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Abstract

The focus of this work is on a specific class of reproducing kernel Hilbert spaces. In
Adams and McGuire [2], the tridiagonal reproducing kernels were introduced, and
in [3], a specific example of a tridiagonal reproducing kernel Hilbert space was in-
vestigated. In particular, a careful functional comparison was made between this
tridiagonal space and the well-known Hardy space. This tridiagonal example is stud-
ied further in this thesis via the determination of the spectrum of the multiplication
by z operator. The main results of this thesis generalize this example to the five
diagonal case. A general framework is developed for functionally comparing different
bandwidth spaces, and this framework is applied to outline the relationship between
the generalized five diagonal example and the Hardy space.
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Chapter 1

Introduction

The work in this thesis concerns a specific class of reproducing kernel Hilbert spaces.
This section begins by providing a definition for a Hilbert space and giving some
examples. Next, a reproducing kernel is defined and the relationship between a re-
producing kernel and a corresponding Hilbert space is discussed. Some important
types of reproducing kernels that foreshadow the main examples studied in this the-
sis are highlighted.

Before defining a Hilbert space, some necessary terms are defined. Throughout
we will assume that all vector spaces are over the field C of complex numbers. The
unit disk {z : |z| < 1} will be denoted by D and its boundary, the unit circle, by ∂D.

Definition 1.1 (Inner Product). Let V be a vector space. An inner product, 〈·, ·〉 :
V × V → C, is a function satisfying the following conditions for all x, y, z ∈ V and
scalars α ∈ C:

• 〈x, x〉 ≥ 0 with 〈x, x〉 = 0 if and only if x = 0;

• 〈x, y〉 = 〈y, x〉;

• 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉; and

• 〈αx, y〉 = α〈x, y〉.

A vector space equipped with an inner product is called an inner product space.
An inner product provides additional structure to a vector space. For example, an
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inner product gives a way to quantify the interaction between two elements, or vectors,
of an inner product space. This gives a sense of “angle” between two vectors in the
space. It also allows one to assign lengths to vectors of a vector space via an induced
norm. In order to discuss the norm induced by an inner product, first recall the
definition of a norm.

Definition 1.2 (Norm). Let V be a vector space. A norm, ‖ · ‖ : V → R+, is a
function satisfying the following conditions for all x, y ∈ V and scalars α ∈ C:

• ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0;

• ‖αx‖ = |α|‖x‖; and

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

An inner product naturally induces a norm on an inner product space via

‖x‖ =
√
〈x, x〉.

From this point on, we will assume that this is the norm associated to any given
inner product space. An inner product space is complete if every Cauchy sequence of
elements in the space converges to an element in the space. Recall a sequence {xn} is
Cauchy if for each ε > 0, there is an N such that ‖xn− xm‖ < ε whenever n,m > N .

Definition 1.3 (Hilbert Space). A Hilbert space is a complete inner product space.

A collection of vectors {fn} in a Hilbert space is orthonormal if

〈fn, fm〉 =

{
1 if n = m

0 if n 6= m.

It is well known that every Hilbert space has a basis of orthonormal vectors.

Two Hilbert spaces, H1 and H2, are isomorphic if there is a one-to-one and onto
mapping between the spaces that preserves the inner product. We will denote such
an isomorphism by H1

∼= H2. Often we will look at Hilbert spaces whose vectors
are functions defined on a domain D. When two such Hilbert spaces H1 and H2

contain the same functions, but are not necessarily isomorphic, we will denote that
relationship by H1

s
= H2. Similarly, if all of the functions in H1 are in H2, we will

write H1

s

⊆ H2.
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Examples of some well known Hilbert spaces, each with an accompanying or-
thonormal basis, are listed.

Example 1.4. 1. Let Cn = {(x1, . . . , xn) : xi ∈ C} with inner product defined by

〈x, y〉 =
n∑
i=1

xiyi.

Note that Cn is a finite dimensional Hilbert space with orthonormal basis {ei}ni=1

where ei is the n-tuple of complex numbers whose entries are 1 in the ith slot
and 0 elsewhere.

2. Let

L2(∂D) =

{
f : ∂D→ C :

∫
∂D
|f(s)|2ds <∞

}
with inner product defined by

〈f, g〉 =
1

2π

∫
∂D
f(s)g(s) ds

where ds denotes arc length measure on ∂D. Note that L2(∂D) is an infinite di-
mensional Hilbert space with orthonormal basis {fn}∞n=−∞ where fn(eiθ) = einθ.
Elements of L2(∂D) can be thought of as equivalence classes of square integrable
functions on ∂D where f ≡ g if and only if f − g = 0 almost everywhere.

3. Let

`2(Z) =

{
{xi}i∈Z : xi ∈ C and

∑
i∈Z

|xi|2 <∞

}
with inner product defined by

〈x, y〉 =
∑
i∈Z

xiyi.

Note that `2(Z) is an infinite dimensional Hilbert space with orthonormal basis
{en}n∈Z where en is the sequence indexed by Z whose entries are 1 in the nth slot
and 0 elsewhere. Notice that `2(Z) ∼= L2(∂D) via the isomorphism φ : `2(Z)→
L2(∂D) defined by φ({an}) =

∑
n∈Z ane

inθ which identifies the orthonormal basis
{en} of `2(Z) with the orthonormal basis {fn} of L2(∂D). It is often convenient
to use this identification to interchange back and forth between the two spaces.



CHAPTER 1. INTRODUCTION 4

4. Let

`2+(Z) =

{
{xi}∞i=0 : xi ∈ C and

∞∑
i=0

|xi|2 <∞

}
with inner product defined by

〈x, y〉 =
∞∑
i=0

xiyi.

Note that `2+(Z) is a subspace of `2(Z) with orthonormal basis {en}∞n=0.

5. Let H2(D) be the space of analytic functions f(z) =
∑∞

n=0 anz
n on D such that∑∞

n=0 |an|2 < ∞. If f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=0 bnz

n are in H2(D),
then the inner product of f and g is defined by

〈f, g〉 =
∞∑
n=0

anbn.

Note that H2(D) is an infinite dimensional Hilbert space with orthonormal basis
{fn}∞n=0 where fn(z) = zn. Also, note that `2+(Z) ∼= H2(D) via the isomorphism
φ : `2+(Z) → H2(D) defined by φ({an}) =

∑∞
n=0 anz

n. As with `2(Z) and
L2(∂D), we will frequently use this identification to interchange between the
two spaces `2+(Z) and H2(D). This interchange is well known and both spaces
are referred to in the literature as the Hardy space.

The focus of this thesis will be on separable Hilbert spaces, which are Hilbert
spaces with countable bases. Some elementary and well known facts about separable
Hilbert spaces and the operators on such spaces are included below for completeness.
These facts will be used later in this section when defining the reproducing kernel.

Proposition 1.5. If H is a separable Hilbert space with orthonormal basis {fn}∞n=0,
then for each g ∈ H,

g =
∞∑
n=0

anfn =
∞∑
n=0

〈g, fn〉fn.

Moreover,

‖g‖2 =
∞∑
n=0

|an|2 =
∞∑
n=0

|〈g, fn〉|2.
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Proof. Since {fn} is a basis, g =
∑∞

n=0 anfn for some sequence {an} of complex
numbers. Since {fn} is an orthonormal basis, the proposition follows on noting that

〈g, fn〉 =
〈

lim
N→∞

N∑
j=0

ajfj, fn

〉
= lim

N→∞

N∑
j=0

aj〈fj, fn〉 = lim
N→∞

N∑
j=0

an = an.

Definition 1.6. Let H and K be Hilbert spaces.

1. A linear operator is a function L : H → K such that

L(αf + g) = αL(f) + L(g)

for all f, g ∈ H and α ∈ C.

2. A linear operator L is bounded if there exists a nonnegative real number M such
that ‖Lh‖ ≤ M‖h‖ for all h ∈ H. The smallest such constant M is denoted
‖L‖ and is called the norm of L.

3. A linear operator L : H → C is called a linear functional.

The following proposition shows that boundedness is equivalent to continuity for
a linear operator.

Proposition 1.7. If H and K are Hilbert spaces and L : H → K is a linear operator,
then L is bounded if and only if L is continuous.

Proof. First assume that L is bounded. Let M be a constant such that
‖Lh‖ ≤M‖h‖ for all h ∈ H. Then ‖Lf −Lg‖ = ‖L(f − g)‖ ≤M‖f − g‖. Therefore
L is (uniformly) continuous.

Now assume that L is continuous. Choose an element f0 ∈ H. Since L is contin-
uous at f0, there exists a δ > 0 such that ‖L(f − f0)‖ = ‖Lf − Lf0‖ < 1 whenever
‖f − f0‖ < δ. If f ∈ H is arbitrary and nonzero, then ‖( δ

2
f
‖f‖ + f0) − f0‖ = δ

2
< δ.

Hence ‖L( δ
2
f
‖f‖)‖ < 1, and so ‖Lf‖ ≤ 2

δ
‖f‖. Notice that ‖Lf‖ ≤ 2

δ
‖f‖ holds for

f = 0. Since f was arbitrary, L is bounded by the constant 2
δ
.
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The next result asserts that all bounded linear functionals on a Hilbert space have
a particularly nice representation.

