developed by Ziemian (2015), is used to perform the analyses required for 

design by advanced elastic analysis and design by DM, and FE++2015, developed by 

Alemdar (2001) is used to perform design by advanced inelastic analysis. 

 

1.3. Thesis Overview 

The chapters in this thesis are outlined here. 

Chapter 1 presents the thesis statement and describes the purpose of the research 

by introducing the concept of stability design and the overarching goals of the method. 

Chapter 2 provides the background information. It presents the stability design 

requirements, the necessary design equations, and previous research done. 

Chapter 3 presents the frame study methodology, the twelve frames investigated, 

and the methodology of the minor-axis beam-column study. 

Chapter 4 presents the results for both the frames and the minor-axis column 

study. 

Chapter 5 provides a summary of this research and highlights the overall 

conclusions from the research followed with recommendation for further research. 
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CHAPTER 2: BACKGROUND 

2.1. Stability Design Requirements 

The AISC 2016 specification establishes five stability design requirements in 

Chapter C, which are provided in Table 1. The subsection of Chapter C or the commentary 

is also given. Also included in the table (in italics) is how these requirements were satisfied 

in this research. 

Table 1. Brief explanation of AISC stability design requirements 

Requirement Explanation Reference 

(1) Flexural, 

shear, and 

axial member 

deformations 

Stability analysis must consider all pertinent 

deformations: axial, bending, shear, torsion and 

connection deformations. Shear deformations were 

neglected in this research because they were considered 

to have a negligible impact on the frames investigated. 

C.2.1 

 

(2) Second-

order effects 

(P-Δ and P-δ) 

It is imperative to formulate equilibrium on the deformed 

shape by means of a rigorous second-order elastic analysis 

(Ziemian, 2010, p. 698). While analysis software such as 

MASTAN2 (Ziemian and McGuire, 2015) is good at 

capturing P-Δ effects, it is often necessary to subdivide 

elements to better capture P-δ effects.  

C.2.1 
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(3) System 

and member 

initial 

geometric 

imperfections 

 

Initial geometric imperfections need to be conservatively 

assumed and should equal the maximum tolerances 

permitted in the AISC Code of Standard Practice for Steel 

Buildings and Bridges (AISC, 2000), unless otherwise 

noted: out-of-plumpness equal to 1/500 of the story height 

and out-of-straightness of 1/1000 of the member length. 

C.2.2. 

(4) Stiffness 

reduction due 

to inelasticity 

accentuated 

by residual 

stresses 

A factor of 0.8 must be applied to all stiffnesses that 

contribute to the stability of the structure. In slender 

columns, 0.8 is equivalent to the resistance factor Φ (= 0.9) 

times the out-of-straightness 0.877 reduction factor. In 

short columns, 0.8 accounts for inelastic softening. The τb 

factor, which will be described in Section 2.3 and 3.2, is 

applied to all stiffnesses (and not only EI as required by 

AISC 2010). 

C.2.3. 

(5) Including 

uncertainty in 

strength and 

stiffness. 

The aforementioned 0.8 factor applied to the elastic 

modulus also accounts for the uncertainty in stiffness. 

The strength terms use resistance factors as specified in 

Chapter D, E and F. 

Comm. 

C.2.3 

*Note: member twist will also need to be considered per the 2016 Specification (AISC, 2015) 
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Factors affecting stability that are not included in this study are local buckling, bracing 

elements, connection or loading eccentricities, and construction sequencing stresses 

(Ziemian, 2010, p.29, 714). 

2.2. Interaction Equation 

AISC has established the following interaction equation (Equation 1) to verify that 

all members in a structural system have adequate axial and bending capacity to resist the 

internal second-order forces and moments (AISC, 2010, p.73; Ziemian, 2010, p. 385): 

If 2.0
 nc

u

P

P
  

0.1
9

8






















 nyb

uy

nxb

ux

nc

u

M

M

M

M

P

P
,               (1a) 

else 

0.1
2






















 nyb

uy

nxb

ux

nc

u

M

M

M

M

P

P
,                         (1b) 

where  

Pu ≡ ultimate axial load resisted by the member (internal force) 

Pn ≡ nominal axial strength of the member 

Mux ≡ second-order major-axis moment resisted by the member (internal force) 

Mnx ≡ nominal major-axis bending strength of the member 

Muy ≡ second-order minor-axis moment resisted by the member (internal force) 

Mny ≡ nominal minor-axis bending strength of the member 

Φc ≡ axial strength resistance (safety) factor 

Φb ≡ bending strength resistance (safety) factor 
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Equation 1, which was established by calibration to the results of several advanced second-

order inelastic analyses of stability critical frames (Kanchanalai, 1977), ensures that no 

structural member fails. If this is the case, then the system is said to be stable (Suvorek-

Maleck and White, 2004a, p.1187). Equation 1 resembles the yield-surface criterion for the 

cross-section of a beam-column subject to axial force and major-axis and minor-axis 

bending. However, it not only accounts for full-yielding of the cross-section (formation of 

a plastic-hinge), but also for member length failure modes, such as buckling. Although the 

yield surface for beam-columns subject to minor-axis bending is more convex than its 

major-axis counterpart, these members tend to fail significantly inside this surface due to 

the fact that yielding progresses from the flange tips inward, thereby reducing the flexural 

rigidity significantly faster than in beam-columns subject to major-axis bending (Maleck 

and White, 2004a, p.1191). To account for this possibility, AISC uses the same form of the 

major-axis interaction equation for minor-axis, and for the case of beam-columns subject 

to both major and minor-axis bending linearly interpolates between both curves. 

Regardless of the use of a smaller interaction surface, minor-axis results are of particular 

interest because the current stiffness reduction factor does not appear to fully capture this 

type of progressive yielding. 

 With the possibility of both system and member instabilities accounted for by the 

analysis, design by advanced elastic analysis will no longer require the consideration of 

member length in calculating axial capacity. Thus, the interaction equation will act as a 

yield surface criterion.  That is, design by advanced elastic analysis is essentially a first-

hinge limit-state design procedure (Ziemian, 2010, p.726). 
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2.3. Axial Strength Calculation 

Current design methods often rely on length-based column-curve equations that 

consider the limit states of full-yielding of the cross-section, elastic and inelastic member 

buckling, as described in Chapter E of the 2010 Specification, when determining the axial 

load capacity of columns (AISC, 2011, p.31-43). Assuming that columns are modeled as 

originally straight members in the analysis, these equations reduce strength to account for 

partial yielding that originates from the axial load acting on the residual stresses, and the 

gradual instability caused by axial force acting on a member with out-of-straightness 

imperfection. The graphs in Figure 1 illustrate these concepts. 

 

Figure 1. (a) Column-curve with residual stresses, (b) AISC column-curve with residual stresses and 

initial member imperfections. Adapted from (Segui, 2013) 

 

The column-curve in Figure 1(a) shows the reduction in the buckling load arising 

from the presence of residual stresses, and is obtained by applying a τb factor (which will 
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be described in Section 2.7) to the elastic modulus within the Euler buckling equation. The 

curve in Figure 1(b), used in AISC Specification, not only accounts for residual stresses, 

but also employs a 0.877 factor on the Euler buckling load to account for the gradual 

instability due to the out-of-straightness imperfection. The inelastic buckling equation in 

Figure 1(b) differs from the one in Figure 1(a) because it was fitted to experimental data to 

account for the amalgam of residual stresses and minor levels of out-of-straightness in short 

columns. As seen in Figure 1, inelasticity and residual stresses predominantly affect short 

columns, in which large applied loads combined with residual stresses exceed the yield 

stress in portions of the cross-section thereby causing partial yielding and a loss in member 

stiffness. Similarly, out-of-straightness is most prominent in slender columns, where 

second-order effects manifest themselves as part of a positive feedback loop between 

lateral deflections and internal moments.  

The current design by DM procedure uses the equations in Figure 1(b) to calculate 

the axial capacity. These equations are a function of the unbraced length. Neglecting any 

strength gain due to strain-hardening, full-yielding of the cross-section, Py, represents the 

axial load upper limit:  

gyy AFP  ,      (2) 

where 

Fy ≡ yield stress 

Ag ≡ gross area of the cross-section. 



12 

CHAPTER 2: BACKGROUND 

The theoretical elastic buckling limit state is found by computing the Euler buckling 

strength, Pe, which assumes a perfectly straight, perfectly elastic, prismatic, pinned-

supported column (Ziemian, 2010, p.23): 

2

2

c

e
L

EI
P


 ,      (3) 

where 

E ≡ Young’s modulus, or elastic modulus (29 000 ksi or 300 GPa for steel) 

I ≡ cross-sectional moment of inertia. 

The range of limit states from full-yielding to elastic buckling are coupled to formulate the 

AISC’s column member-length nominal axial strength, Pn, as follows (AISC, 2010, p.33): 
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en PP 877.0       (4b) 

 

Unfortunately the equations can be difficult to apply for complex structural systems 

in which the member effective-lengths are not clearly defined e.g., arches, and thus, still 

pose a challenge to engineers. Because design by advanced elastic analysis does not 

consider member length to calculate the axial capacity of beam-columns, the design of such 

systems can be greatly facilitated. This combined analysis and design method is based on 

the principle that directly modeling those parameters that are known to affect member 

strength within a rigorous second-order elastic analysis removes the need to use 
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approximate methods to account for them (Maleck, 2003, p.2). For example, modeling out-

of-straightness reduces the maximum load that can be applied by virtue of increased 

internal moments. In the case of residual stresses, applying a stiffness reduction τb–factor 

to the elastic modulus in the analysis assures inelastic buckling occurs prior to full-yielding.  

Modeling out-of-straightness and the effect of residual stresses, the need to employ 

Equation 4 is eliminated, thereby simplifying the axial strength calculation to one of 

computing the cross-sectional capacity, which can be accomplished by using Equation 2. 

In essence, design by advanced elastic analysis relies on more accurate estimates of the 

actual internal forces and moments to assess system strength by using a cross-section 

interaction equation (yield surface) check. In doing so, this analysis not only provides a 

better estimate of the internal forces, but also an enhanced representation of system 

behavior.  

 

2.4. Stability Analysis Methods 

By 2016, there will be four AISC stability analysis methods: ELM, design by DM, 

design by advanced elastic analysis and design by advanced inelastic analysis. ELM has 

been in the specification since 1961 and it was relocated from the main body of the 

Specification to Appendix 7 in 2010. In ELM, many factors affecting stability are not 

directly modeled and instead, effective-length K-factors are used to account for out-of-

plumbness and spread of plasticity stiffness reductions (AISC, 2010, p.509). One method 

for calculating K-factors involves the use of sidesway-uninhibited frame alignment charts 
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based on the relative rigidity of a column with respect to the girders it frames onto, 

according to: 

 

where c ≡  subscript relating to columns, and g ≡  subscript relating to girders. 

Unfortunately, K-values rely on many simplifying assumptions which are often violated, 

such as purely elastic behavior, only prismatic members, all rigid connections, reverse 

curvature bending of the columns, all columns buckling simultaneously, and no significant 

axial force in the beams (AISC, 2010, p.511). On a more positive note, ELM relies on the 

column-curve shown in Section 2.3 to account for out-of-straightness and yielding due to 

residual stresses, and this does not require modeling system imperfections and employing 

a stiffness reduction factor. 

In 2005, design by DM was introduced in Appendix 1, and in 2010, it was included 

in Chapter C of the Specification as the preferred method of design by AISC. Design by 

DM simplifies the analysis by modeling out-of-plumbness explicitly or using notional 

loads, and reducing all stiffnesses by 0.8 to account for spread of plasticity, as well as a τb-

factor to account for loss of stiffness due to residual stresses. In doing so, it removes the 

need to consider K-factors greater than unity (i.e., K = 1.0 in all cases). As with ELM, 

design by DM relies on the column-curve to account for out-of-straightness and partial 

yielding of the cross-section accentuated by residual stresses. 
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Design by advanced elastic analysis takes the next step towards a more transparent 

analysis method by requiring explicit modeling of out-of-straightness in addition to explicit 

modeling of out-of-plumbness and using stiffness reductions factors of 0.8 and τb. Thus the 

need to use the column-curve has been removed. In other words, the engineer may simply 

employ the axial cross-sectional strength when using Equation 1. 

All three methods rely on the interaction equation to ensure system stability. In 

ELM and design by DM, the equation is calibrated to account for member-length failures, 

whereas in design by advanced elastic analysis, it acts solely as a cross-section yield surface 

criterion (See Section 2.2).  

In contrast, design by advanced inelastic analysis requires explicit modeling of 

spread-of-plasticity and residual stresses within the analysis. In doing so, it removes the 

need to employ the interaction equation to assess stability and can thereby produce more 

efficient designs because load redistribution after the first plastic-hinge formation is 

permitted. Reductions previously applied to account for spread-of-plasticity (0.877 and 𝜏𝑏) 

are no longer required. Instead, uncertainty factors of 0.9 are applied to the material elastic 

modulus and yield stress. The reader is referred to Appendix A for more information on 

this method.  

The aforementioned design methods are compared with regards to the stability 

design requirements in Table 2: 
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Table 2. Comparison of design methods. Modified from (AISC, 2010, p.273) 

Chapter C stability design 

requirements 

Effective-length 

Method (ELM) 

Design by direct 

analysis method 

(DM) 

Design by 

advanced 

elastic 

analysis 

Design by 

advanced 

inelastic 

analysis* 

1 Consider all deformations All methods consider flexural, shear, axial and connection 

deformations 

2 Consider second-order effects  

(P-Δ and P-δ effects) 

Second-order analysis or 

B1 and B2 factors 

Rigorous second-order 

analysis, including twist 

3 Consider  

geometric 

imperfections 

(out-of-

plumbness 

and out-of-

straightness) 

Effects of out-of-

plumbness on 

structure 

response 

If 𝐵2 >  1.5, use 

notional loads. 

Direct Modeling, 

or notional loads. 

System out-of-plumbness 

directly modeled. 

 

Member out-of-

straightness directly 

modeled. 

 

Notional loads not 

permitted. 

Effect of out-of-

straightness on 

structure 

response 

Full, nominal 

stiffness EI. 

