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ABSTRACT 

The purpose of this research project is to study an innovative method for the stability 

assessment of structural steel systems, namely the Modified Direct Analysis Method (MDM). 

This method is intended to simplify an existing design method, the Direct Analysis Method (DM), 

by assuming a sophisticated second-order elastic structural analysis will be employed that can 

account for member and system instability, and thereby allow the design process to be reduced to 

confirming the capacity of member cross-sections. This last check can be easily completed by 

substituting an effective length of KL = 0 into existing member design equations. This 

simplification will be particularly useful for structural systems in which it is not clear how to 

define the member slenderness L/r when the laterally unbraced length L is not apparent, such as 

arches and the compression chord of an unbraced truss. To study the feasibility and accuracy of 

this new method, a set of 12 benchmark steel structural systems previously designed and 

analyzed by former Bucknell graduate student Jose Martinez-Garcia and a single column were 

modeled and analyzed using the nonlinear structural analysis software MASTAN2. A series of 

MATLAB-based programs were prepared by the author to provide the code checking requirements 

for investigating the MDM. By comparing MDM and DM results against the more advanced 

distributed plasticity analysis results, it is concluded that the stability of structural systems can be 

adequately assessed in most cases using MDM, and that MDM often appears to be a more 

accurate but less conservative method in assessing stability.  
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CHAPTER 1: INTRODUCTION 

1.1.Thesis Statement 

By employing a rigorous second-order elastic analysis that accounts for the destabilizing 

effects of imperfections and inelasticity, the stability of structural steel systems can be adequately 

assessed with only the need to check the cross section strength of members.   

1.2. Structural System Stability 

A structural system is considered stable when the load effects acting on each of its 

members are less than or equal to its strength to resist them.  This basic concept of comparing 

demand to capacity is applied in designing structural members to make sure that each member 

has enough capacity to support its demand.  

As for demand on a structural member, load effects from both applied axial forces and 

bending moments need to be considered. In a pure axial case, with no bending moment, the force 

being resisted by the member should be equal to or less than its axial strength required for 

stability. Similarly, in a pure bending case with no axial force, the bending moment resisted by 

the member should be equal to or less than its bending moment strength. However, in structural 

systems, both axial and bending load effects tend to be present in each member (beam-column), 

and thus it becomes necessary to understand how the interaction between these two load effects 

and their corresponding strengths impact the stability of the member. 

The interaction between axial force and bending moment effects on a member follows the 

concept that one effect will reduce the member’s ability to resist the other effect. In the absence 

of one load effect, the member would have its largest possible strength to resist the other load 

effect. The AISC (American Institute of Steel Construction) interaction equations to represent 

this concept were derived, following the process of determining axial strength in the presence of 
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a given bending moment, or determining bending moment strength in the presence of a given 

axial load (Geschwindner, 2012, p. 256). The resulting interaction equations are specified in the 

AISC Specification 2010 (Eq. H1-1a and Eq. H1-1b) as follows: 
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where  

Pu = applied axial load, 

Pn = nominal axial strength, 

Mu = applied bending moment, 

Mn = nominal bending strength, 

Φ = factor of safety for design according to Load and Resistance Factor Design (LRFD) 

x = subscript related to major axis bending, and 

y = subscript related to minor axis bending. 

A structural member subjected to both axial load and bending moment is considered stable if its 

load effects and corresponding strengths satisfy the AISC interaction equation.     

 The demand components of the AISC interaction equation include the axial load effect Pu 

and bending moment effect Mu. At the given loading condition, these load effects in each 
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structural member can be determined using structural analysis software, such as MASTAN2 

(Ziemian & McGuire, 1999).   

 The capacity components of the AISC interaction equation include axial strength, Pn, and 

bending strength, Mn. Pn is calculated using equations Eq. D2-1 (tension) and Eq. E3-1 to Eq. 

E3-4 (compression) as specified in AISC Specification (2010).  It is determined by accounting 

for both cross-section strength, Py (yielding of cross-section), and member length strength, Pcr 

(elastic or inelastic buckling of member along its length). Mn is calculated using AISC equations 

Eq. F2-1 to Eq. F2-4, and also is determined considering both cross-section strength, Mp (plastic 

yielding of cross-section), and member length strength, MLTB (elastic or inelastic lateral torsional 

buckling of member along its length). For the case studies used in this thesis, the structural 

systems are assumed fully braced out of plane, and thus the systems essentially become two-

dimensional structures, and only in-plane strengths need to be considered. Therefore, in 

calculating Pn, only the in-plane Pcr will be considered. In calculating Mn, only Mp, will be 

considered.  

The buckling strength of a structural member subjected to an axial force, Pcr, is 

determined by first finding the Euler buckling strength, Pe, when the member is assumed as a 

perfect column using the following equation (Ziemian, 2010, Eq. 3.1):  

 

𝑃𝑒 =
𝜋2EI
𝐿2   , 

where  

 Pe = Euler buckling strength of a column, 

 E = elastic modulus of material,  

 I = moment of inertia of cross-section, and 
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 L = actual length of the column. 

The Euler buckling strength equation is derived assuming frictionless pinned end restraint 

conditions and buckling shape of a half sine wave (Euler curve) (Geschwindner, 2012, p. 114-

116). To account for the actual end restraint conditions of the member, the length of the member 

used in this equation should be the length that makes up the Euler elastic curve when buckled, 

not the actual length of the member.  The concept of effective length, KL, is then introduced to 

represent the length that makes up the Euler elastic curve when a member is buckled. The 

effective length can be visualized as the length between two inflection points when the member 

is buckled (Geschwindner, 2012, p. 118). It is achieved by multiplying the effective length factor 

K by the actual length L of the member. Therefore, the Euler buckling strength of a member is 

then determined using the following modified equation that takes into account of its effective 

length depending on its actual end restraint conditions (AISC Specification 2010, Eq. E3-4):  

 

𝑃𝑒 =
𝜋2EI

(𝐾𝐿)2   , 

where 

 KL = member effective length, 

 K = effective length factor based on member end restraint conditions, and  

 L = member actual length.  

This Euler buckling strength equation also makes the assumptions that the member is 

perfectly straight, and that the material behaves elastically. The actual buckling strength, Pcr, of 

the member can then be estimated from the Euler buckling strength, Pe, using the following 

equations that account for the effects of geometric imperfections and material inelasticity (AISC 

Specification 2010, Eq. E3-2 and Eq. E3-3):  
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𝑃𝑐𝑟 = 0.877𝑃𝑒 , 

where 

Pcr = actual buckling strength of member accounting for geometric imperfections and 

material inelasticity, 

Pe = Euler buckling strength of member, assuming perfect member straightness and 

elastic material, 

Py= cross-section yield strength, 

KL = member effective length,  

K= effective length factor, 

L = member actual length, 

r= radius of gyration of member cross section 

 E = material elastic modulus, and   

Fy = material yield strength.   

It is important to emphasize the role of effective length factor K introduced in 

determining the buckling strength of the member, Pcr. The accuracy of determining effective 

length factor K based on end restraint conditions of a member will impact the axial strength 

calculation, and thus will ultimately impact the AISC interaction equation. To illustrate, a 

miscalculated, lower K value will result in estimated higher buckling strength of the member 
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than it actually has. This will ultimately result in lower interaction equation value, and will tend 

to overestimate the strength of the member. Therefore, the accuracy of determining K based on 

given end restraint conditions is critical in assessing structural system stability.   

1.3. Stability Analysis Methods 

For stability assessment of a structural system, interaction equations are used to evaluate 

whether each member of the system has adequate strength to resist the estimated load effects. 

AISC recognizes two existing methods, including the effective length method (ELM) and the 

direct analysis method (DM), for evaluating structural stability by means of interaction equations.  

1.3.1 Effective Length Method (ELM) 

 The effective length method (ELM) evaluates the stability of a structural system by 

means of interaction equations. The distinguishing characteristic of this method is the use of non-

unity effective length factors K based on end restraint conditions. 

Effective Length Factor K 

 As previously mentioned, the actual length L of a member is multiplied by the effective 

length factor K. The resulting effective length KL represents the length of the member that 

would make the Euler curve when buckled.  This effective length KL, not the actual length, is 

used in calculating the buckling strength Pcr of a member because the derivation of buckling 

strength comes from the buckling strength of a perfect column which makes the Euler curve 

when buckled.  

 The determination of K for each member depends on its end restraint conditions because 

these conditions impact the length to form the Euler curve when buckled. The larger the end 

restraint, the shorter the portion of the member that would make the Euler curve. Similarly, the 

more flexible the end restraint, the longer the portion of the member that would make the Euler 
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curve.  The effective length factors for six idealized end restraint conditions are provided in 

Figure 1.  

 

 

Figure1.  Approximate Values of Effective Length Factor, K, for Six Idealized End 
Restraint Conditions (AISC Commentary 2010, Table C-A-7.1) 
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For members with end restraint conditions that are not included in any of the basic cases 

in Figure 1, the alignment charts shown in Figures 2 and 3 for sidesway inhibited and sidesway 

uninhibited frames, respectively are used to determine their effective length factors.  

 

 

Figure2. Alignment Chart- Sidesway Inhibited (Braced Frame) 
(AISC Commentary 2010, Figure C-A-7.1) 
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Figure 3. Alignment Chart- Sidesway Uninhibited (Moment Frame) 
(AISC Commentary 2010, Figure C-A-7.2) 

 
 The alignment chart determines the end restraint conditions of a compression member 

based on its stiffness relative to the beam members connected at its ends. In other words, the 

measure of restraint at one end of a member is determined by the ratio of its stiffness to the 

stiffness of the other member connected at that end (Martinez-Garcia, 2002, p. 63). If the ratio is 

high, this means that the member is restrained by a less stiff member, and that the degree of 

restraint at that end is considered relatively small. Similarly, if the ratio is low, this means that 

the compression member is restrained by a stiffer member, and that the resulting degree of 

restraint at that end is considered relatively high. The ratio of member stiffness to that of its 

connecting member is determined by the following equation (AISC Commentary 2010, Eq. C-A-

7.3): 
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 , 

where 

 E = elastic modulus 

I = moment of inertia of member cross section,  

 L = member length, 

 c = subscript standing for column (member), 

 g = subscript standing for girder (connecting member), and  

 G = the relative stiffness of a member to its connecting member at one end.  

Once the degrees of restraint at both ends of the member (GA and GB in the alignment charts) are 

obtained, the effective length factor K of the member can then be determined from the 

intersection point of the connecting line between the two G values in the corresponding 

alignment charts.  

 There are several assumptions made in developing alignment charts (AISC Commentary 

2010, Appendix 7). It is assumed that behavior is purely elastic, and that members have constant 

cross sections. All joints are assumed rigid. Certain deformation patterns for braced frames and 

moment frames are assumed. For columns in braced frames, single curvature bending is assumed, 

and for columns in moment frames, double curvature bending is assumed. The stiffness 

parameter 𝐿�𝑃 𝐸𝐼⁄  is assumed equal for all columns in a story. All columns are assumed to 

buckle simultaneously, and no significant axial compression force in the girders is assumed. 

Since the alignment charts are developed under idealized conditions, and these conditions 

seldom exist in real structures, adjustments are often required to come up with accurate K factors, 

as explained in AISC Commentary 2010, Appendix 7.  
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Since the determination of K depends on several assumptions of idealized conditions and 

corresponding adjustments, there exists the potential for inaccuracies and errors in their 

calculation. As noted at the end of the previous section (Section 1.2), the accuracy of K factor 

impacts the axial capacity of the member, and ultimately impacts the assessment of its stability. 

Therefore, the potential for inaccuracies of K factors involved in the Effective Length Method 

makes it a less desirable method in assessing structural stability.  

Analysis Procedure for ELM 

 The structural system and its loading conditions are modeled in structural analysis 

software, such as MASTAN2. A second-order elastic analysis is performed to obtain the load 

effects on each member (Pu and Mu). There is no reduction in material elasticity (i.e. E=1.0E). 

No initial imperfection or material inelasticity effects are included in the modeling.   

 The axial compressive capacities (Pn) are determined from axial strength equations Eq. 

E3-1 to Eq. E3-4, as specified in AISC Specification 2010, are based on the effective lengths, KL. 

The effective length factors K are determined as explained above, depending on member end 

restraint conditions.  The moment capacities (Mn) are obtained from moment strength equations 

Eq. F2-1 to Eq. F2-4 as specified in AISC Specification 2010 Chapter F. (For the structural 

systems studied in this thesis, since the structures are assumed to be fully braced out of plane, 

lateral torsional buckling failure modes are not allowed, and only Mp is considered for moment 

strengths.)  

 The calculation of interaction equations using load effects and capacities determined are 

used to evaluate the stability of the structural system. 

 It is important to note that when employing the ELM design procedure, the effects of 

initial geometric imperfections, such as frame sway and member out-of-straightness, and 
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material inelasticity are taken into account ONLY in capacity components (Pn and Mn) of the 

AISC interaction equation. Both AISC axial and moment capacity equations are developed 

taking into account of geometric imperfections and material inelasticity. These effects are not 

included in the analysis model and, hence, do not impact the calculation of Pu and Mu.  

1.3.2. Direct Analysis Method (DM) 

 The direct analysis method (DM) is an alternative method to the effective length method 

in evaluating the stability of structural systems. The essential characteristic of this method is the 

absence of effective length factors (effective length factor of unity K =1.0 are assumed for all 

members).  

Unit Effective Length Factor (K=1.0) 

 The concept of a unit effective length (assuming K=1.0 for all members) was developed 

to avoid the complexity and inaccuracy of determining K factors for every single member based 

on their end restraint conditions (as is the case in the previous ELM design procedure).   

 The consequences of assuming unit effective length factors (K=1.0) are offset as follows. 

Given that a unit effective length factor would tend to overestimate the axial capacity (Pn) of the 

members whose effective length factors are actually greater than 1.0, this potential increase in Pn 

is offset by intentionally increasing the moment load effect term (Mu), so as to achieve the 

interaction equation results that are quite similar to those when actual effective length factors are 

used. The increase in Mu is obtained by including initial imperfection and material inelasticity 

effects in the analysis model.  Specifically, how these effects are included in the analysis model 

will be explained in the following sub-section, Analysis Procedure for DM. 
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 In the absence of effective length factors (K=1.0), DM relies on an accurate second-order 

analysis that includes the destabilizing effects of initial imperfections and material inelasticity in 

the modeling, to adequately assess the stability of a structural system.    

Analysis Procedure for DM  

 The structural system and its loading conditions are modeled in structural analysis 

software, such as MASTAN2. A rigorous second-order elastic analysis is performed to obtain 

load effects on each member (Pu and Mu). To offset the potential increase in Pn from unit 

effective length assumption, Mu will be intentionally increased. This will be achieved by 

including the destabilizing effects of initial imperfections and material inelasticity in the analysis 

model, either by direct modeling or through the use of equivalent notional loads (AISC 

Specification 2010).  

 The destabilizing effects of initial geometric imperfections can be modeled using two 

different approaches (AISC Specification 2010). In the first approach, namely the Direct 

Modeling Approach, the geometry of the structural model is includes an initial story out-of-

plumbness of H/500 (H is the height measured from story level to story level). In the second 

approach, namely the Notional Load Approach, equivalent artificial lateral loads of 0.2% of the 

gravity load on each story level (0.002Yi) are applied to the structure. Both approaches result in 

nearly the same internal load effects.  

 The destabilizing effects of material inelasticity can also be modeled using the two 

approaches (AISC Specification 2010). In both approaches, the elastic modulus of the steel is 

reduced by 20% (i.e., E= 0.8E). To further capture the stiffness reduction due to material 

inelasticity in Direct Modeling Approach, an additional stiffness reduction factor (τb) is applied 

to the flexural stiffness term (EI/L). In Notional Load Approach, equivalent notional loads of 0.1% 
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of gravity load values at each story are applied to the structure and replace the need for the use of 

a stiffness reduction factor (τb).  

 As for calculating the capacity components, the axial compressive strengths (Pn) are 

obtained from AISC Eq. E3-1 to Eq. E3-4, but now with the assumption of unit effective length 

factors (K=1.0) for all members. Using the same procedure as with ELM, the moment capacities 

(Mn) are obtained from the AISC moment strength equations Eq. F2-1 to Eq. F2-4. For the 

structural systems studied in this thesis, all the structures are assumed to be fully braced out of 

plane, and hence, lateral torsional buckling failure modes are suppressed and only the plastic 

moment strength Mp is considered. 

 The calculation of interaction equations using the load effects and capacities determined 

as are then used to evaluate the stability of the structural system. 

It is important to note that, unlike ELM, DM takes into account the effects of initial 

geometric imperfections and material inelasticity in capacity components (Pn and Mn) as well as 

in demand components (Pu and Mu).  

Comparison of Analysis Procedure for ELM and DM  

 The differences between the two methods, ELM and DM, can be summarized as follows. 

The first major difference is that ELM uses K factors based on member end restraint conditions, 

whereas DM uses unit effective length factors (K=1.0) for all members. Secondly, ELM applies 

no reduction in material modulus (E=1.0E) in the analysis model, whereas the DM requires a 

reduction of material modulus by 20% (E =0.8E). Again, the material modulus is reduced in the 

DM analysis models to intentionally increase the moment load effects (Mu). Thirdly, ELM 

considers the destabilizing effects of geometric imperfections and material inelasticity only in the 
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capacity components (Pn and Mn), whereas the DM incorporates these effects in the analysis 

models as well to intentionally increase the moment load effects (Mu).  

 Of the two methods, the direct analysis method (DM) simplifies the stability assessment 

procedure by eliminating the need to determine K factors for all compression members, a process 

that can be inaccurate and prone to errors due to several idealized assumptions and adjustments 

involved. With the assumption of unit effective length factors, the direct analysis method relies 

on an accurate second-order analysis that takes into account of geometric imperfections and 

material inelasticity in the analysis models, to adequately assess the stability of structural 

systems.  

1.3.3. Modified Direct Analysis Method (MDM) 

 Different from the two existing methods (Effective Length Method, ELM, and Direct 

Analysis Method, DM), a third alternative method for stability assessment will be proposed and 

studied for its feasibility in this thesis. Given that DM simplifies the stability assessment 

procedure by the assumption of a unit effective length factor (K=1.0) for all members regardless 

of end restraint conditions, the next logical question raised in this thesis is whether or not all 

member and system stability can be assessed by the analysis, and thereby permit the use of the 

cross-section capacity in computing Pn.  In other words, allow for effective length factors equal 

to zero (K=0) in all design calculations that compute and employ Pn. This modification would 

imply the analysis would assess the stability of a structural member and thereby permitting the 

need to only check cross-section strength, which for a compact section would be the axial yield 

strength (Py). This modification would further simplify the existing direct analysis method, and 

would be especially useful for assessing the stability of members in which the unbraced length is 

difficult to define, such as an arch or the top-chord of an unbraced truss. Therefore, Modified 
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Direct Analysis Method (MDM) with only checking member cross-section strengths will be 

studied in this thesis to determine whether this new method can adequately assess stability.   

Checking Only Member Cross-section Axial Strength (Py)  

 The concept of checking only member cross-section axial strength is developed from the 

logical quest to further simplify the unit effective length factor (K=1.0) assumption in DM. With 

analysis that can capture both frame and member instabilities, one would need to check only the 

cross-section yielding failure of the member (Py = AgFy).  

 Of course, the consequence of checking only the member cross-section axial strength will 

be the potential overestimation of the axial capacity of a member (Pn). This is because design 

equations will ignore the possibility of a buckling failure mode, and rely exclusively on the 

analysis.  To adequately access the stability of a member using this assumption, this 

overestimation in the member axial capacity will need to be offset in the AISC interaction 

equation. In this thesis, the proposed methods to offset the axial capacity increase will be the 

same methods as in DM; the overestimation of the axial capacity will be offset by using a 

rigorous second-order elastic analysis and intentionally increase in moment demands (Mu) by 

including the destabilizing effects of geometric imperfections and material inelasticity in the 

analysis model.   

 With only the need to check the member cross-section axial strength, MDM intends to 

rely on a rigorous second-order elastic analysis that includes the destabilizing effects of 

imperfections and inelasticity to adequately access the stability of a structural system.  
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Proposed Analysis Procedure for MDM  

 The analysis procedure for MDM is proposed in this thesis as follows.  The structural 

system and its loading conditions are modeled with nonlinear structural analysis software, such 

as MASTAN2. A rigorous second-order elastic analysis is performed to obtain load effects on 

each member (Pu and Mu). To offset the potential increase in Pn by checking only the member 

cross-section strength, Mu will be intentionally increased. As in DM, this will be achieved by 

including the destabilizing effects of initial imperfections and material inelasticity in the analysis 

model, either by direct modeling or by the use of notional loads.  