Theorem 1.8 (Riesz Representation Theorem). If L : H → C is a bounded linear
functional on a Hilbert space H, then there exists a unique g ∈ H such that
L(f) = 〈f, g〉 for all f ∈ H.

Proof. If L = 0, then g = 0 is a vector in H is such that L(f) = 〈f, g〉 for all f ∈ H.
Suppose L 6= 0 and let M = ker(L). Note that since L 6= 0, M 6= H. So M⊥ 6= {0}
and there is a vector g0 ∈ M⊥ such that L(g0) = 1. If f ∈ H and α = L(f), then
L(f − αg0) = 0. So f − αg0 ∈ M . Therefore 0 = 〈f − L(f)g0, g0〉 = 〈f, g0〉 − α‖g0‖2
since g0 ⊥M . Hence L(f) = α = 〈f, g0

‖g‖2 〉. So g = g0
‖g‖2 is such that L(f) = 〈f, g〉 for

all f ∈ H.

It remains to show that g is unique. If h 6= g is a vector in H such that L(f) =
〈f, h〉 for all f ∈ H, then 〈f, h− g〉 = L(f)−L(f) = 0 for all f ∈ H. Thus h− g = 0,
and we have established uniqueness.

The Hilbert spaces studied in this thesis are separable Hilbert spaces whose el-
ements are complex-valued functions on a domain D. In this case, it makes sense
to define for each w ∈ D, an evaluation map given by Ew(f) = f(w). If Ew is
bounded, then the Riesz representation theorem implies the existence of a unique
function kw ∈ H such that

Ew(f) = f(w) = 〈f, kw〉

for all f ∈ H. This property is called the reproducing property.

Definition 1.9 (Reproducing Kernel Hilbert Space). A Hilbert space H of functions
on D is a Reproducing Kernel Hilbert space if Ew is bounded for each w ∈ D and H
is the closed linear span of {kw : w ∈ D}.

The fact that the Riesz representation theorem guarantees the uniqueness of kw
for each w ∈ D allows for the following definition.

Definition 1.10 (Reproducing Kernel). The reproducing kernel of a reproducing
kernel Hilbert space H is the unique function K : D ×D → C defined by
K(z, w) = kw(z).
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Since kw ∈ H, it is true that K(z, w) = 〈kw, kz〉. Therefore the reproducing kernel
satisfies

K(z, w) = 〈kw, kz〉 = 〈kz, kw〉 = K(w, z).

Also, the reproducing kernel satisfies the following property which is called positive
definiteness:

n∑
i,j=1

αiαjK(wi, wj) > 0

for any finite set {α1, α2, . . . , αn} ⊆ C \ {0}, and {w1, w2, . . . wn} ⊆ D. To see this,
notice

n∑
i,j=1

αiαjK(wi, wj) =
n∑
i=1

n∑
j=1

αiαj〈kwj , kwi〉

=

〈
n∑
j=1

αjkwj ,
n∑
i=1

αikwi

〉
=

∥∥∥∥∥
n∑
i=1

αikwi

∥∥∥∥∥
2

> 0.

Since K(z, w) = K(w, z), it follows that if K(z, w) is analytic in z, then K is coana-
lytic in w. It is also well known that{

n∑
j=1

αikwi : {α1, α2, . . . , αn} ⊆ C and {w1, w2, . . . wn} ⊆ D

}

is dense in H.

Conversely, if K : D ×D → C is positive definite, then there is a unique Hilbert
space H(K) such that K is the reproducing kernel for H(K). Namely, H(K) is
the closed linear span of K. Notice that the existence of the reproducing kernel
guarantees that point evaluation is a bounded linear functional for each w ∈ D.
Therefore, H(K) is a reproducing kernel Hilbert space. We could equivalently define
a reproducing kernel Hilbert space to be a Hilbert space that contains a reproducing
kernel.

The following proposition appeals to Proposition 1.5 in order to obtain a formula
for K(z, w).

Proposition 1.11. If {fn}∞n=0 is an orthonormal basis for a reproducing kernel
Hilbert space H, then K(z, w) =

∑∞
n=0 fn(w)fn(z).
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Proof. Let f ∈ H and w ∈ D. Since f =
∑∞

n=0〈f, fn〉fn, we have

f(z) = 〈f, kz〉 =

〈
∞∑
n=0

〈f, fn〉fn, kz

〉
=
∞∑
n=0

〈f, fn〉〈fn, kz〉 =
∞∑
n=0

〈f, fn〉fn(z).

This holds true for all f ∈ H, in particular it holds true for kw. Thus

K(z, w) = kw(z) =
∞∑
n=0

〈kw, fn〉fn(z) =
∞∑
n=0

fn(w)fn(z).

Example 1.12. Consider the Hardy space H2(D). We will show that H2(D) is a
reproducing kernel Hilbert space with kernel K(z, w) = 1

1−wz . Recall that if f ∈
H2(D), then f(z) =

∑∞
n=0 anz

n where
∑∞

n=0 |an|2 <∞. Also note that if w ∈ D, then
{wn}∞n=0 ∈ `2+(Z) and

‖wn‖22 =
∞∑
n=0

|w|2n =
1

1− |w|2
.

Hence

|Ew(f)| = |f(w)| =

∣∣∣∣∣
∞∑
n=0

anw
n

∣∣∣∣∣ =
∣∣∣〈{an}, {wn}〉`2+∣∣∣ .

By the Cauchy-Schwarz inequality,

|Ew(f)| ≤ ‖{an}‖2‖wn‖2 = ‖f‖2

√
1

1− |w|2
.

Therefore, Ew is a bounded linear functional on H2(D).

To see that H2(D) is the closed linear span of {kw : w ∈ D}, note that if f ∈ H2(D)
is orthogonal to kw for all w, then f(w) = 〈f, kw〉 = 0 for all w ∈ D. Hence f = 0.
This shows that H2(D) is a reproducing kernel Hilbert space. By Proposition 1.11,
the reproducing kernel for H2(D) is given by

K(z, w) =
∞∑
n=0

wnzn =
∞∑
n=0

(wz)n =
1

1− wz
.

We now focus on spaces H(K) whose elements are analytic functions on a con-
nected domain D ⊆ C. In this case, K(z, w) = kw(z) is analytic in z on D and
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coanalytic in w. Since K : D × D → C is analytic in the first variable z and
coanalytic in the second variable w, K has a convergent Taylor series expansion,
K(z, w) =

∑∞
i,j=0 aij(z − z0)

i(w − w0)
j, about each point (z0, w0) ∈ D × D. By a

translation and a rescaling, we may assume that (z0, w0) = (0, 0) and consider only
kernels of the form K(z, w) =

∑∞
i,j=0 aijz

iwj where D contains the open unit disk D.

The kernel K can be written more compactly by writing K(z, w) = z∗Aw where z
denotes the column vector whose transpose is (1, z, z2, . . .) and A = [ai,j]

∞
i,j=0. Recall,

a complex n× n matrix M is positive semi-definite (positive definite) if 〈Mf, f〉 ≥ 0
for all f ∈ Cn (if 〈Mf, f〉 > 0 for all nonzero f ∈ Cn). Similarly, the infinite matrix
A = [ai,j]

∞
i,j=0 is positive semi-definite if 〈Af, f〉 ≥ 0 for each nonzero f ∈ `2+. If

〈Af, f〉 is strictly positive, then A is positive definite. Since

n∑
i,j=0

αiαjK(wj, wi) =

〈
A

(
n∑
i=0

αiwi

)
,

(
n∑
j=0

αjwj

)〉

and {w : w ∈ D} has dense span in `2+, it is clear that K is positive semi-definite as a
function on D×D if and only if A is a positive semi-definite matrix on `2+. Therefore
K is positive definite if and only if A is positive definite, which is true if and only if
ker(A) = {0}. Henceforth, A will be assumed to have trivial kernel and H(A) will
denote the space H(K) where K(z, w) = z∗Aw.

Recall that A is positive definite if and only if A = BB∗ for some matrix B. Also
recall that if B is a bounded operator, then the range space of B is the Hilbert space
R(B) = {Bx : x ∈ `2+} with inner product 〈Bx, By〉R(B) = 〈x,y〉`2+ . Note R(B) is a
reproducing kernel Hilbert space with

K(z, w) = z∗(BB∗)w = z∗Aw.

Since reproducing kernels give rise to unique reproducing kernel Hilbert spaces,

R(B) ∼= H(A) = H(K)

where Bx is identified with the function 〈Bx, z〉`2+ . With this identification, Corollary

3.2 of [1] implies that {〈Ben, z〉`2+} is an orthonormal basis for H(A). Therefore, the

columns of B are the coefficient vectors of a basis for the space H(A).

Since A is positive definite, we can use the well known Cholesky algorithm to
write A = LL∗ where L is a lower triangular matrix. This decomposition makes the
identification of a particularly useful orthonormal basis an easy task, as illustrated in
the following examples.
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Example 1.13. 1. Let H(K) be the reproducing kernel Hilbert space with

K(z, w) =
∞∑
n=0

an(wz)n =
∞∑
n=0

(
√
anz

n)(
√
anw̄

n).

The associated coefficient matrix A is

A =


a0 0 · · ·
0 a1 0 · · ·
... 0 a2 0 · · ·

... 0 a3 0 · · ·
...

. . .



=



√
a0 0 · · ·
0
√
a1 0 · · ·

... 0
√
a2 0 · · ·

... 0
√
a3 0 · · ·

...
. . .