 

Member out-of-

straightness and 

reduced stiffness 

due to 

inelasticity are 

considered by 

using KL from a 

sidesway (K>1)  

buckling analysis 

 

Reduced 

member strength 

by virtue of  

KL > L 

0.877 factor on E 

(Φ x 0.877 = 0.8) 

Effect of out-of-

straightness on 

member strength 

Member strength 

formulas, with 

KL= L 

Member cross-sectional 

strengths* 

4 Stiffness 

reduction due 

to inelasticity 

and residual 

stresses 

Effect on 

structure 

response 

𝜏𝑏 factor on flexural stiffness 

𝐸𝐼𝑒 = 0.8𝜏𝑏𝐸𝐼** 

𝐸𝐼𝑒 = 0.9𝐸𝐼 

Residual 

stresses 

directly 

modeled Effect on 

member strength 

Member strength 

formulas, with    

KL = L 

Member 

cross-

sectional 

strengths 

5 Uncertainty in 

stiffness and 

strength 

Effect on 

structure 

response 

Φ factor on E 

(Φ x 0.877 = 0.8) 

Φ-factor on 

E and Fy 

incorporated 

into the 

analysis. Effect on 

member strength 

Φ-factors in strength formulas 

*Design by advanced inelastic analysis extends design by advanced elastic analysis by explicitly modeling residual 

stresses and yielding, and allowing force redistribution. The analysis permits going beyond the formation of the first 

plastic-hinge. 

**Reduction shall also be applied to the torsional stiffnesses GJ and ECw in design by advanced elastic analysis. 

 

As shown in the table, with less reliance on member strength equations, it becomes 

apparent that the more advanced methodologies are more readily suited for complex 



17 

CHAPTER 2: BACKGROUND 

geometries. As for conventional frames, the use of design by DM is still recommended 

because of its simplicity and accuracy.  

 

2.5. Previous Studies 

2.5.1. Surovek-Maleck and White Studies: 

Design by DM is based on the modified elastic analysis-design method, ME, 

proposed by Maleck (2001). ME uses a reduction factor of 0.8 on the major-axis flexural 

stiffness and 0.7 on the minor-axis, whereas design by DM uses 0.8 on both. These 

reductions are coupled with the τb-factor in both methods. Similar to design by DM, direct 

modeling of out-of-plumbness grants the engineer the opportunity to use the unbraced 

length as Lc when calculating the axial capacity.  

Maleck (2001) performed a comprehensive parametric study with nominal stiffness 

and strength terms (i.e. Φ was not applied) on four portal frame configurations and two 

braced-beam columns to assess the accuracy of ME with respect to design by advanced 

inelastic analysis, ELM and a notional load approach. The parameters included the 

slenderness ratio, column orientation and column end restraint.  Maleck showed that 

including system out-of-plumbness imperfections and reducing the member’s stiffness 

significantly improved the prediction of second-order moments in beam-columns and lead 

to unconservative error of less than 6% in the stability crucially frames analyzed. (Maleck, 

2001, p.238). 
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To ensure that these results could be used in design, Surovek-Makeck and White 

(2003, 2004a, 2004b) analyzed a subset of 10 major-axis configuration and 7 minor-axis 

configuration frames using factored strength and stiffness terms to verify their claim that 

factoring both strength and stiffness terms provide the same results as applying a 0.9 factor 

to the abscissa and ordinate of a graph with the results of a study with nominal strength and 

stiffness terms (as in Maleck, 2001).  This, indeed, proved to be true. 

To quantify the error, they plotted the applied force vs. moment, normalized against 

the cross-section full-yield limit state (i.e., plots of P/Py vs M/Mp), and then computed the 

percent radial error of ME and NL with respect to design by advanced inelastic analysis. 

The errors found for ME were -6% to +16% for frames under major-axis bending, and -6% 

to 20% for minor-axis bending. NL has -8% to 21% error for major-axis, and -13% to 20% 

for minor-axis; ELM showed -9% to 21% error for major-axis and -17% to 20% for minor-

axis. The greatest unconservatism was observed at a dimensional slenderness of 1.3. 

Overall, ME and NL performed better than ELM, providing less error and capturing the 

structural behavior more consistently and accurately. 

The high level of unconservatism observed in stability-critical frames with beam-

columns under minor-axis sparked the minor-axis column study detailed in Section 3.5 to 

assess the performance of the design by advanced elastic analysis method with respect to 

the design by advanced inelastic analysis method. The columns studied in this section have 

a pinned base, rotation-restrained top configuration that emulates the symmetrical pinned 

base frames studied by Maleck (2001). 
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To reduce the unconservatism, Maleck and White (2004b, p. 1200) suggest using 

an appropiate equivalent uniform rigidity, EIe, that accounts for moment gradient in beam-

columns to produce a more accurate representation of material non-linear behaviour. 

Ziemian (2002) has proposed the modified tangent modulus, explained hereinafter, as a 

way of calculating EIe. Alternatively, Nwe Nwe (2014) suggests factoring EIy by 0.7 

instead of 0.8, as in the original ME study by Maleck (2001). 

 

2.5.2. Ziemian and McGuire study 

As explained in Sections 2.3 and 2.7, the τb-factor was developed to account for 

partial yielding of the cross-section of a concentrically loaded column due to the combined 

effect of residual stresses and applied axial force. Technically, this reduction factor is only 

appropriate for beam-columns under pure axial force, but it has been shown to provide 

acceptable results for frames with beam-columns under major-axis bending (Ziemian and 

McGuire, 2002, p.1302). Nevertheless, partial yielding greatly impacts beam-columns 

subject to minor-axis flexure as explained in Section 2.2: ‘…yielding progresses from the 

flange tips inward, reducing the flexural rigidity significantly faster than in beam-columns 

subject to major-axis bending (Maleck and White, 2004a, p.1191).’ This effect cannot be 

properly captured by the τb-factor because its equation is not a function of bending moment. 

One solution involves explicit modeling of member-length partial yielding, i.e. the 

distributed plasticity approach described in Appendix A. However, this would be 

computationally prohibitive and an EIe approach is preferred. 
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Ziemian and McGuire (2002) have proposed to modify the τb-factor to obtain a 

more accurate EIe. This EIe accounts for varying partial yielding along the member length 

and cross-section. Combining EIe and a yield surface criterion serves as the basis for a 

second-order plastic-hinge analysis that accurately models system behavior, including 

response well beyond the formation of the first plastic-hinge. By performing various 

distributed analysis using the Galambos and Ketter (1959) stress pattern, Ziemian and 

McGuire (2002, p.1302) developed the following τ factor, which considers the combined 

effects of axial force and minor-axis bending on beam-columns with residual stresses 
















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))(1)((21(

0.1
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ympp 
 ,    (5) 

where 

2)5.0(,max( yy mPPp    

pyyy MMm   

0 for major-axis bending and 65.0 for minor-axis bending. 

The benchmark frames presented in Section 3.4 were analyzed using EIe (with E 

and Fy factored by 0.9) and load-displacement plots of these results were plotted to provide 

further evidence corroborating the predictive accuracy of EIe, especially when compared 

to design by advanced inelastic analysis. The built-in MASTAN2 yield surface criterion 

was used for the EIe analyses: 

15.435.3 242622422  yzyzyz mmmpmpmmp  

where p = P/Py; mz = Mz/Mpz; and my = My/Mpy (Ziemian, 2002, p.1301). This equation is 

often considered a more accurate representation of the yield surface than Equation 1. 
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2.5.3. Martinez-Garcia Study 

Martinez-Garcia (2002) performed a comprehensive benchmark study of 12 frames 

using an effective-length method and design by DM for the AISC 2005 Specification. The 

effective-length method involves the use of notional loads equivalent to 2% of the gravity 

load, K-factors and the use of in-plane and out-of-plane interaction equations to account 

for stability. The K-factors used in this approach are based on elastic critical load analyses, 

which can be considered at a story level, i.e., simultaneous buckling of a story, or the entire 

structure, i.e., all beams/columns buckle simultaneously (Martinez-Garcia, 2002, p.36-37).  

Design by DM, which has been described in Section 2.4, relies on second-order 

elastic analysis and notional loads (or direct modeling of story out-of-plumb initial 

imperfections) to increase the internal moments and compensate for the increase in axial 

capacity of columns by assuming Lc equal to the unbraced length (K=1). It uses the same 

in-plane interaction equation as the effective-length method to account for both in-plane 

and out-of-plane instabilities (Martinez-Garcia, 2002, p.38-39). The results were 

thoroughly compared to the results of advanced inelastic analysis using the finite element 

analysis software NIFA, developed at the School of Civil Engineering at the University of 

Sydney. This research showed that design by DM provides robust results for frames with 

beam-columns subject to major-axis bending. 
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2.5.4. Nwe Nwe Study 

Nwe Nwe (2014) performed frame and column studies to verify what she termed 

the modified design by direct analysis method, MDM. This method consists of using the 

cross-sectional axial strength (Equation 3) instead of the column-curve (Equation 4) within 

the interaction equation (Equation 1). Nevertheless, it did not stipulate explicit modeling 

of member initial imperfections within the analysis. Nwe Nwe (2014) analyzed the twelve 

frames from the study by Martinez-Garcia (2002). Her study shows that using the cross-

sectional axial strength instead of the member-length strength provides acceptable results 

for frames with beam-columns subject to major-axis bending, especially when compared 

to design by DM and design by advanced inelastic analysis. Nwe Nwe did note 

unconservative error greater than 5% for frames with beam-columns subject to minor-axis 

bending. From her research, she suggests factoring the minor-axis flexural stiffness by 0.7 

instead of 0.8; that is, use 0.8EImajor and 0.7EIminor in the analysis. 

2.6. Adding Initial Member Imperfections 

 

Initial geometric imperfections are often distinguished as system and member 

imperfections (Ziemian, 2010, p.716). System imperfections consist of story out-of-

plumbness, which is the relative displacement of the top and bottom of the members in a 

story. A worst case-scenario of such out-of-plumbness can usually be chosen out of the 

four possible directions of lean in a three-dimensional building frame. Member out-of-

straightness, or the initial deflection between member ends, is much more difficult to define. 



23 

CHAPTER 2: BACKGROUND 

Even though single curvature or double curvature bending imperfections are normally 

assumed, their real configuration may be very complicated (Ziemian, 2010, p. 41).  

In the work presented later in this thesis, the geometric imperfections follow the 

recommendations by requirement (3) in Section 2.1: out-of-plumpness equal to 1/500 of 

the story height, and out-of-straightness of 1/1000 of the member length. Instead of using 

bow imperfections, member imperfections are employed by using scaled deflections from 

first-order elastic analyses. The rationale for using first-order deflections instead of 

buckling solutions stems from the fact that instability occurs gradually, as in a first-order 

analysis, and not necessarily due to bifurcation or sudden buckling. This is a simpler 

approach than the one proposed by Alvarenga, A. and Silveria R. (2009), who suggest 

using the rescaled collapse configuration following an inelastic second-order analysis.  

Alternatively, Agüero et al. (2015a, 2015b) propose using a single imperfection 

instead of separate system and member imperfections. Their proposed imperfection, akin 

to the buckling mode, aims at capturing not only bending but also torsional effects due to 

axial force and applied moments.  Similarly, Shayan et al. (2014) propose the use of a 

rational method backed by a probabilistic study. In their proposed method, initial 

imperfections are modeled as a linear combination of the first three eigenmodes for 

unbraced frames, and the first six for braced frames with modeling errors of up to 8 and 

2.5% respectively. 
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2.7. Modeling Residual Stresses 

Residual stresses need to be considered in the analyses, either directly or by using 

approximate representation. FE++2015 models residual stresses directly in the analysis 

using the Lehigh stress pattern (Galambos and Ketter, 1959, p.30) shown in Figure 3. 

 
Figure 2. Stress pattern. From Galambos and Ketter (1959) and Surovek (2012) 

 

As an alternative, AISC’s 2010 Specification requires the use of Equation 6 to 

compute a reduction τb-factor which is to be applied to the flexural stiffnesses of all the 

members that contribute to the stability of the structure. In the 2016 Specification, this 

requirement may be extended to all stiffnesses including axial and flexural, which 

facilitates the analysis because the stiffness reduction τb-factor may simply be applied to 

the elastic modulus, E, which is represented in all stiffnesses values. 

)]/(1)[/(4 yryrb PPPP     when   5.0/ yr PP ,   (6a) 

1b  when   5.0/ yr PP ,    (6b) 

where 𝑃𝑟 is the required axial compressive strength, i.e. second-order internal axial force. 
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CHAPTER 3: METHODOLOGY 

The systems investigated in this research are based on two-dimensional benchmark 

frames published by ASCE (Surovek, 2012), frames by Martinez-García and Ziemian (2006), 

and the El-Zanaty frame, as referenced in Ziemian and McGuire (2002). The details of 

these frames are presented in Section 3.4. It should be noted that certain limitations 

modeling members with pin connections in FE++2015 (Bulemt Alemdar, 2015), elicited 

minor changes in frame 7b, 7c and 7d, as presented in Section 3.4. 

Each frame has two variations, one with member initial imperfections explicitly 

modeled and another without such imperfections included. This allowed for comparing the 

results of design by advanced elastic analysis, which requires modeling system and 

member imperfections, with design by DM, which only stipulates modeling system story 

out-of-plumbness. The general procedure for all the frames is summarized as follows: 

 

1) Initial member imperfections were represented in the frames per Section 3.1.  

2) Design by advanced inelastic analysis (using FE++2015) was completed on the 

frame configuration of step 1. 

3) The loads were rescaled such that the frames fail at an applied load ratio of unity, 

λ=1.0, using design by advanced inelastic analysis (later referred to as FE++2015, 

or simply FE++). 

4) The rescaled loading from step 3 was applied to both sets of frames, including those 

with and without member initial imperfections. 
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5) Secant stiffness reduction τb-factors were determined for both sets of frames at λ = 

1.0, per Section 3.2. 

6) Second-order elastic analyses (using MASTAN2) were completed on both sets of 

frames. 

7) The AISC interaction equation (Equation 1) was evaluated for all members at λ=1.0 

for design by DM and design by advanced elastic analysis, per Section 3.3. 

8) The lowest applied load ratio λ at which any member has an interaction equation 

value of unity is determined. This value is also referred to as the ultimate applied 

load ratio, ultimate λ (See Section 3.3). 

9) Load vs. lateral displacement curves showing results from FE++2015, design by 

DM, design by advanced elastic analysis, and the modified tangent τ-factor (Etm 

method) proposed by Ziemian (2002) are plotted to evaluate these methods in 

predicting system behavior. 