 The destabilizing effects of initial geometric imperfections will be modeled using the 

same two approaches defined previously for DM. In the first approach, namely Direct Modeling 

Approach, the geometry of the structure includes an initial out-of-plumbness of H/500 (H is the 

height measured from the story level to story level). In the second approach, namely Notional 

Load Approach, notional loads of 0.2% of the gravity load on each story level (0.002Yi) are 

applied to the structure. Both approaches are expected to produce similar internal load effects. 

The destabilizing effects of material inelasticity will also be modeled using the two 

approaches defined for the Direct Analysis Method. In both approaches, the elastic modulus will 

be reduced by 20% (i.e., E= 0.8E). In Direct Modeling Approach, an additional stiffness 

reduction factor (τb) will be applied to the flexural stiffness term (EI/L). In Notional Load 

Approach, equivalent notional lateral loads of 0.1% of the gravity load will be included.  

 As for calculating the capacity components, Pn will be taken as equal to the member 

cross-section axial yield strength (Py= AgFy). The moment capacities (Mn) will be obtained from 

the same AISC moment strength equations Eq. F2-1 to Eq. F2-4 used in DM and ELM. Again, 
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for the structural systems studied in this thesis, the system is assumed fully braced out of plane 

resulting in all flexural strengths equaling the plastic moment capacity Mp. 

 The calculation of interaction equations using load effects and capacities determined as 

will continue to be used to evaluate the stability of the structural system.  

It is important to note that, similar to DM, MDM will take into account the effects of 

initial geometric imperfections and material inelasticity in capacity components (Pn and Mn) as 

well as in demand components (Pu and Mu).  

Comparison of Analysis Procedures for DM and MDM  

The only difference between the analysis procedures of the two methods, DM and MDM, 

will be the calculation of Pn.  The former considers both Pcr (with K=1.0) and Py in calculating Pn, 

whereas the latter will only consider Py in calculating Pn. 

1.4. Purpose and Objectives 

 The primary purpose of this research project is to determine whether the newly-proposed 

method, Modified Direct Analysis Method (MDM), can be used to adequately assess the stability 

of steel structural systems.  This will be accomplished by studying a set of 12 benchmark frames.   

 The specific objectives of this research project include:  

1. To compare the existing Direct Analysis Method (DM) and the newly proposed Modified 

Direct Analysis Method (MDM) by performing stability assessments using both methods 

on a set of 12 benchmark structural systems and a single column  

2. To compare the results of the two methods against more advanced non-linear analysis 

results  
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3. To ultimately determine whether MDM with the proposed modifications (only checking 

cross-section axial strengths) will be sufficient to assess the stability of structural steel 

systems 

1.5. Thesis Overview 

 The chapters in this thesis will be outlined as follows. 

Chapter 1 first claims the thesis statement, introduces the concept of structural system 

stability, explains the background of stability analysis methods, and then defines the purpose and 

objectives of this research study.  

Chapter 2 will first provide background information of case studies used in this thesis, 

continue by explaining the detailed methods and steps used to perform the stability assessment of 

the case studies using DM and MDM, and then define how the adequacy and the accuracy of 

each method in assessing the stability of these case studies will be determined in this thesis.  

Chapter 3 will discuss results from the case studies, in regards to whether MDM will 

adequately assess structural stability compared to the advanced analysis and the DM procedure.  

Chapter 4 will summarize overall conclusions from the case studies. 

Chapter 5 will provide a summary of this research, will emphasize the overall 

conclusions from this study, and then will make recommendations for further research.  
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CHAPTER 2: CASE STUDIES AND METHODS 

This section will first explain the background of case studies, describe the stability 

assessment methods used in this thesis, and then define how the adequacy and the accuracy of 

each method in assessing the stability of structural systems will be determined in this thesis.  

2.1. Background of Case Studies 

The structural systems that will be used in this thesis are taken from a study on the 

feasibility of Direct Analysis Method conducted by Jose Martinez-Garcia and his research 

advisor, Dr. Ronald Ziemian (Professor at Bucknell University) in 2002. Their study involved a 

set of 11 benchmark structural systems that were designed to satisfy AISC LRFD Specification 

strength and serviceability requirements (Martinez-Garcia, 2002, p. 29).  The first six structural 

systems were taken from other research reports, and the last two structural systems (one with 

four variants) were conceived especially for the research on the feasibility of Direct Analysis 

Method and designed accordingly (Martinez-Garcia, 2002, p. 33).  

 These same structural systems will be used in this study, with the addition of one 

structural system (Structural System 1b) as well as one single column (Column Study), and with 

modifications to one structural system (Structural System 8). The rationales for these additions 

and modifications are explained later in corresponding structural system descriptions.  

2.1.1. Design of Structural Systems  

 The structural systems involved in this thesis study were designed according to the 

following general design procedure (Martinez-Garcia, 2002, p. 29-35). 

The geometry and initial loading conditions of a structural system are determined based 

on representative conditions for a certain type of structure. Preliminary sections are chosen for 

each member in the structural system.  
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The preliminary model is analyzed using one of the following three different approaches: 

elastic analysis with a first-hinge limit point, elastic-perfectly plastic hinge analysis, or inelastic 

distributed plasticity analysis. 

 If the first-hinge approach is used, a second-order elastic analysis is performed on the 

preliminary model, and sections are considered satisfactory if the first hinge forms at a load ratio 

greater than 1.0 (Martinez-Garcia, 2002, p. 33).  Then all strength requirements (in-plane, out-of-

plane, local buckling, etc) are checked using the equations provided in the AISC LRFD 

specifications.  

 If the second or third approach is used, an elastic-perfectly plastic hinge analysis or 

inelastic distributed plasticity analysis is performed on the preliminary model respectively, and 

sections are considered satisfactory if the ultimate load is reached at a load ratio greater than 1.0 

(p. 33).  Behavioral effects due to inelasticity should be captured by the analysis, and no AISC 

equations are needed.  

In addition to satisfying strength requirements, the structural system is checked to satisfy 

the following serviceability requirements (Martinez-Garcia, 2002, p. 34):  

1.  total lateral drift and interstory drift due to the unfactored wind load are limited to 

H/250, where H is either the height of the structure or the story height. (Code of Standard 

Practice for Steel Buildings and Bridges) 

2. beam deflections under unfactored live loads are limited to L/360, where L is the beam 

span. (Code of Standard Practice for Steel Buildings and Bridges) 

3. plastic hinges are prohibited from forming under service loads.  
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In addition to strength and serviceability requirements, other design considerations were 

included in designing the structural systems. These considerations include the feasibility and cost 

of connections based on member sizes, the economy of member sizes, and their local availability. 

(Martinez-Garcia, 2002, p. 33-35)  

2.1.2. Load Calibration  

 The original load magnitudes applied to each structural system studied were determined 

based on representative values, and member sizes were then chosen to satisfy stability 

requirements under these load conditions.  

However, to perform benchmark studies on the accuracy of different methods for stability 

assessment, failure loads should be applied to the structural system so that it is easy to see 

whether the method predicts failure at a lower or higher load than the applied load.  

To calibrate the original loads to failure loads, an advanced spread-of-plasticity analysis 

by structural analysis software NIFA (Clarke & Zablotskii, 1995) was performed on each 

structural system to obtain the ultimate load ratio (Martinez-Garcia, 2002, p. 54). The second-

order inelasticity analysis with the reduced elastic modulus of 0.9E, and reduced material yield 

strength of 0.9 Fy was used. The original loads were then scaled by the ultimate load ratio to 

obtain the ultimate failure loads. In doing so, the applied load ratio at the strength limit states of 

the frames will always equal 1.0.  These calibrated ultimate failure loads were applied to the 

structural systems in the benchmark study of Direct Analysis Method against Effective Length 

Method, and other advanced analyses by Martinez-Garcia. This benchmark study of Modified 

Direct Analysis against the prior methods will also be used calibrated failure loads in the 

structural systems.  
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Because all given factored loads are purposely defined so that an advanced second-order 

inelastic analysis with 0.9E, 0.9Fy and Δ0 = H/500 will result in system limit at an applied load 

ALR = 1.0 (i.e. satisfy AISC’s Appendix 1 – Design by Inelastic Analysis), an adequate stability 

assessment of these structural systems should provide interaction equation values close to 1.0 at 

the given applied loads. Therefore, the adequacy of different methods in accessing stability of 

these structural systems will be determined based on their interaction values.  If the maximum 

interaction equation provides a value larger than 1.0, then the method can be considered 

conservative when compared to the design procedure using inelastic analysis.  On the other hand, 

a maximum interaction equation value less than unity indicates that the design can resist 

additional load, thereby making the design procedure unconservtiave. 
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2.1.3. Brief Description of Structural Systems  

Structural System 1a – Unsymmetrical Frame  

 

 

    

 

 

 

 

 

 

 

 

 

 

 

Figure4. Geometry, Section Properties, Material Properties, and Loading Conditions  
of Structural System 1a 

(Credit: Jose Martinez-Garcia, 2002)  
 
 
 This structural system is a representative of a two-story industrial frame. Specifically, in 

its original studies by Iffland and Birnstiel (1982) and Ziemian et al. (1992), its geometry and 

high ratio of gravity to lateral load ratio were intended to represent typical low-rise industrial 

buildings (Martinez-Garcia, 2002, p. 86).  
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 In the prior study on this structural system by Martinez-Garcia for assessing the 

feasibility of Direct Analysis Method, four possible cases with two load combinations (gravity 

and lateral load combinations) and two initial imperfection and wind directions (to the left and to 

the right) were initially considered to determine one controlling case (Martinez-Garcia, 2002, p. 

88). In this thesis, however, only the controlling case as determined in Martinez-Garcia’s thesis 

(gravity load combination with initial out-of-plumb imperfection to the left) will be studied.   

 There are a few noteworthy characteristics of the system:  

The left-most W8 columns of the frame were designed smaller than the other W14 

columns to act as leaning columns (Martinez-Garcia, 2002, p. 86).  

The comparatively large gravity load in this structural system was intended to produce 

significant second-order effects in the presence of a small lateral initial imperfection. The 

presence of the leaning columns was also intended to accentuate this second order effect 

(Martinez-Garcia, 2002, p. 88). 

 All sections are oriented for bending about their major axis, and the structure is assumed 

to be fully braced out of plane.  
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Structural System 1b – Unsymmetrical Frame 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Geometry, Section Properties, Material Properties, and Loading Conditions  
of Structural System 1b 

(Credit: Jose Martinez-Garcia, 2002)  
 

 This structural system is the same frame as the previous structural system (Structural 

System 1a), except that in this system the columns will be oriented for bending about their minor 

axis. The purpose of studying this structural system is to observe whether the Modified Direct 

Analysis Method is adequate to assess the stability of structural system with minor axis column 

orientation.  
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 Similar to Structural System 1a, only the controlling case as determined in Martinez-

Garcia’s thesis (gravity load combination with initial out-of-plumb imperfection to the left) will 

be studied in this thesis.   

Structural System 2 – Industrial Frame 

 

 

 

 

 

 

 

 

 

 

Figure 6. Geometry, Section Properties, Material Properties, and Loading Conditions  
of Structural System 2 

(Credit: Jose Martinez-Garcia, 2002)  
 

 This structural system is a representative model of a multi-bay single-story industrial 

frame. This model was proposed by AISC TC10 in the early stages of the development of the 

Direct Analysis Method to compare it against Effective Length Method and more advanced 

analyses (Martinez-Garcia, 2002, p. 105). In the prior study by Martinez-Garcia for assessing the 

feasibility of Direct Analysis Method, the model was simplified from eleven-bay to three-bay, 

with two exterior leaning columns each representing the equivalent of five leaning columns 

(Martinez-Garcia, 2002, p. 105-106). 
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 In the study by Martinez-Garcia, two load combinations (gravity and lateral load 

combinations) were initially considered to determine one controlling case (Martinez-Garcia, 

2002, p. 107). In this thesis, however, only the controlling case as determined in Martinez-

Garcia’s thesis (gravity load combination) will be studied.     

 There are a few noteworthy characteristics of the system: 

All the exterior columns are pinned at both ends to act as leaning columns (Martinez-

Garcia, 2002, p. 106). Therefore, only a frame comprised of the two central columns and a 3-

span continuous beam resist the lateral loads applied to the system. 

The comparatively large gravity load in this structural system was intended to produce 

significant second-order effects in the presence of a small lateral initial imperfection. The 

presence of leaning columns was also intended to accentuate this second order effect (Martinez-

Garcia, 2002, p. 106).   

Because the five columns have been represented by one exterior column, the distributed 

gravity load along the omitted four bays is included in the model as a concentrated load on the 

given exterior column (Martinez-Garcia, 2002, p. 106). Moreover, to represent the equivalent 

axial stiffness of five columns, the exterior columns are made five times more rigid by increasing 

their modulus of elasticity by five times (Martinez-Garcia, 2002, p.106).  

 All sections are oriented for bending about their major axis, and the structure is assumed 

to be fully braced out of plane.  
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Structural System 3 – Grain Storage Bin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Geometry, Section Properties, Material Properties, and Loading Conditions  
of Structural System 3 

(Credit: Jose Martinez-Garcia, 2002)  
 

 This structural system is a representative model of an elevated structure where stability 

effects are accentuated by the position of most of the weight at an elevation the ground 

(Martinez-Garcia, 2002, p. 121). This model was also proposed by AISC TC10, specifically 

LeRoy Lutz, an engineer at Computerized Structural Design, in the early stages of the 
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development of the Direct Analysis Method to compare this design method with the Effective 

Length Method and more advanced analyses (Martinez-Garcia, 2002, p. 121). 

 In the prior study on this structural system by Martinez-Garcia for assessing the 

feasibility of Direct Analysis Method, two load combinations (gravity and lateral load 

combinations) were initially considered to determine one controlling case (Martinez-Garcia, 

2002, p. 123). In this thesis, however, only the controlling case as determined in Martinez-

Garcia’s thesis (lateral load combination) will be studied.     

 There are a few noteworthy characteristics of the system:  

The columns are braced in-plane in their upper section as seen in the figure. The function 

of this bracing is mainly to provide stability against lateral loads (Martinez-Garcia, 2002, p. 122). 

The W4x13, lightest W section included in LRFD Manual, is used for the bracing. In modeling 

the bracing, only the bracing in tension is included in the analyses, and the bracing in 

compression is omitted, given that its buckling load is very low (Martinez-Garcia, 2002, p. 122).   

 The cross-beams and the bracing are pin-connected to the column so that they cannot 

resist any moment (Martinez-Garcia, 2002, p. 122). 

The comparatively large gravity load in this structural system is intended to produce 

significant second-order effects in the presence of a small lateral initial imperfection or the 

deflection caused by a small lateral wind load (Martinez-Garcia, 2002, p. 122). 

In modeling wind and gravity loads, these applied loads are converted into equivalent 

horizontal and vertical forces at the upper ends of the columns (Martinez-Garcia, 2002, p. 122).  

 All sections are oriented for bending about their major axis, and the structure is assumed 

fully braced out of plane.  

 

30 
 



Structural System 4 – Multi-story Frame 

 

Figure 8. Geometry, Section Properties, Material Properties, and Loading Conditions  
of Structural System 4 

(Credit: Jose Martinez-Garcia, 2002) 
 
This structural system is a representative model of a multi-story residential or office 

building. This frame was originally proposed by Vogel (Vogel U. Calibrating Frames. Berlin: 

Stahlbau, 1985, 1–7, 10) and AISC TC 10 investigated it in the early stages of the development 
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of Direct Analysis Method to compare it against Effective Length Method and more advanced 

analyses (Martinez-Garcia, 2002, p. 140-141).  

 In the prior study on this structural system by Martinez-Garcia for assessing the 

feasibility of Direct Analysis Method, since both gravity and wind loads had already been 

factored in prior to his study, only one load combination (LC1 = 1.0G+1.0W) was investigated 

(Martinez-Garcia, 2002, p. 141). In this thesis, the same load combination will be studied as the 

controlling case.    

 There are a few noteworthy characteristics of the system:  

All the sections used are European sections: HEB sections (European standard wide-

flange sections) are used for the columns, and IPE sections (European standard I-shaped sections) 

are used for the beams.  

All connections are assumed rigid, and the bases of the first story columns are fixed to 

the foundation.  

 All sections are oriented for bending about their major axis, and the structure is assumed 

fully braced out of plane. 
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Structural System 5 – Gabled Frame 

 

 

Figure 9. Geometry, Section Properties, Material Properties, and Loading Conditions  
of Structural System 5 

(Credit: Jose Martinez-Garcia, 2002) 
 

 This structural system is a representative model of an industrial gabled frame. This frame 

was originally taken from Description of Frames, Section 3.1, Internal Report, by Murray, T.M. 

(2001), Virginia Polytechnic Institute, Blacksburg, Virginia. In the study on this frame by 

Martinez-Garcia for the feasibility assessment of Direct Analysis Method, the loads were 

modified to act directly downward at all points (Martinez-Garcia, 2002, p. 153).  
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 In the study by Martinez-Garcia, only one load combination (LC1 = 1.2D+1.6L+0.8W) 

was considered (Martinez-Garcia, 2002, p. 154). In this thesis, the same load combination will be 

studied as the controlling case.    

 There are a few noteworthy characteristics of the system:  

 The structure is statically indeterminate to the second degree. 

 Wind load is applied at the edge and at the ridge of the roof, with a higher value at the 

ridge because the effect of wind increases with elevation. 

 All sections are oriented for bending about their major axis, and the structure is assumed 

fully braced out of plane. 
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Structural System 6 – Two-bay Frame with Irregular Geometry 

 

Figure10. Geometry, Section Properties, Material Properties, and Loading Conditions  
of Structural System 6 

(Credit: Jose Martinez-Garcia, 2002) 
 

 This structural system is a representative model of an irregular two-bay frame, where 

circumstances impose certain requirements about its geometry. This frame was taken from 

Description of Frames, Section 3.1, Internal Report, by Murray, T.M. (2001), Virginia 

Polytechnic Institute, Blacksburg, Virginia (Martinez-Garcia, 2002, p. 167). 
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 In the prior study on this structural system by Martinez-Garcia for assessing the 

feasibility of Direct Analysis Method, only one load combination (LC1 = 1.2D+1.6L+0.8W) 

with both the wind load and initial imperfection acting to the right was considered (Martinez-

Garcia, 2002, p.168). Although the asymmetry of the frame suggests the study of initial 

imperfection to both sides, the original problem defined the wind load to act to the right, and 

provided only the point load values. Therefore, it was assumed that the case for the initial 

imperfection and the wind load acting to the right will fail the frame at a lower ultimate load 

ratio than the case for the left (Martinez-Garcia, 2002, p. 168). In this thesis, the same load 

combination with the initial imperfection and wind load acting to the right will be studied as the 

controlling case.   

 There only noteworthy characteristics of the system is that all sections are oriented for 

bending about their major axis, and the structure is assumed fully braced out of plane.   
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Structural System 7a, 7b, 7c and 7d – Two-bay Frame with Unequal Heights 

 

 

Figure11. Geometry, Section Properties, Material Properties, and Loading Conditions  
of Structural System 7a 

(Credit: Jose Martinez-Garcia, 2002) 
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Figure12. Geometry, Section Properties, Material Properties, and Loading Conditions  
of Structural System 7b 

(Credit: Jose Martinez-Garcia, 2002) 
 

 

Figure 13. Geometry, Section Properties, Material Properties, and Loading Conditions  
of Structural System 7c 

(Credit: Jose Martinez-Garcia, 2002) 
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Figure 14. Geometry, Section Properties, Material Properties, and Loading Conditions  
of Structural System 7d 

(Credit: Jose Martinez-Garcia, 2002) 
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(Martinez-Garcia, 2002, p. 186).  
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considered to determine one controlling case for each structural system (Martinez-Garcia, 2002, 

p. 190). In this thesis, however, only the controlling case as determined in Martinez-Garcia’s 

thesis will be studied for each structural system.   