√
a0 0 · · ·
0
√
a1 0 · · ·

... 0
√
a2 0 · · ·

... 0
√
a3 0 · · ·

...
. . .

 .

Notice that H(K) has {√anzn}∞n=0 as an orthonormal basis. Spaces H(K) of
this form are called diagonal spaces.

2. Let H(K) be the reproducing kernel Hilbert space with

K(z, w) =
∞∑
n=0

fn(z)fn(w) where fn(z) = (an,0 + · · ·+ an,Jz
J)zn.

The associated matrix is

A =



a0,0 0 · · ·
a0,1 a1,0 0 · · ·

... a1,1
. . .

a0,J
...

. . .

0 a1,J
... 0

. . .
...




a0,0 a0,1 · · · a0,J 0 · · ·
0 a1,0 a1,1 · · · a1,J 0 · · ·
... 0

. . . . . . . . .
...



The main results of this thesis concern spaces of this form with J = 2. These
spaces are called five diagonal reproducing kernel Hilbert spaces because the
matrix A is nonzero only on the five central diagonals.
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In previous work, these spaces were studied and in some cases, H(K) was specif-
ically described. In particular, when J = 1, p > 0, and H(K) has orthonormal
basis

fn(z) =

(
1−

(
n+ 1

n+ 2

)p
z

)
zn,

H(K) was explicitly described in Admas and McGuire [3]. In section 3, we will
consider this space and determine the spectrum of the operator of multiplication by
z. Section 2 consists of some well known preliminary results regarding operators on
reproducing kernel Hilbert spaces that are needed for sections 3 and 4. In section 4,
the work in [2] is naturally extended to the five diagonal reproducing kernel Hilbert
space with orthonormal basis {fn} where

fn(z) =

(
1−

(
n+ 1

n+ 2

)
z

)(
1−

(
n+ 1

n+ 2

)
eiθ0z

)
zn.

Section 5 provides a summative conclusion of the work in this thesis, and section
6 provides a collection of open questions. Section 7 is an appendix of background
results in topology and analysis on which the results in section 2 depend.
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Chapter 2

Operators on reproducing kernel
Hilbert spaces

The results in this section are well known in the literature and most can be found
in Conway [5]. The primary focus will be on multiplication operators, which will be
defined and motivated shortly.

Theorem 2.1 (Closed Graph Theorem). If X and Y are Banach spaces and T :
X → Y is a bounded linear transformation such that the graph of T ,

G(T ) = {x⊕ Tx ∈ X ⊕ Y : x ∈ X}

is closed, then T is continuous.

Proof. Since the direct sum X ⊕ Y is a Banach space and G(T ) is closed, G(T ) is a
Banach space. Define P : G(T ) → X by P (x ⊕ Tx) = x. It is straightforward to
check that P is bounded and bijective. By the Inverse Mapping Theorem (see section
7), P−1 : X → G(T ) is continuous. Thus T : X → Y is the composition of the
continuous map P−1 : x → G(T ) and the continuous map of G(T ) → Y defined by
x⊕ Tx→ Tx. Therefore T is continuous.

Definition 2.2 (Multiplier). A function φ defined on a set D is a multiplier of a
reproducing kernel Hilbert space H of functions defined on D if φf is in H whenever
f is in H. Note that if H contains the constant functions, then any multiplier φ of
H must be in H.
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For φ ∈ H, define the operator of multiplication by φ by Mφ where Mφf = φf
for f ∈ H. Note that φ is a multiplier of H if Mφ(H) ⊆ H. Multiplication operators
are a very well studied and natural class of operators to consider on any function or
L2 space. In linear algebra one shows that a linear transformation T (operator) is
diagonalizable if and only if there exists a basis {v1, . . . , vn} of eigenvectors associated
with the eigenvalues {λ1, . . . , λn}. In this case T can be written as T = Eλ1⊕· · ·⊕Eλn
where Eλi denotes the projection onto the eigenvector vi of the eigenvalue λi. If the
eigenvalues are distinct and mi denotes the unit point mass measure at λi, then the
Hilbert space Cn can be viewed as L2(m) where m = m1 + · · ·+mn. In this case the
domain of the “functions” in L2(m) is D = {λ1, . . . , λn}, the operator T is identifiable
with Mz on L2(m), and Mφ is identifiable with the operator φ(T ). While the situation
is much more complicated for general L2 and function spaces, the motivations to study
the multiplication operators are sufficiently strong that identifying the multipliers and
understanding Mz is of fundamental importance.

The following result is a consequence of the Closed Graph Theorem and shows
that the operator Mφ is in fact continuous whenever φ is a multiplier and Mφ is well
defined.

Proposition 2.3. If H(K) is a reproducing kernel Hilbert space of analytic functions
defined on D and φ ∈ H(K), then φ is a multiplier of H(K) if and only if the
multiplication operator Mφ is bounded on H(K).

Proof. Suppose that φ is a multiplier of an analytic reproducing kernel Hilbert space
H(K) of functions defined on a domain D. The Closed Graph Theorem will be used
to show that Mφ is bounded. Let fn⊕Mφfn → f⊕g in H(K)⊕H(K). Hence fn → f
and Mφfn → g. The graph of Mφ will be shown to be closed by proving Mφf = g.
Note that Mφf is well defined since φ is assumed to be a multiplier of H(K). Since
fn → f , for each w ∈ D, < fn − f, kw >→ 0. Thus fn(w) → f(w) for all w ∈ D.
Since

< φfn − φf, kw >= φ(w)fn(w)− φ(w)f(w) = φ(w)
(
fn(w)− f(w)

)
→ 0,

and {kw : w ∈ G} is a dense subset of H(K), Mφfn →Mφf and g = Mφf as desired.

Now if Mφ is bounded on H(K), then there is an M such that ‖Mφf‖ ≤M‖f‖ <
∞. Therefore Mφf ∈ H(K) and φ is a multiplier.

Example 2.4. The function φ(z) = z is easily seen to be a multiplier of H2(D).
Recall f(z) =

∑∞
n=0 anz

n ∈ H2(D) if and only if
∑∞

n=0 |an|2 <∞. Hence (Mzf)(z) =
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∑∞
n=0 anz

n+1 is in H2(D) whenever f(z) =
∑∞

n=0 anz
n is in H2(D). Moreover, if φ is

any bounded analytic function with |φ(z)| ≤M , then∫
∂D
|φf |2ds ≤M2

∫
∂D
|f |2ds ≤M2‖f‖22

which shows that φf is in H2(D) considered as a subspaces of L2(D).

Definition 2.5 (Spectrum). The spectrum of a bounded linear operator T on a Ba-
nach space X over C, denoted σ(T ), is the set {λ ∈ C : T − λI is not invertible}
where I is the identity operator.

Lemma 2.6. If T is a bounded linear operator on a Banach Space X over C and
‖T − I‖ < 1, then T is invertible.

Proof. Let B = I − T . Note that ‖Bn‖ ≤ ‖B‖n ≤ rn < 1 for some r < 1. Therefore∑∞
n=0 ‖Bn‖ <∞ and

∑∞
n=0B

n converges to a continuous linear operator on X, call it

A. If AN =
∑N

n=0B
n, then AN(I−B) = I−BN+1. Since ‖BN+1‖ ≤ rN+1, BN+1 → 0

as n→∞. Therefore

A(I −B) = lim
N→∞

AN(I −B) = lim
N→∞

I −BN+1 = I.

Therefore, A is a left inverse of I − B. A similar argument shows (I − B)A = I. So
A = (I −B)−1. Since B = I − T , T = I −B, and so T is invertible.

Proposition 2.7. The spectrum of a bounded linear operator T on a Banach space
X over C is a closed and bounded subset of C.

Proof. Let G be the set of invertible bounded linear operators on X and let L ∈ G.
Let S be a bounded linear operator on X such that ‖S − L‖ < 1

‖L‖ . Then

‖SL−1 − I‖ = ‖(S − L)L−1‖ ≤ ‖S − L‖‖L−1‖ < 1

‖L−1‖
‖L−1‖ = 1.

By Lemma 2.6, SL−1 is invertible. Therefore, (SL−1)T = S is invertible since it is
the composition of invertible bounded linear operators. Hence, the set G of invertible
bounded linear operators on X is an open set.

Let φ be the map from C to the set of bounded linear operators on X defined by
φ(λ) = λI − T . Since λn → λ as n→∞ implies λnI − T → λI − T as n→∞, φ is
continuous. Thus, φ−1(G) = C \ σ(T ) is open in C. Therefore σ(T ) is closed.
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Let λ ∈ C with |λ| > ‖T‖. Then ‖(I − 1
λ
T ) − I‖ = ‖ 1

λ
T‖ < 1. By Lemma 2.6,

I − 1
λ
T is invertible. So −λ(I − 1

λ
T ) = T − λI is invertible. Thus σ(T ) is contained

in the closed disk of radius ‖T‖ and σ(T ) is bounded.

Definition 2.8 (Spectral Radius). The spectral radius of a bounded linear operator
T is r(T ) = max{|λ| : λ ∈ σ(T )}.

The multiplication operatorMz is an operator of particular interest. The spectrum
of Mz is determined for a specific example in Theorem 3.3.