The applied load ratios that each method predicts were then compared to the load 

ratios at failure from design by advanced inelastic analysis (step 3 in above procedure) 

using the values obtained in step 8. Ideally, this value should be as close to 1.0. Values 

greater than 1.0 indicate unconservative error, while lower values may be attributed to a 

member strength limit state that is assumed to compromise the overall stability of the 

system. Section 3.5 uses frame 7d as a detailed example to illustrate this procedure. 
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As part of a sensitivity analysis, the effect of not including initial out-of-straightness 

imperfections in design by advanced elastic analysis was also quantified. The difference 

between using the secant τb-factor from Section 3.2 and the same τb-factor applied 

tangentially in the analysis were also studied. The percent differences in the ultimate load 

λ-ratios demonstrate whether or not modeling initial imperfections and using the stipulated 

secant τb-factor have a substantial impact in accuracy.  

Section 3.6 further describes a minor-axis column study, which was completed to 

evaluate the unconservatism in beam-columns under minor-axis bending using design by 

advanced elastic analysis. Because both MASTAN2 and FE++ can be run within the 

MATLAB platform, MATLAB code was written to perform all of the aforementioned steps, 

except for steps 3 and 4. While the code is not included within the body of this thesis, the 

flowcharts presented in this chapter are accurate representations of the code employed. 

 

 

3.1. Initial Member Imperfections 

This section describes how the initial member imperfections were modeled in this 

study. Each structural member, represented by a series of finite elements between member 

ends, was modeled using 8 line elements in the MASTAN2 analysis software, and thus 

their member out-of-straightness is well defined by the end coordinates of these elements. 

(In addition to modeling initial out-of-straightness, it assists in more accurately capturing 

P-δ effects). MATLAB code was written to include initial out-of-straightness 
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imperfections in the MASTAN2 models. Although the flow chart and equations that follow 

illustrate how the member initial imperfections were added, a brief overview is provided 

below.  

Three coordinate systems are employed: 

i. Definition of the global space, with X-, Y-, and Z-axes spanned by the {𝑖̂}, {𝑗̂} and 

{𝑘̂} basis; 

ii. definition of the local space of each member in its undeflected shape, with x’-,y’-, 

and z’- axes spanned by the {𝑖̂′}, {𝑗̂′} and {𝑘̂′} basis; and 

iii. definition the local space of each member in its deflected shape with x’’-, y’’-, and 

z’’- axes spanned by {𝑖̂′′} , {𝑗̂′′} , and {𝑘̂ ′′} basis.  

It should be noted that vectors in the global space have no subscript or the subscript ‘o’ to 

indicate their base location has been shifted to the origin. Vectors in either local coordinate 

space have the subscript ‘local.’  

After completing a first-order elastic analysis, each deflected member’s coordinates 

were retrieved, rescaled to have a maximum amplitude of L/1000 and rotated to align with 

the corresponding member’s undeflected orientation. After retrieving each of the deflected 

members’ coordinates, these were displaced such that the begin node at the start of the 

member is at the origin to facilitate subsequent transformations. Rescaling the deflected 

member requires working in its local space, which can be expressed with the 𝛤1 global-to-

local transformation matrix: 
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Γ1 = [

lx mx nx

ly my ny

lz mz nz

], 

where  

 {î′′} = ⌊lx  mx  nx⌋T ≡ unit vector along deflected shape local x-axis in global space, 

 {j′̂′} = ⌊ly  my  ny⌋
T

≡ unit vector along deflected shape local y-axis in global space, 

 {k̂′′} = ⌊lz  mz  nz⌋T ≡ unit vector along deflected shape local z-axis in global space. 

 

Once rescaled, the coordinates were shifted back to the global space. This was done by pre-

multiplying them by the inverse of 𝛤1, which equals its transpose, 𝛤1
𝑇 = 𝛤1

−1.  Then, the 

rescaled deflected shape was rotated from its position along the deflected member local 

x’’-axis to the undeflected member local x’-axis using the rotation matrix 𝛤2:  

 

Γ2 = [

cos(θ) + ux
2(1 − cos(θ))  uxuy(1 − cos(θ)) − uzsin(θ) uxuz(1 − cos(θ)) + uysin(θ)

uyux(1 − cos(θ)) + uzsin(θ) cos(θ) + uy
2(1 − cos(θ)) uyuz(1 − cos(θ)) − uxsin(θ)

uzux(1 − cos(θ)) − uysin(θ) uzuy(1 − cos(θ)) + uxsin(θ) cos(θ) + uz
2(1 − cos(θ))

], 

where 

 u = ⌊ux uy uz⌋
T

= {î
′′
} × {î

′
} ≡ axis of rotation from {î′′} to {î′}. 

 θ = arccos({î
′′
}T {î

′
}) ≡ angle of rotation from {î′′} to {î′}. 

 

This rotation accounts for the relative displacement of the element end nodes. Lastly, the 

deflected shape is shifted such that the start node of the member is returned to its original 

undisplaced location. 
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Figure 3. Flow diagram for adding out-of-straightness imperfections  

 

Perform 1st-Order Elastic Analysis 

Retrieve the undeflected shape global coordinates   → [orig] 

Shift them such that the start node is at (0,0,0)    →   [origo] 
Retrieve the deflected shape global coordinates    → [dfl] 

Shift them such that the start node is at (0,0,0)   →   [dflo] 

(Each column stores the x, y, z coordinates of each member node) 

 

Construct the Γ1 matrix  Transform the deflected shape coordinates at origin from 

the global coordinate system to the deflected member local coordinate system. 

[dfllocal] = [Γ1][dflo] 

 

Rescale the local deflected shape coordinates to the specified out-of-

straightness, and account for any squeezing/stretching of the column. 

[dfllocal
rescaled] =[Ρ][dfllocal], [Ρ] ≡ rescaling matrix 

 

 Transform the rescaled local deflected shape coordinates back 

to the global coordinate system with start node at origin. 

[dflo
rescaled] = [Γ1]T [dfllocal

rescaled] 
 

Construct the Γ2 rotation matrix  Rotate the rescaled global deflected shape coordinates 

along the deflected member local x-axis onto the undeflected member local x-axis. 
[impfo] = [Γ2] [dflo

rescaled] 
 

Translate the member initial imperfection coordinates at origin by the coordinates of the 

start node of the undeflected shape global coordinated  →    [impf] 

 

Replace the original undeflected shape global coordinates with 

the member initial imperfection coordinates in the model  

Open File 

For each member 

Save new file 
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3.2. Secant τb-factor vs. tangent τb-factor 

Residual stresses were included in the analyses using the stiffness reduction τb-

factor represented in Section 2.7. Equation 6 was used to compute τb at an applied load 

ratio of λ = 1.0. In other words, τb was not updated in the step-wise analysis as more axial 

load is applied onto the structure. Instead, it was based on the internal axial force 

distribution at the given applied load. In general, this is defined as a secant factor. This 

approach presents some complications:  

 

i. Finding τb requires an iterative process because the internal forces cannot be 

obtained without running an analysis that uses the τb factor. Luckily, the axial force 

distribution can be well approximated from a first-order equilibrium analyses as the 

deformed and undeformed geometries are quite similar. 

ii. Secondly, the secant τb-factor is constantly varying at each load ratio. That is, if one 

is interested in determining the internal forces and moments in a member at an 

applied load ratio λ different from the ultimate applied load λ-ratio, an iterative 

procedure would be required to determine the τb-factor for that given load ratio. 

 

The alternative to the secant τb-factor, which was also employed in this study, 

would be to use a tangent-modulus τb-factor, which would simply be to update at each load 

increment in the analysis (Ziemian, 2010, p.705). This straightforward procedure requires 

no iterations and provides the τb-factor at any given load step. In this study, all frames were 

analyzed using both secant and tangent τb-factors and the percent difference of the results 
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is calculated. Note that only secant τb is computed in a separate algorithm. MASTAN2 by 

Ziemian and McGuire (2015) modifies each element stiffness matrix by using its built-in 

tangent τb calculator. 

A similar stiffness reduction factor approach is the modified tangent factor, which 

was proposed by Ziemian and McGuire (2002), and is explained in Section 2.5.2. The load-

displacement plots that will be presented in Chapter 4 also include the behavior predicted 

by the use of the modified tangent factor. 

 

3.3. Interaction Equation and Applied Load Ratio 

Figure 4 shows the steps used to find the AISC Interaction equation value (Equation 

1) per design by DM and design by advanced elastic analysis. This equation is referred to 

as H1-1 in AISC’s 2010 Specification, and was named accordingly in the flow charts and 

tables that follow. The axial and moment capacities of each member are computed per 

Section 2.3 and used in conjunction with the internal forces at an applied load ratio of λ = 

1.0.  
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 No  Yes 

       Design by elastic analysis                                                           DM 

    

 

 

 

 

 
Figure 4. Interaction Equation at λ = 1.0 and λ at Interaction Equation = 1.0 

 

Similarly, to find the applied load ratio λ at which each member has an interaction 

equation value of unity, a binary search algorithm (Appendix B) was written and performed. 

The lowest λ at which any member violates the interaction equation is also referred to as 

the ultimate λ-ratio, because this is the applied load ratio at which the controlling member 

Find the load step at λ = 1.0 

Compute the length based on 

begin and end node coordinates. 

Extract its material and section properties 

from MASTAN2 or AISC database. 

Axial capacity:  

𝛷𝑐𝑃𝑛 = 𝛷𝑐𝐹𝑦𝐴𝑔 

 

Use Equation 4 or  
𝛷𝑐𝑃𝑛 = 𝛷𝑐𝐹𝑦𝐴𝑔 

if tension member 

 

Moment Capacity 𝛷𝑀𝑛𝑥 = 𝛷𝐹𝑦𝑍𝑥 and 𝛷𝑀𝑛𝑦 = 𝛷𝐹𝑦𝑍𝑦 

 

Calculate the interaction equation value, H1-1, from Equation 1. 

Binary Search for λ when H1-1 = 1.0 (See Appendix B). 

Obtain 2nd-order analysis results 

For each member 

DM? 

IntrEq 

AppLoadRatio 
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has an interaction equation value that exceeds unity. The ultimate λ-ratio was used to 

compare capacities ratios predicted by design by DM and design by advanced elastic 

analysis against design by advanced inelastic analysis. 

 

Obtaining applied load ratios λ-values at which each member has an interaction 

equation value of unity is straightforward when an analysis with tangent τb has been 

performed. However, as stated in Section 3.2, the use of secant τb factor renders finding 

the correct λ value an iterative process that requires at least one analysis per member. Thus, 

to simplify the process, only the lowest applied load ratio λ was recorded. 

 

3.4. Description of frames 

This section provides descriptions of the 12 benchmark frames that were 

investigated in this research and obtained from studies by (i) Ziemian and Martinez-Garcia 

(2006) on the feasibility and reliability of design by DM; and (ii) the El-Zanaty frame as 

studied by Ziemian and McGuire (2002). The figures in this section show the controlling 

load combination and out-of-plumbness direction for each frame. The loads shown are 

often provided to several significant figures because they represent the rescaled loads such 

that the frames fail at an applied load ratio λ of 1.0 according to a rigorous second-order 

inelastic analysis (FE++2015). All gravity and lateral loads are applied proportionally.  
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System 1a – Ziemian and Miller (1997) Unsymmetrical Frame (Major-axis) 

 
Figure 5. Ziemian and Miller Frame (Major-axis). Modified from Nwe Nwe (2014) 

 

This frame, originally studied by Iffland and Birnstiel (1982) and Ziemian and 

Miller (1997), represents a two-story industrial frame with a high gravity-to-lateral load 

ratio typical of low-rise industrial buildings. In the Martinez-García study (2002, p.88), it 

was  established that the load combination shown was the controlling load combination, 

when combined with a system initial out-of-plumbness to the left. The large gravity load 

is intended to produce significant second-order effects in the presence of small lateral initial 

imperfections (Nwe Nwe, 2014, p.26). Furthermore, the left-most columns were designed 

smaller than the other ones for efficiency reasons and as a result are reduced to leaning 

columns obtaining their stability from the remaining portion of the frame. As a result, the 

second-order effects from the high gravity load acting upon them are significantly 

accentuated (Nwe Nwe, 2014, p.26). All columns are oriented for major-axis bending and 

the frame is assumed to be fully braced out-of-plane. 
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System 1b – Ziemian and Miller (1997) Unsymmetrical Frame (Minor-axis) 

 
Figure 6. Ziemian and Miller Frame (Minor-axis). Modified from Nwe Nwe (2014) 

 

This frame has the same geometry and dimensions as the previous system, except 

that the columns are oriented for minor-axis bending. This frame serves as an example to 

verify the adequacy of design by advanced elastic analysis for investigating frames with 

members subject to minor-axis bending. 
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System 2 –Maleck (2001) Industrial Frame (Major-axis Bending) 

 
Figure 7. Maleck 11-Bay Industrial Frame, Originally from Surovek (2012, p.33) 

 

The system shown in Figure 7, initially developed by Maleck (2001), is a single-

story industrial building with only a few columns providing lateral support for many bays 

(Surovek, 2012, p. 32). Such buildings usually have a high gravity to wind load ratio 

causing the behavior to be dominated by the P-Δ effect from the gravity load acting on the 

out-of-plumbness and subsequent deflections (Surovek, 2012, p.32). Martinez-García and 

Ziemian (2006) simplified the frame to an equivalent three-bay system with two exterior 

leaning columns that represent the combined applied load and axial stiffness of the former 

leaning columns. The equivalent frame can be seen in Figure 8.  

 
Figure 8. Maleck 3-Bay Industrial Frame, Modified from Surovek (2012) 
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System 3 – Grain Storage Bin (Major-axis Bending) 

 
Figure 9. (a) Grain Storage Bin. (b) Analysis Representation. Modified from Nwe Nwe (2014) 

 

Figure 9 shows a structural system that was studied by Martinez-García (2002) and 

Nwe Nwe (2014). The system represents an elevated structure in which the relatively high 

location of the gravity load causes significant destabilizing effects (Nwe Nwe, 2014, p. 29). 