 There are a few noteworthy characteristics of these structural systems:  

 The gravity loads are the same for structural systems 7a, 7b and 7c, except 7d where the 

loads are decreased to permit the use of smaller beams that are compatible with its smaller 

columns (Martinez-Garcia, 2002, p. 186).  

 Support conditions and connections of all four systems vary. System 7a has pinned 

supports at the bases, and all connections are fully restrained (rigid). System 7b has fixed 

supports at the bases, and the right bay beam is pinned at both ends. System 7c and 7d have 

pinned supports at the bases, and all member ends are simply supported (pinned). In addition, 

their left bays are braced against sway with light W4x13 sections. The difference between 

Systems 7c and 7d, except obvious differences in their sections and loading conditions, is that 

the columns are oriented for major axis bending in 7c, whereas the columns are oriented for 

minor axis bending in 7d (Martinez-Garcia, 2002, p. 186).  

 The rightmost columns in 7c and 7d can be assumed as leaning columns because they do 

not provide resistance to against lateral effects (Martinez-Garcia, 2002, p. 189).  

 All sections in all systems, except the columns in System 7d, are oriented for bending 

about their major axis, and the structure is assumed fully braced out of plane.  
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Structural System 8 – Vierendeel Truss  

 

 

 

Figure15. Geometry, Section Properties, Material Properties, and Loading Conditions  
of Structural System 8 

(Credit: Jose Martinez-Garcia, 2002) 
 

 This structural system is a representative model of a Vierendeel Truss, commonly used to 

support pedestrian walkways. This truss was originally designed by Martinez-Garcia for 

comparing the Direct Analysis Method with the Effective Length Method for a three-

dimensional system.  

In the prior study by Martinez-Garcia for assessing the feasibility of Direct Analysis 

Method, only one load combination (LC1 = 1.4G) was considered (Martinez-Garcia, 2002, p. 

222). In this thesis, the same load combination will be studied as the controlling case. However, 

the loadings and sections of the original design have been modified in this study to ensure that 
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the plastic yielding controls for moment strength. In addition, warping effects included in the 

prior study will be omitted in this study.  

 There are a few noteworthy characteristics of the system:  

This structural system is not assumed fully braced out of plane, in contrast to all other 

structural systems in this study. Therefore, the system will be modeled as three-dimensional 

frame, and it will fail in a lateral-torsional buckling mode.   

All sections are oriented for bending about their major axis. 

 Given the symmetry of the system, only the three leftmost top chord members will be 

studied as representative of compressive members in sway frames. 

Column Study  

 

Figure 16. Geometry, Section Properties, Material Properties, and Loading Conditions  
of A Single Column Study 
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A single column is chosen for study in this thesis to compare the stability analysis results 

obtained by the newly proposed MDM method on the simplest structure against those obtained 

by both the advanced inelastic method and the existing direct analysis method (DM).  

The section of the column is W14x145. The applied load to the column will be its 

ultimate strength.  The L/r of the column will vary from 0 to 200.  

Two separate studies will be conducted, one for bending of the column about its major 

axis and the other for bending about its minor axis.  

Different from the other case studies, Pu/Py values of the column obtained by the two 

methods (DM and MDM) will be compared against those obtained by the advanced inelastic 

method (Appendix 1) to evaluate which method is a more accurate method.  

2.2. Conducting Stability Assessment Procedures 

In this thesis, the twelve structural systems and single column study will be evaluated 

using two different stability assessment methods, Direct Analysis Method (DM) and Modified 

Direct Analysis Method (MDM). Detailed steps for conducting stability assessment using each 

method will be explained in the following sections.   

2.2.1. Direct Analysis Method  

 The Direct Analysis Method uses interaction equations to assess stability of a structural 

system.  

 To obtain demand components (Pu and Mu) for use in AISC’s interaction equation, the 

structural system will be modeled and a second-order analysis will be performed in MASTAN2 

using the following steps:    

Nodal coordinates will be defined based on the given geometry of the system.  Elements 

will be defined, and corresponding sections will be attached.  
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 Material properties will be defined. In all DM and MDM studies, the modulus of 

elasticity E will be reduced to 0.8E, as required by Direct Analysis Method to include material 

inelasticity effects in the modeling.  

 All columns and beams will be subdivided into four elements. The purpose of 

subdividing columns is to best capture second-order P-δ effects and also allow for member 

buckling, which is essential to the MDM method. The purpose of subdividing the beams is to 

have distributed loads act as point loads.  

 The calibrated failure loads as determined in Martinez-Garcia’s study by an advanced 

spread-of-plasticity analysis using NIFA will be applied to the system. The given distributed 

loads will be converted to point loads based on tributary length.  

 Connections and fixities will be defined as given for each case study. 

 As required by the Direct Analysis Method, the destabilizing effects of initial 

imperfections and material inelasticity will be included in the modeling to account for unit 

effective length assumption employed when defining Pn in the AISC interaction equation. For 

modeling these destabilizing effects, two different approaches, by direct modeling or by the use 

of notional loads, will be used in this study. Observations will be made to validate the 

equivalency of these two approaches. 

 When using the direct modeling approach, the destabilizing effects of initial imperfection 

will be included by distorting the geometry by H/500 (H = height measured from the specific 

story-to-story level) using Move Node option available in MASTAN2. In addition, the 

destabilizing effects of material inelasticity will be included by making use of the second-order 

inelastic analysis, which has the option of directly including the flexural stiffness reduction 

factor (τb) in the analysis. To prevent any plastic hinge formation while using this inelastic 

44 
 



analysis option (all DM and MDM analyses are to be elastic), the yield surface of each element 

will be enlarged 10 times using Yield Surface Control option in MASTAN2.  

As just indicated, the direct inclusion of the flexural stiffness reduction factor τb will be 

achieved by the use of the second-order inelastic analysis with Et option in MASTAN2. This 

analysis is programmed to automatically calculate τb factors for each element and reduce the 

corresponding flexural stiffness term in the analysis model using the following equation (AISC 

Specification 2010, Eq. C2-2a and Eq. C2-2b):  

When 𝛼 𝑃𝑢 𝑃𝑦⁄ ≤ 0.5  

𝜏𝑏 = 1.0  

When 𝛼 𝑃𝑢 𝑃𝑦⁄ > 0.5  

𝜏𝑏 = 4(𝛼 𝑃𝑢 𝑃𝑦)⁄ �1 − �𝛼 𝑃𝑢 𝑃𝑦⁄ �� , 

where 

 𝜏𝑏 = flexural stiffness reduction factor,  

 𝛼 = 1.0 (LRFD); 𝛼 = 1.6 (ASD), 

Pu = axial load effect on the member, kips (N), and 

Py = axial yield strength (=FyAg), kips (N).  

When using the equivalent notional load approach, the destabilizing effects of initial 

imperfections will be included by applying notional lateral loads of 0.002Yi at each story level 

(which is considered equivalent to distorting the geometry by H/500). The destabilizing effects 

of material inelasticity will be included by applying a notional load of 0.001Yi at each story level 

(which is considered equivalent to the inclusion of flexural stiffness reduction factor τb). 

 After preparing the model, the corresponding analysis, either second-order inelastic 

analysis for direct modeling approach or second-order elastic analysis for notional load approach, 
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will be performed. For each approach, two different analyses (one at ALR = 1.0 and another up 

to ultimate failure load ratio) will be performed. This is done because this thesis will compare 

DM and MDM considering these two different cases. Details for how DM and MDM will be 

compared are explained in Section 2.3. Each MASTAN2 analysis will provide the resulting axial 

and moment load effects in each element (Pu and Mu) that are necessary to calculate the AISC 

interaction equations.  

 Incorporating the results from the MASTAN2 analysis as inputs, a MATLAB program is 

written to assess the stability of each element in the system by computing the AISC interaction 

equation values. The program will first input Pu and Mu in each element obtained by the 

MASTAN2 analysis. Second, the program will input material properties (E and Fy), section 

properties (A, Z, I, r) and geometry (L) of the elements, and calculate the axial and moment 

strengths (Pn and Mn) of each element using AISC equations as specified in Chapter E and 

Chapter F (In this thesis, calculation of Mn will be simplified to Mp = Z Fy for all systems, since 

all systems except System 8 are assumed fully braced out of plane, and, in System 8, the loads 

and sections are modified so that the controlling moment strength will be Mp). Third, after 

obtaining both Pu and Mu and Pn and Mn, the program will then assess the stability of each 

element in the system using its corresponding interaction equation (H1-1a or H1-1b as 

mentioned in Section 1.2). In accessing the stability of the system using the AISC interaction 

equations, the program will use two different MATLAB functions for the two different 

MASTAN2 analyses performed. For the first analysis, the program will calculate the AISC 

interaction equation value of each element using the MASTAN2 results at ALR= 1.0. For the 

second analysis, the program will determine the applied load ratio at which the AISC interaction 

equation value for each element becomes 1.0.  
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2.2.2. Modified Direct Analysis Method  

The proposed stability assessment method, Modified Direct Analysis Method, will also 

use the AISC interaction equations to assess the stability of the structural systems.  

 As with Direct Analysis Method, demand components (Pu and Mu) of each interaction 

equation will be obtained by modeling the structural system, and performing a second-order 

analysis in MASTAN2. The modulus of elasticity E will still be reduced to 0.8E to include 

material inelasticity effects in the modeling. The destabilizing effects of initial imperfections and 

material inelasticity will be included in the modeling using two different approaches, Direct 

Modeling Approach and Notional Load Approach, in the same ways as in Direct Analysis 

Method.   

The results from the MASTAN2 analyses, Pu and Mu, as well as material properties, 

section properties and geometries of each element in the system will then be input into the 

MATLAB programs to assess the stability of the structural system. As in Direct Analysis 

Method, two different MATLAB codes will be used to calculate the AISC interaction equation 

value of each element using MASTAN2 results at  ALR=1.0, and to achieve the applied load 

ratio at which the AISC interaction equation value for each element becomes 1.0. Similar to the 

Direct Analysis Method, the programs will calculate the bending moment strength of each 

member using AISC equations as specified in Chapter F. However, unlike Direct Analysis 

Method, this new method will calculate the axial strength of every member using the cross-

section yield strength (Pn = Py).  

 Overall, the steps in this new stability assessment procedure are the same as those of 

Direct Analysis Method, except that the axial strength (Pn) of each member in the new method 

will be calculated using the cross-section yield strength (Py = Ag Fy).  
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2.3. Determining Adequacy and Accuracy of Methods in Assessing Stability  

 In determining the adequacy and the accuracy of a stability assessment method, two 

different comparisons are made in this thesis. 

The first comparison will be made based on assessing the stability of the system at the 

given applied loads. For this comparison, interaction equation values at the applied load ratio of 

1.0 (H1-1 when ALR =1.0) using DM and MDM will be calculated. Because the given applied 

loads are calibrated failure loads using the advanced inelastic analysis, a method will be 

considered adequate to assess the stability of the structural system if it results in an interaction 

equation value of 1.0 or greater. Moreover, the method that results in the AISC interaction 

equation value of closer to 1.0 will be considered a more accurate method.  

The second comparison will be made based on assessing the stability of the system at the 

corresponding failure loads by each method. For this comparison, the applied load ratios at 

which the failure of the system occurs will be obtained (ALR when H1-1 =1.0). A method will 

be considered adequate to assess the stability of the structural system if it results in an applied 

load ratio of 1.0 or smaller. Moreover, the method that results in an applied load ratio closer to 

1.0 for failure will be considered a more accurate method.  
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CHAPTER 3: CASE STUDIES RESULTS 

 As mentioned earlier (Section 1.3.2 and Section 1.3.3), whether employing unit length 

factors in with Direct Analysis Method (DM) or only checking the member cross-section 

strength (Py) in the Modified Direct Analysis Method (MDM), both require employing a rigorous 

second-order elastic analysis to obtain the load effects. These analyses account for member 

imperfections and material inelasticity in the modeling by using either of the two approaches - 

Direct Modeling Approach or Notional Load Approach. As a side, the studies in this thesis will 

also confirm the equivalency of these two approaches, given that both of these approaches will 

be employed in conducting DM and MDM stability assessments.  

Structural System 1a – Unsymmetrical Frame  

Comparison 1: Comparing H1-1 when ALR = 1.0 

 For structural system 1a, Tables 1 and 2 compare the AISC interaction equation H1-1 

values at an applied load ratio of 1.0 obtained by the Direct Analysis Method (DM) and 

Modified Direct Analysis Method (MDM) procedure. However, Table 1 analysis results were 

obtained using Direct Modeling Approach, whereas Table 2 analysis results were obtained using 

Notional Load Approach. These tables show that Direct Modeling Approach and Notional Load 

Approach lead to the same conclusions in comparing H1-1 values by DM and MDM when ALR 

=1.0. This confirms the equivalency of Direct Modeling Approach and Notional Load Approach. 

Both of these approaches lead to the following conclusions about DM and MDM.  

Column C2-3 (or beam B1-1) has the largest H1-1 value at ALR of 1.0, and thus this 

member is the most crucial member in determining the stability of the entire structural system. 

For this member, it is observed that 

• Eq. H1-1 values by DM and MDM are greater than 1.0 by 27%, 
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• Eq. H1-1 value by MDM is closer to 1.0 than that of DM, or at least the same as that of 

DM,  

• Eq. H1-1 value by MDM is less than that of DM, or the same as that of DM, and 

• The difference between AISC interaction equation H1-1 values by the two methods is 

less than 4.5%.  

Table 1: Comparison 1(H1-1 at ALR =1.0) Using Direct Modeling Approach  
(Structural System 1a – Unsymmetrical Frame) 

 

Imperfection  Direct Modeling 
Stiffness  
Adjustment 0.8E and taub 

 
second-order elastic; P-C;increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.899 0.113 0.999 0.679 0.113 0.779 
C1-2 0.540 0.542 1.021 0.500 0.542 0.981 
C1-3 0.333 0.369 0.660 0.308 0.369 0.636 
C2-1 0.327 0.304 0.598 0.277 0.304 0.548 
C2-2 0.177 1.095 1.184 0.170 1.095 1.180 
C2-3 0.116 1.209 1.267 0.111 1.209 1.265 
B1-1 0.002 1.379 1.379 0.002 1.379 1.379 
B1-2 0.047 1.041 1.065 0.044 1.041 1.063 
B2-1 0.002 1.275 1.276 0.002 1.275 1.276 
B2-2 0.096 1.115 1.162 0.083 1.115 1.156 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

50 
 



Table 2: Comparison 1(H1-1 at ALR =1.0) Using Notional Load Approach  
(Structural System 1a – Unsymmetrical Frame) 

 
Imperfection  NL (0.002Yi) Stiffness Adjustment 0.8E and NL (0.001Yi) 

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.902 0.128 1.015 0.681 0.128 0.795 
C1-2 0.540 0.570 1.047 0.500 0.570 1.007 
C1-3 0.332 0.341 0.635 0.307 0.341 0.610 
C2-1 0.327 0.311 0.603 0.278 0.311 0.554 
C2-2 0.178 1.098 1.186 0.170 1.098 1.183 
C2-3 0.115 1.210 1.267 0.110 1.210 1.265 
B1-1 0.001 1.372 1.372 0.001 1.372 1.372 
B1-2 0.046 1.049 1.072 0.043 1.049 1.070 
B2-1 0.003 1.272 1.273 0.003 1.272 1.273 
B2-2 0.096 1.117 1.165 0.083 1.117 1.158 

 

Comparison 2: Comparing ALR when H1-1 = 1.0 

For structural system 1a, analysis results in Tables 3 and 4 compare ALR values obtained 

by DM and MDM when AISC interaction equation H1-1 equals 1.0. Analysis results in Table 3 

were obtained using Direct Modeling Approach, whereas those in Table 4 were obtained using 

Notional Load Approach. However, these results both lead to the same conclusions.   

 Column C2-3 (or beam B1-1) has the lowest ALR value at interaction equation value of 

1.0, and thus this member is the most crucial member in determining the stability of the entire 

structural system. For this member, it is observed that 

• ALR value by MDM is less than 1.0 by 21%,  

• ALR value by MDM is the same as that of DM, and 

• The difference between ALR values by the two methods is less than 4.5%.  
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Table 3: Comparison 2(ALR at H1-1=1.0) Using Direct Modeling Approach 
(Structural System 1a – Unsymmetrical Frame)  

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.899 0.113 1.000 0.850 0.165 1.250 
C1-2 0.529 0.529 0.980 0.507 0.551 1.015 
C1-3 0.536 0.508 1.700 0.496 0.555 1.705 
C2-1 0.474 0.230 1.760 0.402 0.230 1.760 
C2-2 0.150 0.924 0.845 0.144 0.924 0.845 
C2-3 0.091 0.954 0.790 0.087 0.954 0.790 
B1-1 0.001 0.996 0.720 0.001 0.996 0.720 
B1-2 0.044 0.977 0.940 0.041 0.977 0.940 
B2-1 0.002 0.994 0.780 0.002 0.994 0.780 
B2-2 0.082 0.957 0.860 0.072 0.962 0.865 

 
 

Table 4: Comparison 2(ALR at H1-1=1.0) Using Notional Load Approach 
(Structural System 1a – Unsymmetrical Frame) 

 
Imperfection  NL (0.002Yi) Stiffness Adjustment 0.8E and NL (0.001Yi) 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.888 0.125 0.985 0.837 0.184 1.225 
C1-2 0.516 0.539 0.955 0.495 0.563 0.990 
C1-3 0.649 0.391 2.020 0.602 0.429 2.030 
C2-1 0.528 0.529 1.610 0.482 0.581 1.730 
C2-2 0.149 0.921 0.840 0.144 0.926 0.845 
C2-3 0.091 0.954 0.790 0.087 0.954 0.790 
B1-1 0.001 0.999 0.725 0.001 0.999 0.725 
B1-2 0.043 0.973 0.930 0.040 0.979 0.935 
B2-1 0.002 0.999 0.785 0.002 0.999 0.785 
B2-2 0.083 0.958 0.860 0.072 0.958 0.860 
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Conclusions 

The observations from Comparisons 1 and 2 suggest that MDM is adequate to assess 

stability of structural system 1a, since its H1-1 value for the controlling member (column C2-1 or 

beam B1-1) is greater than 1.0, and its ALR value for the controlling member is less than 1.0.  

MDM tends to be a more accurate method than DM for this structural system, since the 

members controlling the design have AISC interaction equation H1-1 values closer to 1.0 or the 

same as that of the DM .   

However, it should be kept in mind that MDM tends to be a less conservative method 

than DM, because it tends to yield lower H1-1 values or higher ALR values than DM for all 

other members. 

Moreover, it should be noted that DM and MDM are not equivalent for assessing the 

stability of structural system 1a, because the results by DM and MDM for all members do not 

always match within 4.5%.  

On a side note, this case study confirms the equivalence between Direct Modeling 

Approach and Notional Load Approach, since these approaches lead to similar results.  

Structural System 1b – Unsymmetrical Frame  

Comparison 1: Comparing H1-1 when ALR = 1.0 

For structural system 1b, Tables 5 and 6 compare the AISC interaction equation H-1 

values at an applied load ratio of 1.0 obtained by Direct Analysis Method (DM) and Modified 

Direct Analysis Method (MDM) procedure. Table 5 analysis results were obtained using Direct 

Modeling Approach, whereas Table 6 results were obtained using the equivalent Notional Load 

Approach. These tables show that Direct Modeling Approach and Notional Load Approach lead 

to the same conclusions in comparing H1-1 values by DM and MDM when ALR =1.0. This 
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confirms the equivalency of Direct Modeling Approach and Notional Load Approach, and lead 

to the following conclusions about DM and MDM.  

DM and MDM do not result in the same member controlling the strength of the design. 

According to DM, column C2-3 has the largest H1-1 value at an applied load ratio of 1.0, but 

according to MDM, column C1-2 (or beam B2-1) has the largest H1-1 value at an applied load 

ratio of 1.0. However, for both controlling members by DM and MDM, it is observed that 

• H1-1 value by MDM is lower than 1.0 by only 1.7%,  

• H1-1 value by MDM is closer to 1.0 or the same as that of DM,  

• H1-1 value by MDM is less than or the same as that of DM, and 

• The difference between AISC interaction equation H1-1 values by the two methods is not 

less than 4.5%.   

