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Abstract

Recently, a number of strict equalities have been developed for far from equilibrium
statistical mechanical systems that relate work done on a system and its change in
free energy. We develop a field-theoretic description of non-equilibrium work relations
using Doi-Peliti field theory. Specifically, we create the Doi-Peliti field theory for
thermal systems and use it to derive the well-known Jarzynski equality. Our resulting
framework can be extended to other non-equilibrium relations. We consider classical
particles on a lattice that experience pair-wise interactions and a local potential.
These particles hop with rates determined by coupling to a thermal bath. Work
protocols are imposed by varying the local potential, which drives the system out
of equilibrium. In this framework, work relations appear simply as the result of a
gauge-like transformation combined with a time-reversal. We present the derivation
with a one-dimensional system on a lattice and conclude with the generalization to
multiple dimensions and the continuum limit.
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Chapter 1

Introduction

To motivate the derivation of the Jarzynski relation, we begin with a practical exam-
ple. A common problem in polymer physics and biochemistry is determining how a
system changes due to a non-equilibrium process. For instance, let us assume that we
have an RNA strand with both ends connected to beads as shown in Fig. 1.1. We fix
the bead at one end to a micropipette and place the other bead in a laser trap. The
laser trap allows us to apply force to the bead and cause the RNA strand to extend.
From the bead’s displacement in the laser trap, we determine the force on the bead.
Thus, we are able to quantify the amount of work done on the RNA strand during
its extension. For our non-equilibrium process, let us extend the bead from an initial
separation of λ1 to a final separation λ2, done at a specified rate. This process is
known as a work protocol.

We record the work required to complete this protocol for multiple trials. By
plotting the data in a histogram, we are able to produce a work distribution similar
to the one shown in Fig. 1.2. Assume that for our system, we have an initial state A
and associated equilibrium Helmholtz free energy FA. Then if the system undergoes
a process leading to a final state B with equilibrium Helmholtz free energy FB, the
change in Helmholtz free energy, ∆F = FB − FA, may be negative or positive. If
our system were large, the work distribution produced by this process would be a
sharply peaked function (Dirac delta function) centered at the average work value
〈W 〉. Classically, the change in free energy of the system, ∆F , due to the work
protocol would be bounded by the second law of thermodynamics: 〈W 〉 ≥ ∆F .

However, our example system is not in the thermodynamic limit and hence our
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Figure 1.1: An example system of an RNA molecule attached to two beads that are being
forced to make the system undergo a non-equilibrium process. The first bead
is fixed to a micropipette, and the second bead is in a laser trap applies force
to the RNA molecule and increases the extension λ.

work distribution is not a Dirac delta function. As shown in Fig. 1.2, for our small
system non-equilibrium process we have a wide distribution of work values produced
from the work protocol. To understand how the work distribution is produced, let
us imagine multiple trials that all follow the specified work protocol. Since we have
such a small system, fluctuations in the water bath surrounding the RNA molecule
cause differing amounts of work required to extend the RNA molecule. For instance,
during one trial more water molecules may strike the particle to the right than to
the left requiring more work than usual to extend the RNA molecule. Alternatively,
more water molecules may strike the RNA molecule to the right, requiring less work.
Note, there are values of work less than the change of free energy of the system, and
hence the second law of thermodynamics is not particularly insightful. However, the
Jarzynski relation provides an equality that is always able to determine the change
in free energy from the work distribution. This is experimentally shown in [12, 13,
14, 15].

The Jarzynski equality is a non-equilibrium statistical mechanics relation and is
explicitly

〈e−W/kBT 〉 = e−∆F/kBT , (1.1)

where W is the work done on the system, T is the temperature, kB is Boltzmann’s
constant, and ∆F is the change in free energy. The angle brackets around the term
containing the work indicate an average over an infinite number of realizations of the
system undergoing the same work protocol. Generally, a work protocol is a specified
sequence of values for the control parameter of the system that occurs regardless of
the energetic cost.
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Figure 1.2: The work distribution produced from multiple trials of extending an RNA
strand according to a given work protocol. Both the average work the RNA
molecule requires to extend, 〈W 〉 and the systems corresponding change in
free energy due to this process, ∆F are labelled. The work values that violate
the second law of thermodynamics are less than ∆F and shown above.

The second law of thermodynamics like most statistical mechanical and thermo-
dynamic relations, is based on using the overwhelming likelihood of more probable
states for very large systems, typically Avogadro’s number of particles. While the
second law is powerful in its generality, it only applies for large thermodynamic sys-
tems, and describes system variables in terms of inequalities for all non-quasistatic
processes. The fundamental statistical mechanics and thermodynamic relations used
in this paper can be found in Ref. [1]. Currently, a series of relations such as the
Crook’s relation [2, 3], the fluctuation theorem [4, 5], and the Jarzynski equality [6]
have succeeded in removing the near equilibrium requirement. They describe the
system in terms of equalities instead of inequalities [7, 8, 9, 10, 11]. Interestingly, the
Jarzynski equality holds true for systems of any size as well as systems very far from
equilibrium. Thanks to this universality, the relation has been the focus of many
recent studies.

Other pedagogical examples of the Jarzynski relation such as a harmonic oscillator
with a varying spring stiffness can be found in Ref. [16]. Additionally, a quantum
mechanical derivation for the harmonic oscillator was demonstrated by Ref. [17].
However, there is one important caveat for the Jarzynski relation: the initial state
must be an equilibrium state with the same temperature T .

Another aspect of the relation is that it holds for a wide variety of systems.
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Both quantum and classical systems obey the relation, whether they are stochastic
or deterministic, either on a lattice or taken to the continuum limit [6, 18, 19, 20, 21].
Previous studies have shown that the Jarzynski relation results from a time-reversal
symmetry. We will produce the Jarzynski relation in the mathematical framework
of the Doi-Peliti field theory [25]. By casting the relation in this field theory, we
have not only derived it in this context, but we have also created the foundation for
producing similar relations such as the Crook’s relation in this framework. Previous
field-theoretic formulations of the Jarzynski relation were found by Mallick, Moshe,
and Orland [22] as well as Täuber [23]. Their derivations were phenomenological due
to assumptions about the particle dynamics that are generally only valid for large
systems near an equilibrium critical point. Contrary to their derivations, Doi Peliti
field theory is based on first principles and is generally valid, with no restrictions on
system size or location in a phase diagram.

Before we dive into the model, we now give a quick description of Doi-Peliti field
theory. Field theories are mathematical frameworks (see Ref. [24] for more detail) and
in this instance, Doi-Peliti field theory is used to describe classical particles and their
dynamics. Most field theories involve phenomenology where they include terms that
have been specifically created to satisfy an appropriate symmetry. Doi-Peliti field
theory has the advantage that it properly maps classical particle behavior to a field
theory without having to make ad hoc assumptions about the dynamics. Previous
uses of Doi-Peliti field theory were for athermal systems such as irreversible chemical
reactions [25]. For our derivation, we seek to create a new formulation of the field
theory that applies to thermal systems.
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Chapter 2

Model and Statistical Mechanics

The model that we will be working with is a finite-sized lattice with a finite and
conserved number of particles undergoing a stochastic hopping process as shown in
Fig. 2.1. All particles obey classical rules, and each lattice site may contain multiple
particles at a given time. We will explain the theory on a one dimensional lattice for
simplicity, but we may extend it to a hypercubic lattice of arbitrary dimension. For a
given particle, there is an inhomogeneous energy landscape on this lattice as shown in
Fig. 2.2 due to pair interactions between the particles and a local site-by-site lattice
potential that can vary with time. Statistical mechanical rules bias a particle to have
a higher probability of existing at a lattice site with a lower energy. Likewise, the
hopping rates are biased by the energy transition between the initial and final states
of the hopping process. We use the term state to mean a specific configuration of
all of the particles in a system. Throughout the paper, we will indicate the number
of particles at a given site i known as the occupation number of the site by ni, and
a specific state configuration of the system with the term {n} = (n1, n2, n3, . . . nL),
where L is the number of lattice sites. The local potential Ũi(t) of each lattice site may
change with time. The coefficient Vij determines the strength of the pair interactions
between two particles at site i and j and is constant with respect to time. The
variation of the Ui(t) will be the mechanism through which the work protocol will be
enacted in order to produce the Jarzynski relation.

We characterize the system with the probabilities of the states P ({n}, t) for all
states {n}. The system dynamics such as the hopping rates affect the time derivative
of P ({n}, t). In other words, the dynamics of the system and how the system evolves
are encapsulated in the probabilities of the states. For instance, the probabilities
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Figure 2.1: Particles are allowed to hop between lattice sites with their hopping rates
determined by the difference in energy between the state of the system before
the hop and the state after. While shown in one dimension here, we allow for
multiple dimensions in our model.

of the system will be initially stationary because the system is in equilibrium. As
the local lattice potential varies with time, the probabilities of the system existing in
given states will change due to the shift in the lattice energetics.

2.1 Energy

In equation form, we may represent the total energy for a given state as

E({n}, t) =
1

2

L∑
i=1

L∑
j=1

niVijnj −
1

2

L∑
i=1

Vi,ini +
L∑
i=1

niŨi(t), (2.1)

where the first two terms represent the pair potential contributions, the coefficient
Vi,j indicates the strength of these pair interactions, the third term indicates the
contributions from the lattice site potentials, and i, j are lattice site indices. The
second pair potential term 1

2

∑
i Vi,ini compensates for the over-counting of the same-

site pair potentials in the first pair potential term. Since this term is also linear in
terms of the occupation number ni, we group it with the local potential Ũi to form

Ui = Ũi +
1

2
Vi,i. (2.2)

Using this definition in Eq. (2.1), we have

E({n}, t) =
1

2

L∑
i=1

L∑
j=1

niVijnj +
L∑
i=1

niUi(t). (2.3)
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Figure 2.2: A representative model of the potential at each lattice site. While sites with
a lower potential are more likely to have more particles, it is not necessi-
tated as they are subject to thermal fluctuation. On average, they will follow
Boltzmann statistics.