The comparatively large gravity-to-wind load ratio produces significant second-order 

effects in the presence of a small lateral imperfection or wind loading. The bracing is 

provided by W4x13 section members, with only the tension member modeled in the 

analysis. The wind and gravity loads are converted into equivalent single loads as shown 

in Figure 9(b) (Nwe Nwe, 2014, p.30). All sections are oriented for bending about their 

major-axis, and the structure is assumed fully braced out of plane. 
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System 4 – Vogel (1985) Multi-Story Frame (Major-axis Bending) 

 
Figure 10. Vogel (1985) Frame (Major-axis) Modified from Nwe Nwe (2014) 

 

The frame shown in Figure 10, originally proposed by Vogel (1984), represents a 

multi-story building. The frame was studied by Ziemian (1990), Maleck (2001), and 

Martinez-Garcia and Ziemian (2002, 2006), among others. Vogel (1984) provided factored 

loads, and thus a load combination of 1.0G + 1.0W is used (Nwe Nwe, 2014, p. 32). The 

frame columns are European HEB sections (H-shaped) and the beams are IPE sections (I-
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shaped). All connections and foundations are assumed rigid. All members are oriented for 

major-axis bending with the frame fully braced out of plane. 

 

System 5 – Martinez-García (2002) Gable Frame (Major-axis) 

 
Figure 11. Martinez-García Gable Frame. Modified from Nwe Nwe (2014) 

 

System 5, from Martinez-García (2002), shows a typical industrial gable frame. 

The frame is statically indeterminate to the second degree and thus becomes a kinematic 

mechanism after formation of the second plastic-hinge (Nwe Nwe, 2014, p.33). At about 

65% of the applied load ratio at failure, formation of the first plastic-hinge causes a 

substantial reduction in the system lateral stiffness (Surovek, 2012, p. 34). All sections are 

oriented for major-axis bending, and the structure is assumed fully braced out of plane. 
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System 6 – Martinez-García (2002) Moment Frame (Major-axis) 

 
Figure 12. Martinez-García Moment Frame. Modified from Nwe Nwe (2014) 

 The frame in Figure 12 is an irregular two-bay frame that highlights the difficulty 

using story-based design methods such as the effective-length method (Surovek, 2012, p. 

40; Nwe New, 2014, p. 35). For this frame, only load combination LC1 (1.2D+1.6L+0.8W) 

which includes both wind load and out-of-plumbness acting to the right, was considered 

(Nwe Nwe, 2014, p.35). The assumption that this loading condition has the lowest ultimate 

load can be rationalized by the presence of more slender columns on the right portion of 

the frame, which become leaning columns upon application of gravity load, whereas the 

left columns possess greater restraint. All sections are oriented for major-axis bending, and 

the structure is assumed fully braced out of plane. 
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System 7a –Two Bay Moment Frames, Unequal Heights (Major-axis) 

 
Figure 13. System 7a. Modified from Martinez-García (2002) 

  

 This frame was originally presented by Martinez-García (2002) as one with a 

simple irregular geometry. Systems 7b, 7c and 7d have variations in connection restraint 

and the presence of lateral bracing. This system has pinned supports at the base, but the 

connections are otherwise rigid. 
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System 7b –Two Bay Moment Frames, Unequal Heights (Major-axis) 

 
Figure 14. System 7b. Modified from Martinez-García (2002) 

 

System 7b is a variation of system 7a. As originally presented by Martinez-García 

(2002), it possessed a distributed load atop member B1-2. However; limitations in the 

FE++2015 analysis software required that the distributed load be represented as two 

separate concentrated loads at each end of the beam. System 7b is a major-axis bending 

system that is fully braced out-of-plane. Although this system has fixed base supports, 

member B1-2 has pinned connections at both of its ends. 
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System 7c – Two Bay Braced Frame, Unequal Heights (Major-axis) 

 

 
Figure 15. System 7c. Modified from Martinez-García (2002) 

 

System 7c was also originally proposed by Martinez-García (2002) and possessed 

a distributed load along beams B1-1 and B1-2. As with system 7b, however, these loads 

had to be represented as concentrated loads at the member ends. It is noted that the leaning 

column on the right, C1-3, together with pinned member B1-2, form a kinematic 

mechanism that does not provide any lateral bracing to column C1-2. As such, the unbraced 

length of C1-2 is not from connection to connection, but rather taken as its entire length. 
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System 7d – Two Bay Braced Frame, Unequal Heights (Minor-axis) 

 
Figure 16. System 7d (Minor-axis) Modified from Martinez-García (2002) 

 

System 7d has the same geometry as the previous three frames. However, the beams’ 

sections are smaller in order to be compatible with the columns which are oriented for 

minor-axis bending (Nwe Nwe, 2014, p. 40). Similarly, the gravity loads are smaller to 

account for the fact that smaller sections are used. This system is thoroughly analyzed in 

Section 3.5 as the example illustrating the design by advanced elastic analysis methodology. 

As with system 7c, the right leaning column, C3-1, together with member B1-2 form a 

kinematic mechanism that does not provide lateral bracing to column C1-2, and thus, the 

unbraced length of C1-2 is taken as its entire length. 
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System 8 – Vierendeel Truss 

 
Figure 17. Vierendeel Truss. Modified from Martinez-García (2002) 

 

 System 8 was developed by Martinez-García (2002) as a three-dimensional system 

for his studies of the design by DM. Vierendeel trusses, such as the one shown in Figure 

17, are commonly used to support pedestrian walkways. In the study by Nwe Nwe (2014) 

the sections and loading of the original design were modified to ensure that plastic yielding 

controls the frame’s moment strength. Furthermore, and due to a limitation in FE++2015, 

torsional warping resistance is not included in this study. Although all sections are oriented 

for major-axis bending, there are minor-axis bending moments as a result of the three-

dimensional half-sine imperfection along the length of the frame (z-axis). The system is 

not braced out-of-plane. Because of the system symmetry, only results for the members in 

the left portion of the truss are provided.  
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System 9 – El Zanaty Frame 

 
Figure 18. El-Zanaty Frame, modified from Ziemian (2002) 

  

The El Zanaty frame, extracted from the study by Ziemian and McGuire (2002), is a 

stability critical frame. The beam is oriented for major-axis bending and both columns are 

oriented for minor-axis bending. Although this frame is very similar to the Kanchanalai 

frame (1977), it differs in that there are minor levels of overturning moment and the 

relatively flexible beam provides limited lateral stability.  

 

3.5. System 7d Detailed Example 

System7d was chosen as the example to illustrate the general procedure outlines in 

the beginning of Chapter 3. Following step 1, a first-order elastic analysis was performed 

and initial member imperfections were incorporated into the model. This frame was 

subsequently analyzed with FE++2015 using the factored loads shown in Figure 16, which 

yielded an applied load ratio λ at failure. The loads were then multiplied by the λ-value at 
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failure, such that performing another FE++ analysis would yield a system strength limit 

stat at an applied load ratio of λ = 1.0. The rescaled loads, shown in Figure 19, were then 

applied to the models of the frame with and without initial member out-of-straightness. 

The ultimate load ratios, λ values, obtained after analyzing the frame using the modified 

tangent modulus, Etm, design by advanced elastic analysis, DEA, and design by DM are 

provided in this figure. 

 
Figure 19. Frame 7d with factored loads 

 

 

Before performing the second-order analysis needed for the design by advanced 

elastic analysis and design by DM methods, the secant τb factors were obtained from first-

order analyses on both frames with and without initial out-of-straightness. It was found that 

no member had P/Py greater than 0.5, and thus τb is equal to 1.0 for all members. This 

implies there is no difference in employing a secant τb or tangent τb in subsequent second-

order analyses.  
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Assessment of the design by advanced elastic analysis method is the more 

straightforward method and explored first. A second-order analysis is performed on the 

frame with member out-of-straightness, and then the load step at which the applied load 

ratio of λ=1.0 is secured. In this case, the load step at which λ = 1.0 was found to be the 

100th step, but this may not always the case given the nature of the solver. At this load step, 

the second-order internal forces and moments of each member were retrieved and used in 

conjunction with the member axial and moment capacities (i.e., Pn = FyAg for the axial 

capacity, Mnx = ZxFy and Mny = ZyFy.) in the interaction equation, Equation 1, for a unity 

check.  

Similarly, for design by DM, a second-order analysis was run on the frame without 

member out-of-straightness. The next steps were the same as for design by advanced elastic 

analysis except that the axial capacity is computed using Equation 4. Although these 

capacities are usually computed assuming the unbraced length of each member is equal to 

the distance between its end connections, beam B1-2 does not provide any restraint to 

column C1-2, and thus, the right bay of the frame is simply leaning on this column. As a 

result, the unbraced length should be taken as the entire length of member C1-2 (20’-0”). 

These steps are summarized in the flow chart presented in Section 3.3. Table 3 

shows the results for both design by DM and design by advanced elastic analysis 

procedures. As part of the sensitivity study previously described at the beginning of 

Chapter 3, design by advanced elastic analysis was also completed for the case of members 

without initial imperfections.  
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Table 3. H1-1 and λ values for frame 7d 

  

Interaction Equation H1-1 at λ = 1.00 

Direct Analysis Method 
Elastic Analysis without 

out-of-straightness 

Elastic Analysis with out-

of-straightness 

Member Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 

C1-1 0.347  -- 0.347 0.183  -- 0.092 0.184  -- 0.092 

C1-2a 0.563 0.648 1.140 0.298 0.648 0.874 0.298 0.661 0.885 

C1-2b 0.322 0.648 0.898 0.170 0.648 0.733 0.170 0.661 0.746 

C1-3 0.748  -- 0.748 0.381  -- 0.381 0.381  -- 0.381 

B1-1 0.008  -- 0.004 0.007  -- 0.004 0.007  -- 0.004 

B1-2 0.006  -- 0.003 0.006  -- 0.003 0.006  -- 0.003 

BRACE 0.096  -- 0.048 0.096  -- 0.048 0.096  -- 0.048 

 

  

λ when Interaction Equation H1-1 = 1.00 

Direct Analysis Method 
Elastic Analysis without 

out-of-straightness 

Elastic Analysis with out-

of-straightness 

Member Pu/ΦPn Mu/ΦMn λ Pu/ΦPn Mu/ΦMn λ Pu/ΦPn Mu/ΦMn λ 

C1-1  --  -- 1.460 --   -- 1.460 --   -- 1.460 

C1-2a 0.508 0.544 0.908 0.322 0.747 1.090 0.324 0.775 1.081 

C1-2b 0.347 0.743 1.072 0.202 0.900 1.185 0.200 0.906 1.173 

C1-3 0.998  -- 1.336  --  -- 1.460  --  -- 1.460 

B1-1  --  -- 1.460  --  -- 1.460  --  -- 1.460 

B1-2  --  -- 1.460  --  -- 1.460  --  -- 1.460 

BRACE  --  -- 1.460  --  -- 1.460  --  -- 1.460 

 

It is noted that some cells are empty. This is because some members are axial force 

members and column studies presented in this research cover such cases. The cells with 

applied load ratios of λ = 1.46 are for  members that did not fail before the entire frame 

collapsed, and thus the Pu/ΦPn and Mu/ΦMn at which the member reached H1-1 cannot be 

computed.  

Finally, Figure 20 shows the load ratio vs. lateral displacement graphs that show 

the response of the system as predicted by design by advanced inelastic analysis (FE++), 

design by advanced elastic analysis, design by DM and the modified tangent modulus. A 

schematic of the deflected shape is included to help elucidate the plot information. 
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Figure 20. (a) Lateral displacement of both frame 7d bays. (b) Lateral displacement of the right bay 

The deflection of the top of each bay was monitored at its top right corner. The 

deflections of both bays are shown in the Figure 20 (a) to better understand the frame 

behavior, whereas Figure 20 (b) shows only the top of the 2nd bay for comparative purposes. 

Similar tables and plots for all other frames are provided in Appendix C. The reader is 

encouraged to review them to get a full understanding of the behavior of each frame studied 

and observe the first plastic-hinge locations. 
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3.6. Minor-axis Column Study 

Previous studies (Maleck and White, 2003; Nwe Nwe, 2014) showed that design 

by DM and a variation of design by DM, MDM, consistently overestimate the strength of 

beam-columns subject to axial load and minor-axis bending. This is attributed to the 

progressive yielding from the flange tips inward, which reduces the flexural rigidity of the 

member at a rate much faster than major-axis bending (Maleck and White, 2004a, p.1191). 

This effect is not properly captured either by the current τb factor, or AISC’s minor-axis 

interaction equation. As a result Nwe New (2014) suggested factoring the minor-axis 

flexural rigidity by 0.7 instead of 0.8 to account for this. Maleck and White (2004b, p.1203) 

observed the greatest error at a slenderness of L/r = 98.3 for A992 steel. In the present 

study eleven typical AISC wide-flange columns with similar depth and width were 

investigated by varying the slenderness, L/r, between 40, 60, 80, and 100. This was done 

to quantify the error in design by advanced elastic analysis, using stiffness reduction values 

of 0.7 and 0.8, through comparisons with results of design by advanced inelastic analysis 

based on FE++2015. Figure 21 shows the column under investigation, which emulates the 

Kanchanalai frame studied by Ziemian and McGuire (2002) with a pinned bottom base and 

top fully restrained against rotation. 

 
Figure 21. Kanchanalai Frame and column study, modified from Ziemian (2002) 
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Plots of applied force vs. moment normalized against the cross-section full-yield 

limit state; i.e. P/Py vs. M1/Mp, were created. The first-order moment, M1, equals H times 

the column length. Figure 22 provides a flowchart of the MATLAB routine written for 

finding the axial force and horizontal load combinations at failure. Figure 23 shows the 

routine for pure axial force case and Figure 24 provides the routine for combined axial and 

horizontal load. 

 

 

 

 

 

 

 

 
 

 

 
 

             No 
    Yes 

 

           No 
    Yes 

 
Figure 22. Column Study Main Routine 

For each column 

Set E and Fy values and compute Py, Pn, Mpy and Mpx 

 𝛷𝑀𝑛𝑥 = 0.9𝑀𝑝𝑥 and 𝛷𝑀𝑛𝑦 = 0.9𝑀𝑝𝑦 

 

For each analysis type: FE++, DEA w/0.8E, DEA w/0.7E and DM 

Load file without member imperfections if DM 

 

𝛷𝑃𝑛 = 0.9𝑃𝑦 for DEA or 𝛷𝑃𝑛 = 0.9𝑃𝑛 for DM 

 

𝐸𝑜 = 0.8𝐸 for DM and DEA w/0.8E 

𝐸𝑜 = 0.7𝐸 for DEA w/0.7E 

𝐸𝑜 = 0.9𝐸 and 𝐹𝑦𝑜 = 0.9𝐹𝑦 for FE++2015 

Routine for Pure Axial Load (Figure 23) 

Combined Axial and Horizontal Load (Figure 24) 

Radial Error Calculation 

Load File 

     All analyses done? 

Last file? 