Table 5: Comparison 1(H1-1 at ALR =1.0) Using Direct Modeling Approach 
(Structural System 1b – Unsymmetrical Frame) 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.051 0.455 0.480 0.037 0.455 0.473 
C1-2 0.587 0.621 1.139 0.431 0.621 0.983 
C1-3 0.282 0.043 0.321 0.207 0.043 0.246 
C2-1 0.773 0.103 0.864 0.098 0.103 0.152 
C2-2 0.551 0.297 0.815 0.313 0.297 0.577 
C2-3 0.626 0.690 1.240 0.250 0.690 0.864 
B1-1 0.005 0.934 0.937 0.005 0.934 0.937 
B1-2 0.001 0.719 0.719 0.001 0.719 0.719 
B2-1 0.000 1.021 1.021 0.000 1.021 1.021 
B2-2 0.003 0.690 0.691 0.002 0.690 0.691 
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Table 6: Comparison 1(H1-1 at ALR =1.0) Using Notional Load Approach 
(Structural System 1b – Unsymmetrical Frame) 

 
Imperfection  NL (0.002Yi) Stiffness Adjustment 0.8E and No NL  

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.051 0.455 0.480 0.037 0.455 0.473 
C1-2 0.587 0.621 1.139 0.431 0.621 0.983 
C1-3 0.282 0.043 0.321 0.207 0.043 0.246 
C2-1 0.772 0.103 0.864 0.098 0.103 0.152 
C2-2 0.551 0.297 0.815 0.313 0.297 0.577 
C2-3 0.626 0.690 1.240 0.250 0.690 0.864 
B1-1 0.005 0.934 0.937 0.005 0.934 0.937 
B1-2 0.001 0.719 0.719 0.001 0.719 0.719 
B2-1 0.000 1.021 1.021 0.000 1.021 1.021 
B2-2 0.003 0.690 0.691 0.002 0.690 0.691 

 

Comparison 2: Comparing ALR when H1-1 = 1.0 

 For structural system 1b, analysis results in Tables 7 and 8 compare ALR values obtained 

by DM and MDM when the interaction equation H1-1 equals unity. Analysis results in Table 7 

were obtained using Direct Modeling Approach, whereas those in Table 8 were obtained using 

Notional Load Approach. However, these results both lead to the same conclusions.   

DM and MDM do not result in the same controlling member. According to DM, column 

C2-3 has the lowest ALR value at interaction equation value of 1.0 but according to MDM, 

column C1-2 (or beam B2-1) has the lowest ALR value at interaction equation value of 1.0. 

However, for both controlling members by DM and MDM, it is observed that 

• ALR value by MDM is greater than 1.0 by only 0.5 %.  

• ALR value by MDM is closer to 1.0 or the same as that of DM,  

• ALR value by MDM is greater than or the same as that of DM, and  
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• The difference between ALR values by the two methods is not less than 4.5%.  

Table 7: Comparison 2(ALR at H1-1=1.0) Using Direct Modeling Approach 
(Structural System 1b – Unsymmetrical Frame) 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 

DM: K = 1 MDM: Pn = Py 
Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 

C1-1 0.067 0.938 1.125 0.050 0.973 1.130 
C1-2 0.547 0.500 0.930 0.433 0.632 1.005 
C1-3 0.323 0.734 1.165 0.239 0.843 1.175 
C2-1 0.883 0.128 1.135 0.209 0.126 1.354 
C2-2 0.674 0.366 1.230 0.398 0.676 1.335 
C2-3 0.507 0.552 0.810 0.285 0.800 1.135 
B1-1 0.008 0.996 1.095 0.008 0.996 1.095 
B1-2 0.002 0.987 1.240 0.002 0.987 1.240 
B2-1 0.000 0.995 0.975 0.000 0.995 0.975 
B2-2 0.005 0.994 1.350 0.004 0.994 1.350 

 
 

Table 8: Comparison 2(ALR at H1-1=1.0) Using Notional Load Approach 
(Structural System 1b – Unsymmetrical Frame) 

 
Imperfection  NL (0.002Yi) Stiffness Adjustment 0.8E and No NL  

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 

DM: K = 1 MDM: Pn = Py 
Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 

C1-1 0.067 0.938 1.125 0.050 0.973 1.130 
C1-2 0.547 0.500 0.930 0.433 0.632 1.005 
C1-3 0.323 0.734 1.165 0.239 0.843 1.175 
C2-1 0.882 0.128 1.135 0.314 0.746 1.505 
C2-2 0.674 0.366 1.230 0.398 0.676 1.335 
C2-3 0.507 0.552 0.810 0.285 0.801 1.135 
B1-1 0.008 0.996 1.095 0.008 0.996 1.095 
B1-2 0.001 0.988 1.240 0.001 0.988 1.240 
B2-1 0.000 0.995 0.975 0.000 0.995 0.975 
B2-2 0.005 0.994 1.350 0.004 0.994 1.350 
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Conclusions 

The observations from Comparisons 1 and 2 suggest that MDM is adequate to assess the 

stability of structural system 1b, since its H1-1 value for the controlling member (column C1-2 

or beam B2-1) is less than 1.0 by only 1.7%, and its ALR value for the controlling member is 

greater than 1.0 by only 0.5%.  

MDM is a more accurate method than DM for structural system 1b, since its controlling 

member has a H1-1 value closer to 1.0 or the same as that of DM, and it have an ALR value 

closer to 1.0 or the same as that of DM.   

However, it should be kept in mind that MDM is a less conservative method than DM, 

since it tends to yield lower H1-1 values or higher ALR values than DM.   

Moreover, it should be noted that DM and MDM are not equivalent for assessing the 

stability of structural system 1b, since the results by DM and MDM for all members do not 

always match within 4.5%.  

On a side note, this case study confirms the equivalence between Direct Modeling 

Approach and Notional Load Approach, since these approaches lead to similar results.  

Structural System 2 – Industrial Frame  

Comparison 1: Comparing H1-1 when ALR = 1.0 

For structural system 2, Tables 9 and 10 compare the AISC interaction equation H1-1 

values at an applied load ratio of 1.0 obtained by the Direct Analysis Method (DM) and 

Modified Direct Analysis Method (MDM) procedure. However, Table 9 analysis results were 

obtained using Direct Modeling Approach, whereas Table 10 analysis results were obtained 

using Notional Load Approach. These tables show that Direct Modeling Approach and Notional 

Load Approach lead to the same conclusions in comparing H1-1 values by DM and MDM when 
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ALR =1.0. This confirms the equivalency of Direct Modeling Approach and Notional Load 

Approach. Both of these approaches lead to the following conclusions about DM and MDM.  

Column C1-1 has the largest H1-1 value at an applied load ratio of 1.0. For this 

controlling member, it is observed that 

• H1-1 value by MDM is greater than 1.0 by 12%,  

• H1-1 value by MDM is closer to 1.0 than that of DM,  

• H1-1 value by MDM is less than that of DM, and 

• The difference between AISC interaction equation H1-1 values by the two methods is not 
less than 4.5%.   

Table 9: Comparison 1(H1-1 at ALR =1.0) Using Direct Modeling Approach 
(Structural System 2 – Industrial Frame) 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

 
second-order elastic; P-C;increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.458 0.827 1.193 0.382 0.827 1.117 
C1-2 0.473 0.588 0.996 0.395 0.588 0.918 
B1-1 0.003 0.913 0.915 0.003 0.913 0.914 

 

Table 10: Comparison 1(H1-1 at ALR =1.0) Using Notional Load Approach 
(Structural System 2 – Industrial Frame) 

 
Imperfection  NL 0.002Yi Stiffness Adjustment 0.8E and No NL  

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 

C1-1 0.458 0.828 1.193 0.382 0.828 1.118 
C1-2 0.473 0.588 0.996 0.395 0.588 0.918 
B1-1 0.001 0.913 0.913 0.001 0.913 0.913 
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Comparison 2: Comparing ALR when H1-1 = 1.0 

For structural system 2, analysis results in Tables 11 and 12 compare ALR values 

obtained by DM and MDM when the interaction equation H1-1 equals unity. Analysis results in 

Table 11 were obtained using Direct Modeling Approach, whereas those in Table 12 were 

obtained using Notional Load Approach. However, these results both lead to the same 

conclusions.   

Column C1-1 has the lowest ALR value at interaction equation value of 1.0. For this 

controlling member, it is observed that 

• ALR value by MDM is less than 1.0 by 3%,  

• ALR value by MDM is closer to 1.0 than that of DM,  

• ALR value by MDM is greater than that of DM, and  

• The difference between ALR values by the two methods is not less than 4.5%.  

Table 11: Comparison 2(ALR at H1-1=1.0) Using Direct Modeling Approach 
(Structural System 2 – Industrial Frame) 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 

DM: K = 1 MDM: Pn = Py 
Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 

C1-1 0.435 0.631 0.945 0.372 0.707 0.970 
C1-2 0.473 0.589 1.000 0.399 0.637 1.010 
B1-1 0.001 0.994 1.045 0.003 0.983 1.040 
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Table 12: Comparison 2(ALR at H1-1=1.0) Using Notional Load Approach 
(Structural System 2 – Industrial Frame) 

 
Imperfection  NL 0.002Yi Stiffness Adjustment 0.8E and No NL  

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.435 0.631 0.945 0.370 0.691 0.965 
C1-2 0.473 0.589 1.000 0.402 0.664 1.015 
B1-1 0.001 0.994 1.045 0.001 0.994 1.045 

 

Conclusions 

The observations from Comparisons 1 and 2 suggest that MDM is adequate to assess 

stability of structural system 2, since its H1-1 value for the controlling member (column C1-1) is 

greater than 1.0, and its ALR value for the controlling member is less than 1.0. 

MDM can be a more accurate method than DM for structural system 2, since its 

controlling member has a H1-1 value closer to 1.0 than that of DM, and has an ALR value closer 

to 1.0 than that of DM.   

However, it should be kept in mind that MDM is a less conservative method than DM, 

since it tends to result in lower H1-1 values or higher ALR values than DM.   

Moreover, it should be noted that DM and MDM are not equivalent for assessing the 

stability of structural system 2, since the results by DM and MDM for all members do not always 

match within 4.5%.  

On a side note, this case study confirms the equivalence between Direct Modeling 

Approach and Notional Load Approach, since these approaches lead to similar results.  
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Structural System 3– Grain Storage Bin  

Comparison 1: Comparing H1-1 when ALR = 1.0 

For structural system 3, Tables 13 and 14 compare the AISC interaction equation H1-1 

values at an applied load ratio of 1.0 obtained by the Direct Analysis Method (DM) and 

Modified Direct Analysis Method (MDM) procedure. However, Table 13 analysis results were 

obtained using Direct Modeling Approach, whereas Table 14 analysis results were obtained 

using Notional Load Approach. These tables show that Direct Modeling Approach and Notional 

Load Approach lead to the same conclusions in comparing H1-1 values by DM and MDM when 

ALR =1.0. This confirms the equivalency of Direct Modeling Approach and Notional Load 

Approach. Both of these approaches lead to the following conclusions about DM and MDM.  

Column C1-2 has the largest H1-1 value at an applied load ratio of 1.0. For this 

controlling member, it is observed that 

• H1-1 value by MDM is less than 1.0 by only 1.6% (Direct Modeling Approach), or H1-1 

value by MDM greater than 1.0 by 3.2% (Notional Load Approach),  

• H1-1 value by MDM is closer to 1.0 than that of DM,  

• H1-1 value by MDM is less than that of DM, and 

• The difference between AISC interaction equation H1-1 values by the two methods is 

less than 4.5%.   
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Table 13: Comparison 1(H1-1 at ALR =1.0) Using Direct Modeling Approach 
(Structural System 3 – Grain Storage Bin) 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.558 0.431 0.941 0.528 0.431 0.911 
C1-2 0.630 0.437 1.018 0.596 0.437 0.984 
C2-1 0.543 0.431 0.926 0.497 0.431 0.880 
C2-2 0.586 0.437 0.974 0.537 0.437 0.925 

 
 

Table 14: Comparison 1(H1-1 at ALR =1.0) Using Notional Load Approach 
(Structural System 3 – Grain Storage Bin) 

 
Imperfection  NL 0.002Yi Stiffness Adjustment 0.8E and NL (0.001Yi) 

 
second-order elastic; P-C; increment 0.01 

  
1 Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 
Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 

C1-1 0.555 0.482 0.983 0.525 0.482 0.953 
C1-2 0.633 0.487 1.066 0.599 0.487 1.032 
C2-1 0.541 0.482 0.969 0.495 0.482 0.924 
C2-2 0.587 0.487 1.020 0.538 0.487 0.971 

 

Comparison 2: Comparing ALR when H1-1 = 1.0 

For structural system 3, analysis results in Tables 15 and 16 compare ALR values 

obtained by DM and MDM when the interaction equation H1-1 equals unity. Analysis results in 

Table 15 were obtained using Direct Modeling Approach, whereas those in Table 16 were 

obtained using Notional Load Approach. However, these results both lead to the same 

conclusions.   
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Column C1-1 has the lowest ALR value at interaction equation value of 1.0. For this 

controlling member, it is observed that 

• ALR value by MDM is greater than 1.0 by only 0.5% (Direct Modeling Approach), or 

ALR value by MDM is less than 1.0 by 2% (Notional Load Approach),   

• ALR value by MDM is closer to 1.0 than that of DM,  

• ALR value by MDM is greater than that of DM, and  

• The difference between ALR values by the two methods is less than 4.5%.  

Table 15: Comparison 2(ALR at H1-1=1.0) Using Direct Modeling Approach 
(Structural System 3 – Grain Storage Bin) 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

  
second-order elastic; P-C;increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 

DM: K = 1 MDM: Pn = Py 
Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 

C1-1 0.573 0.477 1.030 0.549 0.503 1.045 
C1-2 0.623 0.423 0.990 0.599 0.444 1.005 
C2-1 0.561 0.486 1.035 0.525 0.532 1.060 
C2-2 0.592 0.451 1.010 0.556 0.491 1.035 

 
Table 16: Comparison 2(ALR at H1-1=1.0) Using Notional Load Approach 

(Structural System 3 – Grain Storage Bin) 
 

Imperfection  NL 0.002Yi Stiffness Adjustment 0.8E and NL (0.001Yi) 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.557 0.490 1.005 0.534 0.515 1.020 
C1-2 0.610 0.436 0.965 0.586 0.457 0.980 
C2-1 0.548 0.507 1.015 0.512 0.543 1.035 
C2-2 0.578 0.464 0.985 0.544 0.503 1.010 
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Conclusions 

The observations from Comparisons 1 and 2 suggest that MDM is adequate to assess the 

stability of structural system 3, since its H1-1 value for the controlling member (column C1-2) is 

less than 1.0 by only 1.6% (Direct Modeling Approach), and its ALR value for the controlling 

member is greater than 1.0 by only 0.5% (Direct Modeling Approach). 

MDM is a more accurate method than DM for structural system 3, since its controlling 

member has a H1-1 value closer to 1.0 than that of DM, and it has an ALR value closer to 1.0 

than that of DM.   

However, it should be kept in mind that MDM is a less conservative method than DM, 

since it tends to result in lower H1-1 values or higher ALR values than DM.   

Moreover, it should be noted that DM and MDM are not equivalent for assessing the 

stability of structural system 3, since the results by DM and MDM for all members do not always 

match within 4.5%.  

On a side note, this case study confirms the equivalence between Direct Modeling 

Approach and Notional Load Approach, since these approaches lead to similar results.  
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Structural System 4 – Multi-story Frame  

Comparison 1: Comparing H1-1 when ALR = 1.0 

For structural system 4, Tables 17 and 18 compare the AISC interaction equation H1-1 

values at an applied load ratio of 1.0 obtained by the Direct Analysis Method (DM) and 

Modified Direct Analysis Method (MDM) procedure. However, Table 17 analysis results were 

obtained using Direct Modeling Approach, whereas Table 18 analysis results were obtained 

using Notional Load Approach. These tables show that Direct Modeling Approach and Notional 

Load Approach lead to the same conclusions in comparing H1-1 values by DM and MDM when 

ALR =1.0. This confirms the equivalency of Direct Modeling Approach and Notional Load 

Approach. Both of these approaches lead to the following conclusions about DM and MDM.   

Column C1-2 has the largest H1-1 value at an applied load ratio of 1.0. For this 

controlling member, it is observed that 

• H1-1 value  by MDM is 23% greater than 1.0,  

• H1-1 value by MDM is closer to 1.0 than that of DM,  

• H1-1 value by MDM is less than that of DM, and 

• The difference between AISC interaction equation H1-1 values by the two methods is 

less than 4.5%.   
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Table 17: Comparison 1(H1-1 at ALR =1.0) Using Direct Modeling Approach  
(Structural System 4 – Multi-story Frame) 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.395 0.353 0.709 0.366 0.353 0.680 
C1-2 0.789 0.544 1.273 0.748 0.544 1.232 
C1-3 0.534 0.564 1.036 0.495 0.564 0.996 
C2-1 0.337 0.025 0.359 0.312 0.025 0.334 
C2-2 0.646 0.438 1.036 0.612 0.438 1.002 
C2-3 0.432 0.649 1.009 0.400 0.649 0.977 
C3-1 0.272 0.058 0.324 0.252 0.058 0.304 
C3-2 0.571 0.376 0.905 0.536 0.376 0.870 
C3-3 0.330 0.598 0.862 0.306 0.598 0.838 
C4-1 0.201 0.268 0.440 0.186 0.268 0.361 
C4-2 0.419 0.271 0.660 0.393 0.271 0.633 
C4-3 0.231 0.658 0.817 0.214 0.658 0.800 
C5-1 0.228 0.284 0.480 0.196 0.284 0.382 
C5-2 0.369 0.320 0.654 0.336 0.320 0.621 
C5-3 0.249 0.809 0.969 0.215 0.809 0.934 
C6-1 0.091 0.690 0.736 0.078 0.690 0.729 
C6-2 0.145 0.102 0.174 0.132 0.102 0.168 
C6-3 0.095 0.871 0.919 0.082 0.871 0.912 
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Table 18: Comparison 1(H1-1 at ALR =1.0) Using Notional Load Approach 
(Structural System 4 – Multi-story Frame) 

 
Imperfection  No NL 

 
Stiffness Adjustment 0.8E and NL (0.001Yi) 

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.397 0.338 0.698 0.368 0.338 0.668 
C1-2 0.787 0.532 1.260 0.746 0.532 1.219 
C1-3 0.532 0.549 1.020 0.493 0.549 0.981 
C2-1 0.338 0.018 0.354 0.313 0.018 0.329 
C2-2 0.644 0.425 1.023 0.610 0.425 0.988 
C2-3 0.431 0.640 0.999 0.399 0.640 0.968 
C3-1 0.273 0.065 0.331 0.253 0.065 0.311 
C3-2 0.571 0.365 0.896 0.536 0.365 0.860 
C3-3 0.330 0.590 0.854 0.305 0.590 0.830 
C4-1 0.201 0.273 0.445 0.187 0.273 0.367 
C4-2 0.419 0.263 0.653 0.393 0.263 0.627 
C4-3 0.231 0.653 0.811 0.214 0.653 0.794 
C5-1 0.228 0.291 0.487 0.196 0.291 0.389 
C5-2 0.369 0.311 0.645 0.336 0.311 0.612 
C5-3 0.249 0.801 0.961 0.215 0.801 0.926 
C6-1 0.091 0.693 0.738 0.078 0.693 0.732 
C6-2 0.145 0.098 0.171 0.132 0.098 0.164 
C6-3 0.095 0.868 0.915 0.082 0.868 0.909 

 
Comparison 2: Comparing ALR when H1-1 = 1.0 

For structural system 4, analysis results in Tables 19 and 20 compare ALR values 

obtained by DM and MDM when the interaction equation H1-1 equals unity. Analysis results in 

Table 19 were obtained using Direct Modeling Approach, whereas those in Table 20 were 

obtained using Notional Load Approach. However, these results both lead to the same 

conclusions.   

Column C1-2 has the lowest ALR value at interaction equation value of 1.0. For this 

controlling member, it is observed that 
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• ALR value by MDM is less than 1.0 by 18%,  

• ALR value by MDM is closer to 1.0 than that of DM,  

• ALR value by MDM is greater than that of DM, and  

• The difference between ALR values by the two methods is less than 4.5%.  