When studying a reproducing kernel Hilbert space, H(K), it is useful to know
how it compares to other reproducing kernel Hilbert spaces, say H(K1). Since the
space H(K) = H(A) is isomorphic to R(B) where A = BB∗ and H(K1) = H(A1) is
isomorphic to R(B1) where A1 = B1B

∗
1 , we can determine the comparison between

H(K) and H(K1) by determining the comparison between R(B) and R(B1). The
following result of Douglas [6] allows for one to make this determination.

Theorem 2.9 (Douglas’ Lemma). If T and L are bounded linear operators on a
Hilbert space H, then Range(T ) ⊆ Range(L) if and only if there exists a bounded
linear operator C on H such that T = LC.

In Section 4, a specific reproducing kernel Hilbert space is studied. Douglas’s
Lemma is a fundamental tool used to compare that reproducing kernel Hilbert space
to H2(D).
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Chapter 3

Tridiagonal Reproducing Kernels

A particularly interesting class of reproducing kernel Hilbert spaces is the class of
finite diagonal reproducing kernel Hilbert spaces. It is well known, see Aronszajn [4],
that if {fn(z)} is an orthonormal basis for a reproducing kernel Hilbert space of

functions on E, then K(z, w) =
∞∑
n=0

fn(z)fn(w) for all z, w in E. Moreover if the

largest common domain E ′ of the functions {fn(z)} is larger than E, then the largest

natural domain of H(K) is given by Dom(K) = {z ∈ E ′ :
∞∑
n=0

|fn(z)|2 <∞}.

In the very well studied diagonal case where fn(z) = anz
n (see Shields [7]),

Dom(K) is always a disk. In Adams and McGuire [2] the domain of functions in
the reproducing kernel Hilbert space with orthonormal basis {fn}∞n=0 where fn(z) =
(an,0 + · · · + an,Jz

J)zn is shown to be either an open or closed disk about the origin
together with at most J points not in the disk. This result not only illustrates a
key distinction between the finite bandwidth reproducing kernel Hilbert spaces and
the diagonal spaces, but also motivates interest in the role those additional domain
points play in the properties of the spaces.

The space H(Kp) with orthonormal basis {fn}∞n=0 where fn(z) = (1− (n+1
n+2

)pz)zn

is the main focus of study in Adams and McGuire [3]. A straightforward argument
verifies that the reproducing kernel Kp has domain D ∪ {1}. Since the additional
point in the domain of Kp is on ∂D, this space inherits some interesting structure.
The next result is proved in [3].
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Theorem 3.1 (Adams-McGuire). If H(Kp) is the tridiagonal reproducing kernel
Hilbert space with orthonormal basis {fn}∞n=0 where fn(z) = (1− (n+1

n+2
)pz)zn, then the

following hold.

1. if p > 1
2
, then Mz is bounded on H(Kp);

2. if p > 1
2
, then H(Kp) contains the polynomials;

3. the space H(Kp)
s

⊆ H2(D) for all p > 0; and

4. The space H(Kp) decomposes as follows.

(a) If p > 1
2
, then H(Kp)

s
= (1− z)H2(D) + CKp(z, 1).

(b) If p = 1
2
, then H(Kp)

s
= (1−z)Ap+CKp(z, 1) where Ap is dense in H2(D),

but not equal to H2(D).

(c) If 0 < p < 1
2
, then H(Kp)

s
= (1 − z)Ap + CKp(z, 1) where Ap is the

orthogonal complement in H2(D) of the function

gp(z) =
∞∑
n=0

(
1−

(
n+ 1

n+ 2

)p)
(n+ 2)p zn.

This section adds to the above result in Adams and McGuire [3] by showing that
the spectrum of Mz is the closed unit disk D. We make use of the following result in
Adams and McGuire [2] regarding the spectral radius of Mz on a space with kernel

K(z, w) =
∞∑
n=0

fn(z)fn(w) where fn(z) = (an + bnz)zn.

Theorem 3.2 (Adams-McGuire). If Mz is bounded with spectral radius ρ(Mz), then
ρ(Mz) ≤ α where

α = lim sup
k→∞

(
sup
n≥0

∣∣∣∣an+1

an+k

∣∣∣∣+ 2 sup
n≥0

∣∣∣∣ cn,k
cn+k−1,1

∣∣∣∣) 1
k

and

cn,k =
bn

an+k+1

− an
an+k

bn+k
an+k+1

.
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Theorem 3.3. If H(Kp) is the tridiagonal reproducing kernel Hilbert space with or-
thonormal basis {fn}∞n=0 where fn(z) = (1 − (n+1

n+2
)pz)zn, then the spectrum of Mz is

the closed unit disk.

Proof. If λ ∈ D, then (M∗
z−λI)kλ = 0 which implies D ⊆ σ(M∗

z ). Hence σ(Mz), which
is the complex conjugate of σ(M∗

z ), contains the closed unit disk. Apply theorem 3.2
with an = 1, bn = (n+1

n+2
)p, and cn,k = (n+1

n+2
)p − (n+k+1

n+k+2
)p to obtain an upper bound for

the spectral radius of Mz which we compute as

α = lim
k→∞

(
1 + 2 sup

n≥0

∣∣∣∣∣ (n+k+1
n+k+2

)p − (n+1
n+2

)p

(n+k+1
n+k+2

)p − ( n+k
n+k+1

)p

∣∣∣∣∣
) 1

k

= lim
k→∞

(
1 + 2 sup

n≥0

∣∣∣∣∣ 1− (n+1
n+2

)p(n+k+2
n+k+1

)p

1− ( n+k
n+k+1

)p(n+k+2
n+k+1

)p

∣∣∣∣∣
) 1

k

= lim
k→∞

(
1 + 2 sup

n≥0

∣∣∣∣∣ 1− (1− 1
n+2

)p(1 + 1
n+k+1

)p

1− (1− 1
n+k+1

)p(1 + 1
n+k+1

)p

∣∣∣∣∣
) 1

k

= lim
k→∞

(
1 + 2 sup

n≥0

(
1− (1− k

(n+2)(n+k+1)
)p

1− (1− 1
(n+k+1)2

)p

)) 1
k

.

Let

R(n, k) =

(
1− (1− k

(n+2)(n+k+1)
)p

1− (1− 1
(n+k+1)2

)p

)
.

Notice that the numerator and denominator of R(n, k) both involve terms of the form
f(x) = (1− x)p where 0 ≤ x ≤ 1/2. The first order Taylor approximation for f at 0
gives the bounds

1− px− 1

2

(
sup

0≤tx≤1/2
f ′′(tx)

)
x2 ≤ f(x) ≤ 1− px+

1

2

(
sup

0≤tx≤1/2
f ′′(tx)

)
x2

where 0 ≤ tx ≤ 1/2.

Since f ′′(x) is continuous when 0 ≤ x ≤ 1/2, sup
0≤tx≤1/2

f ′′(tx) ≤ M for some

constant M . Let k be large enough so that M
2(n+k+1)2

≤ p
2
. Applying the above
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bounds to R(n, k) gives

R(n, k) ≤
pk

(n+2)(n+k+1)
+ M

2

(
k

(n+2)(n+k+1)

)2
p

(n+k+1)2
− M

2

(
1

(n+k+1)

)4
=

pk(n+k+1)
(n+2)

+ Mk2

2(n+2)2

p− M
2(n+k+1)2

≤
pk(n+k+1)

(n+2)
+ Mk2

2(n+2)2

p
2

≤ 2k(n+ k + 1)

n+ 2
+

Mk2

p(n+ 2)2
.

Substituting this bound for R(n, k), we obtain

α ≤ lim
k→∞

(
1 + 2 sup

n≥0

(
2k(n+ k + 1)

n+ 2
+

Mk2

p(n+ 2)2

)) 1
k

.

Since for each k > 1, 2k(n+k+1)
n+2

and Mk2

p(n+2)2
are both non-increasing in n, the supremum

occurs when n = 0. Take the logarithm of both sides to compute the limit in k. Thus
α is bounded above by

lim
k→∞

(
1 + 2k(k + 1) +

Mk2

2p

) 1
k

= 1.

Since D ⊂ σ(Mz), α ≥ 1. Hence α = 1 and σ(Mz) is the closed unit disk.
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Chapter 4

Five Diagonal Reproducing
Kernels

This section is focused on the study of the five diagonal (or two bandwidth) repro-
ducing kernel Hilbert space H(LL∗) with orthonormal basis {fn}∞n=0 where

fn(z) =

(
1−

(
n+ 1

n+ 2

)
z

)(
1−

(
n+ 1

n+ 2

)
eiθ0z

)
zn.

We will often write
fn(z) =

(
an + bnz + cnz

2
)
zn

where

an = 1, bn =

(
n+ 1

n+ 2

)(
1 + eiθ0

)
, and cn =

(
n+ 1

n+ 2

)2

eiθ0 .

This is a generalization of the example in section 3 to the five diagonal case. Only the
parameter p = 1 is considered in order for the computations to be manageable. The
next proposition shows that the domain of the functions in H(LL∗) is D ∪ {1, e−iθ0}.