End 
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Design by advanced elastic analysis and design by advanced inelastic analysis were 

completed on columns that included member initial imperfections, and design by DM 

studies were completed on ones without. Figure 23 provides a flowchart of the sub-routine 

employed for finding the axial capacity of each column under pure axial load, and similarly, 

Figure 24 is for the case of axial and moment capacity under combined axial and horizontal 

load. In general, the left side of these flow charts represents the procedure for design by 

DM and design by advanced elastic analysis, and the right side represents FE++2015. 

 

 

                    Direct Analysis Method                  Design by advanced inelastic  

 Design by advanced elastic analysis                                               analysis (FE++2015) 

                                                 
 

 

                                                                                                         

          No                                    No 

                                                                      Yes 

                                           
    Yes 

 
 

 
 

 
Figure 23. Sub-routine for determining pure axial load capacity of columns 

Estimate 𝑃 = 0.8𝑃𝑛 = 0.8𝑃𝑛𝐹𝑐𝑟𝐴𝑔 

Set 𝐸 = 𝜏𝑏𝐸0, where 

𝜏𝑏 = 4 𝑃 𝑃𝑦⁄ (1 − 𝑃 𝑃𝑦⁄ )  

  
Analyze Column 2nd-order elastic or FE++ 

P=0.1*P+ λ*P P= λ*P 

Binary Search for λ 

(See Appendix B) 

Break 

Break 

Store 𝑃, 𝑃 𝑃𝑦⁄ , 𝑃𝑢 , 𝑀𝑢𝑦, 𝑃𝑢 𝑃𝑦⁄ 𝑀𝑢𝑦 𝑀𝑝𝑦⁄ , 𝑃𝑢 𝛷𝑃𝑛⁄ , 𝑀𝑢 𝛷𝑀𝑛𝑦⁄  in data 

Is λ = 1.0? 

 H1-1 = 1.0? 

(Is 𝜏𝑏 correct?) 
λ = 1.0? 

 

Start 

End 
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              No                                                Yes 

                

         Yes     No                 

 
    Yes       No 

                                   No 

       Yes 

           
 

 

                       No 

                   Yes 

 
Figure 24. Sub-routine for finding combined axial load and horizontal load of columns 

Set 𝑃𝑜 = (𝑠𝑡𝑒𝑝𝑠 − 1) × 𝑃 𝑠𝑡𝑒𝑝𝑠⁄  , where 𝑠𝑡𝑒𝑝𝑠 ≡ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑝𝑠 = 10 
 

For 𝑃 =  𝑃𝑜: 𝑠𝑡𝑒𝑝: 0 

Set 𝐸 = 𝜏𝑏𝐸0, where 𝜏𝑏 =
4 𝑃 𝑃𝑦⁄ (1 − 𝑃 𝑃𝑦⁄ )  

Estimate 𝐻1 = 0.2 × 𝐻𝑜 , 𝐻2 = 0.7 × 𝐻𝑜 and 𝐻3 = 1.8 × 𝐻𝑜,  

Where 𝐻𝑜 = 0.5𝛼
𝛷𝑀𝑛𝑦−(𝑃×

𝐿

500
)

L×tan(𝛼)
  and 𝛼 =  √(𝑃𝐿2) (𝐸𝐼)⁄  

 

 

 

 

 
 

 

k = 1 

While True 

Analyze Column 2nd-order elastic or FE++ using P and 𝐻𝑘 

 𝐻𝑘 = 0.9𝐻𝑘 Obtain H1-1 (2nd-Order) or λ (FE++) value 𝐻𝑘 = 1.2𝐻𝑘 

k = k+1 

𝐻𝑘+1= cubic interpolation of 𝐻𝑘 , 𝐻𝑘−1, 𝐻𝑘−2 and corresponding H1-1 or λ values 

Store 𝑃, 𝐻𝑘 , 𝐻𝑘𝐿, 𝑃 𝑃𝑦⁄ , 𝐻𝑘𝐿 𝑀𝑝𝑦⁄ , 𝑃𝑢 , 𝑀𝑢𝑦, 𝑃𝑢 𝑃𝑦⁄ , 𝑀𝑢𝑦 𝑀𝑝𝑦⁄ , 𝑃𝑢 𝛷𝑃𝑛⁄ , 𝑀𝑢 𝛷𝑀𝑛𝑦⁄  in data 

Does  

λ at H1-1 = 1  

exist? 

 

Is 

λ > 2  

? 

 

Is H1-1 = 1 (2nd-Order elastic) or is λ = 1 (Fe++)? 

 

Start 

Is k≥3? 

 

Is P = 0? 

 

End 



56 

CHAPTER 3: METHODOLOGY 

After preparing P/Py vs. M1/Mp plots, the radial errors were computed according to 

Equation 7: 

%100







FE

FE

r

rr
      (7) 

 Unfortunately, this provided inaccurate results for columns with slenderness L/r 

ratios of 60, 80 and 100 because their maximum strengths are P/Py values for FE++ of 0.29, 

0.18 and 0.12 respectively. Figure 25 shows that for L/r = 100, most data points 

investigated are for small P/Py values which was further complicated the use of cubic 

splines to interpolate between points. 

 
Figure 25. Computing radial error (a) Using P/Py as the ordinate (b) Using P/PFE++ as the ordinate 

 

This difficulty was overcome by first normalizing the plots into P/PFE++ vs. M1/ΦMp plots, 

where PFE++ is the maximum axial load predicted by FE++ when no moment is applied. 

The plots could then be expressed as radial distance vs. angle θ going clockwise from 

P/PFE++ to M1/ΦMp and then applying equation 7 with parabolic interpolation.
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The results from design by DM and design by advanced elastic analysis, DEA, are 

presented in Table 4 in the form of interaction equation H1-1 values (Equation 1), and 

applied load ratios λ, for the controlling beam and column in each system. Each column 

provides the largest interaction equation H1-1 value at λ=1.0. The presence of H1-1 values 

exceeding 1.0 indicate that the given member may fail before the entire load is placed on 

the system and thereby represents a conservative result. Similarly, the applied load ratio λ 

at which the first column and beam of a system achieves an interaction equation value of 

unity is shown. The overall lowest λ among beams and columns dictates how much load 

the system can resist and thus it is called the ultimate λ. In frame 8, the truss chords were 

taken as beams, and the web members as columns.  

Table 4. Summary of design by DM and Design by advanced elastic analysis results (secant τb) 

System  1a 1b 2 3 4 5 6 7a 7b 7c 7d 8 9 

Maximum H1-1 value at λ = 1.0 

Col. 
D.M. 1.20 1.22 1.19 0.98 1.22 1.60 1.10 0.75 1.04 1.05 1.14 0.85 0.93 

D.E.A 1.20 0.99 1.12 0.98 1.16 1.59 1.09 0.67 0.97 0.99 0.88 0.84 0.90 

Beam 
D.M. 1.31 1.01 0.91 -- -- 0.50 0.95 1.21 1.14 -- -- 1.87 0.22 

D.E.A. 1.31 1.01 0.92 -- -- 0.50 0.95 1.22 1.14 -- -- 1.23 0.23 

Minimum λ  when H1-1 = 1.0 

Col. 
D.M. 0.84 0.83 0.95 1.01 0.83 0.65 0.92 1.32 0.96 0.95 0.91 1.14 1.06 

D.E.A 0.84 1.01 0.97 1.01 0.86 0.65 0.93 1.42 1.03 1.01 1.08 1.15 1.08 

Beam 
D.M. 0.76 0.99 1.05 -- -- 1.82 1.05 0.84 0.88 -- -- 0.80 1.40 

D.E.A. 0.76 0.99 1.04 -- -- 1.83 1.04 0.84 0.88   -- 0.97 1.38 

Ult. λ 
D.M. 0.76 0.83 0.95 1.01 0.83 0.65 0.92 0.84 0.88 0.95 0.91 0.80 1.06 

D.E.A. 0.76 0.99 0.97 1.01 0.86 0.65 0.93 0.84 0.88 1.01 1.08 0.97 1.08 

Green cells indicate conservative results and orange cells, unconservative error with respect to FE++2015 

 

The last two rows of Table 4 show the ultimate applied load ratio λ of each system 

investigated. These values can be directly compared to the FE++2015 results, all of which 

fail at an ultimate λ of 1.0. The results were obtained using secant τb. 
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4.1. Effect of Initial Imperfections 

Table 5 summarizes the percent differences when not including initial member 

imperfections in the design by advanced elastic analysis method. Similar to Table 4, each 

column shows the largest H1-1 and ultimate applied load λ-ratio among the beams and 

columns of each system. Negative percent differences indicate an increase in 

unconservative error with respect to the frames with member imperfections. Although lack 

of out-of-straightness generally results in lower internal moments, force redistribution 

sometimes leads to positive percentages, e.g., frames 4, 7a and 7b. 

Table 5. Effect of neglecting initial imperfections (tangent τb) 

System  1a 1b 2 3 4 5 6 7a 7b 7c 7d 8 9 

Maximum H1-1 value at λ = 1.0 

C
o

lu
m

n
 

With imperf. 1.20 0.99 1.12 0.98 1.19 1.59 1.09 0.67 0.97 0.99 0.88 0.84 0.90 

No imperf. 1.20 0.96 1.12 0.95 1.19 1.59 1.09 0.68 0.97 0.99 0.87 0.84 0.89 

% Diff. -0.3 -2.4 -0.3 -3.3 0.7 0.0 -0.1 1.2 0.5 -0.1 -1.2 -0.1 -1.5 

B
ea

m
 With imperf. 1.31 1.01 0.92 -- -- 0.50 0.95 1.22 1.14 -- -- 1.23 0.23 

No imperf. 1.30 1.01 0.91 -- -- 0.50 0.95 1.21 1.14 -- -- 1.23 0.22 

% Diff. -0.3 0.0 -0.4 -- -- 0.0 -0.1 -0.2 -0.2 -- -- 0.0 -1.5 

Minimum λ when H1-1 = 1.0 

C
o

lu
m

n
 

With imperf. 0.84 1.01 0.97 1.01 0.85 0.65 0.93 1.42 1.03 1.01 1.08 1.15 1.08 

No imperf. 0.84 1.02 0.97 1.03 0.84 0.65 0.93 1.42 1.03 1.01 1.09 1.15 1.09 

% Diff. -0.3 -1.1 0.0 -1.8 0.6 0.0 0.0 -0.2 0.5 -0.1 -0.9 0.0 -1.1 

B
ea

m
 With imperf. 0.76 0.99 1.04 -- -- 1.83 1.04 0.84 0.88 -- -- 0.97 1.38 

No imperf. 0.76 0.99 1.05 -- -- 1.83 1.05 0.84 0.88 -- -- 0.97 1.40 

% Diff. -0.3 0.0 -0.2 -- -- 0.0 -0.1 -0.1 -0.2 -- -- 0.0 -1.4 

 

These results were not expected. Apparently not including initial imperfections has 

little to no impact on the strength of the frames investigated. Although the largest difference 

is 2.4% in frame 1b, this did not affect the frame’s ultimate applied load λ-ratio. The largest 

differences in λ were observed in frames 3 and 9 with 1.8 and 1.1% respectively. Note that 

these results were obtained using a tangent τb factor. As indicated in the next section, the 

differences between using the tangent τb instead of the secant τb are even smaller than those 

of neglecting initial imperfections. 
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4.2. Secant vs. tangent τb 

The percent differences obtained by using the tangent τb-factor in design by DM 

and design by advanced elastic analysis were quantified with respect to the stipulated 

secant τb-factor. Although frames 1a, 1b, 2, 3, 4, 7a and 7b all possess at least one member 

where its axial load force exceeds 0.5Py , the τb-factor only caused significant difference in 

the performance of frames 1a, 2, 3, 4, 7a, and 7b. Table 6 shows the percent differences 

observed in these frames between employing a secant τb-factor vs. tangent τb-factor for both 

design by DM and design by advanced elastic analysis. The differences are calculated 

based on the maximum interaction equation H1-1 values and ultimate applied load λ-ratios. 

As explained in Section 3.2, finding λ for every single member is an iterative and time 

consuming procedure; and thus, only the ultimate applied load λ-ratio, regardless of 

member type (beam or column), is compared. 

Table 6. % difference between using secant and tangent τb factor in design by DM and DEA 

design by direct analysis method, DM design by advanced elastic analysis,DEA 

System  1a 2 3 4 7a 7b 1a 2 3 4 7a 7b 

M
a

x
im

u
m

 H
1

-1
 

C
o

lu
m

n
 

Tangent 1.20 1.19 0.98 1.23 0.75 1.04 1.20 1.12 0.98 1.19 0.67 0.97 

Secant 1.20 1.19 0.98 1.22 0.75 1.04 1.20 1.12 0.98 1.16 0.67 0.97 

% Diff. -0.03 0.00 0.01 -1.36 0.00 0.00 -0.04 0.02 0.01 -1.81 0.00 0.00 

B
ea

m
 Tangent 1.30 0.91 -- -- 1.21 1.14 1.31 0.92 -- -- 1.22 1.14 

Secant 1.31 0.91 -- -- 1.21 1.14 1.31 0.92 -- -- 1.22 1.14 

% Diff. 0.11 0.00 -- -- -0.03 -0.08 0.10 0.00 -- -- 0.00 0.00 

U
lt

im
a

te
 

λ
-r

a
ti

o
 Tangent 0.76 0.95 1.01 0.82 0.84 0.88 0.76 0.97 1.01 0.85 0.84 0.88 

Secant 0.76 0.95 1.01 0.83 0.84 0.88 0.76 0.97 1.01 0.86 0.84 0.88 

% Diff. 0.00 0.00 0.00 1.44 0.03 0.07 0.00 -0.01 0.00 1.86 0.00 0.00 

 

The largest difference was observed in frame 4 with 1.44% for design by DM and 

1.86% for DEA. Differences in all other values are negligible. This also demonstrates that 
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for many frames, the axial load on any member rarely exceeds 50% of its axial yield 

strength. 

4.3. Column Study Results 

The P/Py vs. M1/Mp curves obtained for given values of L/r were found to be almost 

identical regardless of the section investigated. The curves in this section are for an A992-

steel W8X58-column. Appendix D provides plots of P/PFE++ vs M1/ΦMp and plots showing 

the variation in percent radial error as a function of the angle θ going from the P/PFE++ axis 

towards the M1/Mp axis for the same W8X58-column. Figure 26 shows the graph for a 

slenderness ratio L/r of 40.  