Table 19: Comparison 2(ALR at H1-1=1.0) Using Direct Modeling Approach 
(Structural System 4 – Multi-story Frame) 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.523 0.535 1.335 0.499 0.566 1.375 
C1-2 0.624 0.421 0.790 0.613 0.439 0.820 
C1-3 0.515 0.542 0.965 0.497 0.568 1.005 
C2-1 0.502 0.008 1.490 0.465 0.008 1.490 
C2-2 0.624 0.420 0.965 0.612 0.438 1.000 
C2-3 0.428 0.642 0.990 0.411 0.667 1.025 
C3-1 0.406 0.070 1.490 0.376 0.070 1.490 
C3-2 0.625 0.419 1.095 0.610 0.439 1.140 
C3-3 0.379 0.695 1.145 0.362 0.719 1.180 
C4-1 0.300 0.400 1.490 0.278 0.400 1.490 
C4-2 0.612 0.433 1.470 0.581 0.441 1.490 
C4-3 0.281 0.807 1.210 0.267 0.829 1.240 
C5-1 0.341 0.415 1.490 0.293 0.415 1.490 
C5-2 0.542 0.512 1.475 0.498 0.519 1.490 
C5-3 0.257 0.835 1.030 0.230 0.869 1.070 
C6-1 0.123 0.935 1.350 0.108 0.950 1.370 
C6-2 0.216 0.160 1.490 0.196 0.160 1.490 
C6-3 0.104 0.946 1.085 0.090 0.955 1.095 
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Table 20: Comparison 2(ALR at H1-1=1.0) Using Notional Load Approach 
(Structural System 4 – Multi-story Frame) 

 
Imperfection  No NL 

 
Stiffness Adjustment 0.8E and NL (0.001Yi) 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.547 0.506 1.395 0.527 0.534 1.455 
C1-2 0.628 0.412 0.795 0.621 0.432 0.830 
C1-3 0.522 0.537 0.980 0.503 0.561 1.020 
C2-1 0.753 0.276 2.325 0.724 0.313 2.425 
C2-2 0.630 0.413 0.975 0.619 0.430 1.010 
C2-3 0.431 0.640 1.000 0.413 0.664 1.035 
C3-1 0.758 0.271 2.925 0.721 0.314 3.020 
C3-2 0.631 0.411 1.105 0.619 0.434 1.155 
C3-3 0.383 0.694 1.160 0.366 0.717 1.195 
C4-1 0.527 0.531 2.690 0.528 0.531 2.930 
C4-2 0.622 0.425 1.485 0.605 0.445 1.540 
C4-3 0.282 0.805 1.220 0.268 0.826 1.250 
C5-1 0.553 0.502 2.460 0.551 0.505 2.860 
C5-2 0.550 0.504 1.490 0.526 0.536 1.565 
C5-3 0.258 0.830 1.035 0.232 0.868 1.080 
C6-1 0.123 0.935 1.355 0.108 0.948 1.375 
C6-2 0.536 0.520 3.675 0.508 0.556 3.820 
C6-3 0.104 0.947 1.090 0.090 0.955 1.100 

 

Conclusions 

The observations from Comparisons 1 and 2 suggest that MDM is adequate to assess the 

stability of structural system 4, since its H1-1 value for the controlling member (column C1-2) is 

greater than 1.0, and its ALR value for the controlling member is less than 1.0.  

MDM is a more accurate method than DM for structural system 4, since its controlling 

member has a H1-1 value closer to 1.0 than that of DM, and it has an ALR value closer to 1.0 

than that of DM.   
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However, it should be kept in mind that MDM is a less conservative method than DM, 

since it tends to result in lower H1-1 values or higher ALR values than DM.   

Moreover, it should be noted that DM and MDM are not equivalent for assessing the 

stability of structural system 4, since the results by DM and MDM for all members do not always 

match within 4.5%.  

On a side note, this case study confirms the equivalence between Direct Modeling 

Approach and Notional Load Approach, since these approaches lead to similar results.  

Structural System 5 – Gabled Frame 

Comparison 1: Comparing H1-1 when ALR = 1.0 

For structural system 5, Tables 21 and 22 compare the AISC interaction equation H1-1 

values at an applied load ratio of 1.0 obtained by the Direct Analysis Method (DM) and 

Modified Direct Analysis Method (MDM) procedure. However, Table 21 analysis results were 

obtained using Direct Modeling Approach, whereas Table 22 analysis results were obtained 

using Notional Load Approach. These tables show that Direct Modeling Approach and Notional 

Load Approach lead to the same conclusions in comparing H1-1 values by DM and MDM when 

ALR =1.0. This confirms the equivalency of Direct Modeling Approach and Notional Load 

Approach. Both of these approaches lead to the following conclusions about DM and MDM.  

Column C1-2 has the largest H1-1 value at an applied load ratio of 1.0. For this 

controlling member, it is observed that 

• H1-1 value by MDM is greater than 1.0 by 59%,  

• H1-1 value by MDM is closer to 1.0 than that of DM,  

• H1-1 value by MDM is less than that of DM, and 
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• The difference between AISC interaction equation H1-1 values by the two methods is 

less than 4.5%.  

Table 21: Comparison 1(H1-1 at ALR =1.0) Using Direct Modeling Approach 
(Structural System 5 – Gabled Frame) 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

 
second-order elastic; P-C; increment0.1 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 
Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 

C1-1 0.058 0.152 0.180 0.045 0.152 0.174 
C1-2 0.080 1.562 1.602 0.062 1.562 1.593 
B1-1 0.010 0.434 0.439 0.007 0.434 0.437 
B1-2 0.024 0.488 0.500 0.018 0.488 0.497 

 
 

Table 22: Comparison 1(H1-1 at ALR =1.0) Using Notional Load Approach 
(Structural System 5 – Gabled Frame) 

 

Imperfection  No NL 
 

Stiffness 
 Adjustment 0.8E and No NL 

 
second-order elastic; work control; increment 0.1 

 
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.058 0.159 0.188 0.045 0.159 0.182 
C1-2 0.080 1.554 1.594 0.062 1.554 1.585 
B1-1 0.010 0.433 0.438 0.007 0.433 0.437 
B1-2 0.024 0.486 0.498 0.018 0.486 0.495 

 
Comparison 2: Comparing ALR when H1-1 = 1.0 

For structural system 5, analysis results in Tables 23 and 24 compare ALR values 

obtained by DM and MDM when the interaction equation H1-1 equals unity. Analysis results in 

Table 23 were obtained using Direct Modeling Approach, whereas those in Table 24 were 
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obtained using Notional Load Approach. However, these results both lead to the same 

conclusions.   

Column C1-2 has the lowest ALR value at interaction equation value of 1.0. For this 

controlling member, it is observed that 

• ALR value by MDM is less than 1.0 by 36%,  

• ALR value by MDM is closer to 1.0 or the same as that of DM,  

• ALR value by MDM is greater than or the same as that of DM, and  

• The difference between ALR values by the two methods is less than 4.5%.  

Table 23: Comparison 2(ALR at H1-1=1.0) Using Direct Modeling Approach 
(Structural System 5 – Gabled Frame) 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

  
second-order elastic; P-C; increment 0.01 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 

DM: K = 1 MDM: Pn = Py 
Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 

C1-1 0.151 0.920 2.960 0.119 0.935 2.970 
C1-2 0.051 0.966 0.640 0.040 0.966 0.640 
B1-1 0.019 0.991 2.110 0.014 0.991 2.110 
B1-2 0.043 0.976 1.820 0.032 0.983 1.830 

 
Table 24: Comparison 2(ALR at H1-1=1.0) Using Notional Load Approach 

(Structural System 5 – Gabled Frame) 
 

Imperfection  No NL 
 

Stiffness Adjustment 0.8E and No NL 

  
second-order elastic; P-C; increment 0.01 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.153 0.914 2.980 0.120 0.929 2.990 
C1-2 0.051 0.961 0.640 0.040 0.977 0.650 
B1-1 0.019 0.989 2.110 0.014 0.989 2.110 
B1-2 0.044 0.977 1.830 0.032 0.977 1.830 
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Conclusions 

The observations from Comparisons 1 and 2 suggest that MDM is adequate to assess the 

stability of structural system 5, since its H1-1 value for the controlling member (column C1-2) is 

greater than 1.0, and its ALR value for the controlling member is less than 1.0.  

MDM is a more accurate method than DM for structural system 5, since its controlling 

member has a H1-1 value closer to 1.0 than that of DM, and it has an ALR value closer to 1.0 or 

the same as that of DM.   

However, it should be kept in mind that MDM is a less conservative method than DM, 

since it tends to result in lower H1-1 values or higher ALR values than DM.   

Moreover, it should be noted that DM and MDM can be equivalent for assessing the 

stability of structural system 5, since the results by DM and MDM for all members always match 

within 4.5%.  

On a side note, this case study confirms the equivalence between Direct Modeling 

Approach and Notional Load Approach, since these approaches lead to similar results.  

Structural System 6 – Two-bay Frame with Irregular Geometry  

Comparison 1: Comparing H1-1 when ALR = 1.0 

For structural system 6, Tables 25 and 26 compare the AISC interaction equation H1-1 

values at an applied load ratio of 1.0 obtained by the Direct Analysis Method (DM) and 

Modified Direct Analysis Method (MDM) procedure. However, Table 25 analysis results were 

obtained using Direct Modeling Approach, whereas Table 26 analysis results were obtained 

using Notional Load Approach. These tables show that Direct Modeling Approach and Notional 

Load Approach lead to the same conclusions in comparing H1-1 values by DM and MDM when 
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ALR =1.0. This confirms the equivalency of Direct Modeling Approach and Notional Load 

Approach. Both of these approaches lead to the following conclusions about DM and MDM.   

Column C1-2 has the largest H1-1 value at an applied load ratio of 1.0. For this 

controlling member, it is observed that 

• H1-1 value by MDM is greater than 1.0 by 10%,  

• H1-1 value by MDM is closer to 1.0 than that of DM,  

• H1-1 value by MDM is less than that of DM, and 

• The difference between AISC interaction equation H1-1 values by the two methods is 

less than 4.5%.  

Table 25: Comparison 1(H1-1 at ALR =1.0) Using Direct Modeling Approach 
(Structural System 6 – Two-bay Frame with Irregular Geometry) 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.072 0.891 0.927 0.064 0.891 0.923 
C1-2 0.222 0.997 1.108 0.197 0.997 1.096 
C1-3 0.126 0.633 0.696 0.096 0.633 0.681 
C2-1 0.062 0.099 0.130 0.055 0.099 0.127 
C2-2a 0.124 0.291 0.353 0.120 0.291 0.351 
C2-2b 0.101 0.434 0.485 0.098 0.434 0.484 
C3-1 0.021 0.019 0.029 0.019 0.019 0.028 
C3-2 0.047 0.269 0.292 0.042 0.269 0.289 
C3-3 0.034 0.279 0.296 0.026 0.279 0.292 
B1-1 0.008 0.952 0.956 0.007 0.952 0.955 
B2-1 0.012 0.520 0.526 0.010 0.520 0.525 
B2-2 0.001 0.589 0.589 0.001 0.589 0.589 
B3-1 0.047 0.633 0.656 0.038 0.633 0.652 
B3-2 0.019 0.509 0.518 0.015 0.509 0.517 

 
 

74 
 



Table 26: Comparison 1(H1-1 at ALR =1.0) Using Notional Load Approach 
(Structural System 6 – Two-bay Frame with Irregular Geometry) 

 
Imperfection  No NL 

 
Stiffness Adjustment 0.8E  and No NL 

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.074 0.872 0.909 0.065 0.872 0.905 
C1-2 0.221 0.981 1.093 0.197 0.981 1.079 
C1-3 0.126 0.624 0.687 0.096 0.624 0.672 
C2-1 0.062 0.096 0.127 0.055 0.096 0.123 
C2-2a 0.124 0.290 0.352 0.120 0.290 0.350 
C2-2b 0.101 0.431 0.482 0.098 0.431 0.480 
C3-1 0.021 0.020 0.031 0.019 0.020 0.030 
C3-2 0.047 0.267 0.291 0.042 0.267 0.288 
C3-3 0.034 0.278 0.295 0.026 0.278 0.291 
B1-1 0.007 0.940 0.943 0.007 0.940 0.943 
B2-1 0.012 0.516 0.522 0.010 0.516 0.522 
B2-2 0.001 0.583 0.583 0.001 0.583 0.583 
B3-1 0.047 0.631 0.654 0.038 0.631 0.649 
B3-2 0.019 0.507 0.516 0.015 0.507 0.514 

 
Comparison 2: Comparing ALR when H1-1 = 1.0 

For structural system 6, analysis results in Tables 27 and 28 compare ALR values 

obtained by DM and MDM when the interaction equation H1-1 equals unity. Analysis results in 

Table 27 were obtained using Direct Modeling Approach, whereas those in Table 28 were 

obtained using Notional Load Approach. However, these results both lead to the same 

conclusions.   

Column C1-2 has the lowest ALR value at interaction equation value of 1.0. For this 

controlling member, it is observed that 

• ALR value by MDM is less than 1.0 by 7%,  

• ALR value by MDM is closer to 1.0 than that of DM,  
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• ALR value by MDM is greater than that of DM, and  

• The difference between ALR values by the two methods is less than 4.5%.  

Table 27: Comparison 2(ALR at H1-1=1.0) Using Direct Modeling Approach 
(Structural System 6 – Two-bay Frame with Irregular Geometry) 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.076 0.958 1.055 0.067 0.971 1.065 
C1-2 0.203 0.892 0.915 0.183 0.910 0.930 
C1-3 0.171 0.912 1.335 0.133 0.935 1.360 
C2-1 0.191 0.899 3.380 0.170 0.916 3.395 
C2-2a 0.253 0.836 2.135 0.247 0.848 2.150 
C2-2b 0.198 0.898 1.945 0.194 0.904 1.955 
C3-1 0.127 0.809 4.690 0.113 0.809 4.690 
C3-2 0.150 0.925 3.325 0.134 0.933 3.345 
C3-3 0.107 0.945 3.045 0.083 0.961 3.080 
B1-1 0.008 0.992 1.035 0.007 0.998 1.040 
B2-1 0.023 0.987 1.825 0.020 0.993 1.835 
B2-2 0.003 0.995 1.555 0.003 0.999 1.560 
B3-1 0.071 0.962 1.505 0.057 0.975 1.525 
B3-2 0.034 0.982 1.890 0.027 0.988 1.900 
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Table 28: Comparison 2(ALR at H1-1=1.0) Using Notional Load Approach 
(Structural System 6 – Two-bay Frame with Irregular Geometry) 

 
Imperfection  No NL 

 
Stiffness Adjustment 0.8E  and No NL 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.078 0.957 1.070 0.069 0.970 1.080 
C1-2 0.204 0.890 0.925 0.185 0.908 0.940 
C1-3 0.172 0.912 1.350 0.134 0.935 1.375 
C2-1 0.193 0.898 3.385 0.171 0.915 3.400 
C2-2a 0.256 0.837 2.160 0.250 0.845 2.170 
C2-2b 0.200 0.900 1.960 0.195 0.905 1.970 
C3-1 0.127 0.897 4.695 0.113 0.820 4.700 
C3-2 0.150 0.923 3.340 0.134 0.933 3.365 
C3-3 0.107 0.945 3.060 0.083 0.959 3.090 
B1-1 0.008 0.990 1.045 0.007 0.996 1.050 
B2-1 0.023 0.986 1.835 0.020 0.992 1.845 
B2-2 0.003 0.996 1.570 0.003 1.000 1.575 
B3-1 0.071 0.962 1.510 0.057 0.975 1.530 
B3-2 0.034 0.981 1.895 0.027 0.989 1.910 

 

Conclusions 

The observations from Comparisons 1 and 2 suggest that MDM is adequate to assess the 

stability of structural system 6, since its H1-1 value for the controlling member (column C1-2) is 

greater than 1.0, and its ALR value for the controlling member is less than 1.0. 

MDM is a more accurate method than DM for structural system 6, since its controlling 

member has a H1-1 value closer to 1.0 than that of DM, and it has an ALR value closer to 1.0 

than that of DM.   

However, it should be kept in mind that MDM is a less conservative method than DM, 

since it tends to result in lower H1-1 values or higher ALR values than DM.   
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Moreover, it should be noted that DM and MDM can be equivalent for assessing the 

stability of structural system 6, since the results by DM and MDM for all members always match 

within 4.5%.  

On a side note, this case study confirms the equivalence between Direct Modeling 

Approach and Notional Load Approach, since these approaches lead to similar results.  

Structural System 7a – Two-bay Frame with Unequal Heights  

Comparison 1: Comparing H1-1 when ALR = 1.0 

For structural system 7a, Tables 29 and 30 compare the AISC interaction equation H1-1 

values at an applied load ratio of 1.0 obtained by the Direct Analysis Method (DM) and 

Modified Direct Analysis Method (MDM) procedure. However, Table 29 analysis results were 

obtained using Direct Modeling Approach, whereas Table 30 analysis results were obtained 

using Notional Load Approach. These tables show that Direct Modeling Approach and Notional 

Load Approach lead to the same conclusions in comparing H1-1 values by DM and MDM when 

ALR =1.0. This confirms the equivalency of Direct Modeling Approach and Notional Load 

Approach. Both of these approaches lead to the following conclusions about DM and MDM.  

Beam B1-2 has the largest H1-1 value at an applied load ratio of 1.0. For this controlling 

member, it is observed that 

• H1-1 value by MDM is greater than 1.0 by 27%, 

• H1-1 value by MDM is closer to 1.0 than that of DM,  

• H1-1 value by MDM is less than that of DM, and 

• The difference between AISC interaction equation H1-1 values by the two methods is 

less than 4.5%.  
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Table 29: Comparison 1(H1-1 at ALR =1.0) Using Direct Modeling Approach  
(Structural System 7a – Two-bay Frame with Unequal Heights) 

 

Imperfection  Direct Modeling 
Stiffness 
 Adjustment 0.8E and taub 

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.221 0.631 0.782 0.158 0.631 0.710 
C1-2a 0.229 0.539 0.709 0.205 0.539 0.684 
C1-2b 0.115 0.476 0.533 0.109 0.476 0.530 
C1-3 0.112 0.204 0.259 0.099 0.204 0.253 
B1-1 0.006 1.062 1.065 0.005 1.062 1.065 
B1-2 0.018 1.260 1.269 0.016 1.260 1.268 

 
 

Table 30: Comparison 1(H1-1 at ALR =1.0) Using Notional Load Approach  
(Structural System 7a – Two-bay Frame with Unequal Heights) 

 
Imperfection  No NL 

 
Stiffness Adjustment 0.8E and No NL  

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 
Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 

C1-1 0.221 0.618 0.770 0.158 0.618 0.697 
C1-2a 0.229 0.518 0.689 0.204 0.518 0.665 
C1-2b 0.115 0.484 0.542 0.110 0.484 0.539 
C1-3 0.113 0.231 0.287 0.100 0.231 0.280 
B1-1 0.006 1.061 1.065 0.006 1.061 1.064 
B1-2 0.018 1.233 1.242 0.016 1.233 1.241 

 

Comparison 2: Comparing ALR when H1-1 = 1.0 

For structural system 7a, analysis results in Tables 31 and 32 compare ALR values 

obtained by DM and MDM when the interaction equation H1-1 equals unity. Analysis results in 

Table 11 were obtained using Direct Modeling Approach, whereas those in Table 12 were 
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obtained using Notional Load Approach. However, these results both lead to the same 

conclusions.   

Beam B1-2 has the lowest ALR value at interaction equation value of 1.0. For this 

controlling member, it is observed that 

• ALR value by MDM is less than 1.0 by 20%,  

• ALR value by MDM is closer to 1.0 or the same as that of DM,  

• ALR value by MDM is greater than or the same as that of DM, and  

• The difference between ALR values by the two methods is less than 4.5%.  