Boltzmann statistics provides the equilibrium probability for the system to exist
in a given state. In particular, the probability of a given state is proportional to the
exponent of the negative state’s energy. Expressed as an equation, we have

P ({n}, t) =
1

Z
e−E({n},t)/kBT , (2.4)

where Z is a normalization factor known as the partition function and E({n}, t) is
the energy of the state {n} at time t. Since the initial state for the Jarzynski relation
is an equilibrium state, the state is governed by these statistics and is referred to as
the Boltzmann state.

2.2 Master Equation

To evolve the system forward in time, we turn to the master equation:

∂tP ({n}, t) =
∑

{m}6={n}

[
w{m}→{n}P ({m}, t)︸ ︷︷ ︸

Gain Term

−w{n}→{m}P ({n}, t)︸ ︷︷ ︸
Loss Term

]
, (2.5)

which relates a given state’s probability’s rate of change ∂tP ({n}, t) to the current
state of the system. The rate constants w{m}→{n} represent the rate at which any
dynamical process causes a transition from state {m}to state {n}. With no infor-
mation about the rate constants w{m}→{n}, this master equation is extraordinarily
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general as the only assumption about the system dynamics is that they are Marko-
vian. Markovian dynamics only depend on the instantaneous probabilities P ({n}, t)
and not on the state of the system at earlier times. In essence, the equation is a basic
flow in versus flow out differential equation for the probabilities that determines the
current likelihood of a certain state. The gain term is the probability gained from all
states {m} that can become state {n} at rate w{m}→{n}. Similarly, the loss term is
probability lost to all states {m} at rate w{m}→{n}.

For the Jarzynski equality to hold, the system must initially be in a equilibrium
state governed by Boltzmann statistics. However, this does not indicate that particles
are not moving; it implies that the probabilities are stationary. A natural assumption
that satisfies this condition is known as detailed balance.

Detailed balance is the assumption that the flow term into a given state
w{m}→{n}P ({m}, t) must precisely equal the flow out of the state w{n}→{m}P ({n}, t)
in order to maintain equilibrium. When the system is in equilibrium, the particles
obey Boltzmann statistics for their given distributions. Note that for all following
calculations we will use β = 1/kBT where kB is the Boltzmann constant, and T is the
temperature of the state. Thus, the P ({n}, t) is e−βE({n},t), where E({n}, t) indicates
the energy of the {n} state. When formulating the probabilities for the states, we
must also consider how many states are able to make the transition as each state
contributes to the probability of the transition. We count the number of possible
configurations of the particles could form a state {n} with the multinomial coefficient

M({n}) =
N !

n1!n2!n3! · · ·
=

N !∏
i ni!

, (2.6)

where index i indicates lattice site, and N is the sum of all ni. Hence, the probability
of being in a given state {n} is

P ({n}, t) =
1

Z

N !∏
i ni!

e−βE({n},t). (2.7)

By reformulating the original equality of detailed balance, we connect the rates in
and out of a state via:

w{n}→{m}
w{m}→{n}

=
P ({m}, t)
P ({n}, t)

=

(∏
i

ni!

mi!

)
e−β(E({m},t)−E({n},t)). (2.8)

By changing the lattice site potentials Ui, we force the system out of equilibrium.
Since the model is coupled to a thermal reservoir, we are able to give and receive



CHAPTER 2. MODEL AND STATISTICAL MECHANICS 9

energy from the bath. Due to heat flow, this would eventually lead to the system
achieving equilibrium if not for the change in the lattice site potentials Ui. To simulate
this, we make an assumption about the relation of the two states known as Glauber
dynamics. Glauber dynamics states that the hopping rates are

w{n}→{m} = Γ
α({n})eβE({n},t)

eβE({n},t) + eβE({m},t) , (2.9)

where Γ is an overall rate constant related to how quickly particles transition between
states, and α is determined by the number of particles in the state {n} that are capable
of making the specific transition to {m}. We will elaborate on α in Sec. (2.3). The
rate constant Γ is the discrete space equivalent of the continuous space diffusion
constant D. The energy terms are the same as Eq. (2.3). With a substitution into
Eq. (2.8), one can show that this satisfies detailed balance.

We will now define the state transition rules for our system. If we observe the
system during a small enough time frame, at most one particle moves at a given time.
Likewise, particles are only allowed to hop to adjacent lattice sites. For instance,
if a particle has moved two lattice sites away from its original location, the particle
must have transitioned through the lattice site between the initial and final sites.
Additionally, each particle hops independently from all other particles. These rules
markedly restrict the possible state transitions of our system. If the system is in
state {n}, the states {m} available for transition to state {n} must be exactly one
particle out of alignment with state {n}, and that particle must be exactly one nearest
neighbor hop away from creating the state {n}.

2.3 Two Lattice Site Example

To provide a simplified example of possible transitions, let us assume that we have
two sites on our lattice. We will focus on transitions for the state {n} = (n1, n2).
As defined before, we only allow one nearest neighbor hop in an arbitrarily small
window of time. Hence, states {m} that are able to transition to or from (n1, n2) are
(n1 + 1, n2 − 1) and (n1 − 1, n2 + 1). Let us now set up the master equation for our
miniature system.

We start with transitions to and from the state (n1+1, n2−1). Since (n1+1, n2−1)
has one more particle on site 1 and one less on site 2, we may simply express the energy
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of the (n1 + 1, n2 − 1) as a shift of the (n1, n2) state’s energy:

E(n1 + 1, n2 − 1, t) = E(n1, n2, t) + U1 +
2∑
j=1

V1jnj − U2 −
2∑
j=1

V2jnj. (2.10)

To begin, we determine the detailed balance ratio for this transition:

w(n1+1,n2−1)→(n1,n2)

w(n1,n2)→(n1+1,n2−1)

=
(n1 + 1)!(n2 − 1)!

n1!n2!

eβE(n1+1,n2−1,t)

eβE(n1,n2,t)

=
(n1 + 1)

n2

eβ(E(n1,n2,t)+U1+
P2
j=1 V1jnj−U2−

P2
j=1 V2jnj)

eβE(n1,n2,t)

=
(n1 + 1)

n2

eβ(U1+
P2
j=1 V1jnj)

eβ(U2+
P2
j=1 V2jnj)

. (2.11)

Since this notation is cumbersome, we define

εi ≡ Ui +
L∑
j=1

Vijnj. (2.12)

Using Eq. (2.12), we create the Glauber dynamics for the transition (n1 +1, n2−1)→
(n1, n2) :

w(n1+1,n2−1)→(n1,n2) = Γ
(n1 + 1)eβε1n1

eβε1 + eβε2
. (2.13)

For the reverse transition (n1, n2)→ (n1 + 1, n2 − 1), we have

w(n1,n2)→(n1+1,n2−1) = Γ
n2e

βε2

eβε1 + eβε2
. (2.14)

Using the same logic as the previous transition, we create the rates for (n1 − 1, n2 +
1)→ (n1, n2):

w(n1−1,n2+1)→(n1,n2) = Γ
(n2 + 1)eβε2

eβε1 + eβε2
. (2.15)

For the reverse transition (n1, n2)→ (n1 − 1, n2 + 1), we have

w(n1,n2)→(n1−1,n2+1) = Γ
n1e

βε1

eβε1 + eβε2
. (2.16)
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Our two-lattice-site master equation is:

∂tP (n1, n2, t) = w(n1−1,n2+1)→(n1,n2)P (n1 − 1, n2 + 1, t)− w(n1,n2)→(n1−1,n2+1)P (n1, n2, t)

+ w(n1+1,n2−1)→(n1,n2)P (n1 + 1, n2 − 1, t)− w(n1,n2)→(n1+1,n2−1)P (n1, n2, t).
(2.17)

Inputting the rates, we have

∂tP (n1, n2, t) =Γ
1

eβε1 + eβε2

[
(n2 + 1)eβε2P (n1 − 1, n2 + 1, t)− n1e

βε1P (n1, n2, t)

+ (n1 + 1)eβε1P (n1 + 1, n2 − 1, t)− n2e
βε2P (n1, n2, t)

]
(2.18)

With a slight regrouping of terms, our master equation may be expressed as:

∂tP (n1, n2, t) =
Γ

eβε1 + eβε2

{
eβε1
[
(n1 + 1)P (n1 + 1, n2 − 1, t)− n1P (n1, n2, t)

]
+ eβε2

[
(n2 + 1)P (n1 − 1, n2 + 1, t)− n2P (n1, n2, t)

]}
(2.19)

To extend this to all lattice sites, let us focus specifically on particle transitions
involving the ith site of the lattice. The state of the system is {n}, specifying ni
particles at site i. All states that can transition to or from state {n}, restricted to
transitions including site i, are only one particle out of alignment with state {n}. To
generalize the two site example, imagine that the full lattice is a series of two site
transitions. We may extend the two site example to general lattice sites by taking
sites 1 and 2 and identifying them as sites i and i+1 for general i, and then summing
over all sites i. Hence for our model, we use the following master equation:

∂tP ({n}, t) = Γ
L∑
i=1

[
eβεi

eβεi + eβεi+1

(
(ni + 1)P (. . . , ni + 1, ni+1 − 1, . . . , t)− niP ({n}, t)

)
+

eβεi+1

eβεi + eβεi+1

(
(ni+1 + 1)P (. . . , ni − 1, ni+1 + 1, . . . , t)− ni+1P ({n}, t)

)]
.

(2.20)

Since the system has left-right symmetry, every part of the left-moving term (top line)
has a counterpart in the right-moving term (bottom line) with its direction reversed.
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2.4 First Law

Let us differentiate the average total energy of the system with respect to time to
produce an expression akin to the first law of thermodynamics:

d

dt
〈E〉 =

d

dt

∑
{n}

P ({n}, t)E({n}, t) =
∑
{n}

dP

dt
E +

∑
{n}

P
dU

dt
, (2.21)

where the P ({n}, t) is the probability of a given state configuration {n}, and E({n}, t)
is the energy of the state. Via differentiating and the product rule, we produce two
terms, one where the probability of the states change and the other where the lattice
potential changes.

First, let us imagine that the lattice potentials Ui are fixed. Thus, the dU
dt

term
vanishes, and we are left with the first term on the right of Eq. (2.21). Particles
will change their state configuration P ({n}, t) to attempt to reach equilibrium with
a coupled thermal reservoir. As the particles move, they exchange energy with the
reservoir. Since only the probabilities of the particle configurations are changing with
time, the total energy changes solely via exchange with the coupled reservoir. Hence,
the first term of Eq. (2.21) naturally represents the system’s heat flow dQ/dt.