 
Figure 26. W8X58 P/Py vs. M1/Mp for L/r = 40, Fy = 50 ksi 

From Figure 26 one can appreciate that for a slenderness ratio of 40, all methods 

provide unconservative results with respect to the FE++2015 results for the case of pure 

axial load. Although the unconservative error increases slightly when minor-axis moment 

of up to 20% is applied, it gets progressively lower as the applied minor-axis moment 
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approaches the minor-axis plastic moment capacity. The unconservative error peaks at 

15 % for this slenderness ratio. 

Similarly, Figure 27 through 29 provides plots of P/Py vs. M1/Mp for slenderness 

ratios L/r of 60, 80 and 100, respectively.  

 
Figure 27. W8X58 P/Py vs. M1/Mp for L/r = 60, Fy = 50 ksi 

 
Figure 28. W8X58 P/Py vs. M1/Mp for L/r = 80, Fy = 50 ksi 
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Figure 29. W8X58 P/Py vs. M1/Mp for L/r = 100, Fy = 50 ksi 

Although all methods provide conservative estimates of the strength for the case of pure 

axial capacity when the slenderness ratio is greater than 60, there is still unconservative 

error when there is combined axial load and minor-axis moment. Appendix D presents 

plots showing the percent radial error as a function of the angle θ going from the P/PFE++ 

axis towards the M1/Mp axis and a table with the maximum conservative and 

unconservative percent radial errors for each beam-column studied. Table 7 provides the 

average and standard deviation for these errors.  

Table 7. Maximum conservative and unconservative% radial error 

Slenderness 

Ratio L/r 

Max. Conservative% Error [Mean (st.dev.)] Max. Unconservative% Error [Mean (st.dev.)] 

DEAw/0.8E DEA w/0.7E DM w/0.8E DEA w/0.8E DEA w/0.7E DM w/0.8E 

40 0.00 (0.00) 0.34 (0.16) 0.00 (0.00) 15.07 (0.32) 7.25 (0.40) 14.74 (0.86) 

60 0.00 (0.00) 10.39 (0.41) 0.00 (0.00) 11.49 (0.40) 3.20 (0.29) 9.68 (0.74) 

80 3.27 (0.42) 14.74 (0.38) 2.12 (0.45) 8.81 (0.41) 2.70 (0.46) 8.00 (0.59) 

100 5.40 (0.35) 16.74 (0.32) 4.44 (0.37) 7.98 (0.41) 3.10 (0.45) 6.56 (0.42) 
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What if Fy = 36 ksi instead of 50 ksi? 

The column study in the previous section investigated steel members with yield 

strength of Fy = 50 ksi. In previous research, such as the parametric study by Maleck (2003), 

additional work focused on a yield strength of Fy = 36 ksi. To verify the current research, 

the results of the analysis of a W8X31 column with L/r of 60 were compared to the study 

of a symmetrical frame with pinned base, L/r of 60, and G = 0 in Maleck (2003). Figure 27 

shows that the results of the current study align well with Maleck’s study (2003). 

 
Figure 30. W8X31, weak 60 compared to SP_W60_G0 from Maleck (2003) 

 

In particular, the design by DM method when using a rigorous analysis (by virtue 

of subdividing the column into 8 pieces to capture P-δ effects) is indiscernible between 

studies. Similarly, design by advanced elastic analysis showed results very close to design 

by DM. FE++ results were also in direct agreement with distributed plasticity or plastic 

zone (PZ) analysis results by Maleck (2003). Moreover, the maximum unconservative error 

of 11 percent in the current study is consistent with results obtained by Maleck (2003). 
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5.1. Summary of Results 

The results presented in this thesis support the hypothesis statement that directly 

modeling both system and member initial geometric imperfections within the structural 

analysis will provide adequate designs that are comparable to AISC’s design by the direct 

analysis method and AISC’s design by advanced inelastic analysis. The accuracy of this 

approach, termed design by design by advanced elastic analysis, is quantified in terms of 

the applied load ratio at failure predicted by AISC’s design by advanced inelastic analysis. 

Frames with members subject to major-axis bending presented little-to-no 

unconservative error, with frames 3 and 7b having 1 to 3% unconservative error with 

respect to design by advanced inelastic analysis. In contrast, only frame 3 was 

unconservative per design by DM. Among the systems with members subject to minor-

axis bending, frames 7d and 9 showed 8 to 9% unconservative error when compared to 

AISC’s design by advanced inelastic analysis. Frame 9 also displayed 6% unconservative 

error when employing design by DM. For frames 7c, 7d and 8, the unbraced lengths could 

not be simply taken as the distance between member connections, rather the effective 

compression length was chosen by inspection between two connections that provide 

adequate lateral bracing. If the distance between connections had been used, AISC’s design 

by DM results would also have been unconservative for these frames. 
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As part of a sensitivity completed on the research performed, it was found that not 

adding the required initial member imperfections, prescribed as L/1000, had no significant 

impact on the findings. The percent change was less than 1% for all frames, except frame 

8 which had a 1.2% difference. Furthermore, when comparing the use of the stiffness 

reduction tangent τb-factor against the stiffness reduction secant τb-factor, it was found that 

the axial load exceeded 50% of the yield stress in only very few frames, including frames 

1a, 1b, 3, 4, 7a and 7b. Of these frames, only a few members had stiffness reduction τb-

factors slightly lower than 1.0. These results demonstrate that for the wide range of frames 

studied in this research, the τb-factor may be taken as 1.0 in almost all members, and as a 

result there is little difference between using a secant τb-factor or tangent τb-factor. 

Although the column study showed a maximum unconservative error of up to 15% 

for design by advanced elastic analysis, only 1% greater than the maximum unconservative 

error for AISC’s conventional design by direct analysis method. Factoring stiffness by 0.7 

in design by advanced elastic analysis reduced the unconservatism to 7.4%, albeit adding 

conservative error of up to 17%. This study demonstrated that, in general, design by DM 

and design by advanced elastic analysis show good agreement with design by advanced 

inelastic analysis (using FE++2015) in cases of nearly pure axial load and an 

unconservative error of up to 15% when applied bending moments are introduced. 

Conversely, by gaining conservative error of 16% in cases of almost pure axial load, design 

by advanced elastic analysis with stiffness factored by 0.7 became quite accurate for cases 

with bending with values exceeding M/Mp = 0.2. It is important to remember that even 

though the column study showed high unconservative error, the impact of a single member 
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failing is typically reduced as frame redundancy increases. This is exemplified by the frame 

study where the frames with members oriented for minor-axis bending, including those 

studied by El-Zanaty, and 7d showed only an 8% unconservative error. 

 

5.2. Recommendations for further research 

All of the frames studied in this research, except for frame 8, are fully braced out-

of-plane. Moreover, all the sections used are compact wide-flange sections. Thus, it is 

recommended that further research be performed that investigates the validity of design by 

advanced elastic analysis on more three-dimensional systems that include members subject 

to axial load and combined major and minor-axis bending. It is also recommended that 

further research be used to verify the adequacy of this method for non-compact and slender 

sections, as well as members that might be vulnerable to lateral torsional buckling. In this 

regard, it is particularly important that more research be completed that studies the effects 

of initial member twist imperfections, which may cause a significant reduction in moment 

capacity. 

 As for the initial imperfections, further research into alternative methods of 

applying initial imperfections, as was done by Agüero et al. (2015a, 2015b) and Shayan et 

al. (2014), is recommended for future inclusion in the AISC specification. In applying 

methods of design that rely heavily on modeling system and member initial imperfections, 

the profession will need guidance on defining the magnitude and mode of such 

imperfections.  
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Although a more rigorous study of the stiffness reduction tangent τb-factor would 

help corroborate that its use does, in fact, cause little difference in the analysis with respect 

to the use of the current secant τb-factor, the author believes that focusing on improving a 

modified tangent τ-factor, which includes both major and minor axis bending terms, would 

be more beneficial to all design methods. A more accurate factor that accounts for these 

moments might eliminate the need to reduce stiffness by a factor of 0.8 to account for 

inelastic softening, and thereby greatly increase the predictive capabilities of the method. 

 

Given that the column curve interaction equation used by AISC to assess beam-

columns are the same for a given dimensionless slenderness ratio, 𝜆 = 𝐿 𝑟⁄ √𝐹𝑦 𝐸⁄ , (or in 

other words, they depend only on L/r and Fy), more research could be useful in helping to 

establish definite curves for a wide range of slenderness sections, and then help calibrate a 

new stiffness reduction τ-factor that accounts for the differences in destabilizing effects 

due to major-axis and minor-axis bending moments. Of course, more column studies 

should be performed to account for different end-restraints, section slenderness, members 

subject to out-of-plane failure modes such as lateral torsional buckling, and members 

subject to both major and minor-axis bending. With this in mind, the logical next step 

would be to investigate the feasibility of adding twist imperfections such that moment 

capacity can be taken as the plastic moment throughout and thereby rely on the analysis to 

account for the possibility of elastic and inelastic lateral torsional buckling.
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Appendix A. Plastic-hinge vs. Distributed Plasticity 

The AISC 2016 Specification provides two design by advanced analysis methods, 

including design by advanced elastic analysis and design by advanced inelastic analysis. 

The main difference between them lies in the way yielding is modeled. Design by advanced 

elastic analysis is essentially a first plastic-hinge analysis, whereas design by advanced 

inelastic analysis uses a distributed plasticity model. In the latter, not only are members 

subdivided into elements, but each element’s cross-section is also discretized into fibers 

(Surovek, 2012, pg. 13). At each load step, yielding is tracked explicitly along the length 

and cross-section of members. A plastic-hinge model, on the other hand, uses a yield 

surface criterion to determine whether the cross-section has fully yielded. While there are 

more mathematically accurate depictions of the yield surface (as described in the study by 

Ziemian and McGuire reference in Section 2.5.2), the equation presented in Section 2.2 is 

preferred.  

Table A 1. Plastic-hinge vs. distributed plasticity. Adapted from Surovek (2012, pg. 14) 

 Plastic-hinge Analysis 

(Concentrated Plasticity) 

Distributed Plasticity Analysis 

(Plastic Zone Analysis) 

Design by advanced elastic 

analysis* 

Design by advanced inelastic 

analysis 

Modeling  Plastic-hinges at element ends, 

otherwise elastic everywhere else. 

Fiber discretization at cross-sections 

and along member length. 

Source of 

Inelasticity 

Tracked only at element ends. Tracked explicitly at the cross-section 

and along the length. 

Spread of  

Inelasticity 

Elastic-perfectly plastic-hinge at 

element ends. 

Gradual development of inelasticity 

and along length and cross-section. 

Material 

Nonlinear 

Behavior 

τb factor accounts for reduced E due 

to axial force only. 

Elastic-plastic model with or without 

strain hardening defined for each 

fiber. 

Residual 

Stresses 

Indirectly modeled through the use 

of τb  

Stress pattern defined uniquely at 

each fiber. 

Geometric 

Imperfections 

Out-of-plumbness and out-of-straightness explicitly modeled in the analysis 

*System assumed stable only until the formation of the first plastic-hinge. 
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Appendix B. Binary Search Engine 

In general, the binary search routine is used to expedite the search of an indexed 

value. In this research, a routine was written to find the applied load ratio λ at which the 

interaction equation H1-1 for a given member reached a value of 1.0. The routine splits the 

data, i.e., the λ-values, into two halves and determines which half contains the value being 

seeked. It checks for these domains by computing the interaction equation values at each 

guess, the first one being the middle of the data set. If the guess is indeed the value being 

seeked, it stops looking. Otherwise, it determines which half of the data to examine next 

based on the interaction equation H1-1 value obtained. Iteration proceeds until a λ-value 

resulting in an interaction equation value of unity is found. The data often does not contain 

the exact value, in which case, the routine uses linear interpolation. 

 

 

 

 
                Yes                                                   No 

No                    Yes 

                     
 

 

 

 
Figure B 2. Binary Search Engine Flowchart 

Set Lower = 0, Upper = n and Prev = 0 

Guess = floor((Lower+Upper)/2) 

H1-1 = Λcheck(Guess) 

Upper = Guess-1 Lower = Guess+1 

Set Prev = Guess 

 

Interpolate: Λ = Λlow + (1-H1low)*(Λup-Λlow)/(H1up-H1low) 

Is H1-1≈ 1? 

(i.e. is Prev = Guess?) 

i 

Is H1-1< 1? 
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Appendix C. Benchmark Frame Results 

This appendix provides the tables for all members within the frames studied in 

which the interaction equation H1-1 values are provided at an applied load ratio λ equal to 

1.0 and the applied load ratio λ-values at which the interaction equation equals 1.0 for each 

member of interest. Cells with yellow shading show the conservative controlling values, 

whereas cells with orange shading show controlling values which are unconservative when 

compared to AISC’s design by advanced inelastic analysis. Similarly, cells with purple 

shading represent members in which the percent difference is greater than 10% between 

such methods.  

This appendix also provides load vs. displacement plots for each system. 

Specifically, these graphs plot the applied load ratio, λ, vs. the displacement of the roof or 

top story of each system. For example, for systems 1a and 1b, the displacement of the top 

right hand corner is monitored. These graphs also provide plots of results predicted by 

FE++2015, design by advanced elastic analysis and design by the direct analysis method. 

Some of these displacement plots have data from previous research by Martinez-

Garcia (2002) superimposed on them in an effort to clearly compare the FE++ results with 

the NIFA results. In some multistory systems, only FE++ and design by advanced elastic 

analysis are shown on the plots to better illustrate the displacement. Displacements at each 

story level is referred to as Δ1, Δ2, etc. In system 6 for example, Δ1, Δ2 and Δ3 indicate 

the stories on the left side of the frame. To help elucidate the plot information, and to save 

space, schematics of the deformed frames are shown within these graphs. 