Table 31: Comparison 2(ALR at H1-1=1.0) Using Direct Modeling Approach 
(Structural System 7a – Two-bay Frame with Unequal Heights) 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 

DM: K = 1 MDM: Pn = Py 
Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 

C1-1 0.281 0.807 1.265 0.218 0.883 1.375 
C1-2a 0.306 0.776 1.325 0.281 0.810 1.365 
C1-2b 0.219 0.878 1.935 0.211 0.888 1.960 
C1-3 0.210 0.883 2.355 0.186 0.898 2.360 
B1-1 0.006 0.992 0.935 0.005 0.998 0.940 
B1-2 0.015 0.992 0.805 0.014 0.992 0.805 
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Table 32: Comparison 2(ALR at H1-1=1.0) Using Notional Load Approach 
(Structural System 7a – Two-bay Frame with Unequal Heights) 

 
Imperfection  No NL 

 
Stiffness Adjustment 0.8E and No NL  

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.285 0.802 1.285 0.222 0.880 1.400 
C1-2a 0.313 0.771 1.360 0.288 0.803 1.400 
C1-2b 0.220 0.878 1.930 0.211 0.888 1.955 
C1-3 0.216 0.871 2.405 0.191 0.903 2.415 
B1-1 0.006 0.997 0.940 0.005 1.002 0.945 
B1-2 0.016 0.991 0.820 0.014 0.998 0.825 

 
Conclusions 

The observations from Comparisons 1 and 2 suggest that MDM is adequate to assess the 

stability of structural system 7a, since its H1-1 value for the controlling member (beam B1-2) is 

greater than 1.0, and its ALR value for the controlling member is less than 1.0. 

MDM is a more accurate method than DM for structural system 7a, since its controlling 

member has a H1-1 value closer to 1.0 or the same as that of DM, and it has an ALR value closer 

to 1.0 or the same as that of DM.   

However, it should be kept in mind that MDM is a less conservative method than DM, 

since it tends to result in lower H1-1 values or higher ALR values than DM.   

Moreover, it should be noted that DM and MDM are not equivalent for assessing the 

stability of structural system 7a, since the results by DM and MDM for all members do not 

always match within 4.5%.  

On a side note, this case study confirms the equivalence between Direct Modeling 

Approach and Notional Load Approach, since these approaches lead to similar results.  
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Structural System 7b – Two-bay Frame with Unequal Heights  

Comparison 1: Comparing H1-1 when ALR = 1.0 

For structural system 7b, Tables 33 and 34 compare the AISC interaction equation H1-1 

values at an applied load ratio of 1.0 obtained by the Direct Analysis Method (DM) and 

Modified Direct Analysis Method (MDM) procedure. However, Table 33 analysis results were 

obtained using Direct Modeling Approach, whereas Table 34 analysis results were obtained 

using Notional Load Approach. These tables show that Direct Modeling Approach and Notional 

Load Approach lead to the same conclusions in comparing H1-1 values by DM and MDM when 

ALR =1.0. This confirms the equivalency of Direct Modeling Approach and Notional Load 

Approach. Both of these approaches lead to the following conclusions about DM and MDM.  

Column C1-1 (beam B1-1) has the largest H1-1 value at an applied load ratio of 1.0. For 

this controlling member, it is observed that 

• H1-1 value by MDM is less than 1.0 by 6%,  

• H1-1 value by MDM is closer to 1.0 than that of DM,  

• H1-1 value by MDM is less than that of DM, and 

• The difference between AISC interaction equation H1-1 values by the two methods is 

less than 4.5%.   
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Table 33: Comparison 1(H1-1 at ALR =1.0) Using Direct Modeling Approach 
(Structural System 7b – Two-bay Frame with Unequal Heights) 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.249 0.855 1.009 0.177 0.855 0.944 
C1-2a 0.244 0.124 0.354 0.217 0.124 0.327 
C1-2b 0.130 0.355 0.419 0.123 0.355 0.416 
C1-3 0.146 0.133 0.206 0.129 0.133 0.197 
B1-1 0.016 1.097 1.106 0.015 1.097 1.105 
B1-2 0.005 0.980 0.983 0.004 0.980 0.982 

 
 

Table 34: Comparison 1(H1-1 at ALR =1.0) Using Notional Load Approach 
(Structural System 7b – Two-bay Frame with Unequal Heights) 

 
Imperfection  No NL 

 
Stiffness Adjustment 0.8E and No NL  

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.248 0.841 0.996 0.176 0.841 0.929 
C1-2a 0.244 0.128 0.358 0.218 0.128 0.331 
C1-2b 0.130 0.366 0.431 0.123 0.366 0.428 
C1-3 0.146 0.119 0.192 0.129 0.119 0.184 
B1-1 0.016 1.097 1.105 0.015 1.097 1.104 
B1-2 0.005 0.986 0.989 0.004 0.986 0.988 

 
Comparison 2: Comparing ALR when H1-1 = 1.0 

For structural system 7b, analysis results in Tables 35 and 36 compare ALR values 

obtained by DM and MDM when the interaction equation H1-1 equals unity. Analysis results in 

Table 35 were obtained using Direct Modeling Approach, whereas those in Table 36 were 

obtained using Notional Load Approach. However, these results both lead to the same 

conclusions.   
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Column C1-1 (beam B1-1) has the lowest ALR value at interaction equation value of 1.0. 

For this controlling member, it is observed that 

• ALR value by MDM is greater than 1.0 by 6%,  

• ALR value by MDM is closer to 1.0 than that of DM,  

• ALR value by MDM is greater than that of DM, and  

• The difference between ALR values by the two methods is less than 4.5%. 

Table 35: Comparison 2 (ALR at H1-1=1.0) Using Direct Modeling Approach 
(Structural System 7b – Two-bay Frame with Unequal Heights) 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 

DM: K = 1 MDM: Pn = Py 
Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 

C1-1 0.246 0.847 0.990 0.187 0.908 1.060 
C1-2a 0.615 0.431 2.545 0.574 0.481 2.670 
C1-2b 0.498 0.564 4.150 0.473 0.581 4.155 
C1-3 0.397 0.677 2.725 0.361 0.721 2.805 
B1-1 0.015 0.992 0.905 0.014 0.998 0.910 
B1-2 0.005 0.995 1.015 0.004 1.000 1.020 

 
Table 36: Comparison 2 (ALR at H1-1=1.0) Using Notional Load Approach 

(Structural System 7b – Two-bay Frame with Unequal Heights) 
 
Imperfection  No NL 

 
Stiffness Adjustment 0.8E and No NL  

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 

DM: K = 1 MDM: Pn = Py 
Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 

C1-1 0.248 0.841 1.000 0.190 0.906 1.075 
C1-2a 0.630 0.415 2.600 0.591 0.461 2.740 
C1-2b 0.533 0.515 4.430 0.508 0.557 4.450 
C1-3 0.410 0.662 2.805 0.374 0.708 2.890 
B1-1 0.015 0.992 0.905 0.014 0.997 0.910 
B1-2 0.005 0.996 1.010 0.004 1.001 1.015 
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Conclusions 

The observations from Comparisons 1 and 2 suggest that MDM is not adequate to assess 

the stability of structural system 7b, since its H1-1 value for the controlling member (column C1-

1) is less than 1.0 by 6%, and its ALR value for the controlling member is greater than 1.0 by 6%. 

MDM is a less accurate method than DM for structural system 7b, since its controlling 

member has a H1-1 value less closer to 1.0 than that of DM, and it has an ALR value less closer 

to 1.0 than that of DM.   

It should also be kept in mind that MDM is a less conservative design than DM, since it 

tends to result in lower H1-1 values or higher ALR values than DM.   

Moreover, it should be noted that DM and MDM are not equivalent for assessing the 

stability of structural system 7b, since the results by DM and MDM for all members do not 

always match within 4.5%.  

On a side note, this case study confirms the equivalence between Direct Modeling 

Approach and Notional Load Approach, since these approaches lead to similar results.  

Structural System 7c – Two-bay Frame with Unequal Heights  

Comparison 1: Comparing H1-1 when ALR = 1.0 

For structural system 7c, Tables 37 and 38 compare the AISC interaction equation H1-1 

values at an applied load ratio of 1.0 obtained by the Direct Analysis Method (DM) and 

Modified Direct Analysis Method (MDM) procedure. However, Table 37 analysis results were 

obtained using Direct Modeling Approach, whereas Table 38 analysis results were obtained 

using Notional Load Approach. These tables show that Direct Modeling Approach and Notional 

Load Approach lead to the same conclusions in comparing H1-1 values by DM and MDM when 
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ALR =1.0. This confirms the equivalency of Direct Modeling Approach and Notional Load 

Approach. Both of these approaches lead to the following conclusions about DM and MDM.  

Column C1-2a has the largest H1-1 value at an applied load ratio of 1.0. For this 

controlling member, it is observed that 

• H1-1 value  by MDM is less than 1.0 by only 1.2%,  

• H1-1 value by MDM is closer to 1.0 than that of DM,  

• H1-1 value by MDM is less than that of DM, and 

• The difference between AISC interaction equation H1-1 values by the two methods is not 

less than 4.5%.  

Table 37: Comparison 1(H1-1 at ALR =1.0) Using Direct Modeling Approach 
(Structural System 7c – Two-bay Frame with Unequal Heights) 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.202 0.000 0.202 0.142 0.000 0.071 

C1-2a 0.256 0.898 1.054 0.180 0.898 0.988 
C1-2b 0.146 0.898 0.971 0.102 0.898 0.949 
C1-3 0.303 0.000 0.303 0.237 0.000 0.237 
B1-1 0.020 0.419 0.430 0.018 0.419 0.429 
B1-2 0.015 0.398 0.406 0.014 0.398 0.405 

BRACE 0.131 0.000 0.066 0.131 0.000 0.066 
DM: KL = 20' for C1-2 and C1-2b 
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Table 38: Comparison 1(H1-1 at ALR =1.0) Using Notional Load Approach 
(Structural System 7c – Two-bay Frame with Unequal Heights) 

 
Imperfection  No NL 

 
Stiffness Adjustment 0.8E and No NL  

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.201 0.000 0.201 0.141 0.000 0.071 

C1-2a 0.256 0.892 1.049 0.180 0.892 0.981 
C1-2b 0.146 0.892 0.965 0.102 0.892 0.943 
C1-3 0.303 0.000 0.303 0.237 0.000 0.237 
B1-1 0.020 0.419 0.430 0.018 0.419 0.429 
B1-2 0.015 0.398 0.406 0.014 0.398 0.405 

BRACE 0.129 0.000 0.065 0.129 0.000 0.065 
DM: KL = 20' for C1-2 and C1-2b 

     
Comparison 2: Comparing ALR when H1-1 = 1.0 

For structural system 7c, analysis results in Tables 39 and 40 compare ALR values 

obtained by DM and MDM when the interaction equation H1-1 equals unity. Analysis results in 

Table 39 were obtained using Direct Modeling Approach, whereas those in Table 40 were 

obtained using Notional Load Approach. However, these results both lead to the same 

conclusions.   

Column C1-2a has the lowest ALR value at interaction equation value of 1.0. For this 

controlling member, it is observed that 

• ALR value by MDM is greater than 1.0 by only 1%, 

• ALR value by MDM is closer to 1.0 than that of DM,  

• ALR value by MDM is greater than that of DM, and  

• The difference between ALR values by the two methods is not less than 4.5%.  
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Table 39: Comparison 2(ALR at H1-1=1.0) Using Direct Modeling Approach  
(Structural System 7c – Two-bay Frame with Unequal Heights) 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.813 0.000 3.800 0.570 0.000 3.800 

C1-2a 0.243 0.847 0.950 0.181 0.908 1.010 
C1-2b 0.150 0.924 1.025 0.107 0.945 1.045 
C1-3 0.999 0.000 3.280 0.906 0.000 3.800 
B1-1 0.050 0.974 2.305 0.045 0.976 2.310 
B1-2 0.041 0.979 2.440 0.037 0.981 2.445 

BRACE 0.616 0.000 3.800 0.616 0.000 3.800 
DM: KL = 20' for C1-2 and C1-2b 

     
Table 40: Comparison 2(ALR at H1-1=1.0) Using Notional Load Approach  

(Structural System 7c – Two-bay Frame with Unequal Heights) 
 

Imperfection  No NL 
 

Stiffness Adjustment 0.8E and No NL  

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 

DM: K = 1 MDM: Pn = Py 
Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 

C1-1 0.999 0.000 4.540 0.997 0.000 5.790 
C1-2a 0.245 0.846 0.955 0.182 0.907 1.015 
C1-2b 0.150 0.923 1.030 0.107 0.943 1.050 
C1-3 0.999 0.000 3.280 0.999 0.000 4.175 
B1-1 0.050 0.974 2.305 0.045 0.976 2.310 
B1-2 0.041 0.979 2.440 0.036 0.981 2.445 

BRACE 0.998 0.000 4.975 0.998 0.000 4.975 
DM: KL = 20' for C1-2 and C1-2b 

     

Conclusions 

The observations from Comparisons 1 and 2 suggest that MDM is adequate to assess the 

stability of structural system 7c, since its H1-1 value for the controlling member (column C1-2a) 
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is less than 1.0 by only 1.2%, and its ALR value for the controlling member is greater than 1.0 

by only 1%. 

MDM is a more accurate method than DM for structural system 7c, since its controlling 

member has a H1-1 value closer to 1.0 than that of DM, and it has an ALR value closer to 1.0 

than that of DM.   

However, it should be kept in mind that MDM is a less conservative method than DM, 

since it tends to result in lower H1-1 values or higher ALR values than DM.   

Moreover, it should be noted that DM and MDM are not equivalent for assessing the 

stability of structural system 7c, since the results by DM and MDM for all members do not 

always match within 4.5%.  

On a side note, this case study confirms the equivalence between Direct Modeling 

Approach and Notional Load Approach, since these approaches lead to similar results.  

Structural System 7d – Two-bay Frame with Unequal Heights  

Comparison 1: Comparing H1-1 when ALR = 1.0 

For structural system 7d, Tables 41 and 42 compare the AISC interaction equation H1-1 

values at an applied load ratio of 1.0 obtained by the Direct Analysis Method (DM) and 

Modified Direct Analysis Method (MDM) procedure. However, Table 41 analysis results were 

obtained using Direct Modeling Approach, whereas Table 42 analysis results were obtained 

using Notional Load Approach. These tables show that Direct Modeling Approach and Notional 

Load Approach lead to the same conclusions in comparing H1-1 values by DM and MDM when 

ALR =1.0. This confirms the equivalency of Direct Modeling Approach and Notional Load 

Approach. Both of these approaches lead to the following conclusions about DM and MDM.  
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Column C1-2a has the largest H1-1 value at an applied load ratio of 1.0. For this 

controlling member, it is observed that 

• H1-1 value by MDM is less than 1.0 by 11 %,  

• H1-1 value by MDM is closer to 1.0 than that of DM,  

• H1-1 value by MDM is less than that of DM, and 

• The difference between AISC interaction equation H1-1 values by the two methods is not 

less than 4.5%.   

Table 41: Comparison 1(H1-1 at ALR =1.0) Using Direct Modeling Approach 
(Structural System 7d – Two-bay Frame with Unequal Heights) 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.352 0.000 0.352 0.186 0.000 0.093 

C1-2a 0.571 0.661 1.158 0.301 0.661 0.889 
C1-2b 0.326 0.661 0.914 0.172 0.661 0.747 
C1-3 0.755 0.000 0.755 0.386 0.000 0.386 
B1-1 0.008 0.590 0.594 0.007 0.590 0.594 
B1-2 0.006 0.614 0.617 0.006 0.614 0.617 

Bracing 0.097 0.000 0.049 0.097 0.000 0.049 
DM: KL = 20' for C1-2 and C1-2b 
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Table 42: Comparison 1(H1-1 at ALR =1.0) Using Notional Load Approach 
(Structural System 7d – Two-bay Frame with Unequal Heights) 

 
Imperfection  NL 0.002Yi  Stiffness Adjustment 0.8E and No NL  

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.352 0.000 0.352 0.186 0.000 0.093 

C1-2a 0.571 0.661 1.158 0.301 0.661 0.889 
C1-2b 0.326 0.661 0.914 0.172 0.661 0.747 
C1-3 0.755 0.000 0.755 0.386 0.000 0.386 
B1-1 0.008 0.590 0.594 0.007 0.590 0.594 
B1-2 0.006 0.614 0.617 0.006 0.614 0.617 

Bracing 0.097 0.000 0.049 0.097 0.000 0.049 
DM: KL = 20' for C1-2 and C1-2b 

     

Comparison 2: Comparing ALR when H1-1 = 1.0 

For structural system 7d, analysis results in Tables 43 and 44 compare ALR values 

obtained by DM and MDM when the interaction equation H1-1 equals unity. Analysis results in 

Table 43 were obtained using Direct Modeling Approach, whereas those in Table 44 were 

obtained using Notional Load Approach. However, these results both lead to the same 

conclusions.   

Column C1-2a has the lowest ALR value at interaction equation value of 1.0. For this 

controlling member, it is observed that 

• ALR value by MDM is greater than 1.0 by 8%,  

• ALR value by MDM is closer to 1.0 than that of DM,  

• ALR value by MDM is greater than that of DM, and  

• The difference between ALR values by the two methods is not less than 4.5%.  
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Table 43: Comparison 2(ALR at H1-1=1.0) Using Direct Modeling Approach  
(Structural System 7d – Two-bay Frame with Unequal Heights) 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and taub 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.514 0.000 1.440 0.271 0.000 1.440 

C1-2a 0.511 0.547 0.895 0.325 0.762 1.080 
C1-2b 0.346 0.736 1.060 0.201 0.895 1.170 
C1-3 0.997 0.000 1.320 0.556 0.000 1.440 
B1-1 0.012 0.638 1.440 0.011 0.638 1.440 
B1-2 0.010 0.664 1.440 0.009 0.664 1.440 

Bracing 0.167 0.000 1.440 0.167 0.000 1.440 
DM: KL = 20' for C1-2 and C1-2b 

     
Table 44: Comparison 2(ALR at H1-1=1.0) Using Notional Load Approach  

(Structural System 7d – Two-bay Frame with Unequal Heights) 
 

Imperfection  NL 0.002Yi  Stiffness Adjustment 0.8E and No NL  

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 

DM: K = 1 MDM: Pn = Py 
Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 

C1-1 0.514 0.000 1.440 0.271 0.000 1.440 
C1-2a 0.511 0.547 0.895 0.324 0.756 1.075 
C1-2b 0.345 0.736 1.060 0.201 0.895 1.170 
C1-3 0.997 0.000 1.320 0.556 0.000 1.440 
B1-1 0.012 0.638 1.440 0.012 0.638 1.440 
B1-2 0.010 0.664 1.440 0.010 0.664 1.440 

Bracing 0.167 0.000 1.440 0.167 0.000 1.440 
DM: KL = 20' for C1-2 and C1-2b 

     

Conclusions 

The observations from Comparisons 1 and 2 suggest that MDM is not adequate to assess 

the stability of structural system 7d, since its H1-1 value for the controlling member (column C1-
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2a) is less than 1.0 by 11 %, and its ALR value for the controlling member is greater than 1.0 by 

8% 

MDM is a more accurate method than DM for structural system 7d, since its controlling 

member (column C1-2a) has a H1-1 value closer to 1.0 than that of DM, and it has an ALR value 

closer to 1.0 than that of DM.   

However, it should be kept in mind that MDM is a less conservative method than DM, 

since it tends to result in lower H1-1 values or higher ALR values than DM.   

Moreover, it should be noted that DM and MDM are not equivalent for assessing the 

stability of structural system 7d, since the results by DM and MDM for all members do not 

always match within 4.5%.  

On a side note, this case study confirms the equivalence between Direct Modeling 

Approach and Notional Load Approach, since these approaches lead to similar results.  

Structural System 8 – Vierendeel Truss  

Comparison 1: Comparing H1-1 when ALR = 1.0 

For structural system 8, Tables 45 and 46 compare the AISC interaction equation H1-1 

values at an applied load ratio of 1.0 obtained by the Direct Analysis Method (DM) and 

Modified Direct Analysis Method (MDM) procedure. However, Table 45 analysis results were 

obtained using Direct Modeling Approach, whereas Table 46 analysis results were obtained 

using Notional Load Approach. These tables show that Direct Modeling Approach and Notional 

Load Approach lead to the same conclusions in comparing H1-1 values by DM and MDM when 

ALR =1.0. This confirms the equivalency of Direct Modeling Approach and Notional Load 

Approach. Both of these approaches lead to the following conclusions about DM and MDM.  
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Top chord 3 has the largest H1-1 value at an applied load ratio of 1.0. For this controlling 

member, it is observed that 

• H1-1 value by MDM is greater than 1.0 by 23%,  

• H1-1 value by MDM is closer to 1.0 than that of DM,  

• H1-1 value by MDM is less than that of DM, and 

• The difference between AISC interaction equation H1-1 values by the two methods is not 

less than 4.5%.   