Inversely, by locking the particles in place but allowing the lattice site potentials
Ui to change, we remove our heat flow term. However, the total energy now varies
due to lattice site potential Ui in the form of the second term of Eq. (2.21). By
raising or lowering a site’s lattice potential, the particles at that site are forced up or
down in energy in a manner analogous to doing work on them. More succinctly, the
second term represents our definition of the derivative of work dW/dt for the system.
Note that since the pair potential coefficient does not change with time, it does not
contribute to the work term. Therefore, the change in the lattice potential Ui is the
only term that produces work.
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Chapter 3

The Doi Representation

The time derivative ∂tP ({n}, t) in the master equation for our system Eq. (2.20),
depends on the occupation numbers ni. While explicitly describing the state’s evolu-
tion, the occupation number is difficult to deal with directly in the master equation.
The master equation is a set of linear equations where there is mixing of different
states, which would represent off-diagonal terms in a matrix representation. To ease
the manipulation of these equations, we exploit that each particle hops identically and
independently. We use the Doi representation of the master equation to remove the
explicit dependence on the occupation number. Derivation of the Doi representation
is presented by Doi in Ref. [26].

Doi mechanics utilizes annihilation and creation operators â, â†, respectively, de-
fined similarly to their quantum mechanics definitions. Doi mechanics have constant
coefficients with respect to the occupation number in the master equation. Just as
each site had an occupation number, sites i, j, . . . will have associated creation op-
erators â†i , â

†
j, . . . and annihilation operators âi, âj, . . . to increase and decrease the

number of particles at a site by 1, respectively. For all integers greater than or equal
to zero, our model lacks restrictions for the occupation numbers. Hence the creation
and annihilation operators are analogous to bosonic operators (Ref. [27]), which
means that the operators follow these relations:[

âi, â
†
j

]
= δij,

[
âi, âj

]
=
[
â†i , â

†
j

]
= 0, (3.1)

where [A,B] = AB − BA indicates a commutation relation. Since a site may have
zero particles, we define our ground state |0〉 via

âi |0〉 = 0, (3.2)
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as the state that is destroyed by any annihilation operator. Similarly, we shall define
the nth state |n〉 through repeated application of the creation operator on the ground
state:

|ni〉 = (â†i )
ni |0〉 . (3.3)

As its name implies, the creation operator â†i increases the occupation number on site
i by one. This follows directly from its definition:

â†i |ni〉 = â†i (â
†
i )
ni |0〉 = (â†i )

ni+1 |0〉 = |ni + 1〉 . (3.4)

This definition differs from the usual quantum mechanics definition of â† by a nor-
malization constant. Similarly, the annihilation operator âi decreases the occupation
number for site i by one and also produces a constant due to the operator relation:

âi |ni〉 = ni |ni − 1〉 , (3.5)

which also differs by a normalization constant from the usual quantum mechanics
definition. This proof may be found in Appendix (A). In combination, these two
definitions allow us to define the number operator â†i âi such that it leaves the state
unchanged but produces a constant coefficient of ni:

â†i âi |ni〉 = â†ini |ni − 1〉 = niâ
†
i |ni − 1〉 = ni |ni〉 . (3.6)

The number operator allows us to extract information about occupation numbers for
a given state.

Through these operators and states, we create an algebraic construction known
as a Fock space. The purpose of the Fock space is to encode all information of the
system at a given time into a single state |Ψ(t)〉, defined by

|Ψ(t)〉 =
∑
{n}

P ({n}, t) |{n}〉 , (3.7)

where |Ψ(t)〉 contains all the probabilities of any site containing any number of parti-
cles at a given time. There is an important difference between this representation and
a quantum mechanical state; the Doi state is linear in P ({n}, t) while the quantum
mechanical state is not. Information about state number and probability is extracted
via use of operators, most commonly the number operator.

By utilizing the Fock space states, we remove from the master equation the depen-
dence on the occupation number. We express the master equation as an imaginary-
time Schrödinger equation using a Hamiltonian to determine the rate at which the
system evolves,

∂t |Ψ(t)〉 = −Ĥ |Ψ(t)〉 , (3.8)
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where the Hamiltonian Ĥ depends on the dynamics of the given system.

If we had a constant Hamiltonian Ĥ, the solution to Eq. (3.8) would be

|Ψ(t)〉 = e−Ĥ(t−t1) |Ψ(t1)〉 , (3.9)

where |Ψ(t1)〉 is the state of the system at the initial time t1.

3.1 Two Site Example (Continued)

To move our full lattice master equation to the Fock space, we first return to the
simplified two site lattice for which we developed the master equation, Eq. (2.19), in
the previous chapter. We will create the Doi representation of this master equation
by creating a Hamiltonian Ĥ, which contains all of the dynamics of the system.
This allows us to re-express the master equation as an imaginary-time Schrödinger
equation like Eq. (3.8).

Let us input this into our state equation form of the master equation:

∂t |Ψ(t)〉 =
∞∑
n=0

∂tP (n, t) |n〉 (3.10)

=
∞∑

n1,n2=0

Γ

eβε1 + eβε2

{
eβε1
[
(n1 + 1)P (n1 + 1, n2 − 1, t)− n1P (n1, n2, t)

]
+ eβε2

[
(n2 + 1)P (n1 − 1, n2 + 1, t)− n2P (n1, n2, t)

]}
|n〉 . (3.11)

To simplify the derivation of a Hamiltonian Ĥ, let us first work with random unbiased
diffusion, i.e. the case where εi = 0 for all i. Hence we have

∂t |Ψ(t)〉 =
∞∑

n1,n2=0

Γ
[
(n1 + 1)P (n1 + 1, n2 − 1, t)− n1P (n1, n2, t)

+ (n2 + 1)P (n1 − 1, n2 + 1, t)− n2P (n1, n2, t)
]
|n1, n2〉 . (3.12)

The loss terms are produced through an application of the number operator â†i âj for
i = 1, 2. Conversely, the gain terms appear like number operators, but instead of
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having the same site for both operators, we swap them. However, we must also shift
over the sum. Let us act apply the operator, â†1â2 to the general state |n1, n2〉:

∞∑
n1,n2=0

â†1â2 |n1, n2〉 =
∞∑

n1,n2=0

n2 |n1 + 1, n2 − 1〉 . (3.13)

Since the sum indices are arbitrary, we may shift them by n1 → n1−1 and n2 → n2+1.
The gain term then becomes

∞∑
n1,n2=0

(n2 + 1) |n1, n2〉 →
∞∑

n1=1,n2=−1

(n2 + 1) |n1, n2〉 . (3.14)

Since the n2 = −1 state does not exist, we may shift the lower limit of the sum to
n2 = 0. Likewise, the n1 = 0 state contributes 0 to the sum. Hence, we may add it
to the sum without affecting it. This results in

∞∑
n1,n2=0

â†1â2 |n1, n2〉 =
∞∑

n1,n2=0

(n2 + 1) |n1, n2〉 . (3.15)

Through a similar procedure, â†2â1 produces:

∞∑
n1,n2=0

â†2â1 |n1, n2〉 =
∞∑

n1,n2=0

(n1 + 1) |n1, n2〉 . (3.16)

Combining these terms and applying negative signs where appropriate, we create the
Hamiltonian for diffusion:

Ĥ = Γ(â†2â2 − â†1â2 − â†2â1 + â†1â1)

= Γ(â†2 − â
†
1)(â2 − â1). (3.17)

Now let us add back in the energy potentials such that εi 6= 0. The local lattice
potential component of εi is a simple scalar Ui. Unfortunately, the pair interaction
term is more complicated as it has the occupation number in the exponent. To create
this, we expand the exponent via its Taylor series resulting in

e
P
i Vijnj =

∑
m

(∑
i Vijnj

)m
m!

(3.18)
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Hence if we create the appropriate operators for
(∑

i Vijnj

)m
where m is an integer

index, we may then input this term into the series to produce the exponent. Con-
veniently, the occupation number raised to a power is produced through repeated
applications of the number operator â†j â to the state. Thus,

e
P
i Vij â

†
j âj |{n}〉 = e

P
i Vijnj |{n}〉 . (3.19)

Since this exponential needs to act on the |{n}〉 state and leaves the states unaltered,
this operator acts on the state before any other operator acts on the state. Otherwise,
the result of this operator would be changed by an operator which did not leave the
state unchanged.

Therefore, the dynamics of our system are described by the Ĥ:

Ĥ = Γ
(â†2 − â

†
1)
(
â2e

U2+
P
j V2j â

†
j âj − â1e

U1+
P
j V1j â

†
j âj
)

eU2+
P
j V2j â

†
j âj + eU1+

P
j V1j â

†
j âj

. (3.20)

Again, we may extend the two state model to the full system via a sum over
all lattice sites. First let us define the operator ε̂i = Ui +

∑
j Vij â

†
j âj. Hence for

the system model that we are using to produce the Jarzynski relation, we have the
Hamiltonian

Ĥ = Γ
∑
i

(â†i+1 − â
†
i )
(
âi+1e

ε̂i+1 − âieε̂i
)

eε̂i+1 + eε̂i
. (3.21)

The energy potentials associated with the terms are the same as the Glauber dynamics
found in the original master equation, Eq. (2.20). While this Hamiltonian appears
unwieldy, we will see that the equation simplifies significantly in the continuum limit.
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Chapter 4

Computing Averages

To produce the Jarzynski equality, we need to be able to produce an average while
using the Fock space representation. By definition, the average of some function
F ({n}, t) at time t in this system is

〈F ({n}, t)〉 =
∑
{n}

F ({n})P ({n}, t). (4.1)

This average is linear in terms of the probability P ({n}, t). As we noted before, the
Doi state |Ψ(t)〉 is also linear in terms of the probability. Hence, we are unable to
use the usual quantum mechanical expectation value 〈Ψ(t)| F̂ |Ψ(t)〉, which would be
quadratic in the probability. Instead, the solution is to use 〈P | F̂ |Ψ(t)〉 where 〈P | is
the projection state, and F̂ is the operator representation of the function F ({n}, t).