Proposition 4.1. If H(LL∗) is the reproducing kernel Hilbert space with orthonormal
basis {fn}∞n=0 where

fn(z) =

(
1−

(
n+ 1

n+ 2

)
z

)(
1−

(
n+ 1

n+ 2

)
eiθ0z

)
zn,

then the largest natural domain of H(LL∗) is D ∪ {1, e−iθ0}.
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Proof. Let Dom(LL∗) be the largest natural domain of H(LL∗). By Aronszajn [4],

Dom(LL∗) = {z ∈ C :
∞∑
n=0

|fn(z)|2 <∞}. If |z| < 1, then

∞∑
n=0

|fn(z)|2 =
∞∑
n=0

∣∣∣∣(1−
(
n+ 1

n+ 2

)
z

)(
1−

(
n+ 1

n+ 2

)
eiθ0z

)
zn
∣∣∣∣2 < 16

∞∑
n=0

|z|2n <∞.

Also, since |1− n+1
n+2

eiθ| ≤ 2 and 1− n+1
n+2

= 1
n+2

,

∞∑
n=0

|fn(1)|2 =
∞∑
n=0

∣∣∣∣(1− n+ 1

n+ 2

)(
1− n+ 1

n+ 2
eiθ0
)∣∣∣∣2 < 4

∞∑
n=0

∣∣∣∣ 1

n+ 2

∣∣∣∣2 <∞, and

∞∑
n=0

|fn(e−iθ0)|2 =
∞∑
n=0

∣∣∣∣(1− n+ 1

n+ 2
e−iθ0

)(
1− n+ 1

n+ 2

)∣∣∣∣2 < 4
∞∑
n=0

∣∣∣∣ 1

n+ 2

∣∣∣∣2 <∞.
Hence D ∪ {1, e−iθ0} ⊆ Dom(LL∗).

If z 6∈ D ∪ {1, e−iθ0}, then |z| ≥ 1 and(
1−

(
n+ 1

n+ 2

)
z

)(
1−

(
n+ 1

n+ 2

)
eiθ0z

)
→ (1− z)

(
1− eiθ0z

)
6= 0.

Hence

∞∑
n=0

|fn(z)|2 =
∞∑
n=0

∣∣∣∣(1−
(
n+ 1

n+ 2

)
z

)(
1−

(
n+ 1

n+ 2

)
eiθ0z

)
zn
∣∣∣∣2 =∞

and Dom(LL∗) = D ∪ {1, e−iθ0}.

The next result shows that the functions in H(LL∗) are contained in H2(D) for
general θ0 ∈ [0, 2π).

Theorem 4.2. If H(LL∗) is the reproducing kernel Hilbert space with orthonormal
basis {fn}∞n=0 where

fn(z) =

(
1−

(
n+ 1

n+ 2

)
z

)(
1−

(
n+ 1

n+ 2

)
eiθ0z

)
zn,

then H(LL∗)
s

⊆ H2(D) for each θ0 ∈ [0, 2π).
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Proof. Let f ∈ H(LL∗). Then

f =
∞∑
n=0

αn

(
1−

(
n+ 1

n+ 2

)
z

)(
1−

(
n+ 1

n+ 2

)
eiθ0z

)
zn

for some {αn} ∈ `2+. Expand this expression to write

f = α0+
(
α1 −

α0

2

(
1 + eiθ0

))
z+

∞∑
n=2

(
αn −

n

n+ 1
αn−1

(
1 + eiθ0

)
+

(
n− 1

n

)2

αn−2e
iθ0

)
zn.

Since n
n+1

< 1 and {αn} ∈ `2+,{
n

n+ 1

(
1 + eiθ0

)
αn−1

}
∈ `2+.

By the same reasoning, {(
n− 1

n

)2

αn−2e
iθ0

}
∈ `2+.

Thus {
αn −

n

n+ 1
αn−1

(
1 + eiθ0

)
+

(
n− 1

n

)2

αn−2e
iθ0

}
∈ `2+

and hence f ∈ H2(D).

Before focusing further on this example, a few general observations about five
diagonal reproducing kernel Hilbert spaces are in order.

We begin by considering the relationship between H(LL∗) and H(L̂L̂∗) with

L =



a0 0 · · ·
b0 a1 0 · · ·
c0 b1 a2 0 · · ·
0 c1 b2 a3 0 · · ·
0 0 c2 b3 a4 0 · · ·

. . .
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and

L̂ =



â0 0 · · ·
b̂0 â1 0 · · ·
ĉ0 b̂1 â2 0 · · ·
0 ĉ1 b̂2 â3 0 · · ·
0 0 ĉ2 b̂3 â4 0 · · ·

. . .


where the diagonal entries of L and L̂ are assumed to be nonzero. Suppose that the
matrix C = (cj,k)

∞
j,k=0 satisfies L̂ = LC. Since L and L̂ have finite bandwidth, are

lower triangular, and have nonzero diagonal entries, C is also a well defined lower
triangular matrix with nonzero diagonal entries.

Remark (Range Inclusion). In order to study the relationship between H(LL∗) and

H(L̂L̂∗), we study properties of C. For example, applying Douglas’ Lemma allows

one to see that C is bounded if and only if H(L̂L̂∗)
s

⊆ H(LL∗); C is invertible if

and only if H(LL∗) and H(L̂L̂∗) contain the same functions; and the columns of

C are bounded if and only if the columns of L̂ are the power series coefficients of
functions in H(LL∗). Note that if L̂ is the identity matrix, then H(L̂L̂∗) = H(I) is
the Hardy space H2(D). In particular, the existence of a bounded matrix C such that

I = L̂ = LC is equivalent to the Hardy space H2(D) being contained in H(LL∗). It is

possible that I = L̂ = LC where C is not bounded. In that case we can still observe
that the orthonormal basis vectors {en}∞n=0 are in the range space of L if and only if
the columns of C are vectors in `2+. Thus the polynomials are in H(LL∗) if and only

if there is a C whose columns are vectors in `2+ such that I = L̂ = LC.

The entries of C are obtained from L and L̂ in a way that is similar to the three
bandwidth case in Adams and McGuire [2]. However what is a scalar argument in [2]
requires a matrix argument in the five bandwidth setting. We first need to introduce
some notation and ultimately define a new matrix Ce, which is related to C, that will
help us set up the matrix argument we require.

Suppose first that C is a matrix satisfying L̂ = LC where L̂ = [̂̀j,k] and L = [`j,k].

Since L and L̂ are lower triangular, it follows that C is lower triangular.

If 0 ≤ k ≤ j, then ̂̀
j,k =

∞∑
s=0

`j,scs,k.
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Since L is lower triangular, `j,s = 0 if s > j. Therefore

̂̀
j,k =

j∑
s=0

`j,scs,k.

Since L has finite bandwidth, `j,s = 0 if s < j − 2. So

̂̀
j,k =

j∑
s=j−2

`j,scs,k.

Using the specific form of L and being careful to note throughout the difference
between the entries cj, ĉj in the matrices L and L̂ and the entries cj,k in the matrix
C, we obtain the equation̂̀

j,k = cj−2cj−2,k + bj−1cj−1,k + ajcj,k

where cx,y = 0 if x happens to be negative.

Depending on the respective cases j = k, j = k + 1, j = k + 2, or j > k + 2, the
equation ̂̀

j,k =

j∑
s=j−2

`j,scs,k

leads to the equations

âj = ̂̀
j,j = ajcj,j, (4.1)

b̂j−1 = ̂̀
j,j−1 = bj−1cj−1,j−1 + ajcj,j−1 (4.2)

ĉj−2 = ̂̀
j,j−2 = cj−2cj−2,j−2 + bj−1cj−1,j−2 + ajcj,j−2 (4.3)

0 = ̂̀
j,k = cj−2cj−2,k + bj−1cj−1,k + ajcj,k (4.4)

Notice that equation (4) can be conveniently expressed using vector notation. To

this end, let ~vj,k =

(
cj−1,k
cj,k

)
where again c−1,k = 0 and let

Mn =

(
0 1

− cn−2

an
− bn−1

an

)
.

Equation (4) is now encoded by the equation

~vj,k = Mj~vj−1,k
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where j > k + 2, since

~vj,k =

(
cj−1,k
cj,k

)
=

 cj−1,k

− cj−2

aj
cj−2,k − bj−1

aj
cj−1,k


=

(
0 1

− cn−2

an
− bn−1

an

)(
cj−2,k
cj−1,k

)
= Mj~vj−1,k.

Moreover, if j > k + 2, then

(∗) ~vj,k = Mj~vj−1,k = MjMj−1~vj−2,k = · · · = MjMj−1 · · ·Mk+3~vk+2,k.

The recursion suggests we introduce the expanded matrix Ce of C defined by

Ce =



0 0 · · ·
c0,0 0 · · ·
c0,0 0 · · ·
c1,0 c1,1 0 · · ·
c1,0 c1,1 0 · · ·
c2,0 c2,1 c2,2 0 · · ·
c2,0 c2,1 c2,2 0 · · ·

...
...

...
. . .


=


~v0,0 ~0 ~0 · · ·
~v1,0 ~v1,1 ~0 · · ·
~v2,0 ~v2,1 ~v2,2 · · ·

...
...

...
. . .

 .

With the above recursion, notice

Ce =



~v0,0 ~0 · · ·
~v1,0 ~v1,1 ~0 · · ·
~v2,0 ~v2,1 ~v2,2 ~0 · · ·
M3~v2,0 ~v3,1 ~v3,2 ~v3,3 ~0 · · ·

M4M3~v2,0 M4~v3,1 ~v4,2 ~v4,3 ~v4,4 ~0 · · ·
M5M4M3~v2,0 M5M4~v3,1 M5~v4,2 ~v5,3 ~v5,4 ~v5,5 ~0 · · ·

...
...