Table 45: Comparison 1(H1-1 at ALR =1.0) Using Direct Modeling Approach  
(Structural System 8 – Vierendeel Truss) 

 

Imperfection  Direct Modeling 
 

Stiffness 
Adjustment 0.8E and taub 

 
 

second-order elastic; P-C; increment 0.01 
    

1 
Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mux/ɸMnx Muy/ɸMny Eq. H1-1 Pu/ɸPn Mux/ɸMnx Muy/ɸMny 
Eq. 

H1-1 
TC-1 0.278 0.414 0.361 0.967 0.072 0.414 0.361 0.811 
TC-2 0.653 0.372 0.770 1.668 0.169 0.372 0.770 1.226 
TC-3 0.858 0.198 0.932 1.862 0.222 0.198 0.932 1.226 
BC-1 0.074 0.576 0.083 0.696 0.074 0.576 0.083 0.696 
BC-2 0.169 0.409 0.046 0.540 0.169 0.409 0.046 0.540 
BC-3 0.222 0.205 0.009 0.411 0.222 0.205 0.009 0.411 
W-1 0.108 0.629 0.034 0.717 0.104 0.629 0.034 0.715 
W-2 0.042 0.810 0.036 0.866 0.040 0.791 0.031 0.842 
W-3 0.029 0.434 0.024 0.473 0.028 0.434 0.022 0.470 
W-4 0.029 0.000 0.025 0.040 0.028 0.000 0.015 0.030 

DM: KL = 48' for TC-1, TC-2, and TC-3; KL = 8' for W-1,W-2,W-3 and W-4    
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Table 46: Comparison 1(H1-1 at ALR =1.0) Using Notional Load Approach  
(Structural System 8 – Vierendeel Truss) 

 

Imperfection  NL 0.002Yi  
 

Stiffness 
Adjustment 0.8E and No NL  

 
 

second-order elastic; P-C; increment 0.01 
    

1 
Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mux/ɸMnx Muy/ɸMny Eq. H1-1 Pu/ɸPn Mux/ɸMnx Muy/ɸMny 
Eq. 

H1-1 
TC-1 0.278 0.410 0.397 0.995 0.072 0.410 0.397 0.843 
TC-2 0.653 0.369 0.832 1.720 0.169 0.369 0.832 1.285 
TC-3 0.857 0.196 1.001 1.921 0.221 0.196 1.001 1.286 
BC-1 0.074 0.578 0.078 0.693 0.074 0.578 0.078 0.693 
BC-2 0.169 0.409 0.039 0.533 0.169 0.409 0.039 0.533 
BC-3 0.221 0.204 0.010 0.412 0.221 0.204 0.010 0.412 
W-1 0.108 0.630 0.034 0.718 0.104 0.630 0.034 0.716 
W-2 0.042 0.809 0.036 0.866 0.040 0.789 0.036 0.846 
W-3 0.029 0.433 0.025 0.473 0.028 0.433 0.024 0.472 
W-4 0.029 0.000 0.027 0.041 0.028 0.000 0.017 0.031 

DM: KL = 48' for TC-1, TC-2, and TC-3; KL = 8' for W-1,W-2,W-3 and W-4    
Comparison 2: Comparing ALR when H1-1 = 1.0 

For structural system 8, analysis results in Table 47 compare ALR values obtained by 

DM and MDM when the interaction equation H1-1 equals unity. The analysis results were 

obtained using Direct Modeling Approach and lead to the following conclusions.   

Top chord 3 has the lowest ALR value at interaction equation value of 1.0. For this 

controlling member, it is observed that 

• ALR value by MDM is less than 1.0 by 3%,  

• ALR value by MDM is closer to 1.0 than that of DM,  

• ALR value by MDM is greater than that of DM, and  

• The difference between ALR values by the two methods is not less than 4.5%.  
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Table 47: Comparison 2(ALR at H1-1=1.0) Using Direct Modeling Approach 
(Structural System 8 – Vierendeel Truss) 

 

Imperfection  Direct Modeling 
 

Stiffness 
Adjustment 0.8E and taub 

 
  

second-order elastic; P-C; increment 0.005 
   

1 
Applied Load Ratio when Eq. H1-1 = 1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mux/ɸMnx Muy/ɸMny ALR Pu/ɸPn Mux/ɸMnx Muy/ɸMny ALR 
TC-1 0.280 0.403 0.398 1.010 0.076 0.279 0.680 1.085 
TC-2 0.546 0.329 0.173 0.830 0.163 0.372 0.532 0.965 
TC-3 0.691 0.168 0.176 0.800 0.216 0.197 0.678 0.970 
BC-1 0.297 0.664 0.110 1.040 0.081 0.814 0.137 1.095 
BC-2 0.628 0.384 0.033 0.955 0.215 0.656 0.226 1.320 
BC-3 0.814 0.198 0.009 0.945 0.296 0.351 0.434 1.485 
W-1 0.111 0.868 0.076 1.165 0.107 0.868 0.076 1.165 
W-2 0.068 0.891 0.074 1.100 0.065 0.891 0.074 1.100 
W-3 0.004 0.225 0.536 2.515 0.004 0.225 0.536 2.515 
W-4 0.191 0.000 0.277 2.515 0.184 0.000 0.277 2.515 

DM: KL = 48' for TC-1, TC-2, and TC-3; KL = 8' for W-1,W-2,W-3 and W-4 
   

Conclusions 

The observations from Comparisons 1 and 2 suggest that MDM is adequate to assess the 

stability of structural system 8, since its H1-1 value for the controlling member (top chord 3) is 

greater than 1.0, and its ALR value for the controlling member is less than 1.0. 

MDM is a more accurate method than DM for structural system 8, since its controlling 

member has a H1-1 value closer to 1.0 than that of DM, and it has an ALR value closer to 1.0 

than that of DM.   

However, it should be kept in mind that MDM is a less conservative method than DM, 

since it tends to result in lower H1-1 values or higher ALR values than DM.   

Moreover, it should be noted that DM and MDM are not equivalent for assessing the 

stability of structural system 8, since the results by DM and MDM for all members do not always 

match within 4.5%.  
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On a side note, this case study confirms the equivalence between Direct Modeling 

Approach and Notional Load Approach, since these approaches lead to similar results.  

Column Study  

 As mentioned earlier in Section  2.1.3, different from all other case studies, in this 

column study, whether DM and MDM is a more accurate method will be determined based on 

comparing the axial strengths of the column (Pu/Py) obtained by these two methods against the 

advanced inelastic analysis results (Appx 1).  

Major Axis Bending  

 As can be seen in Table 48 and Figure 17,  

For L/r ≥ 100,  

• Pu/Py value by MDM has negative percent difference from that of Appendix 1, and  

• Pu/Py value by MDM has greater negative percent differences from Appendix 1 than that 

by DM.  
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Table 48: Comparison of Major Axis Strength of Column Obtained by Different Analysis 
Methods (Appx1, DM and MDM) and Their Percent Differences 

 

 

Major Axis Strength 
(Pu/Py) 

Percent Difference 
(%) 

L/rx Appx 1 DM MDM 
(tau_B) 

DM vs 
Appx 1 

MDM 
(tau_B) vs 

Appx 1 

0 0.9 0.9 0.9 0.000 0.000 
10 0.890 0.893 0.891 0.395 0.158 
20 0.874 0.874 0.882 0.060 0.965 
30 0.848 0.843 0.87 -0.601 2.597 
40 0.813 0.801 0.852 -1.478 4.841 
50 0.770 0.750 0.821 -2.705 6.565 
60 0.717 0.692 0.769 -3.559 7.228 
70 0.656 0.629 0.694 -4.079 5.857 
80 0.583 0.564 0.603 -3.341 3.373 
90 0.506 0.498 0.506 -1.652 0.037 
100 0.435 0.433 0.422 -0.348 -3.031 
110 0.373 0.372 0.354 -0.257 -4.942 
120 0.321 0.314 0.301 -2.120 -6.195 
130 0.278 0.267 0.258 -3.744 -7.083 
140 0.242 0.231 0.224 -4.895 -7.633 
150 0.213 0.201 0.196 -5.732 -8.091 
160 0.189 0.176 0.173 -6.428 -8.369 
170 0.168 0.156 0.153 -6.971 -8.863 
180 0.151 0.139 0.137 -7.422 -8.893 
190 0.136 0.125 0.123 -7.793 -9.248 
200 0.123 0.113 0.111 -8.129 -9.333 
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Figure 17: Comparison of Major Axis Strength of Column Obtained by Different Analysis 
Methods 
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Minor Axis Bending 

As can be seen in Table 49 and Figure 18,  

For L/r ≥ 120,  

• Pu/Py value by MDM has negative percent difference from that of Appendix 1, and  

• Pu/Py value by MDM has greater negative percent differences from Appendix 1 than that 

by DM.  

Table 49: Comparison of Minor Axis Strength of Column Obtained by Different Analysis 
Methods (Appx1, DM and MDM) and Their Percent Differences 

 

 

Minor Axis Strength 
(Pu/Py) 

Percent Difference 
(%) 

L/ry Appx 1 DM MDM 
(tau_B) 

DM vs 
Appx 1 

MDM 
(tau_B) vs 

Appx 1 

0 0.9 0.9 0.9 0.000 0.000 
10 0.892 0.893 0.889 0.126 -0.320 
20 0.872 0.874 0.878 0.194 0.617 
30 0.838 0.843 0.863 0.510 2.961 
40 0.776 0.801 0.842 3.197 8.549 
50 0.706 0.75 0.809 6.169 14.561 
60 0.646 0.692 0.755 7.015 16.812 
70 0.585 0.629 0.68 7.432 16.160 
80 0.521 0.564 0.59 8.285 13.378 
90 0.457 0.498 0.496 9.000 8.718 
100 0.397 0.433 0.415 9.133 4.543 
110 0.344 0.372 0.349 7.926 1.497 
120 0.299 0.314 0.297 4.982 -0.486 
130 0.261 0.267 0.256 2.495 -1.957 
140 0.229 0.231 0.222 0.709 -3.008 
150 0.202 0.201 0.194 -0.688 -3.868 
160 0.18 0.176 0.171 -1.820 -4.638 
170 0.161 0.156 0.152 -2.743 -5.303 
180 0.145 0.139 0.136 -3.522 -5.703 
190 0.131 0.125 0.123 -4.155 -6.026 
200 0.119 0.113 0.111 -4.717 -6.361 
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Figure 18: Comparison of Minor Axis Strength of Column Obtained by Different Analysis 
Methods 

 
Conclusions 

The observations suggest that, in cases where system is of low to no redundancy,  

For major axis column bending with L/r ≥ 100 and for minor axis bending with L/r ≥ 120,  

MDM is adequate to assess the stability of the system, since its Pu/Py value is less than 

that by Appendix 1(negative percent difference). The negative percent difference means that 

MDM indicates that system can resist less applied load than predicted by Appendix 1.  

When comparing to DM, MDM is a less accurate method than DM, since Pu/Py value by 

MDM has greater percent difference from Appendix 1 than that by DM.  

However, MDM is a more conservative method than DM, since Pu/Py value by MDM has 

greater negative percent difference from Appendix 1 than that by DM. 
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CHAPTER4: SUMMARY OF RESULTS 

 Based on the conclusions for each case study presented in Chapter 3, the following 

overall conclusions can be made:  

• The Modified Direct Analysis Method (MDM) method is adequate to assess the stability 

of structural steel systems with a few exceptions.  

o MDM analyses consistently result in predicting conservative to acceptable 

member strength limits, with AISC interaction equation H1-1 values greater than 

1.0 or ALR values less than 1.0 (Tables 51 and 52).  

o In a few cases, including systems 7b and 7d, MDM may not be adequate to assess 

the stability of structural systems. MDM indicates non-conservative results, with 

interaction equation H1-1 values less than 1.0 by more than 5% and ALR values 

greater than 1.0 by more than 5%.  

o For structural systems with little or no redundancy, for example the column study 

presented in this thesis, both the DM and MDM appear inadequate to assess the 

stability of structural systems for cases in which slenderness ratio, L/r < 100 for 

major axis bending, and L/r < 120 for minor axis bending. This is because the 

predicted strengths (Pu/Py values) by both DM and MDM are greater than those 

by Appendix 1 for these cases (positive percent difference).  

• In general, MDM is a more accurate method than DM for assessing the stability of 

structural steel systems with a few exceptions.  

o MDM analyses result in member strength limit states defined by interaction 

equation H1-1 or ALR values closer to 1.0 than those obtained by DM analyses 

(Tables 50 and 51).  
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o One of these exceptions is that the MDM method is a less accurate than DM for 

assessing the stability of structural system 7b. MDM indicate failure of column 

C1-1 with H1-1 and ALR values further away from 1.0 than those obtained by 

DM.  

o For structural systems with little or no redundancy (for example, the column study 

in this thesis), MDM is a less accurate method than DM for cases in which L/r ≥ 

100 for major axis orientation and L/r ≥ 120 for minor axis orientation. This is 

because Pu/Py values by MDM have greater percent difference from Appendix 1 

than those by DM.  

• In general, the MDM method is a less conservative design procedure than DM for 

assessing the stability of structural steel systems with a few exceptions.  

o MDM tends to consistently result in lower, but often acceptable, H1-1 values or 

higher ALR values than DM (Tables 50 and 51).  

o Interestingly, for structural systems with little or no redundancy (again, the 

column study in this thesis), MDM is a little more conservative than DM for cases 

for slender columns in which L/r ≥ 100 for major axis bending and L/r ≥ 120 for 

minor axis bending.  This is because Pu/Py values by MDM have greater negative 

percent difference from Appendix 1 than those by DM.  

• DM and MDM differ in assessing the stability of structural systems.   

o All case studies, except the gabled frame (Structural System 5) and the two-bay 

frame with irregular geometry (Structural System 6), Tables 50 and 51 show that 

DM and MDM do not always result in the same H1-1 or ALR values for all 

members.  
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Table 50: Summary Table of Comparisons of DM and MDM for All Case Study Steel 
Frames 

(Comparison 1: H1-1 when ALR=1.0) 
 

 

 

 

 

 

 

 

 

104 
 



Table 51: Summary Table of Comparisons of DM and MDM for All Case Study Steel 
Frames 

(Comparison 2: ALR when H1-1=1.0) 
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

5.1. Summary  

 This thesis investigates a new stability assessment procedure for use in the design of 

structural steel systems, namely the Modified Direct Analysis Method (MDM) method. This new 

method proposes that by employing a rigorous second-order elastic analysis that accounts for the 

destabilizing effects of imperfections and inelasticity, structural steel systems can be adequately 

designed with only the need to check the cross section strength of members.    

A structural system is considered stable when the load effects acting on each of its 

members are less than or equal to their strength to resist them. In structural systems that are 

modeled to include initial imperfections, both axial and bending load effects tend to be present in 

each member (that is, all members become beam-column), and thus it becomes necessary to 

understand how the interaction between these two load effects and their corresponding strengths 

impact the stability of the member. The interaction between axial and bending moment effects on 

a member follows the concept that one load effect (say, axial force) will reduce the member’s 

ability to resist the other load effect (say, bending). The AISC interaction equations used to 

represent this concept were derived, following the process of determining axial strength in the 

presence of a given bending moment, or determining bending moment strength in the presence of 

a given axial load. A structural member subjected to both axial load and bending moment is 

considered stable if its load effects and corresponding strengths satisfy the AISC interaction 

equation. 

AISC recognizes two existing methods in evaluating structural stability by means of 

interaction equations, including the effective length method (ELM) and the direct analysis 

method (DM). ELM makes use of effective length factor (K) for each structural member in 
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determining frame and member stability. The process of finding K for every single structural 

member can be laborious, time-consuming, and can involve inaccuracies. DM takes resovles this 

problem by assuming unit effective length factors for every member, and thus eliminating the 

need to calculate K values. This assumption is made possible by utilizing a second-order elastic 

analysis that accounts for inelasticity and member imperfections in the modeling. The method 

proposed in this research, Modified Direct Analysis Method (MDM), is intended to further 

simplify DM by assuming the analysis will detect member and frame instabilities, and thereby 

resulting in the need to checking only the cross section strength of members to assess their 

stability.  

To study the feasibility of MDM, this thesis utilized a set of 12 benchmark structural steel 

systems, and a column study. DM and MDM were compared in two ways to determine which 

method is a more accurate method for accessing stability. The first comparison was made based 

on accessing the stability of the systems at the given applied loads. For this comparison, the 

AISC interaction equation values at the applied load ratio of 1.0 (H1-1 when ALR =1.0) were 

calculated for all members. Since the given applied loads were calibrated failure loads defined by 

advanced inelastic analyses, the DM and MDM methods were determined adequate for assessing 

the stability of the systems if the memthod resulted in interaction equation values of 1.0 or 

greater. Moreover, the method that resulted in the AISC interaction equation values closer to 1.0 

was considered a more accurate procedure. The second comparison was made based on 

accessing the stability of the systems at the corresponding failure loads by each method. For this 

comparison, the applied load ratios at which the failure of the system occurs were achieved 

(ALR when H1-1 =1.0). A method was considered adequate to assess the stability of the systems 
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if it resulted in applied load ratios of 1.0 or smaller. Similarly, the method that resulted in applied 

load ratios closer to 1.0 for failure was considered a more accurate method.  

5.2. Conclusions  

 Based on the stability analysis results of the case studies presented in this thesis, it is 

observed that MDM is adequate to assess the stability of structural systems, with perhaps a few 

exceptions. For all structural systems, except Structural Systems 7b and 7d, MDM analyses 

provided conservative results for predicting strength limits with AISC interaction equation H1-1 

values of 1.0 or greater and ALR values of 1.0 or less. For structural system 7d, in which the 

columns are oriented for minor axis bending, it is observed that MDM provides non-conservative 

results, with an H1-1 value of less than 1.0 by 11% and ALR value of greater than 1.0 by 8%. 

Moreover, for structural systems with little or no redundancy (for example, the column study in 

this thesis), MDM appears inadequate to assess the stability for cases in which slenderness ratio 

of L/r < 100 for major axis bending and L/r < 120 for minor axis bending, because the MDM 

indicates that the system can resist more applied loads than predicted by the advanced analysis 

procedure of Appendix 1.  

Secondly, MDM appears to be a more accurate method for assessing stability of 

structural steel systems with a few exceptions. MDM consistently provided AISC interaction 

equation H1-1 values and ALR values closer to 1.0 than DM for all case studies investigated 

except Structural System 7b and the column study. It appears that for structural systems with 

little or no redundancy, specifically the column study in this thesis, MDM is a less accurate 

method compared to DM to assessing the stability for cases in which the column slenderness L/r 

≥ 100 for major axis bending and L/r ≥ 120 for minor axis bending. For these cases, the 
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differences between strengths predicted by MDM and Appendix 1 are greater than the 

differences between strengths predicted by DM and Appendix 1.  

Thirdly, it is observed that MDM provides less conservative (but still acceptable) results 

compared to DM with a few exceptions. In general, MDM tends to provide lower AISC 

interaction equation H1-1 values or higher ALR values compared to DM for vast majority of the 

structural systems investigated in this study. For structural systems with little or no redundancy 

(again, the column study in this thesis), MDM is a little more conservative method compared to 

DM to assess the stability for cases in which L/r ≥ 100 for major axis bending and L/r ≥ 120 for 

minor axis bending. For these cases, MDM indicated that the column would resist less applied 

loads than predicted by both Appendix 1 and DM. 

 It is also noteworthy that DM and MDM are not identical in assessing the stability of 

structural systems, because they do not always provide results within an acceptable tolerance of 

say 4.5%. Moreover, and as a side study, the research performed as part of this thesis confirms 

the equivalency of the two approaches for modeling the destabilizing effects of initial 

imperfections and material inelasticity – Direct Modeling Approach and Notional Load 

Approach.  

 Overall, and noting the few exception described above, the results of case studies 

investigated in this research confirm the thesis statement; employing a rigorous second-order 

elastic analysis that accounts for the destabilizing effects of imperfections and inelasticity, the 

stability of structural steel systems can be adequately assessed with only the need to check the 

cross section strength of members. In other words, the stability of structural steel systems can be 

adequately assessed using the new proposed stability assessment method, Direct Analysis of 

Member Imperfections, MDM.  
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Considering that both DM and MDM are adequate to assess the stability of structural 

systems, a list of trade-offs between DM and MDM are now provided. Firstly, simplifying DM 

into MDM will be particularly useful for cases in which it is not clear how to define member 

slenderness L/r when the laterally unbraced length L is not apparent, such as arches and the 

compression chord of an unbraced truss. Secondly, MDM appears to be a more accurate method 

than DM for assessing the stability of structural systems. However, the trade-offs for these 

advantages will be that MDM would require more modeling and computational time if member 

imperfections and P-δ effects are included in each model by subdividing members into many 

more elements. Moreover, MDM tends to sacrifice its conservativeness to achieve more accuracy 

in assessing structural system stability.   