Typically, the Doi representation of the projection state is

〈P | = 〈0|
L∏
i=1

eâi = 〈0| e
P
i âi . (4.2)

Note that P here does not indicate probability, but instead is the symbol for the
projection state. Expanding with the Taylor series of the eâi , this state enables
us to act any power of â†i to the left and receive the same state back, as shown in
Appendix A. In other words, it is a left eigenstate of the â†i operators, with eigenvalue
1. Because we have a fixed number of particles, the exponential form of the projection
state is superfluous. In terms of the Taylor expansion for the state, we require the
terms up to ni (the total number of particles at a given site) as we have an equivalent
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number of â†i . Simplifying the state further, we may limit the sum of all occupation
numbers ni and hence â†i to be N . We Taylor expand Eq. (4.2) producing

〈P | = 〈0|
∞∑
N=0

(∑L
i=1 âi

)N
N !

=
∞∑
N=0

〈PN | (4.3)

where we have introduced the N particle projection state 〈PN | defined by

〈PN | = 〈0|
1

N !

( L∑
i

âi

)N
, (4.4)

This state forms every combination of number operators for exactly N particles.

Our system begins in equilibrium. Accordingly, the distribution of particles in the
initial state is governed by Boltzmann statistics. Note that we will work in units of
kBT = 1 for the rest of the derivation. First, let us assume that there are no energy
differences between lattice sites. Therefore in equilibrium, we have fully unbiased
random hops between lattice sites known as diffusion. The probability distribution
for the initial state for diffusion is

Pdiff({n}) =
M({n})

Z
, (4.5)

where M({n}) is the multinomial coefficient defined in Eq. (2.6). The initial state for
diffusion |Ψdiff〉, is then:

|Ψdiff〉 =
∑

P ({n}) |{n}〉 =
∑
{n}

M({n})
Z

∏
i

(â†i )
ni |0〉 =

1

ZN !

( L∑
i

â†i

)N
|0〉 , (4.6)

where the sums denoted by {n} are limited such that the upper bound of each sum
ni sum to

∑
i ni = N and N is the total number of particles. If not for the additional

partition function Z coefficient, this would be the Hermitian adjoint of the projection
state for a fixed number of particles Eq. (4.4). We now reintroduce the lattice site
potentials Ui but leave the pair interactions for later. This modifies our probabilities
of the initial state, a Boltzmann state, to be

PB({n}) =
M({n})e−

P
i niUi

Z
. (4.7)

This produces an initial Boltzmann state very similar to the diffusion state but with
the local energy potentials included

|ΨB〉 =
∑

P ({n}) |{n}〉 =
1

N !Z

( L∑
i

â†ie
Ui

)N
|0〉 . (4.8)
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Next, we re-implement the pair interactions in the system. Following the same pro-
cedure as before, we have created a Boltzmann |ΨB〉 such that

|ΨB〉 =
∑

P ({n}) |{n}〉

=
1

N !Z
e−

1
2

P
ij â

†
i âiVij â

†
j âj
( L∑
i=1

â†ie
−Ui
)N
|0〉 . (4.9)

All three forms are highly analogous to the projection state. We will return to this
symmetry when producing the Jarzynski relation.
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Chapter 5

Peliti Field Theory

In this chapter, we will exploit the lack of dependence on the occupation numbers in
the Doi Hamiltonian to integrate the dynamics of the system and map the system
to the field theory. The presentation here closely follows Ref. [25] and the original
field theory derivations may be found in Refs. [28, 29]. To introduce this concept,
let us move back from attempting to average the work and instead average a generic
function F ({n}, t) at some time t. If we had a constant Hamiltonian, we would have

〈F ({n}, t)〉 = 〈PN | F̂ |Ψ(t)〉 = 〈PN | F̂ e−Ĥ(t−t1) |ΨB〉 , (5.1)

where F̂ is the operator representation of F ({n}, t). Commonly, the solution |Ψ(t)〉
to the imaginary-time Schrödinger equation is expanded using the Trotter formula to
make manipulation easier:

eĤt = lim
∆t→0

(1− Ĥ∆t)t/∆t. (5.2)

Inputting this equation into our average of F ({n}, t), we have

〈F ({n}, t)〉 = 〈PN | F̂ (1− Ĥ∆t)(1− Ĥ∆t) · · · (1− Ĥ∆t) |ΨB〉 . (5.3)

However, our system does not have a constant Hamiltonian. Hence, we must use a
solution to Eq. (3.8) that does not require the Hamiltonian to be fixed. We integrate
the dynamics by time stepping:

|Ψ(t+ ∆t)〉 − |Ψ(t)〉
∆t

= −Ĥ |Ψ(t)〉 . (5.4)
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Since we have a Hamiltonian Ĥ that varies with time, we use the time stepping
formula repeatedly to span the time between the initial time t1 and the final time t2.
Letting each time t have its own Hamiltonian Ĥt, we have

|Ψ(t)〉 = (1− Ĥt2∆t)(1− Ĥt2−∆t∆t) · · · (1− Ĥt1∆t) |ΨB〉 . (5.5)

We use this to produce an average similar to Eq. (5.3) but with a Hamiltonian
that changes with time. In order to evaluate this non-constant Hamiltonian average,
we must again borrow from quantum mechanics and introduce coherent states, which
are left and right eigenstates of the â† and â operators, respectively. Explicitly,

〈φ| â† = 〈φ| φ̄ and â |φ〉 = φ |φ〉 , (5.6)

where 〈φ| and |φ〉 are coherent states. They are defined by

〈φ| = 〈0| eφ̄âe−|φ|2/2 and |φ〉 = eφâ
†
e−|φ|

2/2 |0〉 , (5.7)

where φ is a complex number and φ̄ is its complex conjugate. Due to the e−|φ|
2/2

terms, the states are normalized: 〈φ|φ〉 = 1. In particular we are going to utilize the
relation,

1 =

∫
d2φ

π
|φ〉 〈φ| , (5.8)

where d2φ = d(Reφ)d(Imφ). A useful equation that is related to the normalization
of the states is the overlap relation. The overlap relation is the inner product of two
different coherent states |φ1〉 and 〈φ2|. This results in

〈φ1|φ2〉 = exp
(
φ̄1φ2

)
exp
(
−1

2
|φ1|2 − 1

2
|φ2|2

)
. (5.9)

Proofs for each of these relations may be found in Appendix (B).

We now map to the field theory. Every time slice has a different Hamiltonian Ĥt,
and hence we must have a different set of coherent states |φt〉 associated with that
time. Note that to indicate the different lattice sites we use {φ} = (φ1, φ2, φ3, . . . , φL),
where

|{φ}〉 = |φ1〉 ⊗ |φ2〉 ⊗ |φ3〉 . . . , (5.10)

is the vector product of the states. Since the coherent states at different lattice sites
are orthogonal, the complete set of states for coherent states may extend to all lattice
sites via

1 =

∫ (∏
i

d2φi
π

)
|{φ}〉 〈{φ}| =

∫
Dφ̄Dφ |{φ}〉 〈{φ}| , (5.11)
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where Dφ̄τDφτ =
∏

i,τ d
2φi,τ/π and τ is the time index. Moving back to our average

of F ({n}t), we now insert a set of coherent states at each time slice into the average
resulting in

〈F ({n}, t)〉 = N−1

∫ t2∏
ti=t1

Dφ̄tiDφti 〈PN | F̂ |{φt2}〉 〈{φt2}| (1− Ĥt2∆t) |{φt2−∆t}〉 〈{φt2−∆t}| · · ·

· · · (1− Ĥt2−∆t∆t) 〈{φt1+∆t}| (1− Ĥt1∆t) |{φt1}〉 〈{φt1}|ΨB〉 ,
(5.12)

where N is a normalization constant determined by ensuring the average 〈1〉 = 1,
and φi,t indicates the field variable for lattice site i at time t. We make this into a
closed form equation by writing the multiple Hamiltonian components as a product.
Let each time slice in Eq. (5.12) be labeled with a time index τ that increments in
steps of ∆t from the initial time t1 to the final time t2. Rewriting Eq. (5.12) with
this notation, we have

〈F ({n}, t)〉 = N−1 lim
∆t→0

∫ t2∏
τ=∆t+t1

[(
Dφ̄τDφτ

)
〈{φ}τ | 1− Ĥτ∆t |{φ}τ−∆t〉

]
×
(
Dφ̄t1Dφt1

)
〈PN | F̂ |{φ}t2〉 〈{φ}t1 |ΨB〉 . (5.13)

We must evaluate the three main components of this expression: the projection
state contribution, the Boltzmann state contribution, and the bulk action. Encoding
the dynamics of the system, the bulk action term contains all of the contributions
from the Hamiltonian. To evaluate this component, we need to know how to act the
Hamiltonian on the coherent states. For a general operator Â, we are able to express
it as a function of the coherent state variables A({φ}1, {φ}2) via

A({φ̄}2, {φ}1) ≡ 〈{φ̄}2| Â |{φ}1〉
〈{φ̄}2|{φ}1〉

. (5.14)

Next let us deal with the projection state contribution 〈PN | F̂ |{φ}t2〉:

〈PN | F̂ |{φ}t2〉 =F ({φ}t2) 〈0|

(∑
i âi

)N
N !

|{φ}t2〉 = F ({φ}t2)

(∑
i φi(t2)

)N
N !

e−
P
i |φi,t2 |

2/2.

(5.15)
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Note that F ({φ}t2) is strictly a function of {φt2} as all â†i in the expression act on
the projection state producing the eigenvalue of 1.

Finally, we deal with the Boltzmann contribution. We will first explain the case
where the particles do not interact and the local lattice potential is the only energy
term and then describe the interacting case in a later section. For now, we will call
the vector product ΨB({φ}t1), but exclude the normalization factor e−

P
i |φi,t1 |

2/2 of
the coherent state from the term. Explicitly, we have

〈{φ}t1 |ΨB〉 =ΨB({φ̄}t1)e−
P
i |φi,t1 |

2/2. (5.16)

Armed with this definition, we may re-express Eq. (5.13) as

〈F ({n}, t)〉 = N−1 lim
∆t→0

∫ t2∏
τ=∆t+t1

[(
Dφ̄τDφτ

)
〈{φ}τ |{φ}τ−∆t〉

(
1−H({φ}τ , {φ}τ−∆t)∆t

)]

×
(
Dφ̄t1Dφt1

)
F ({φt2})

(∑
i

φi,t2

)N
ΨB({φ̄}t1)e

P
i(−

1
2
|φi,t2 |

2− 1
2
|φi,t1 |

2).