...
. . .


.

Notice that by the Range Inclusion Remark 4, C is bounded if and only if Ce is
bounded, and the columns of C are elements of `2+ if and only if the columns of Ce
are elements of `2+. The matrix Ce allows for the easy observation of the recursion
present in the entries of C. Therefore, it is convenient to consider Ce in lieu of C.
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We now return to consideration of the space H(LL∗) with orthonormal basis
{fn}∞n=0 where fn(z) = (1 − (n+1

n+2
)z)(1 − (n+1

n+2
)eiθ0z)zn. We will show that when

θ0 = π and θ0 = 2π
3

, the polynomials are contained in H(LL∗). Additionally, we will
show that when θ0 = π, not all of the functions in H2(D) are contained in H(LL∗).

We first treat the case where θ0 = π. Our immediate goal is to show that H(LL∗)

contains the polynomials. In order to establish this result, we will let L̂ be the identity
matrix and show that the columns of Ce are vectors in `2+.

Notice for this example, Mn =

(
0 1(

n−1
n

)2
0

)
. In order to simplify this argument,

letWn = MnMn−1 · · ·M3. Note that if
∞∑
n=3

||Wn||2 <∞, then
∞∑
n=k

||MnMn−1 · · ·Mk||2 <

∞ for each k ≥ 3. To see this, observe that Mj is invertible for each j ≥ 3 and
MnMn−1 · · ·Mk = WnM

−1
3 M−1

4 · · ·M−1
k−1. Thus

∞∑
n=k

‖MnMn−1 · · ·Mk‖2 ≤ ‖M−1
3 M−1

4 · · ·M−1
k−1‖

2

∞∑
n=k

‖Wn‖2 <∞.

Notice
~vj,k = MjMj−1 · · ·Mk+3~vk+2,k

= MjMj−1 · · ·Mk+3Mk+2Mk+1MkM
−1
k M−1

k+1M
−1
k+2~vk+2,k

for j ≥ k + 3. So if
∞∑
n=k

||MnMn−1 · · ·Mk||2 <∞, then

∞∑
j=k

‖~vj,k‖2 ≤ ‖M−1
k M−1

k+1M
−1
k+2~vk+2,k‖2

∞∑
j=k

‖MjMj−1 · · ·Mk‖2 <∞.

Hence the kth column of Ce is in `2+. Therefore, it suffices to show
∞∑
n=3

||Wn||2 < ∞.

Lemma 4.3 gives Wn explicitly.

Lemma 4.3. Let θ0 = π and xn = (n−1
n

)2. If H(LL∗) is the reproducing kernel
Hilbert space with orthonormal basis {fn}∞n=0 where

fn(z) =

(
1−

(
n+ 1

n+ 2

)
z

)(
1−

(
n+ 1

n+ 2

)
eiθ0z

)
zn, then
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Wn =


0

n−1
2∏

k=2

x2k

n−1
2∏

k=1

x2k+1 0

 for odd n and Wn =


n
2
−1∏

k=1

x2k+1 0

0

n
2∏

k=2

x2k

 for even n.

Proof. We will use induction on n and will first consider the case where n is odd. The
base case holds true since

W3 = M3 =

(
0 1
x3 0

)
.

Suppose the claim holds true for n. Then

Wn+2 = Mn+2Mn+1Wn =

(
0 1

xn+2 0

)(
0 1

xn+1 0

)


0

n−1
2∏

k=2

x2k

n−1
2∏

k=1

x2k+1 0



=


0

n+1
2∏

k=2

x2k

n+1
2∏

k=1

x2k+1 0

 .

Now consider the n even case. The base case holds true since

W4 = M4M3 =

(
0 1
x4 0

)(
0 1
x3 0

)
=

(
x3 0
0 x4

)
.

Suppose the claim holds true for n. Then

Wn+2 = Mn+2Mn+1Wn =

(
0 1

xn+2 0

)(
0 1

xn+1 0

)


n
2
−1∏

k=1

x2k+1 0

0

n
2∏

k=2

x2k
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=


n
2∏

k=1

x2k+1 0

0

n
2
+1∏

k=2

x2k

 .

Theorem 4.4. Let θ0 = π and xn = (n−1
n

)2. If H(LL∗) is the reproducing kernel
Hilbert space with orthonormal basis {fn}∞n=0 where

fn(z) =

(
1−

(
n+ 1

n+ 2

)
z

)(
1−

(
n+ 1

n+ 2

)
eiθ0z

)
zn,

then H(LL∗) contains the polynomials.

Proof. Recall from the Range Inclusion Remark 4 that H(LL∗) contains the polyno-

mials if and only if the columns of Ce are in `2+. Therefore if
∞∑
n=3

||Wn||2 < ∞, then

H(LL∗) contains the polynomials. For all n,

||Wn|| ≤ max


n
2
−1∏

k=1

x2k+1,

n
2∏

k=2

x2k,

n−1
2∏

k=2

x2k,

n−1
2∏

k=1

x2k+1

 .

Observe that
n
2
−1∏

k=1

x2k+1 =

(
2

3

)2(
4

5

)2

· · ·
(
n− 2

n− 1

)2

≤
(

2

3

)(
3

4

)
· · ·
(
n− 2

n− 1

)(
n− 1

n

)
=

2

n
,

n
2∏

k=2

x2k =

(
3

4

)2(
5

6

)2

· · ·
(
n− 1

n

)2

≤
(

3

4

)(
4

5

)
· · ·
(
n− 1

n

)(
n

n+ 1

)
=

3

n+ 1
,

n−1
2∏

k=2

x2k =

(
3

4

)2(
5

6

)2

· · ·
(
n− 2

n− 1

)2

≤
(

3

4

)(
4

5

)
· · ·
(
n− 2

n− 1

)(
n− 1

n

)
=

3

n
,

n−1
2∏

k=1

x2k+1 =

(
2

3

)2(
4

5

)2

· · ·
(
n− 1

n

)2

≤
(

2

3

)(
3

4

)
· · ·
(
n− 1

n

)(
n

n+ 1

)
=

2

n+ 1
.

Thus ||Wn|| ≤ 3
n

for any n. So
∞∑
n=1

||Wn||2 ≤
∞∑
n=1

(
3

n

)2

< ∞ and H(LL∗) contains

the polynomials.



CHAPTER 4. FIVE DIAGONAL REPRODUCING KERNELS 29

We will now treat the case where θ0 = 2π/3. Our goal with this case is to show

that H(LL∗) contains the polynomials. In order to establish this result, we will let L̂
be the identity matrix and show the columns of Ce are bounded. Unfortunately, in this
case, the product MnMn−1 · · ·M3 does not take such a nice form as the θ0 = π case.
We therefore employ a different approach to show the columns of Ce are bounded.
Specifically, we show that, for each k, the sequence {‖~vj,k‖} is square summable in j.
Notice

∞∑
j=0

‖~vj,k‖2 =
∞∑
j=0

‖~v3j,k‖2 +
∞∑
j=0

‖~v3j+1,k‖2 +
∞∑
j=0

‖~v3j+2,k‖2.

We will show {‖~vj,k‖} is square summable in j by proving the three subsequences
{‖~v3j,k‖}, {‖~v3j+1,k‖}, and{‖~v3j+2,k‖} are square summable in j.

Theorem 4.5. Let θ0 = 2π
3

. If H(LL∗) is the reproducing kernel Hilbert space with
orthonormal basis {fn}∞n=0 where

fn(z) =

(
1−

(
n+ 1

n+ 2

)
z

)(
1−

(
n+ 1

n+ 2

)
eiθ0z

)
zn,

then H(LL∗) contains the polynomials.

Proof. We will prove that {‖~v3j,k‖}, {‖~v3j+1,k‖}, and{‖~v3j+2,k‖} are square summable
in j. Notice that

Mn =

(
0 1

−(n−1
n

)2e
2π
3
i n

n+1
(1 + e

2π
3
i)

)
.

Compute to see

Mn+1MnMn−1 =

(
n(n−2)2

(n+1)(n−1)2 e
2π
3
i n−1
n2(n+1)

(1 + e
2π
3
i) n(n−2)2

(n+2)(n2−1)2
n5+n4−3n3−n2+n+1

n2(n+1)2(n+2)

)

=

(
1− 3

n+ 1

)(
1 0
0 1

)
+

1

n+ 1

(
2−n

(n−1)2 e
2π
3
i n−1
n2

(1 + e
2π
3
i) n(n−2)2

(n+1)(n+2)(n−1)2
n3+3n2+n+1
n2(n+1)(n+2)

)

)
.

Let

rn =

∥∥∥∥∥
(

2−n
(n−1)2 e

2π
3
i n−1
n2

(1 + e
2π
3
i) n(n−2)2

(n+1)(n+2)(n−1)2
n3+3n2+n+1
n2(n+1)(n+2)

)

)∥∥∥∥∥ .
Notice lim

n→∞
rn = 0, so there exists an N0 > 0 such that if n > N0, rn ≤ 1. Let

N = max{N0, k + 2}. So if n > N , ||Mn+1MnMn−1|| ≤ (1− 3
n+1

+ rn
n+1

) ≤ (1− 2
n+1

).
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Let
W0,j = MN+3jMN+3j−1MN+3j−2,

W1,j = MN+3j+1MN+3jMN+3j−1, and

W2,j = MN+3j+2MN+3j+1MN+3j.