71 

APPENDICES 

C.1. System 1a – Ziemian and Miller (1997) Unsymmetrical Frame (Major-axis) 

 
Figure C 1. System 1a Factored Loads 

 
Table C 1. System 1a H1-1 and λ values 

1 

H1-1 at Applied Load Ratio = 1.00 

Direct Analysis Method 

Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 

C1-1 0.847 0.102 0.938 0.640 0.102 0.731 0.639 0.126 0.750 

C1-2 0.510 0.507 0.960 0.472 0.507 0.922 0.473 0.498 0.915 

C1-3 0.315 0.356 0.631 0.291 0.356 0.607 0.291 0.336 0.589 

C2-1 0.309 0.286 0.563 0.262 0.286 0.516 0.261 0.277 0.507 

C2-2 0.168 1.035 1.119 0.161 1.035 1.115 0.161 1.038 1.119 

C2-3 0.109 1.143 1.198 0.105 1.143 1.195 0.105 1.147 1.199 

B1-1 0.001 1.303 1.304 0.001 1.303 1.304 0.000 1.307 1.308 

B1-2 0.041 0.982 1.003 0.041 0.982 1.003 0.042 0.981 1.002 

B2-1 0.003 1.203 1.205 0.002 1.203 1.205 0.003 1.204 1.206 

B2-2 0.091 1.052 1.098 0.078 1.052 1.092 0.078 1.055 1.094 

 

1 
Applied Load Ratio when H1-1 = 1.00 

Direct Analysis Method 

Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ 

C1-1 0.905 0.113 1.062 0.851 0.171 1.324 0.823 0.204 1.283 

C1-2 0.526 0.525 1.038 0.507 0.551 1.077 0.513 0.549 1.084 

C1-3 0.537 0.579 1.802 0.497 0.535 1.807 0.495 0.490 1.800 

C2-1     1.860     1.860     1.860 

C2-2 0.150 0.926 0.894 0.143 0.923 0.897 0.144 0.929 0.895 

C2-3 0.091 0.952 0.836 0.087 0.950 0.838 0.088 0.956 0.835 

B1-1 0.001 1.001 0.765 0.001 1.001 0.765 0.000 1.007 0.762 

B1-2 0.041 0.974 0.998 0.041 0.974 0.998 0.041 0.973 0.998 

B2-1 0.002 1.010 0.830 0.002 1.010 0.830 0.002 0.988 0.830 

B2-2 0.083 0.965 0.912 0.072 0.960 0.917 0.072 0.964 0.915 
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Figure C 2. System 1a Lateral Displacement Plots 
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C.2. System 1b – Ziemian (1990) Unsymmetrical Frame (Minor-axis) 

 
Figure C 3. System1b Factored Loads 

 
Table C 2. System 1b H1-1 and λ values 

1 

H1-1 at Applied Load Ratio = 1.00 

Direct Analysis Method 

Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 

C1-1 0.050 0.434 0.458 0.036 0.434 0.452 0.037 0.466 0.485 

C1-2 0.580 0.605 1.118 0.426 0.605 0.964 0.426 0.632 0.988 

C1-3 0.279 0.029 0.305 0.205 0.029 0.231 0.205 0.079 0.275 

C2-1 0.764 0.100 0.853 0.097 0.100 0.148 0.097 0.087 0.136 

C2-2 0.547 0.291 0.805 0.309 0.291 0.568 0.309 0.279 0.558 

C2-3 0.617 0.674 1.216 0.247 0.674 0.846 0.248 0.647 0.823 

B1-1 0.005 0.925 0.927 0.005 0.925 0.927 0.005 0.925 0.928 

B1-2 0.001 0.710 0.710 0.001 0.710 0.710 0.000 0.713 0.714 

B2-1 0.001 1.009 1.009 0.001 1.009 1.009 0.001 1.008 1.009 

B2-2 0.002 0.682 0.683 0.002 0.682 0.683 0.002 0.683 0.684 

* Note: Differences between secant τb and tangent τb are negligible 

1 

Applied Load Ratio when H1-1 = 1.00 

Direct Analysis Method 

Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ 

C1-1 0.069 1.023 1.141 0.051 1.014 1.142 0.050 1.018 1.132 

C1-2 0.552 0.523 0.940 0.432 0.632 1.017 0.428 0.642 1.005 

C1-3 0.324 0.864 1.180 0.237 0.770 1.189 0.235 0.784 1.179 

C2-1 0.878 0.128 1.149 0.320 0.814 1.522 0.310 0.756 1.506 

C2-2 0.675 0.357 1.248 0.398 0.692 1.353 0.395 0.641 1.349 

C2-3 0.508 0.550 0.826 0.285 0.793 1.160 0.295 0.801 1.182 

B1-1 0.008 0.990 1.109 0.007 0.990 1.110 0.009 0.993 1.113 

B1-2 0.002 0.980 1.259 0.002 0.980 1.259 0.003 1.004 1.254 

B2-1 0.001 1.007 0.991 0.001 1.007 0.991 0.001 1.007 0.991 

B2-2 0.005 0.992 1.367 0.004 0.992 1.367 0.004 1.002 1.364 

* Note: Differences between secant τb and tangent τb are negligible 
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Figure C 4. System 1b Lateral Displacement Plots 
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C.3. System 2 Maleck (2001) Industrial Frame (Majox Axis) 

 
Figure C 5. System 2 Factored Loads 

 
Table C 3. System 2 H1-1 and λ values 

  

H1-1 at Applied Load Ratio = 1.00 

Direct Analysis Method 
Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 

C1-1 0.457 0.828 1.194 0.382 0.828 1.118 0.382 0.833 1.122 

C1-2 0.473 0.591 0.998 0.395 0.591 0.920 0.395 0.597 0.926 

B1-1 0.003 0.913 0.914 0.003 0.913 0.914 0.003 0.917 0.918 

* Note: All  Pu/ΦPn < 0.5, i.e. τb = 1 

 

  

Applied Load Ratio when H1-1 = 1.00 

Direct Analysis Method 
Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ 

C1-1 0.433 0.627 0.947 0.368 0.676 0.970 0.368 0.679 0.969 

C1-2 0.478 0.637 1.000 0.401 0.661 1.016 0.402 0.676 1.015 

B1-1 0.003 0.990 1.047 0.003 0.990 1.047 0.003 1.000 1.045 

* Note: All  Pu/ΦPn < 0.5, i.e. τb = 1 
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Figure C 6. System 2 Lateral Displacement Plots 
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C.4. System 3 Grain Storage Bin (major-axis) 

 
Figure C 7. System 3 Factored Loads and lateral displacement plot 

 
Table C 4. System 3 H1-1 and λ values 

  

H1-1 at Applied Load Ratio = 1.00 

Direct Analysis Method 
Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 

C1-1 0.548 0.403 0.906 0.518 0.403 0.876 0.516 0.440 0.907 

C1-2 0.616 0.409 0.979 0.582 0.409 0.945 0.584 0.443 0.978 

C2-1 0.532 0.403 0.890 0.487 0.403 0.845 0.486 0.440 0.877 

C2-2 0.573 0.409 0.936 0.525 0.409 0.888 0.525 0.443 0.919 

 

 

  

Applied Load Ratio when H1-1 = 1.00 

Direct Analysis Method 
Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ 

C1-1 0.576 0.487 1.053 0.546 0.494 1.069 0.535 0.504 1.049 

C1-2 0.628 0.433 1.012 0.595 0.436 1.030 0.596 0.471 1.012 

C2-1 0.566 0.508 1.061 0.527 0.541 1.083 0.516 0.552 1.064 

C2-2 0.593 0.457 1.035 0.563 0.513 1.060 0.551 0.520 1.042 
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C.5. System 4 Vogel (1985) Multi-Story Frame (major-axis) 

 
Figure C 8 System 4 Factored Loads 

 
Figure C 9. System 4 Lateral Displacement Plot 
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Table C 5. System 4 H1-1 and λ values 

  

H1-1 at Applied Load Ratio = 1.00 

Direct Analysis Method 
Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 

C1-1 0.383 0.340 0.686 0.355 0.340 0.657 0.354 0.337 0.654 

C1-2 0.765 0.527 1.234 0.725 0.527 1.193 0.726 0.517 1.185 

C1-3 0.518 0.545 1.002 0.479 0.545 0.963 0.479 0.543 0.962 

C2-1 0.327 0.023 0.347 0.303 0.023 0.323 0.302 0.023 0.322 

C2-2 0.627 0.423 1.002 0.594 0.423 0.969 0.594 0.420 0.967 

C2-3 0.419 0.627 0.977 0.388 0.627 0.946 0.388 0.627 0.945 

C3-1 0.264 0.058 0.315 0.244 0.058 0.296 0.244 0.053 0.292 

C3-2 0.554 0.362 0.876 0.519 0.362 0.841 0.520 0.362 0.842 

C3-3 0.320 0.579 0.835 0.297 0.579 0.811 0.297 0.578 0.810 

C4-1 0.195 0.261 0.358 0.181 0.261 0.351 0.180 0.259 0.349 

C4-2 0.406 0.261 0.638 0.381 0.261 0.613 0.381 0.262 0.613 

C4-3 0.224 0.637 0.791 0.208 0.637 0.774 0.208 0.636 0.773 

C5-1 0.221 0.276 0.466 0.190 0.276 0.371 0.190 0.271 0.366 

C5-2 0.358 0.309 0.632 0.326 0.309 0.600 0.326 0.305 0.597 

C5-3 0.242 0.783 0.938 0.208 0.783 0.904 0.208 0.779 0.901 

C6-1 0.088 0.669 0.713 0.076 0.669 0.707 0.076 0.669 0.707 

C6-2 0.141 0.098 0.169 0.128 0.098 0.162 0.128 0.097 0.161 

C6-3 0.093 0.844 0.890 0.080 0.844 0.884 0.080 0.843 0.882 

 

  

Applied Load Ratio when H1-1 = 1.00 

Direct Analysis Method 
Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ 

C1-1 0.522 0.534 1.377 0.498 0.565 1.415 0.496 0.560 1.418 

C1-2 0.623 0.420 0.816 0.614 0.439 0.843 0.611 0.428 0.849 

C1-3 0.513 0.539 0.998 0.497 0.567 1.035 0.496 0.565 1.036 

C2-1     1.530     1.530     1.530 

C2-2 0.622 0.419 0.998 0.606 0.433 1.029 0.617 0.439 1.031 

C2-3 0.431 0.646 1.023 0.410 0.666 1.054 0.410 0.665 1.055 

C3-1     1.530     1.530     1.530 

C3-2 0.630 0.423 1.132 0.610 0.439 1.175 0.611 0.439 1.174 

C3-3 0.381 0.698 1.184 0.361 0.717 1.216 0.361 0.715 1.217 

C4-1     1.530     1.530     1.530 

C4-2 0.610 0.432 1.519     1.530     1.530 

C4-3 0.283 0.815 1.250 0.266 0.826 1.275 0.265 0.823 1.277 

C5-1     1.530     1.530     1.530 

C5-2     1.530     1.530     1.530 

C5-3 0.258 0.837 1.064 0.231 0.872 1.102 0.230 0.865 1.105 

C6-1 0.123 0.935 1.397 0.107 0.941 1.409 0.107 0.941 1.409 

C6-2     1.530     1.530     1.530 

C6-3 0.105 0.954 1.121 0.089 0.947 1.129 0.091 0.962 1.131 
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C.6. System 5 Martinez-García (2002) Gable Frame (major-axis) 

 

Figure C 10. System 5 Factored Loads 

 
Table C 6. System 5 H1-1 and λ values 

  

H1-1 at Applied Load Ratio = 1.00 

Direct Analysis Method 
Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 

C1-1 0.058 0.151 0.180 0.045 0.151 0.174 0.045 0.150 0.173 

C1-2 0.080 1.562 1.602 0.063 1.562 1.593 0.063 1.562 1.593 

B1-1 0.010 0.434 0.439 0.007 0.434 0.438 0.007 0.435 0.439 

B1-2 0.025 0.488 0.501 0.018 0.488 0.497 0.018 0.488 0.497 

* Note: All  Pu/ΦPn < 0.5, i.e. τb = 1 

 

  

Applied Load Ratio when H1-1 = 1.00 

Direct Analysis Method 
Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ 

C1-1 0.151 0.918 2.957 0.119 0.932 2.968 0.119 0.939 2.966 

C1-2 0.051 0.974 0.645 0.040 0.969 0.648 0.040 0.968 0.649 

B1-1 0.019 0.987 2.108 0.014 0.995 2.113 0.014 0.988 2.109 

B1-2 0.044 0.981 1.823 0.033 0.989 1.831 0.032 0.988 1.832 

* Note: All  Pu/ΦPn < 0.5, i.e. τb = 1 
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Figure C 11. System 5 Lateral Displacement Plots 
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C.7. System 6 Martinez-García (2002) Moment-Frame (major-axis) 

 

 
Figure C 12. System 6 Factored Loads 

 
Figure C 13. System 6 Lateral Displacement Plots 
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Table C 7. System 6 H1-1 and λ values 

 

H1-1 at Applied Load Ratio = 1.00 

Direct Analysis Method Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 

C1-1 0.072 0.884 0.920 0.064 0.884 0.916 0.064 0.888 0.920 

C1-2 0.221 0.989 1.100 0.196 0.989 1.087 0.196 0.990 1.088 

C1-3 0.125 0.628 0.691 0.096 0.628 0.676 0.096 0.626 0.674 

C2-1 0.062 0.098 0.129 0.055 0.098 0.126 0.055 0.097 0.124 

C2-2a 0.123 0.289 0.351 0.119 0.289 0.349 0.120 0.290 0.350 

C2-2b 0.100 0.432 0.482 0.097 0.432 0.480 0.098 0.432 0.481 

C3-1 0.021 0.019 0.029 0.019 0.019 0.028 0.019 0.019 0.028 

C3-2 0.047 0.267 0.290 0.041 0.267 0.288 0.041 0.266 0.287 

C3-3 0.033 0.278 0.294 0.026 0.278 0.290 0.026 0.278 0.291 

B1-1 0.006 0.945 0.949 0.006 0.945 0.949 0.006 0.946 0.949 

B2-1 0.012 0.517 0.522 0.010 0.517 0.522 0.010 0.516 0.521 

B2-2 0.001 0.585 0.585 0.001 0.585 0.585 0.001 0.584 0.584 

B3-1 0.047 0.629 0.652 0.037 0.629 0.648 0.037 0.630 0.649 

B3-2 0.019 0.506 0.515 0.015 0.506 0.513 0.015 0.506 0.514 

* Note: All  Pu/ΦPn < 0.5, i.e. τb = 1 

 