(5.17)

The angle bracket factor after the differentials is evaluated using the overlap re-
lation Eq. (5.9) and results in

〈{φ}τ |{φ}τ−∆t〉 =
∏
i

exp(−1
2
|φi,τ |2 − 1

2
|φi,τ−∆t|2 + φ̄i,τφi,τ−∆t)

=
∏
i

exp(−φ̄i,τ [φi,τ − φi,τ−∆t]) exp(1
2
|φi,τ |2 − 1

2
|φi,τ−∆t|2). (5.18)

Since the time steps are infinitesimally small, we use a Taylor expansion to reduce
the difference found in the first term of Eq. (5.18) to a derivative:

exp(−φ̄i,τ [φi,τ − φi,τ−∆t]) = exp(−φ̄i,τ [(dφi,τ/dt)∆t+O(∆t2)]), (5.19)

where the higher order powers of ∆t vanish in the limit ∆t→ 0. Inputting Eq. (5.18)
into the average Eq. (5.17), the second term of Eq. (5.18) combines repeatedly due
to the product over the index τ resulting in∏

τ

exp(1
2
|φi,t|2 − 1

2
|φi,t−∆t|2) = exp(1

2
|φi,t2 |2 − 1

2
|φi,t1|2). (5.20)
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The first term cancels with the exp(−
∑

i
1
2
|φi,t2|2) in the projection state contribution,

Eq. (5.15). Conversely, the second term combines with the an identical term from
the initial Boltzmann state, Eq. (5.16), to form exp(−

∑
i

1
2
|φi,t1|2). In the limit as

∆t→ 0, the product of the overlap relation in combination with normalization factors
from the projection state and Boltzmann state form

lim
∆t→0

e−
P
i

1
2
|φi,t2 |

2−
P
i

1
2
|φi,t1 |

2
∏
τ

〈{φ}τ |{φ}τ−∆t〉

= lim
∆t→0

exp

(∑
i

[
−|φi,t1|2 −

∑
τ

∆tφ̄i,τ (∂tφi,τ +O(∆t2)
])

= exp

(∑
i

[
−|φi(t1)|2 −

∫ t2

t1

dt φ̄i(t)∂tφi(t)
])
, (5.21)

where φi(t) is a continuous function of time for the field variable at site i.

Before moving on to the Jarzynski average, the last component of the field that
we will calculate is the contribution of 1 − H({φ̄}τ , {φ}τ−∆t). In the limit ∆t → 0,
the O(∆t) difference in the arguments of H({φ̄}τ , {φ}τ−∆t) is assumed negligible. In
this limit, we have

lim
∆t→∞

t2∏
τ=∆t+t1

(
1−H({φ̄}τ , {φ}τ−∆t

)
= exp

(
−
∫ t2

t1

dtH({φ̄(t)}, {φ(t)})
)
. (5.22)

In combination with Eq. (5.21), we rewrite Eq. (5.17) as

〈F ({n}, t)〉 = N−1

∫ [(
Dφ̄Dφ

)
F ({φ(t2)})

(∑
i

φi(t2)

)N
ΨB({φ̄(t1)})e−S[{φ̄},{φ}],

(5.23)

where Dφ̄Dφ now indicates the product of all Dφ̄τDφτ between time t1 and t2:

Dφ̄Dφ = lim
∆t→0

t2∏
τ=t1

Dφ̄τDφτ . (5.24)

The exponentiated term is known as the statistical action of field theory and is

S[{φ̄}, {φ}] =
∑
i

|φi(t1)|2 +

∫ t2

t1

dt
(∑

i

φ̄i(t)∂tφi(t) +H({φ̄(t)}, {φ(t)})
)
. (5.25)
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Chapter 6

Jarzynski Average

We will now produce the Jarzynski average using the Doi-Peliti field theory and a
gauge-like transformation. The crux of the problem is averaging the exponent of the
work: 〈e−W 〉. To average this work, we must slightly modify the Doi-Peliti averaging
procedure from the previous chapter. Since the work is a continuous process for our
system, we cannot calculate the value of a work function at a final time as the work
depends on how the system evolves and at the final time, that information is lost.
Hence, we must average the work while we evolve the system forward in time.

In a manner similar to updating the system with Eq. (5.4), we also increment the
work dW for every time step ∆t. Hence for every time step, we now have a factor

of 1 − dŴτ

dt
∆t as the expansion of the exponentiated work protocol at some time τ .

Note that dW = dŴτ

dt
∆t in the limit of ∆t → 0. As shown in Sec. (2.4), the change

in the lattice site potential Ui is solely responsible for producing the work. Thus, we

replace 1− dŴ
dt

with
L∏
i=1

(
1− dUi,τ

dt
â†i âi∆t

)
, (6.1)

where as before τ indicates the time step. This modifies Eq. (5.13) to be

〈e−W 〉 = N−1 lim
∆t→0

∫ t2∏
τ=∆t+t1

[(
Dφ̄τDφτ

)
〈{φ}τ |

L∏
i=1

(
1− dUi,τ

dt
â†i âi∆t

)
(

1− Ĥτ∆t
)
|{φ}τ−∆t〉

]
×
(
Dφ̄t1Dφt1

)
〈PN |{φ}t2〉 〈{φ}t1|ΨB〉 .
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Note that there is no function between the projection state and the final coherent
state. In the limit of ∆t→ 0, all ∆t2 and higher terms are negligible. We will simplify
this expression by implicitly removing the ∆t2 term at each time step resulting in

L∏
i=1

(
1− dUi,τ

dt
â†i âi∆t

)(
1− Ĥτ∆t

)
= (1−

∑
i

dUi,τ
dt

â†i âi∆t− Ĥτ∆t
)

(6.2)

We will now act the operators on the coherent states as before. Every term existed
in the previous expression except for the contribution of the work. This is easily acted
on the coherent states to form:

〈{φ}τ |
dUi,τ
dt

â†i âi∆t |{φ}τ−∆t〉 =
dUi,τ
dt

φ̄iφi∆t 〈{φ}τ |{φ}τ−∆t〉 . (6.3)

We may group this term with the Hamiltonian term and move it to the statistical
action. Hence, we have the same integral for the average as before except there is an
additional work term in the statistical action:

〈e−W 〉 = N−1

∫ (
Dφ̄Dφ

)(∑
i

φi(t2)

)N
ΨB({φ̄(t1)})e−S[{φ̄},{φ}]. (6.4)

where the statistical action is

S[{φ̄}, {φ}] =
∑
i

[
|φi(t1)|2

+

∫ t2

t1

dt

(∑
i

[
φ̄i(t)∂tφi(t) + φ̄i(t)φi(t)∂tUi(t)

]
+H(φ̄i(t), φi(t))

)]
(6.5)

6.1 Non-Interacting Case

For clarity of the derivation, we will begin with the case where there are no particle
interactions, i.e. Vij = 0. Our Boltzmann state for this situation is defined by
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Eq. (4.8). Now we will define ΨB({φ̄}t1) for this instance. We have

ΨB({φ̄}t1) = 〈{φ}t1|ΨB〉 e
P
i

1
2
|φi,t1 |

2

(6.6)

= 〈{φ}t1|
1

N !Z

( L∑
i

â†eUi(t1)

)N
|0〉

=
1

N !Z

( L∑
i

φ̄i(t1)eUi(t1)

)N
. (6.7)

Inserting this into the modified version of Eq. (5.23) for the Jarzynski relation, we
have

〈e−W 〉 = N−1

∫
Dφ̄Dφ

(∑
i

φi(t2)

)N
1

N !Z

( L∑
i

φ̄i(t1)eUi(t1)

)N
e−S[{φ̄},{φ}], (6.8)

where S[{φ̄}, {φ}] is defined by Eq. (6.5). However, we must define the component
H({φ̄}, {φ}) of S[{φ̄}, {φ}] for the non-interacting case. The Hamiltonian that we will
use to create this term does not have the pair potentials included,i.e. Vij = 0. Hence
the energy term εi,j is reduced to the local potential term Ui and the Hamiltonian in
Eq. 3.21 reduces to

Ĥ = Γ
1

eUi+1 + eUi

∑
i

(â†i+1 − â
†
i )
(
âi+1e

Ui+1 − âieUi
)
. (6.9)

Since we are already in the continuum limit with respect to time, we will act the
Hamiltonian on the same {φ} states to the left and right for simplicity. We have

H({φ̄}, {φ}) =
〈{φ}| Ĥ |{φ}〉
〈{φ}|{φ}〉

=
〈{φ}|Γ

(∑
i

1

eUi+1+eUi
(â†i+1 − â

†
i )(e

Ui+1 âi+1 − eUi âi)
)
|{φ}〉

〈{φ̄}|{φ}〉

= Γ
∑
i

(φ̄i+1 − φ̄i)(eUi+1φi+1 − eUiφi)
eUi+1 + eUi

. (6.10)

Using this definition of H({φ̄}, {φ}) of S[{φ̄}, {φ}] in our statistical action, we rewrite
the non-interacting statistical action as

S[{φ̄}, {φ}] =
∑
i

[
|φi(t1)|2 +

∫ t2

t1

dt
(
φ̄i(t)∂tφi(t)

+ Γ
(φ̄i+1 − φ̄i)(eUi+1φi+1 − eUiφi)

eUi+1 + eUi
+ φ̄i(t)φi(t)∂tUi(t)

)]
. (6.11)
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6.1.1 Gauge-like Transformation

We produce the relation by performing a gauge-like transform on the field variables.
The gauge-like transform rescales the field variables by an associated energy term.
Specifically the rescaling is

φi(t)→ ψ̄i(t)e
−Ui(t), and φ̄i(t)→ ψi(t)e

Ui(t), (6.12)

where ψi(t) is also a complex field variable associated with the same site i at time
t. This transformation is convenient for several reasons. First, the Jacobian of the
transformation is equal to one. Hence, the differentials in Eq. (6.8) transform as

Dφ̄Dφ→ Dψ̄Dψ. (6.13)

Additionally, all bilinear (linear in φ and φ̄) terms are invariant under the transfor-
mation:

φ̄i(t)φi(t)→ ψi(t)e
Ui(t)e−Ui(t)ψ̄i(t) = ψ̄i(t)ψi(t). (6.14)

Second, the spatial contributions of the Hamiltonian are invariant under the trans-
formation. For the transformation H({φ̄}, {φ})→ H({ψ̄}, {ψ}) we have

Γ
∑
i

(φ̄i+1 − φ̄i)(eUi+1φi+1 − eUiφi)
eUi+1 + eUi

→ Γ
∑
i

(eUi+1ψi+1 − eUiψi)(ψ̄i+1 − ψ̄i)
eUi+1 + eUi

. (6.15)

Since the field variables commute with their complex conjugates, these two forms are
equivalent. We will refer to the ith component of this term as H(ψ̄i(t), ψi(t)).