Recall N is chosen so that N ≥ k + 2. The application of recursion (∗) relating to
the columns of Ce yields ~vN+1,k = MN+1~vN,k. Therefore, we have

~vN+3j,k = W0,jW0,j−1 · · ·W0,1~vN,k,

~vN+3j+1,k = W1,jW1,j−2 · · ·W1,1~vN+1,k, and

~vN+3j+2,k = W2,jW2,j−1 · · ·W2,1~vN+2,k.

Thus, to show {‖~v3j,k‖}, {‖~v3j+1,k‖}, {‖~v3j+2,k‖} are square summable in j, it suffices
to show

∞∑
j=1

||W0,jW0,j−1 · · ·W0,1||2 <∞,

∞∑
j=1

||W1,jW1,j−1 · · ·W1,1||2 <∞, and

∞∑
j=1

||W2,jW2,j−1 · · ·W2,1||2 <∞ respectively.

Since ||Mn+1MnMn−1|| ≤ (1− 2
n+1

) for all n > N ,

‖W0,j‖ ≤ (1− 2

N + 3j
), ‖W1,j‖ ≤ (1− 2

N + 3j + 1
), and ‖W2,j‖ ≤ (1− 2

N + 3j + 2
).

Thus ‖W0,j‖, ‖W1,j‖, ‖W2,j‖ ≤ (1− 2
N+3j+2

). We will complete the proof by showing
∞∑
j=1

j∏
m=1

(
1− 2

N + 3m+ 2

)2

<∞.

Let

y = log

j∏
m=1

(
1− 2

N + 3m+ 2

)
=

j∑
m=1

log

(
1− 2

N + 3m+ 2

)
.

Since log(1− x) ≤ −x for x ∈ (−∞, 1),

y ≤
j∑

m=1

−2

N + 3m+ 2
.
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Let f(x) = 2
N+3x+2

. Since f decreases as x increases,

j∑
m=1

2

N + 3m+ 2
≥
∫ j+1

1

2

N + 3x+ 2
dx = − log

(
N + 5

N + 3j + 5

)2/3

.

Therefore,

y ≤
j∑

m=1

−2

N + 3m+ 2
≤
∫ j+1

1

−2

N + 3x+ 2
dx = log

(
N + 5

N + 3j + 5

)2/3

.

So
j∏

m=1

(
1− 2

N + 3m+ 2

)
= ey ≤

(
N + 5

N + 3j + 5

)2/3

.

Thus
∞∑
j=1

(
j∏

m=1

(
1− 2

N + 3m+ 2

))2

≤
∞∑
j=1

(
N + 5

N + 3j + 5

)4/3

<∞.

The next result shows that when θ0 = π, not all of the functions in H2(D) are

contained in H(LL∗). As we will see, this argument generalizes to show that H2(D)
s

6⊆
H(LL∗) whenever θ0 ∈ (0, 2π),

Theorem 4.6. Let θ0 = π. If H(LL∗) is the reproducing kernel Hilbert space with
orthonormal basis {fn}∞n=0 where

fn(z) =

(
1−

(
n+ 1

n+ 2

)
z

)(
1−

(
n+ 1

n+ 2

)
eiθ0z

)
zn,

then H2(D)
s

6⊆ H(LL∗).

Proof. By the Range Inclusion Remark 4, H2(D)
s

⊆ H(LL∗) if and only if I = LC
for some bounded C. Notice that such a C would be a right inverse of L, so to prove

H2(D)
s

6⊆ H(LL∗), we show no such bounded right inverse exists. Notice that

L =


1 0 0 · · ·
0 1 0 · · ·
−1

4
0 1 · · ·

0 −4
9

0
. . .

...
...

. . . . . .

 .
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If LC = I, we see that C = {cj,k}∞j,k=0 with

cj,k =


0 if j < k or j + k ≡ 1 mod 2
1 if j = k
( j−1

j
)2cj−2,k otherwise

.

Explicitly,

C =



1 0 0 0 · · ·
0 1 0 0 · · ·

(1
2
)2 0 1 0 · · ·

0 (2
3
)2 0 1 · · ·

(1
2
)2(3

4
)2 0 (3

4
)2 0 · · ·

...
...

...
...

. . .


.

Let K ∈ Z+ be given. Choose j ∈ Z+ such that ( j+1
j+2

)2K > 1
2
. Notice that the first

K nonzero terms of Cej (the jth column of C) are 1, ( j+1
j+2

)2, ( j+1
j+2

)2( j+3
j+4

)2, . . . , and

( j+1
j+2

)2( j+3
j+4

)2 · · · ( j+2K−3
j+2K−2)2. Since each of the first K nonzero terms of Cej are greater

than ( j+1
j+2

)2K , our assumption on j guarantees each of the first K nonzero terms of

Cej are greater than 1
2
. Therefore, ||Cej||2 > 1

4
K. Hence sup

j∈Z+

||Cej|| =∞, and so C

is not bounded. We conclude that H2(D)
s

6⊆ H(LL∗).

The argument above which shows that H2(D) is not contained in H(LL∗) for
θ0 = π generalizes for all θ0 ∈ (0, 2π). In that case, we effectively wrote

Mn = M∞ +
1

n
En

where

M∞ =

(
0 1
−eiθ0 1 + eiθ0

)
and sup ‖En‖ <∞.

When θ0 = π, M∞ =

(
0 1
−1 0

)
. The argument above relied on the fact that, for each

K ∈ Z+, there exists an N such that if n ≥ N and k ≤ K, then

‖~vn+k,n‖ = ‖Mn+kMn+k−1 · · ·Mn+3~vn+2,n‖ ≈ ‖Mk
∞~vn+2,n‖.

For θ0 = π, M∞ has eigenvalues 1 and −1, and ‖Mk
∞~vn+2,n‖ = ‖~vn+2,n‖. For general

θ0 ∈ (0, 2π), M∞ has eigenvalues 1 and eiθ0 , so this must be slightly modified and we
find a constant δ such that

‖Mk
∞~vn+2,n‖ ≥ δ‖~vn+2,n‖
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for 0 ≤ k ≤ K and n ≥ N . This shows that the `2+ norm of the nth column of Ce
exceeds

√
Kδ‖~vn+2,n‖. A computation based on the four recursion equations from

this section shows that for large n,

~vn+2,n ≈
(

1 + eiθ0

1 + eiθ0 + e2iθ0

)
.

Thus the `2+ norm of the nth column of Ce exceeds d
√
Kδ where d =

∥∥∥∥( 1 + eiθ0

1 + eiθ0 + e2iθ0

)∥∥∥∥ .
In particular, the `2+ norms of the columns of Ce are not bounded. This leads to the
following theorem.

Theorem 4.7. Let θ0 ∈ (0, 2π). If H(LL∗) is the reproducing kernel Hilbert space
with orthonormal basis {fn}∞n=0 where

fn(z) =

(
1−

(
n+ 1

n+ 2

)
z

)(
1−

(
n+ 1

n+ 2

)
eiθ0z

)
zn,

then H2(D)
s

6⊆ H(LL∗).
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Chapter 5

Summative Conclusion

The motivation for the work in this thesis was to generalize the study of diagonal
reproducing kernel Hilbert spaces to the bandwidth J case. This was first done by
Adams and McGuire in [2]. One particularly interesting result about the bandwidth
J spaces is that the natural domain of the functions in such a space is an open or
closed disk together with at most J additional points. The tridiagonal space H(Kp)
with orthonormal basis {fn}∞n=0 where

fn(z) =

(
1−

(
n+ 1

n+ 2

)p
z

)
zn

was studied in [2] and [3]. In this space, an additional domain point is added on the
boundary of the unit disk, leading to distinctly different behavior from the Hardy
space or any diagonal space. Theorem 3.3 furthers the study of this space H(Kp) by
proving the spectrum of Mz is the closed unit disk.

The main goal of this thesis is to understand the structure of higher bandwidth
spaces and their multiplication operators, in order to generalize the results of the
tridiagonal case. Section 4 uses Douglas’ Lemma to provide a framework for analyzing
these higher bandwidth spaces. In particular, we can study the relationship between
two spaces H(L̂L̂∗) and H(LL∗) by examining the matrix C where L̂ = LC. If

H(L̂L̂∗) and H(LL∗) are five diagonal spaces, some essential properties of the matrix
C hold if and only if those same properties hold for an expanded matrix Ce. In this
case, Ce takes a nice form where the columns are given by a recursion involving 2 by
2 matrices.
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The five diagonal space H(LL∗) with orthonormal basis {fn}∞n=0 where

fn(z) =

(
1−

(
n+ 1

n+ 2

)
z

)(
1−

(
n+ 1

n+ 2

)
eiθ0z

)
zn

generalizes the tridiagonal example of [2] and [3] so that two additional domain points
are now included on the boundary of the unit disk. The framework of section 4 is
applied to this example to show that H(LL∗) properly contains the polynomials and
is properly contained in H2(D). Furthermore, this framework lays the foundation for
future work in determining the multiplier algebra, answering the open questions in
section 6, and investigating the general structure of higher bandwidth spaces.
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Chapter 6

Open Questions

The following questions pertain to the space H(K) studied in section 4.