Applied Load Ratio when H1-1 = 1.00 

Direct Analysis Method Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ 

C1-1 0.076 0.965 1.064 0.067 0.961 1.067 0.067 0.971 1.063 

C1-2 0.204 0.898 0.924 0.183 0.910 0.934 0.183 0.911 0.934 

C1-3 0.171 0.912 1.346 0.132 0.929 1.367 0.132 0.925 1.370 

C2-1 0.188 0.903 3.326 0.167 0.922 3.333 0.167 0.908 3.328 

C2-2a 0.254 0.844 2.152 0.248 0.853 2.161 0.246 0.843 2.158 

C2-2b 0.200 0.906 1.960 0.193 0.903 1.965 0.194 0.904 1.964 

C3-1   4.130   4.130   4.130 

C3-2 0.149 0.928 3.341 0.133 0.938 3.360 0.133 0.931 3.358 

C3-3 0.107 0.947 3.064 0.083 0.963 3.090 0.083 0.956 3.088 

B1-1 0.007 0.996 1.045 0.007 0.996 1.045 0.007 0.998 1.044 

B2-1 0.023 0.984 1.839 0.020 0.995 1.841 0.020 0.994 1.842 

B2-2 0.003 0.992 1.569 0.003 0.992 1.569 0.003 1.006 1.571 

B3-1 0.071 0.960 1.518 0.057 0.966 1.529 0.057 0.970 1.526 

B3-2 0.034 0.986 1.902 0.027 0.983 1.909 0.027 0.984 1.907 

* Note: All  Pu/ΦPn < 0.5, i.e. τb = 1 
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C.8. System 7a – Two Bay Moment Frames with Unequal Heights  

 

 
Figure C 14. System 7a Factored Loads 

 
Table C 8. System 7a H1-1 and λ values 

  

H1-1 at Applied Load Ratio = 1.00 

Direct Analysis Method 
Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 

C1-1 0.213 0.604 0.750 0.152 0.604 0.680 0.152 0.597 0.672 

C1-2a 0.220 0.513 0.677 0.197 0.513 0.612 0.197 0.514 0.612 

C1-2b 0.111 0.458 0.514 0.105 0.458 0.511 0.105 0.460 0.513 

C1-3 0.108 0.202 0.255 0.095 0.202 0.249 0.095 0.194 0.241 

B1-1 0.006 1.020 1.024 0.005 1.020 1.023 0.005 1.022 1.025 

B1-2 0.018 1.205 1.214 0.016 1.205 1.213 0.015 1.208 1.215 

 

  

Applied Load Ratio when H1-1 = 1.00 

Direct Analysis Method 
Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ 

C1-1 0.284 0.813 1.321 0.219 0.886 1.430 0.220 0.880 1.443 

C1-2a 0.308 0.783 1.383 0.279 0.802 1.419 0.280 0.806 1.417 

C1-2b 0.220 0.881 2.012 0.211 0.887 2.036 0.211 0.890 2.033 

C1-3 0.210 0.874 2.448 0.186 0.913 2.454 0.185 0.897 2.437 

B1-1 0.006 0.992 0.977 0.005 0.992 0.978 0.005 0.996 0.976 

B1-2 0.016 0.984 0.838 0.014 0.983 0.839 0.013 0.986 0.838 
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Figure C 15. System 7a Lateral Displacement Plots 
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C.9. System 7b – Two Bay Moment Frames, Unequal Heights 

 
Figure C 16. System 7b Factored Loads 

 

 
Table C 9. System 7b H1-1 and λ values 

  

H1-1 at Applied Load Ratio = 1.00 

Direct Analysis Method 
Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 

C1-1 0.256 0.880 1.038 0.182 0.880 0.971 0.182 0.875 0.966 

C1-2a 0.251 0.126 0.364 0.224 0.126 0.336 0.224 0.124 0.334 

C1-2b 0.133 0.362 0.429 0.127 0.362 0.425 0.127 0.357 0.420 

C1-3 0.150 0.135 0.210 0.133 0.135 0.202 0.133 0.134 0.200 

B1-1 0.019 1.130 1.139 0.015 1.130 1.138 0.015 1.133 1.141 

B1-2 0.005   0.003 0.005   0.002 0.005   0.002 

 

  

Applied Load Ratio when H1-1 = 1.00 

Direct Analysis Method 
Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ 

C1-1 0.247 0.850 0.964 0.186 0.899 1.029 0.189 0.908 1.034 

C1-2a 0.611 0.436 2.456 0.571 0.488 2.571 0.564 0.490 2.545 

C1-2b 0.495 0.568 4.005 0.470 0.609 4.013 0.468 0.588 3.997 

C1-3 0.401 0.671 2.667 0.366 0.720 2.740 0.364 0.715 2.735 

B1-1 0.016 0.983 0.879 0.014 1.004 0.880 0.013 0.986 0.878 

B1-2     4.370     4.370     4.370 
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Figure C 17. System 7b Lateral Displacement Plots 
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C.10. System 7c – Two Bay Braced Frame with Unequal Heights 

 

 
Figure C 18. System 7c Factored Loads 

 

 
Table C 10. System 7c H1-1 and λ values 

  

H1-1 at Applied Load Ratio = 1.00 

Direct Analysis Method 
Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 Pu/ΦPn Mu/ΦMn H1-1 

C1-1 0.202   0.202 0.142   0.071 0.142 0.012 0.082 

C1-2a 0.256 0.897 1.053 0.180 0.897 0.987 0.180 0.898 0.988 

C1-2b 0.146 0.897 0.970 0.102 0.897 0.948 0.102 0.898 0.949 

C1-3 0.303   0.303 0.237   0.237 0.237 0.014 0.249 

B1-1 0.021   0.010 0.018   0.009 0.018   0.009 

B1-2 0.015   0.008 0.014   0.007 0.014   0.007 

BRACE 0.131   0.066 0.131   0.066 0.131   0.066 

 

  

Applied Load Ratio when H1-1 = 1.00 

Direct Analysis Method 
Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ Pu/ΦPn Mu/ΦMn Λ 

C1-1     3.800     3.800     3.800 

C1-2a 0.244 0.852 0.954 0.183 0.916 1.012 0.183 0.918 1.011 

C1-2b 0.149 0.921 1.027 0.107 0.942 1.047 0.107 0.944 1.046 

C1-3 1.001 0.000 3.284     3.800 0.892 0.121 3.746 

B1-1     3.800     3.800     3.800 

B1-2     3.800     3.800     3.800 

BRACE     3.800     3.800     3.800 
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Figure C 19. System 7c Lateral Displacement Plots 
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C.11. System 8 – Vierendeel Truss 

 
Figure C 20. System 8 Factored Loads 

Table C 11. System 8 H1-1 and λ values 

1 
H1-1 at Applied Load Ratio = 1.00 

Direct Analysis Method Elastic Analysis with member imperfections 

Member Pu/ΦPn Mux/ΦMnx Muy/ΦMny H1-1 Pu/ΦPn Mux/ΦMnx Muy/ΦMny H1-1 

TC-1 0.279 0.414 0.363 0.969 0.072 0.413 0.364 0.813 

TC-2 0.654 0.375 0.769 1.671 0.169 0.375 0.771 1.230 

TC-3 0.858 0.205 0.930 1.867 0.221 0.205 0.932 1.232 

BC-1 0.074 0.576 0.081 0.694 0.074 0.576 0.081 0.694 

BC-2 0.169 0.408 0.027 0.520 0.169 0.408 0.027 0.520 

BC-3 0.221 0.204 0.000 0.403 0.221 0.204   0.403 

W-1 0.108 0.630 0.022 0.705 0.104 0.630 0.022 0.704 

W-2 0.042 0.790 0.034 0.845 0.040 0.790 0.034 0.844 

W-3 0.029 0.433 0.022 0.470 0.028 0.433 0.023 0.470 

W-4 0.029   0.025 0.040 0.028   0.025 0.039 

 

1 
Applied Load Ratio when H1-1 = 1.00 

Direct Analysis Method Elastic Analysis with member imperfections 

Member Pu/ΦPn Mux/ΦMnx Muy/ΦMny Λ Pu/ΦPn Mux/ΦMnx Muy/ΦMny Λ 

TC-1 0.282 0.393 0.431 1.012 0.076 0.278 0.683 1.085 

TC-2 0.549 0.332 0.174 0.835 0.163 0.374 0.517 0.967 

TC-3 0.697 0.170 0.179 0.803 0.217 0.203 0.750 0.971 

BC-1 0.082 0.859 0.132 1.100 0.080 0.801 0.127 1.100 

BC-2 0.213 0.648 0.223 1.318 0.213 0.647 0.223 1.318 

BC-3 0.297 0.368 0.444 1.491 0.297 0.369 0.445 1.491 

W-1 0.111 0.922 0.034 1.191 0.107 0.920 0.034 1.192 

W-2 0.083 0.926 0.035 1.144 0.079 0.923 0.035 1.146 

W-3       1.592       1.592 

W-4       1.592       1.592 
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Figure C 21. System 8 Lateral Displacement Plots 
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C.12. System 9 – El Zanaty Frame 

 

 
Figure C 22. System 9 Factored Loads 

 
 

Table C 12. System 9 H1-1 and λ values 

 

H1-1 at Applied Load Ratio = 1.00 

Direct Analysis 

Method 

Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/fPn Mu/fMn H1-1 Pu/fPn Mu/fMn H1-1 Pu/fPn Mu/fMn H1-1 

C1-1 0.463 0.480 0.890 0.426 0.480 0.853 0.425 0.496 0.866 

C1-2 0.503 0.478 0.928 0.463 0.478 0.888 0.463 0.492 0.901 

B1-1 0.004 0.223 0.225 0.004 0.223 0.225 0.004 0.230 0.232 

 

 

Applied Load Ratio when H1-1 = 1.00 

Direct Analysis 

Method 

Elastic Analysis without 

member imperfections 

Elastic Analysis with 

member imperfections 

Member Pu/fPn Mu/fMn Λ Pu/fPn Mu/fMn Λ Pu/fPn Mu/fMn Λ 

C1-1 0.500 0.555 1.088 0.471 0.583 1.119 0.468 0.598 1.105 

C1-2 0.532 0.526 1.055 0.502 0.551 1.088 0.499 0.561 1.076 

B1-1   1.395   1.395   1.376 
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Figure C 23. System 9 Lateral Displacement Plots 
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Appendix D. Column Study Results 

The results for a W8X58 column are representative of the other 10 square columns studied 

because of the small coefficients of variation present in the study. 

 
Figure D 1. W8X58, weak axis bending, L/r = 40, Fy = 50 ksi 

 

 
Figure D 2. W8X58, weak axis bending, L/r = 60, Fy = 50 ksi 
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Figure D 3. W8X58, weak axis bending, L/r = 80, Fy = 50 ksi 

 

 
Figure D 4. W8X58, weak axis bending, L/r = 100, Fy = 50 ksi 

 

The table below shows the maximum conservative and unconservative error present in each 

beam-column studied. The average and standard deviation values are shown in Table 7 in 

Section 4.3. 
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Table D 1. Conservative and Unconservative Errors in Minor-axis Column Study 

Section 

Name 

depth 

[in] 

width 

[in] 

Slenderness 

Ratio L/r 

Max. Conservative% Error 
Max. Unconservative% 

Error 

DEA 

w/0.8E 

DEA 

w/0.7E 

DM 

w/0.8E 

DEA 

w/0.8E 

DEA 

w/0.7E 

DM 

w/0.8E 

W8X40 8.25 8.07 

40 0.00 0.41 0.00 -15.03 -7.19 -14.37 

60 0.00 10.35 0.00 -11.36 -3.06 -9.32 

80 3.30 14.77 2.20 -8.70 -2.49 -7.70 

100 5.42 16.76 4.47 -7.83 -2.90 -6.42 

W8X58 8.75 8.72 

40 0.00 0.44 0.00 -14.91 -7.16 -14.29 

60 0.00 10.46 0.00 -11.51 -3.18 -9.50 

80 3.38 14.84 2.27 -8.86 -2.94 -7.87 

100 5.47 16.82 4.53 -7.97 -3.35 -6.60 

W10X54 10.10 10.00 

40 0.00 0.39 0.00 -14.87 -7.57 -14.51 

60 0.00 10.28 0.00 -11.69 -3.35 -9.68 

80 3.11 14.60 1.99 -9.03 -2.89 -8.09 

100 5.26 16.63 4.31 -8.18 -3.32 -6.77 

W10X88 10.80 10.30 

40 0.00 0.53 0.00 -14.48 -6.63 -13.85 

60 0.00 11.12 0.00 -10.75 -2.88 -8.76 

80 4.01 15.40 2.92 -8.03 -1.86 -7.04 

100 6.03 17.31 5.09 -7.21 -2.35 -5.78 

W12X58 12.20 10.00 

40 0.00 0.36 0.00 -15.18 -7.19 -14.66 

60 0.00 10.20 0.00 -11.48 -3.11 -9.48 

80 3.14 14.62 2.01 -8.78 -2.62 -7.91 

100 5.25 16.61 4.28 -7.96 -3.04 -6.57 

W12X72 12.30 12.00 

40 0.00 0.00 0.00 -15.67 -8.09 -15.01 

60 0.00 9.85 0.00 -12.11 -3.70 -10.08 

80 2.68 14.21 1.55 -9.40 -3.19 -8.50 

100 4.95 16.35 3.99 -8.57 -3.60 -7.18 

W12X120 13.10 12.30 

40 0.00 0.40 0.00 -15.14 -7.19 -14.51 

60 0.00 10.44 0.00 -11.48 -3.13 -9.47 

80 3.30 14.77 2.18 -8.78 -2.68 -7.84 

100 5.40 16.75 4.45 -8.09 -3.08 -6.58 

W12X170 14.00 12.60 

40 0.00 0.44 0.00 -14.75 -6.79 -14.11 

60 0.00 11.03 0.00 -10.94 -2.73 -8.94 

80 3.93 15.33 2.84 -8.32 -2.45 -7.31 

100 5.98 17.27 5.05 -7.52 -2.86 -6.06 

W14X68 14.00 10.00 

40 0.00 0.00 0.00 -15.35 -7.60 -15.21 

60 0.00 9.79 0.00 -12.03 -3.61 -10.02 

80 2.65 14.18 1.50 -9.40 -3.62 -8.50 

100 4.89 16.29 3.91 -8.60 -3.95 -7.19 

W14X109 14.30 14.60 

40 0.00 0.41 0.00 -15.12 -7.09 -17.06 

60 0.00 10.53 0.00 -11.36 -3.04 -11.57 

80 3.35 14.81 1.81 -8.63 -2.37 -9.19 

100 5.41 16.76 4.47 -7.76 -2.54 -6.37 

W14X132 14.70 14.70 

40 0.00 0.39 0.00 -15.25 -7.29 -14.60 

60 0.00 10.21 0.00 -11.67 -3.39 -9.65 

80 3.15 14.63 2.03 -8.94 -2.63 -8.00 

100 5.27 16.64 4.32 -8.07 -3.06 -6.68 
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