The transformation of the time derivative term and the work term are the most
vital parts of this transformation. Simultaneously performing the transformation on
their sum, we have

φ̄i(t)∂tφi(t) + |φi(t)|2∂tUi(t)→ ψi(t)e
Ui(t)∂t(ψ̄i(t)e

−Ui(t)) + |ψi(t)|2∂tUi(t), (6.16)

which may be simplified to

ψi(t)∂tψ̄i(t)− |ψi(t)|2∂tUi(t) + |ψi(t)|2∂tUi(t) = ψi(t)∂tψ̄i(t). (6.17)

Thus, the transformation cancels the term associated with the work in the statistical
action. However, the time derivative is currently acting on ψ̄ instead of ψ. To recreate
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our original expression in terms of ψ, we use the method of integration by parts on
the integral to produce∫ t2

t1

dt ψi(t)∂tψ̄i(t) = |ψi(t2)|2 − |ψi(t1)|2 +

∫ t1

t2

dt ψ̄i(t)∂tψi(t). (6.18)

Combining this with the term |ψi(t1)|2, this becomes

|ψi(t1)|2 +

∫ t2

t1

dt ψi(t)∂tψ̄i(t) = |ψi(t2)|2 +

∫ t1

t2

dt ψ̄i(t)∂tψi(t). (6.19)

The total rescaling for the statistical action is therefore

S[{ψ̄}, {ψ}] =
∑
i

[
|ψi(t2)|2 +

∫ t1

t2

dt
(
ψ̄i(t)∂tψi(t)−H(ψ̄i(t), ψi(t))

)]
. (6.20)

where the Hamiltonian term receives a negative sign because the integral bounds have
been reversed. Now the average integrates from the final time t2 to the initial time
t1, reversing time.

The final piece to the puzzle is the contribution of the initial Boltzmann state and
the final projection state. We will show that the two contributions swap roles under
the rescaling, moving the Boltzmann state from time t1 to t2. For the non-interacting
Boltzmann state, the gauge-like transformation is

ΨB({φ̄}) =
1

Zt1N !

( L∑
i

φ̄i(t1)e−Ui(t1)

)N
→ 1

Zt1N !

( L∑
i

ψi(t1)

)N
, (6.21)

where Zt1 is the partition function at time t1. This transformed Boltzmann state is
precisely the contribution of the projection state at time t1 for ψ except it has an ad-
ditional reciprocal of the partition function Zt1 . In a similar fashion, the contribution
of the projection state rescales to be

1

N !

( L∑
i

ψi(t1)

)N
→ Zt2

1

Zt2N !

( L∑
i

ψ̄i(t2)e−Ui(t2)

)N
, (6.22)

where Zt2 is the partition function at time t2. The rescaling has made the projection
state into the Boltzmann state except now it has an extra factor of the partition
function at the final time.
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The total transformation creates

〈e−W 〉 = N−1

∫
Dφ̄Dφ 1

N !Zt1

(∑
i

ψi(t1)

)N
Zt2

1

Zt2N !

( L∑
i

ψ̄i(t2)e−Ui(t2)

)N
e−S[{ψ̄},{ψ}].

(6.23)

Unlike before the transformation, the action does not contain a work term. Hence,
the action is the same as if we were averaging one, except we are now working back-
wards in time. Fortunately, the initial and final states outside of the action have
swapped, excluding the extra partition functions. Thus, we are able to integrate over
time, simply in reverse. According to statistical mechanics, the ratio of the partition
functions is the exponent of negative change of the Helmholtz free energy (with a
factor of β). Explicitly writing β and factoring out the extra partition functions from
the average, we have

〈e−βW 〉 =
Zt2
Zt1
〈1〉 = e−β∆F . (6.24)

Thus, for the case of non-interacting particles on a lattice, the Jarzynski relation
is produced.

6.2 Continuum Limit

We can generalize our results from the previous section by moving from the lattice
model to continuous space for our particles behaviors. Explicitly, the continuum limit
occurs when we take the limit of the lattice spacing h approaching zero. This occurs
after we act the Doi operators on the coherent states because lattice site operators
acting on a specific site loses meaning in the limit.

When moving to the continuum limit, φi(t) becomes a function of the spatial
variable x such that φ(x, t). Most parts of the average may directly swap from the
discretized lattice form to the continuous functional representation. A slight com-
plexity is introduced with the Hamiltonian. Since the Hamiltonian has a difference
between the field variables φ at neighboring sites (φ̄ does as well), we must change
the differences into derivatives. By definition, we have

∂xφ(x) = lim
h→0

φi+1 − φi
h

, (6.25)
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where h is the space between the lattice sites, and i is some arbitrary lattice site that
corresponds to the spatial position x. Additionally, sums over all lattice sites become
integrals over all space. We do not explicitly show the time argument for the φ(t)
function for brevity in this section. As in the previous section, we assume that their
are no particle interactions and hence have the same Hamiltonian Eq. (6.9).

After acting the Hamiltonian on the coherent states as shown in Eq. (6.10), we
multiply it by 1 = e−(∆U)/2/e−(∆U)/2 resulting in

H({φ̄}, {φ}) = Γ
∑
i

(φ̄i+1 − φ̄i)(e∆U/2φi+1 − e−∆U/2φi)

e∆U/2 + e−∆U/2

= Γ
∑
i

(φ̄i+1 − φ̄i)(e∆U/2φi+1 − e−∆U/2φi)

2 cosh ∆U/2
, (6.26)

where ∆U = (Ui+1 − Ui). Moving to the continuum limit, we have

H({φ̄}, {φ}) = lim
h→0

Γh2
∑
i

(φ̄i+1 − φ̄i)
h

(e∆U/2φi+1 − e−∆U/2φi)

h

1

2 cosh ∆U/2
. (6.27)

To take this limit, we must expand the exponentials containing ∆ε like terms. For
the term associated with φ, we have

e∆U/2φi+1 − e−∆U/2φi
h

=
(1 + ∆U/2 +O(∆U2))φi+1 − (1−∆U/2 +O(∆U2))φi

h
.

(6.28)

Since ∆U2 terms in the continuum limit are negligible, we have

e∆U/2φi+1 − e−∆U/2φi
h

=
φi+1 − φi + (φi+1 + φi)(∆U/2)

h
. (6.29)

Taking the limit for this term, we have

lim
h→0

φi+1 − φi + (φi+1 + φi)(∆U/2)

h
= ∂xφ(x) + (2φ(x))∂xU(x)/2

= ∂xφ(x) + (φ(x))∂xU(x). (6.30)

Note that limh→0 φi+1 +φi = 2φ(x) as the difference between φi+1 and φi is negligible
in the limit.

In a similar manner, we may take the limit for the cosh ∆U/2 and produce

lim
h→0

cosh ∆U/2 = lim
h→0

1 +O(∆U2)

= 1. (6.31)
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Explicitly writing the time argument and taking the Hamiltonian’s limit, we have

H({φ̄(t)}, {φ(t)}) = D

∫
dx ∂xφ̄(x, t)

(
∂xφ(x, t) + φ(x, t)∂xU(x, t)

)
. (6.32)

where D = Γh2/2 and is a diffusion constant. Hence, the full average becomes

〈e−W 〉 = N−1

∫ (
Dφ̄Dφ

)(∫
dx φ(x, t2)

)N
ΨB({φ̄(t1)})e−S[{φ̄},{φ}]. (6.33)

where the statistical action is

S[{φ̄}, {φ}] =

∫
dx

[
|φ(x, t1)|2

+

∫ t2

t1

dt
(
φ̄(x, t)∂tφ(x, t) + φ̄(x, t)φ(x, t)∂tU(x, t)

+D∂xφ̄(x, t)(∂xφ(x, t) + φ(x, t)∂xU(x, t))
)]

(6.34)

We are able to perform the gauge transformation in an analogous form to the
original lattice transformation found in Sec. (6.1). The only difference between the
two derivations is that the φ̄,φ, and U are all functions of the spatial variable x instead
of associated with a single lattice site. This is also true for the gauge transformation
variables ψ̄ and ψ.

6.3 Interacting Case

With the pair-interactions included in the energetics, we return the Vij term to the
energy εi resulting in the full Hamiltonian shown in Eq. (3.21). To begin, we will move
this Hamiltonian to the continuum limit as before under the εi notation. Exactly
analogous to the previous derivation for Ui, we produce the continuum limit for the
εi such that the Hamiltonian is

H({φ̄(t)}, {φ(t)}) = D

∫
dx ∂xφ̄(x, t)

(
∂xφ(x, t) + φ(x, t)∂xε(x, t)

)
(6.35)

where ∂xε(x, t) is explicitly

∂xε(x, t) = ∂xU(x, t) +

∫
dy φ̄(y, t)φ(y, t)V (x− y) (6.36)
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where y is a spatial variable independent of x but over the same dimension. The term
dependent on the pair interactions in Eq. 6.36 is produced through the same Taylor
expansion that produces the local potential Ui term.