Question 6.1. It is reasonable to expect that H(K) behaves somewhat analogously
to the three-diagonal space studied in Example 3.1 motivating the following question.

Are the functions in H(K) all of the form

(z − 1)(z − e−iθ)g + αK1(z) + β

[
Keiθ(z)− K(1, eiθ)

K(1, 1)
K1(z)

]
where α, β ∈ C and g ∈ H2(D)? Note that the last two terms simply describe the
span of the two vectors K1 and Keiθ .

Question 6.2. Does H(K) contain the polynomials for all θ0 ∈ [0, 2π)?

It is expected that the methods used in Theorem 4.5 generalize to answer this
question affirmatively where θ0 is a rational multiple of π. The answer to this question
for θ0 not of this form will likely require a somewhat different approach.

The following questions relating to multiplication operators on H(K) were all
motivating questions for this thesis and time did not permit there consideration. It is
hoped that the framework developed in this thesis will be helpful in answering them.

Question 6.3. What are the multipliers of H(K)? Equivalently, which multiplication
operators Mφ are bounded?
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Question 6.4. Is z a multiplier of H(K)? Equivalently, is Mz bounded on H(K)?

Question 6.5. Assuming that Mz is bounded on H(K).

1. What is the spectrum of Mz?

2. What is the spectral radius of Mz?

3. What is the norm of Mz?

4. Is Mz similar to a rank two perturbation of the unilateral shift S on H2(D)?

Question 6.6. How does the example in section 4 generalize if the orthonormal basis
{fn}∞n=0 is changed to

fn(z) =
J∏

m=1

(
1−

(
n+ 1

n+ 2

)p
eiθmz

)
zn ?

What role does p > 0 play? Are there intervals of p which separate the behavior of
H(K) as in Example 3.1?

One could first consider the simplest case p = 1 in which case the orthonormal
basis {fn}∞n=0 is given by

fn(z) =
J∏

m=1

(
1−

(
n+ 1

n+ 2

)
eiθmz

)
zn.
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Chapter 7

Appendix

The following are basic results that can be found in any functional analysis text (see
[5]).

Theorem 7.1 (Cantor Intersection Theorem). If X is a complete metric space, {Fn}
is a sequence of nonempty closed sets such that Fn+1 ⊂ Fn for all n, and dn → 0
where dn is the diameter of Fn, then

⋂
Fn is nonempty.

Proof. For each n, let xn ∈ Fn. Since dn → 0 and Fn+1 ⊂ Fn for all n, {xn} is
a Cauchy sequence. Since X is complete, {xn} converges to some x ∈ X. Since
{xk}k≥n ⊂ Fn for all n ∈ N, x is a limit point of each Fn. Since each Fn is closed,
x ∈ Fn for each n. Thus x ∈

⋂
Fn.

Definition 7.2 (Baire Space). A Baire space X is a topological space such that
whenever {On} is a countable collection of open dense sets in X, the intersection⋂
On is a dense set.

Theorem 7.3. Every complete metric space X is a Baire space.

Proof. Let {On} be a sequence of dense open sets in X and let O ⊆ X be an arbitrary
open set. Since O1 is dense and open, O1 ∩ O has nonempty interior. Let x1 ∈
int(O1 ∩ O). Hence there is a closed disk B(x1, r1) of radius r1 about x1 entirely
contained in O1 ∩ O. For the same reason, O2 ∩ B(x1, r1) contains a closed disc
B(x2, r2) where x2 ∈ int(O2 ∩ B(x1, r1)) and 0 < r2 <

1
2
r1. Continuing in this way,



CHAPTER 7. APPENDIX 39

we obtain a nested sequence {B(xn, rn)} of closed disks whose diameters rn → 0. By
the Cantor Intersection Theorem,

O ∩

(
∞⋂
n=1

On

)
= (O ∩O1) ∩

(
∞⋂
n=2

On

)
⊇
∞⋂
n=1

B(xn, rn) 6= ∅.

Thus O ∩
⋂∞
n=1On 6= ∅, and so

⋂∞
n=1On is a dense set.

Definition 7.4. Let S be a subset of a topological space X.

1. The set S is nowhere dense in X if the closure of S has empty interior.

2. The set S is of first category in X if S is the countable union of nowhere dense
sets in X.

3. The set S is of second category in X if it is not of first category in X.

Example 7.5. The set of rational numbers Q is of first category in R since it is the
countable union of singleton sets, each of which is nowhere dense in R.

Theorem 7.6 (Baire Category Theorem). A topological space X is a Baire space if
and only each nonempty open set is of second category in X.

Proof. Suppose X is a Baire space and O is a nonempty open set. Let {Sn} be a
sequence of sets which is nowhere dense in X and let On = X \ Sn. Each On is a
dense open set of X and, since X is a Baire space,

⋂
On is dense. In particular O

intersects
⋂
On which means that O contains a point not in

⋃
(X \On) =

⋃
Sn. This

means O contains a point not in
⋃
Sn, so O 6=

⋃
Sn and so O is of second category

in X.

Conversely, if X is not a Baire space, then there is a sequence {On} of dense open
sets whose intersection is not dense. Hence, there exists a nonempty open set O such
that O does not intersect

⋂
On. Let Sn = O \ On and note that each Sn is nowhere

dense since Sn ⊂ X \ On. Also, O = O \
⋂
On =

⋃
(O \ On) =

⋃
Sn which shows O

is of first category in X.

Definition 7.7 (Banach Space). A space X is a Banach Space if it a complete normed
vector space.

Theorem 7.8 (Open Mapping Theorem). Let X and Y be Banach spaces. If T :
X → Y is a continuous linear surjection, then T is an open map.
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Proof. It suffices to show that T maps any open neighborhood of 0 in X to an open
neighborhood of 0 in Y . Indeed, if this is shown true and G is any open subset
of X, then for every x ∈ G there is an rx > 0 such that B(x, rx) ⊂ G. Since
0 ∈ int(T (B(rx)), we have T (x) ∈ int(T (B(x, rx)) by translation. Thus there is an
sx > 0 such that

Ux = {y ∈ Y : ||y − T (x)|| < sx} ⊂ T (B(x, rx)).

Therefore T (G) ⊃
⋃
{Ux : x ∈ G}. But T (x) ∈ Ux, so T (G) =

⋃
{Ux : x ∈ G} and

hence T (G) is open.

We first show that 0 is in the the interior of the closure of T (B(r)) where B(r) =
{x ∈ X : ||x|| < r} denotes the open ball of radius r centered at 0. Since T is onto,

Y =
∞⋃
k=1

T

(
B

(
kr

2

))
=
∞⋃
k=1

kT
(
B
(r

2

))
.

By the Baire Category Theorem, there is a k ≥ 1 such that kT
(
B
(
r
2

))
has nonempty

interior. Multiplying by 1
k
, we get that V = int(T (B( r

2
))) 6= ∅. If y0 ∈ V , there exists

an s > 0 such that {y ∈ Y : ||y − y0|| < s} ⊂ V ⊂ T
(
B
(
r
2

))
. Now let y ∈ Y

be any vector such that ||y|| < s. Since y0 ∈ T
(
B
(
r
2

))
, there is a sequence {xn}

in B(r/2) such that T (xn) → y0. There is also a sequence {zn} in B(r/2) such
that T (zn) → y0 + y. Thus T (zn − xn) → y and {zn − xn}∞n=1 ⊂ B(r). Thus
{y ∈ Y : ||y|| < s} ⊂ T (B (r)) which shows that 0 is in the closure of T (B(r)).

Next we show that

T
(
B
(r

2

))
⊂ T (B(r))

as this will show that 0 ∈ int(T (B(r))) for any r > 0 and establish T maps an open

neighborhood of 0 to an open neighborhood of 0. To that end, fix y1 ∈ T
(
B
(
r
2

))
.

By the above, 0 ∈ int
(
T
(
B
(
r
22

)))
. Hence

[
y1 − T

(
B
(
r
22

))]⋂
T (B(r/2)) 6= ∅. Let

x1 ∈ B(r/2) be such that T (x1) ∈
[
y1 − T

(
B
(
r
22

))]
. Note T (x1) = y1 − y2 where

y2 ∈ T
(
B
(
r
22

))
. Using induction, we obtain a sequence {xn} in X and a sequence

{yn} in Y such that:

1. xn ∈ B(2−nr);

2. yn ∈ T (B(2−nr));
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3. yn+1 = yn − T (xn).

Since ||xn|| < 2−nr,
∑∞

n=1 ||xn|| < ∞. Hence x =
∑∞

n=1 xn exists in X and ||x|| < r.
Also

n∑
k=1

T (xk) =
n∑
k=1

(yk − yk+1) = y1 − yn+1.

By (3) above ||yn|| ≤ ||T ||2−nr which implies yn → 0. Therefore

y1 =
∞∑
k=1

T (xk) = T (x) ∈ T (B(r))

establishing

T
(
B
(r

2

))
⊂ T (B(r))

and completing the proof of the theorem.

Theorem 7.9 (Inverse Mapping Theorem). If X and Y are Banach spaces and
T : X → Y is a bounded linear operator that is bijective, then T−1 is bounded.

Proof. By the open mapping theorem T is open and hence a homeomorphism.
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