We now will produce the Jarzynski relation through a similar gauge-transformation
process as seen in Sec. 6.1.1, but with a pair interaction term. For the transformations
for φ̄ and φ, we use

φ(x, t)→ψ̄(x, t)e−U(x,t)−
R
dy φ̄(y,t)φ(y,t)V (x−y) (6.37)

and

φ̄(x, t)→ψ(x, t)eU(x,t)+
R
dy φ̄(y,t)φ(y,t)V (x−y). (6.38)

As before, the differentials Dφ̄Dφ and all bilinear terms are invariant under this
transformation,

φ̄(x, t)φ(x, t)→ψ̄(x, t)e−U(x,t)−
R
dy φ̄(y,t)φ(y,t)V (x−y)eU(x,t)+

R
dy φ̄(y,t)φ(y,t)V (x−y)ψ(x, t)

=ψ(x, t)ψ̄(x, t). (6.39)

The spatial terms in the Hamiltonian,

D

∫
dx ∂xφ̄(x, t)

(
∂xφ(x, t) + φ(x, t)∂xε(x, t)

)
, (6.40)

are invariant under the transformation.

Again, we use the transformation of the time derivative term to cancel the work
term. For only the time derivative (excluding the work term temporarily), we have

φ̄(x, t)∂tφ(x, t)→ ψ(x, t)eU(x,t)+
R
dy φ̄(y,t)φ(y,t)V (x−y)∂tψ̄(x, t)e−U(x,t)−

R
dy φ̄(y,t)φ(y,t)V (x−y)

= ψ(x, t)

(
∂tψ̄(x, t)− ψ̄(x, t)∂t

(
U(x, t) +

∫
dy |φ(y, t)|2V (x− y)

))
.

(6.41)

The second term of Eq. 6.41 cancels the work term. A new term from the non-
interacting case has appeared as the final term of this equation. To understand its
function, we integrate by parts to produce∫

dx|ψ(x, t)|2∂t
∫
dy |ψ(y, t)|2V (x− y) = |ψ(x, t)|2

∫
dy |ψ(y, t)|2V (x− y)

∣∣∣∣t2
t=t1

−
∫

dx
[
∂t|ψ(x, t)|2

∫
dy |ψ(y, t)|2V (x− y)

]
.

(6.42)
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We should note that V (x − y) is symmetric with respect to x and y. Since x and y
are arbitrary variables that we integrate over, the final term on the right in Eq. (6.42)
is identical (excluding the negative sign) to the term we were originally attempting
to integrate on the left. Hence, if we add this term to both sides of the equation and
divide by 2, Eq. (6.42) becomes∫

dx|ψ(x, t)|2∂t
∫
dy |ψ(y, t)|2V (x− y) =

1

2

∫
dx|ψ(x, t)|2

∫
dy |ψ(y, t)|2V (x− y)

∣∣∣∣t2
t=t1

(6.43)

This pair potential term depends on the initial and final conditions of the system.
As such, we will return to it when we are reversing the contributions of the initial
and final states.

The contribution from the projection state is identical to the non-interacting case.
Hence we have

1

N !

(∫
dxψ(x, t1)

)N
→ Zt2

1

Zt2N !

(∫
dx ψ̄(x, t2)e−U(x,t2)−

R
dy |φ(y,t2)|2V (x−y)

)N
,

(6.44)

Due to the pair interactions, the manipulation of the initial Boltzmann state,
Eq. (4.9), is slightly modified compared to the non-interacting case. Since we are
back at the operator level, we are no longer in the continuum limit and instead have
individual lattice sites i. We begin by acting the coherent state 〈{φ}t1|. First we insert
an additional complete set of coherent states labeled by {φ}0, a set of field variables
at time t1 but different {φ}t1 , between the pair potential term and the contribution
from the non-interacting Boltzmann state:

1

N !Zt1

∫
Dφ̄0Dφ0 〈{φ}t1| e−

1
2

P
ij â

†
i âiVij â

†
j âj |{φ}0〉 〈{φ}0|

( L∑
i=1

â†ie
−Ui
)N
|0〉 . (6.45)

Starting by acting the non-interacting term to the left (the term between the right
most bra and ket in Eq.(6.45)), we have

( L∑
i=1

φ̄i(t1)e−Ui(t1)
)N
e−

1
2

∑
i |φi,0|2 . (6.46)

We first act the pair potential term in the limit where Vij is weak. Hence we may
expand our pair potential term according to its Taylor series and act it on the coherent
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states:

〈{φ}t1| e−
1
2

P
ij â

†
i âiVij â

†
j âj |{φ}0〉 = 〈{φ}t1|

(
1− 1

2

∑
ij

â†i âiVij â
†
j âj

)
|{φ}0〉

=
(

1− 1

2

∑
ij

φ̄i,t1φi,0Vijφ̄j,t1φj,0

)
exp
(∑

i

−1

2
|φ|2i,t1 −

1

2
|φ|2i,0 + φ̄i,t1φi,0

)
(6.47)

Combining the overlap from Eq. (6.47) and the normalization factor from Eq. (6.46)
results in:

exp
(∑

i

φi,0(φ̄i,t1 − φ̄i,0)
)

exp
(
−
∑
i

1

2
|φ|2i,t1

)
. (6.48)

The integral
∫
Dφ̄0Dφ0 extends over the entire complex plane. Rotating the plane has

no effect on the outcome of the integral because the entirety of the plane is always
integrated. This process is known as a Wick rotation and allows us to produce a
delta function from Eq. (6.48) by integrating over the imaginary axis of φ0. Then, we
integrate over the real axis and collapse the delta function. This integration forces
all φi,0 to become φi,t1 . Hence the Boltzmann state contribution is

1

N !Zt1

(
1− 1

2

∑
ij

φ̄i(t1)φi(t1)Vijφ̄j(t1)φj(t1)
)( L∑

i=1

φ̄i(t1)e−Ui(t1)
)N
e−

1
2

∑
i |φi,0|2 .

(6.49)

Since we are in the weak Vij limit, we may replace the expanded term with the original
exponential resulting in

1

N !Zt1
e−

1
2

P
ij φ̄i(t1)φi(t1)Vij φ̄j(t1)φj(t1)

( L∑
i=1

φ̄i(t1)e−Ui(t1)
)N
e−

1
2

∑
i |φi(t1)|2 . (6.50)

Last, we must move to the continuum limit in the same fashion as before

1

N !Zt1
e−

1
2

R
dxdy φ̄(x,t1)φ(x,t1)V (x−y)φ̄(x,t1)φ(x,t1)

(∫
dx φ̄(x, t1)e−U(x,t1)

)N
e−

1
2

∫
dx|φ(x, t1)|2 .

(6.51)

We now perform the gauge transformation on the Boltzmann state contribution.
All bilinear terms in the pair interaction term are invariant under the transformation.
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The non-interacting component becomes(∫
dx ψ̄(x, t1)e

R
dy ψ̄(y,t)ψ(y,t)V (x−y)

)N
e−

1
2

∫
dx |ψ(x, t1)|2 . (6.52)

The pair interaction term inside here may be drawn out at the cost of an additional
integral over x in the exponent. Hence, the positive Vij exponent (with field variable
and integral implicit) from the Boltzmann state combines with the initial −1

2
Vij ex-

ponent and the −1
2
Vij from the time derivative, Eq. (6.43), and cancels. Conversely,

there is a positive 1
2
Vij exponent from the time derivative that combines with the

pair interaction component of the projection state that produces a negative −1
2
Vij

exponent at time t2. Lumping the normalization from the Boltzmann state into the
statistical action S[{φ̄}, {φ}] as usual, the average becomes

〈e−W 〉 = N−1

∫
Dφ̄Dφ Zt2

(N !)2Zt1

(∑
i

ψi(t1)

)N
(6.53)

1

Zt2

( L∑
i

ψ̄i(t2)e−Ui(t2)

)N
e−

1
2

P
ij φ̄i(t2)φi(t2)Vij φ̄j(t2)φj(t2)e−S[{ψ̄},{ψ}].

(6.54)

where all terms in the action are now appropriately transformed. As before, this
produces the Jarzynski relation since the average is now an average of one with
partition functions found at the appropriate times. Future work involves further
clarification of the initial condition rescaling for the pair interactions.

6.4 Multiple Dimensions

Our next step is to generalize the average to an arbitrary number of dimension d.
At the Fock space level, the previously defined operator relations hold as indices i, j
simply indicate different lattice sites; the lattice sites are not confined to a single
dimension. The differentials Dφ̄Dφ extend to all d dimensions. Time derivatives and
all non-spatial terms remain unaffected by the shift to multiple dimensions.

As the Hamiltonian contains the spatial dependence, we are interested in how the
Hamiltonian transforms when moved to multiple dimensions. If we imagine having
two dimensions instead of one, we now have two additional lattice sites which a given
lattice site could use to make transitions to and from a given state. These terms would



CHAPTER 6. JARZYNSKI AVERAGE 38

be identical to the terms already found in the Hamiltonian as shown in Eq. (3.21).
Extrapolating on this behavior, we produce additional and synonymous terms as
those found in Eq. (3.21) for each dimension. We shall express the field variables as
functions of all dimensions specified by φ(x, t) such that x = (x1, x2, x3 . . .) where xi
is a single spatial dimension specified by index i. In the continuum limit and adhering
to Einstein summation notation, the Hamiltonian becomes:

H({φ̄}, {φ}) = D

∫
dx
(
∂iφ̄(x, t)∂iφ(x, t) + ∂iφ̄(x, t)φ(x, t)∂iU(x, t)

+ ∂iφ̄(x, t)φ(x, t)

∫
dy|φ(y, t)|2∂iV (x− y)

)
. (6.55)

Einstein summation notation indicates an implied sum over a repeated index. For
example,

∑
i xiyi = xiyi in this notation. The index i subscript denotes a derivative

with respect to the xi spatial variable. In combination with the other terms that
comprise the action, we create the statistical action for the interacting particle case:

S[{φ̄}, {φ}] =

∫
dx

[
|φ(x, t1)|2 +

∫ t2

t1

dt
(
φ̄(x, t)∂tφ(x, t)

+D

∫
dx
(
∂iφ̄(x, t)∂iφ(x, t) + ∂iφ̄(x, t)φ(x, t)∂iU(x, t)

+ ∂iφ̄(x, t)φ(x, t)

∫
dy|φ(y, t)|2∂iV (x− y)

)]
. (6.56)

The derivation of the Jarzynski relation for multiple dimensions follows the same
transform as the previous section except now the field variables are functions of mul-
tiple dimensions.
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Chapter 7

Conclusions

In chapter (6), we demonstrated that the Jarzynski relation can be produced from a
gauge-like transformation of the fields in addition to a time reversal of the dynamics.
Now that we have developed the field theory for thermal systems, our goal is to
understand the underlying mechanism so that we can see how the relation holds,
if it can be extended, and if it will be broken under any circumstances. We have
previously noted that there is a series of non-equilibrium work relations, all tightly
connected, that can be produced by modifying the Jarzynski relation. We hope to
use the field-theoretic framework to define other thermodynamic quantities for non-
equilibrium systems in terms of strict equalities. Specifically, we hope to extend the
Doi-Peliti field theory framework to address other thermodynamic properties such as
entropy production [11].

One of the most remarkable features of our formalism is that it requires no as-
sumptions about the form of the particle interactions. Our pair-wise potentials Vij
were defined such that they could encompass any interaction between two particles.
Hence, our derivation holds for types of particle interactions including but not lim-
ited to dilute gases, liquid-gas phase transitions, and crystallization phase dynamics.
In the future, we plan to extend the derivation to multiple species of particles and
chemical reactions.

Being able to generalize the Jarzynski relation would be useful for a variety of
fields. For instance in fields such as biology and polymer chemistry, the change of
free energy between a stretched and unstretched polymer chain such as DNA is an
important question. Waiting for the chain to uncoil due to thermal fluctuations
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in equilibrium takes a prohibitively long time, making the measurement impossible.
With the development of the Jarzynski relation, we now may force the polymer to
extend and use the relation to determine the change in free energy [12, 13, 14, 15].
Similarly, computer models of thermal systems are able to utilize the relation en-
abling them to also forgo the equilibrium requirement. Previous to the Jarzynski
relation, processes such as these were very difficult to quantify. Our goal is to use the
field-theoretic framework developed here to produce more relations like the Jarzynski
relation that would quantify these small-scale processes.
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Appendix A

Doi Relations

A.1 Hermitian Conjugation

If we have matrix A, its Hermitian adjoint A† is equivalent to taking the transpose of
the A and then complex conjugating each entry in that matrix. Operators and states
may be represented by matrices, and hence have Hermitian adjoint. For â, â† is by
definition its Hermitian adjoint. Analogous to quantum mechanical states, left and
right Doi states are Hermitian conjugates of each other. For instance, the state 〈n|
is the Hermitian adjoint of |n〉. For further detail, refer to Ref. [27].

A.2 Annihilation Operator Acting on the nth State

We will prove âi |ni〉 = ni |ni − 1〉 Eq. (3.5) using induction. Let P (ni) be the pre-
ceding statement for ni ∈ N.
1) For the base step, we have ni = 0. Hence, âi |0〉 = 0 by the definition found in
section 2 and P (0) holds.
2) For the induction step, we will assume that P (ni) is true. Thus, we have

âi |ni〉 = ni |ni − 1〉 . (A.1)

We will show that P (ni + 1) holds. First let us take the commutator relation[
âi, â

†
i

]
= âiâ

†
i − â

†
i âi = 1, (A.2)
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and rewrite it as
âiâ
†
i = â†i âi + 1. (A.3)

Utilizing this relation, we have

âi |ni + 1〉 = âi(â
†
i )
ni+1 |0〉 = âiâ

†
i (â
†
i )
ni |0〉 = (â†i âi + 1) |ni〉 . (A.4)

By the induction hypothesis Eq. (A.1), we have

(â†i âi + 1) |ni〉 = |ni〉+ â†ini |ni − 1〉 = |ni〉+ ni |ni〉 = (ni + 1) |ni〉 . (A.5)

Thus, P (n) holds for all n ∈ N by the principle of mathematical induction.

A.3 Projection State

We will prove that the projection state |P 〉 is a right eigenstate of the creation operator
â with eigenvalue of 1. To begin, we Taylor expand the projection state’s exponent
resulting in

â |P 〉 = âeâ
† |0〉

= â

(
1 + â† +

(â†)2

2!
+

(â†)3

3!
+ · · ·

)
|0〉

=

(
â+ ââ†i +

â(â†)2

2!
+

(ââ†i )
3

3!
+ · · ·

)
|0〉

= â |0〉+ â |1〉+
â |2〉
2!

+
â |3〉
3!

+ · · · . (A.6)

Using Eq. (3.5), we have

= 0 + 1 |0〉+ â |1〉+
â |2〉
2!

+ · · ·

=

(
1 + â† +

(â†)2

2!
+

(â†)3

3!
+ · · ·

)
|0〉

= eâ
† |0〉 = |P 〉 . (A.7)

By Hermitian conjugation, we also know that 〈P | is the left eigenstate of â†i .
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Appendix B

Coherent State Relations

We will prove the validity of Eq. (5.6), (5.8), (5.9) and normalization for coherent
states.

B.1 Coherent States as Eigenstates

We will now prove that 〈φ| â† = 〈φ| φ̄ and â |φ〉 = φ |φ〉. Starting with the right
eigenstate and the definition of the coherent state, we have

â |φ〉 = âe−|φ|
2/2eâ

†φ |0〉 . (B.1)

Now we expand the exponential according to its Taylor series and produce

â |φ〉 = âe−|φ|
2/2
(

1 + φâ† +
(φâ†)2

2!
+ · · ·

)
|0〉

= e−|φ|
2/2
(
â+ φââ† +

φ2â(â†)2

2!
+ · · ·

)
|0〉 . (B.2)
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Realizing that this is a superposition of all n states and using Eq. (3.5), we have

â |φ〉 = e−|φ|
2/2
(
â |0〉+ φâ |1〉+

φ2â)

2!
|2〉+ · · ·

)
= e−|φ|

2/2
(

0 + φ |0〉+ φ2 |1〉+ · · ·
)

= e−|φ|
2/2
(
φ+ φ2â† + · · ·

)
|0〉

= φe−|φ|
2/2eâ

†φ |0〉 = φ |φ〉 , (B.3)

yielding our result. Since 〈φ| is the Hermitian conjugation of |φ〉, we may take the
Hermitian of â |φ〉 = φ |φ〉 to produce the left eigenstate equivalent. Hence, 〈φ| â† =
〈φ| φ̄ follows.

B.2 Complete Set of States

We will prove that

1 =

∫
d2φ

π
|φ〉 〈φ| ,

Eq. (5.8) where d2φ = d(Rφ)d(Imφ) and the integral is over the entire complex plane.
Beginning with the right hand side of the equation and expanding the exponentials
in the coherent states, we have∫

d2φ

π
|φ〉 〈φ| =

∫
d2φ

e|φ|2π
eâ

†φ |0〉 〈0| eâφ̄ =

∫
d2φ

e|φ|2π

∑
m,n

φm(φ̄)n

n!m!
|m〉 〈n| , (B.4)

where n and m are indices of sums that range from zero to infinite. All complex
numbers maybe represented using polar coordinates for their value on the complex
plane. We define φ = reiθ and thus φ̄ = (re−iθ) where r is the magnitude of φ
and θ contains the phase information. The differentials d2φ becomes rdrdθ, and we
integrate over all space. Inputting the polar representation, we have∫

d2φ

π
|φ〉 〈φ| =

∫
d2rdrdθ

er2π

∑
m,n

(reiθ)m((re−iθ))n

n!m!
|m〉 〈n|

=

∫ ∞
0

dr

∫ 2π

0

dθ
1

er2π

∑
m,n

rm+n+1ei(m−n)θ

n!m!
|m〉 〈n| . (B.5)
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Since eiNθ is oscillatory in terms of θ where N is a non-zero integer constant, when
integrated between 0 and 2π this integral will evaluate to zero. However when N = 0,
ei0 = 1. Hence, the θ integral will be zero except when m = n where the integral would
become equal to 2π creating a Kronecker delta function. Evaluating the integral and
then using the Kronecker delta function to collapse a sum, we have∫

d2φ

π
|φ〉 〈φ| =

∫ ∞
0

dr
1

er2π

∑
m,n

rm+n+1(2πδm,n)

n!m!
|m〉 〈n|

=

∫ ∞
0

dr
2

er2
∑
n

r2n+1

(n!)2
|n〉 〈n| . (B.6)

We now evaluate the r integral via a variable substitution and integration by parts.
Let u = r2 and du = 2rdr. With this substitution,∫

d2φ

π
|φ〉 〈φ| =

∫ ∞
0

du
∑
n

e−uun

(n!)2
|n〉 〈n|

=
∑
n

1

n!
|n〉 〈n| by repeated integration by parts. (B.7)

This is the definition of a complete set of states for a quantum harmonic oscillators
where ∑

n

1

n!
|n〉 〈n| = 1. (B.8)

Hence, we have proved that Eq. (5.8) is true.

B.3 Overlap Relation and Normalization

We will first show that the overlap relation Eq. (5.9)

〈φ1|φ2〉 =
eφ̄1eφ2

e(|φ1|2+|φ2|2)/2
,

where φ1 and φ2 are different complex variables. Beginning with the left-hand side,
we have

〈φ1|φ2〉 = 〈0| eφ̄1âe−|φ1|2/2 |φ2〉

=e−(|φ1|2)/2 〈0| (1 + φ̄1â+
(φ̄1â)2

2!
+ · · · ) |φ2〉 . (B.9)



APPENDIX B. COHERENT STATE RELATIONS 46

Referring to Eq. (5.6), we can evaluate the â to the right producing

〈φ1|φ2〉 =e−|φ1|2/2 〈0| (1 + φ̄1φ2 +
(φ̄1φ2)2

2!
+ · · · ) |φ2〉 = e−|φ1|2/2 〈0| eφ̄1φ2 |φ2〉 . (B.10)

Now we take the inner product 〈0| |φ2〉 and have

〈0φ2〉 = 〈0| eâ†φ2e−|φ2|2/2 |0〉 = e−|φ2|2/2, (B.11)

by acting all of the â† in the Taylor expansion of the exponent on the vacuum state
to the left. This yields the final result of

〈φ1|φ2〉 = e−|φ2|2/2e−|φ1|2/2eφ̄1φ2 , (B.12)

which is the overlap relation.

Next, we will use the overlap relation to prove normalization for a single φ eigen-
state: 〈φ|φ〉 = 1. Using the overlap relation for the same state, we have

〈φ|φ〉 = e−|φ|
2

eφ̄φ = 1. (B.13)
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