5.3. Recommendations for Further Research  

 It is recommended that further studies on structural systems with beam-columns subject 

to minor axis flexure (such as structural system 7d) should be performed to validate the adequacy 

of employing Modified Direct Analysis Method (MDM) to assess their stability. When studying 

these structural systems, it is suggested that the modulus of elasticity E be reduced to a smaller 

value than 0.8E such as 0.7E or 0.75E. This reduction may result in increased moment load 

effects Mu and consequently result in increased AISC interaction equation H1-1 values. This may 

cause MDM to always predict lower strength limits than those predicted by the use advanced 

inelastic analysis (AISC Appendix 1).  

In addition, all the structural systems in this thesis except structural System 8 (Vierendeel 

Truss) were assumed to be fully braced out of plane. Further study on the adequacy of MDM 

should be performed for cases in which the members are no longer fully braced out of plane. For 

these cases, it will be interesting to observe whether the controlling moment strength of each 
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member (Mn) will still be the member cross-section plastic yielding strength (Mp) Note that in 

Structural System 8, the loadings and member sections were defined so that Mn = Mp. It will be 

of particular interest to examine the validity of MDM when Mn is no longer Mp.  

 Moreover, it is recommended that further study on the adequacy of MDM should be 

performed on structural members with shapes other than wide-flange sections such as hollow 

rectangular HSS and channels.  

Furthermore, this thesis only investigated structural systems comprised of members with 

compact cross sections. It will be interesting to further study whether MDM is adequate to assess 

the stability of structural systems that include non-compact and non-slender elements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

111 
 



APPENDIX A: MASTAN2 ANALYSIS MODELS 

Structural System 1a 

Direct Modeling Approach  

 

Figure 1: MASTAN2 Analysis Model 

Notional Load Approach 

 

Figure 2: MASTAN2 Analysis Model 
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Structural System 1b 

Direct Modeling Approach 

 

Figure 3: MASTAN2 Analysis Model 

Notional Load Approach 

 

Figure 4: MASTAN2 Analysis Model 
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Structural System 2 

Direct Modeling Approach 

 

Figure 5: MASTAN2 Analysis Model 

 

Notional Load Approach 

 

Figure 6: MASTAN2 Analysis Model 
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Structural System 3 

Direct Modeling Approach 

 

Figure 7: MASTAN2 Analysis Model 
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Notional Load Approach 

 

Figure 8: MASTAN2 Analysis Model 
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Structural System 4 

Direct Modeling Approach 

 

Figure 9: MASTAN2 Analysis Model 
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Notional Load Approach 

 

Figure 10: MASTAN2 Analysis Model 
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Structural System 5 

Direct Modeling Approach 

 

Figure 11: MASTAN2 Analysis Model 
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Notional Load Approach 

Figure 12: MASTAN2 Analysis Model 
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Structural System 6 

Direct Modeling Approach 

 

Figure 13: MASTAN2 Analysis Model 
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Notional Load Approach 

 

Figure 14: MASTAN2 Analysis Model 
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Structural System 7a 

Direct Modeling Approach 

Figure 15: MASTAN2 Analysis Model 

Notional Load Approach 

 

Figure 16: MASTAN2 Analysis Model 
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Structural System 7b 

Direct Modeling Approach 

Figure 17: MASTAN2 Analysis Model 

Notional Load Approach 

Figure 18: MASTAN2 Analysis Model 
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Structural System 7c 

Direct Modeling Approach 

 

Figure 19: MASTAN2 Analysis Model 

Notional Load Approach 

 

Figure 20: MASTAN2 Analysis Model 
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Structural System 7d 

Direct Modeling Approach 

Figure 21: MASTAN2 Analysis Model 

Notional Load Approach 

Figure 22: MASTAN2 Analysis Model 
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Structural System 8 

Direct Modeling Approach 

 

Figure 23: MASTAN2 Analysis Model 

Notional Load Approach 

Figure 24: MASTAN2 Analysis Model 
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Column Study 

Major/Minor Axis Orientation 

 

Figure 25: MASTAN2 Analysis Model  
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APPENDIX B: ANALYSIS RESULTS USING DIRECT MODELING APPROACH 

WITH τAISC 

 For all case study structural systems, additional stability analyses were conducted using 

Direct Modeling Approach with τAISC (Et_AISC option in MASTAN2 second-order inelastic 

analysis) instead of τb (Et option in MASTAN2 second-order inelastic analysis) (Tables 1-26 and 

Figures 26-27 below).  

These analysis results also lead to similar conclusions as in regards to evaluating DM and 

MDM in assessing the stability of the structural systems.  

Structural System 1a  

Table 1: Comparison 1 (H1-1 at ALR =1.0) Using Direct Modeling Approach with τAISC 

 

Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

 
second-order elastic; P-C; increment 0.1 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.898 0.109 0.995 0.679 0.109 0.775 
C1-2 0.540 0.542 1.022 0.500 0.542 0.982 
C1-3 0.333 0.368 0.659 0.308 0.368 0.634 
C2-1 0.327 0.303 0.596 0.277 0.303 0.546 
C2-2 0.177 1.095 1.184 0.170 1.095 1.180 
C2-3 0.116 1.209 1.267 0.111 1.209 1.265 
B1-1 0.002 1.380 1.381 0.002 1.380 1.381 
B1-2 0.047 1.042 1.065 0.044 1.042 1.063 
B2-1 0.002 1.276 1.277 0.002 1.276 1.277 
B2-2 0.096 1.115 1.163 0.083 1.115 1.156 
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Table 2: Comparison 2 (ALR at H1-1=1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.898 0.109 1.000 0.848 0.168 1.250 
C1-2 0.529 0.529 0.980 0.507 0.552 1.015 
C1-3 0.510 0.522 1.615 0.472 0.570 1.620 
C2-1 0.471 0.103 1.680 0.399 0.103 1.680 
C2-2 0.150 0.924 0.845 0.144 0.924 0.845 
C2-3 0.091 0.954 0.790 0.087 0.954 0.790 
B1-1 0.001 0.997 0.720 0.001 0.997 0.720 
B1-2 0.044 0.977 0.940 0.041 0.977 0.940 
B2-1 0.002 0.994 0.780 0.002 0.994 0.780 
B2-2 0.082 0.957 0.860 0.072 0.962 0.865 

 
 
Structural System 1b  

Table 3: Comparison 1 (H1-1 at ALR =1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

 
second-order elastic; P-C; increment 0.01 

  
1 Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 
Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 

C1-1 0.051 0.455 0.480 0.037 0.455 0.473 
C1-2 0.587 0.621 1.139 0.431 0.621 0.983 
C1-3 0.282 0.043 0.321 0.207 0.043 0.246 
C2-1 0.773 0.103 0.864 0.098 0.103 0.152 
C2-2 0.551 0.297 0.815 0.313 0.297 0.577 
C2-3 0.626 0.690 1.240 0.250 0.690 0.864 
B1-1 0.005 0.934 0.937 0.005 0.934 0.937 
B1-2 0.001 0.719 0.719 0.001 0.719 0.719 
B2-1 0.000 1.021 1.021 0.000 1.021 1.021 
B2-2 0.003 0.690 0.691 0.002 0.690 0.691 
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Table 4: Comparison 2 (ALR at H1-1=1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.067 0.947 1.125 0.049 0.947 1.125 
C1-2 0.547 0.500 0.930 0.433 0.632 1.005 
C1-3 0.322 0.712 1.160 0.238 0.823 1.170 
C2-1 0.883 0.128 1.135 0.209 0.128 1.349 
C2-2 0.671 0.367 1.225 0.396 0.675 1.330 
C2-3 0.507 0.552 0.810 0.285 0.801 1.135 
B1-1 0.008 0.996 1.095 0.008 0.995 1.095 
B1-2 0.002 0.987 1.240 0.002 0.989 1.235 
B2-1 0.000 0.995 0.975 0.000 0.995 0.975 
B2-2 0.004 0.994 1.350 0.003 0.795 1.349 

 
 
Structural System 2  
 

Table 5: Comparison 1 (H1-1 at ALR =1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.458 0.827 1.193 0.382 0.827 1.117 
C1-2 0.473 0.588 0.996 0.395 0.588 0.918 
B1-1 0.003 0.913 0.915 0.003 0.913 0.914 
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Table 6: Comparison 2 (ALR at H1-1=1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.435 0.631 0.945 0.372 0.707 0.970 
C1-2 0.473 0.589 1.000 0.399 0.637 1.010 
B1-1 0.001 0.994 1.045 0.003 0.983 1.040 

 
Structural System 3 
 

Table 7: Comparison 1 (H1-1 at ALR =1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.558 0.444 0.953 0.528 0.444 0.923 
C1-2 0.630 0.445 1.026 0.596 0.445 0.992 
C2-1 0.542 0.444 0.937 0.497 0.444 0.892 
C2-2 0.586 0.445 0.981 0.537 0.445 0.932 

 
Table 8: Comparison 2 (ALR at H1-1=1.0) Using Direct Modeling Approach with τAISC 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 

DM: K = 1 MDM: Pn = Py 
Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 

C1-1 0.568 0.481 1.020 0.544 0.512 1.035 
C1-2 0.620 0.422 0.985 0.596 0.445 1.000 
C2-1 0.555 0.491 1.025 0.518 0.534 1.045 
C2-2 0.589 0.453 1.005 0.554 0.498 1.030 
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Structural System 4 
 

Table 9: Comparison 1 (H1-1 at ALR =1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.395 0.360 0.716 0.366 0.360 0.686 
C1-2 0.789 0.535 1.264 0.747 0.535 1.223 
C1-3 0.535 0.572 1.043 0.495 0.572 1.004 
C2-1 0.337 0.022 0.357 0.312 0.022 0.332 
C2-2 0.646 0.439 1.036 0.612 0.439 1.002 
C2-3 0.433 0.650 1.010 0.401 0.650 0.978 
C3-1 0.272 0.059 0.325 0.252 0.059 0.305 
C3-2 0.571 0.375 0.905 0.535 0.375 0.869 
C3-3 0.331 0.600 0.864 0.306 0.600 0.840 
C4-1 0.201 0.270 0.441 0.186 0.270 0.363 
C4-2 0.419 0.271 0.659 0.392 0.271 0.633 
C4-3 0.232 0.660 0.818 0.214 0.660 0.801 
C5-1 0.228 0.285 0.481 0.196 0.285 0.384 
C5-2 0.369 0.320 0.654 0.336 0.320 0.621 
C5-3 0.250 0.811 0.970 0.215 0.811 0.935 
C6-1 0.091 0.692 0.737 0.078 0.692 0.731 
C6-2 0.145 0.102 0.174 0.132 0.102 0.168 
C6-3 0.095 0.873 0.920 0.082 0.873 0.914 
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Table 10: Comparison 2 (ALR at H1-1=1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.513 0.546 1.305 0.488 0.576 1.340 
C1-2 0.624 0.419 0.790 0.613 0.436 0.820 
C1-3 0.513 0.545 0.960 0.495 0.572 1.000 
C2-1 0.505 0.004 1.490 0.467 0.004 1.490 
C2-2 0.623 0.421 0.965 0.612 0.439 1.000 
C2-3 0.428 0.643 0.990 0.411 0.668 1.025 
C3-1 0.408 0.075 1.490 0.378 0.075 1.490 
C3-2 0.625 0.418 1.095 0.612 0.441 1.145 
C3-3 0.378 0.695 1.140 0.361 0.720 1.175 
C4-1 0.302 0.412 1.490 0.279 0.412 1.490 
C4-2 0.610 0.438 1.470 0.579 0.442 1.490 
C4-3 0.280 0.807 1.205 0.266 0.829 1.235 
C5-1 0.342 0.428 1.490 0.295 0.428 1.490 
C5-2 0.542 0.515 1.480 0.496 0.519 1.490 
C5-3 0.256 0.832 1.025 0.230 0.871 1.070 
C6-1 0.122 0.936 1.340 0.107 0.948 1.355 
C6-2 0.215 0.160 1.490 0.196 0.160 1.490 
C6-3 0.103 0.945 1.080 0.090 0.958 1.095 

 
 
Structural System 5 
 

Table 11: Comparison 1 (H1-1 at ALR =1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

  
second-order elastic; P-C; increment 0.01 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.151 0.920 2.960 0.119 0.935 2.970 
C1-2 0.051 0.966 0.640 0.040 0.966 0.640 
B1-1 0.019 0.991 2.110 0.014 0.991 2.110 
B1-2 0.043 0.976 1.820 0.032 0.983 1.830 
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Table 12: Comparison 2 (ALR at H1-1=1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

  
second-order elastic; P-C; increment 0.01 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.151 0.920 2.960 0.119 0.935 2.970 
C1-2 0.051 0.966 0.640 0.040 0.966 0.640 
B1-1 0.019 0.991 2.110 0.014 0.991 2.110 
B1-2 0.043 0.976 1.820 0.032 0.983 1.830 

 
 
Structural System 6 
 

Table 13: Comparison 1 (H1-1 at ALR =1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

 
second-order elastic; P-C; increment 0.01 

  
1 Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 
Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 

C1-1 0.072 0.891 0.927 0.064 0.891 0.923 
C1-2 0.222 0.997 1.108 0.197 0.997 1.096 
C1-3 0.126 0.633 0.696 0.096 0.633 0.681 
C2-1 0.062 0.099 0.130 0.055 0.099 0.127 
C2-2a 0.124 0.291 0.353 0.120 0.291 0.351 
C2-2b 0.101 0.434 0.485 0.098 0.434 0.484 
C3-1 0.021 0.019 0.029 0.019 0.019 0.028 
C3-2 0.047 0.269 0.292 0.042 0.269 0.289 
C3-3 0.034 0.279 0.296 0.026 0.279 0.292 
B1-1 0.008 0.952 0.956 0.007 0.952 0.955 
B2-1 0.012 0.520 0.526 0.010 0.520 0.525 
B2-2 0.001 0.589 0.589 0.001 0.589 0.589 
B3-1 0.047 0.633 0.656 0.038 0.633 0.652 
B3-2 0.019 0.509 0.518 0.015 0.509 0.517 
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Table 14: Comparison 2 (ALR at H1-1=1.0) Using Direct Modeling Approach with τAISC 

 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.067 0.965 1.060 0.067 0.965 1.060 
C1-2 0.182 0.904 0.925 0.182 0.904 0.925 
C1-3 0.132 0.930 1.355 0.132 0.930 1.355 
C2-1 0.167 0.912 3.320 0.162 0.912 3.180 
C2-2a 0.247 0.844 2.145 0.247 0.844 2.145 
C2-2b 0.193 0.901 1.950 0.193 0.901 1.950 
C3-1 0.064 0.052 3.415 0.063 0.063 3.335 
C3-2 0.133 0.933 3.335 0.130 0.933 3.305 
C3-3 0.083 0.957 3.070 0.082 0.958 3.050 
B1-1 0.007 0.992 1.035 0.007 0.992 1.035 
B2-1 0.020 0.990 1.830 0.020 0.990 1.830 
B2-2 0.003 0.995 1.555 0.003 0.995 1.555 
B3-1 0.057 0.971 1.520 0.057 0.971 1.520 
B3-2 0.027 0.985 1.895 0.027 0.985 1.895 

 
Structural System 7a 
 

Table 15: Comparison 1 (H1-1 at ALR =1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.221 0.631 0.782 0.158 0.631 0.710 
C1-2a 0.229 0.539 0.709 0.205 0.539 0.684 
C1-2b 0.115 0.476 0.533 0.109 0.476 0.530 
C1-3 0.112 0.204 0.259 0.099 0.204 0.253 
B1-1 0.006 1.062 1.065 0.005 1.062 1.065 
B1-2 0.018 1.260 1.269 0.016 1.260 1.268 
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Table 16: Comparison 2 (ALR at H1-1=1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.281 0.807 1.265 0.218 0.883 1.375 
C1-2a 0.306 0.776 1.325 0.281 0.810 1.365 
C1-2b 0.219 0.878 1.935 0.211 0.888 1.960 
C1-3 0.210 0.877 2.350 0.186 0.908 2.360 
B1-1 0.006 0.992 0.935 0.005 0.998 0.940 
B1-2 0.015 0.992 0.805 0.014 0.992 0.805 

 
 
Structural System 7b 
 

Table 17: Comparison 1 (H1-1 at ALR =1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

 
second-order elastic; P-C; increment 0.01 

  
1 

Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 
C1-1 0.249 0.855 1.009 0.177 0.855 0.944 
C1-2a 0.244 0.124 0.354 0.217 0.124 0.327 
C1-2b 0.130 0.355 0.419 0.123 0.355 0.416 
C1-3 0.146 0.133 0.206 0.129 0.133 0.197 
B1-1 0.016 1.097 1.106 0.015 1.097 1.105 
B1-2 0.005 0.980 0.983 0.004 0.980 0.982 
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Table 18: Comparison 2 (ALR at H1-1=1.0) Using Direct Modeling Approach with τAISC 
Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.246 0.847 0.990 0.187 0.908 1.060 
C1-2a 0.616 0.431 2.550 0.575 0.480 2.675 
C1-2b 0.472 0.583 3.935 0.449 0.625 3.945 
C1-3 0.395 0.678 2.715 0.360 0.724 2.795 
B1-1 0.015 0.992 0.905 0.014 0.998 0.910 
B1-2 0.005 0.995 1.015 0.004 1.000 1.020 

 
Structural System 7c 
 

Table 19: Comparison 1 (H1-1 at ALR =1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

 
second-order elastic; P-C; increment 0.01 

  
1 Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 
Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 

C1-1 0.202 0.000 0.202 0.142 0.000 0.071 
C1-2a 0.256 0.898 1.054 0.180 0.898 0.988 
C1-2b 0.146 0.898 0.971 0.102 0.898 0.949 
C1-3 0.303 0.000 0.303 0.237 0.000 0.237 
B1-1 0.020 0.419 0.430 0.018 0.419 0.429 
B1-2 0.015 0.398 0.406 0.014 0.398 0.405 

BRACE 0.131 0.000 0.066 0.131 0.000 0.066 
DM: KL = 20' for C1-2 and C1-2b 
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Table 20: Comparison 2 (ALR at H1-1=1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.757 0.000 3.560 0.531 0.000 3.560 

C1-2a 0.243 0.847 0.950 0.181 0.908 1.010 
C1-2b 0.150 0.924 1.025 0.107 0.945 1.045 
C1-3 0.999 0.000 3.280 0.848 0.000 3.560 
B1-1 0.050 0.974 2.305 0.045 0.976 2.310 
B1-2 0.041 0.979 2.440 0.037 0.981 2.445 

BRACE 0.564 0.000 3.560 0.564 0.000 3.560 
DM: KL = 20' for C1-2 and C1-2b      

Structural System 7d 
 

Table 21: Comparison 1 (H1-1 at ALR =1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

 
second-order elastic; P-C; increment 0.01 

  
1 Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 
Member Pu/ɸPn Mu/ɸMn Eq. H1-1 Pu/ɸPn Mu/ɸMn Eq. H1-1 

C1-1 0.352 0.000 0.352 0.186 0.000 0.093 
C1-2a 0.571 0.661 1.158 0.301 0.661 0.889 
C1-2b 0.326 0.661 0.914 0.172 0.661 0.747 
C1-3 0.755 0.000 0.755 0.386 0.000 0.386 
B1-1 0.008 0.590 0.594 0.007 0.590 0.594 
B1-2 0.006 0.614 0.617 0.006 0.614 0.617 

Bracing 0.097 0.000 0.049 0.097 0.000 0.049 
DM: KL = 20' for C1-2 and C1-2b 
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Table 22: Comparison 2 (ALR at H1-1=1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection  Direct Modeling Stiffness Adjustment 0.8E and tauAISC 

  
second-order elastic; P-C; increment 0.005 

 
1 

Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mu/ɸMn ALR Pu/ɸPn Mu/ɸMn ALR 
C1-1 0.491 0.000 1.380 0.259 0.000 1.380 

C1-2a 0.511 0.547 0.895 0.325 0.762 1.080 
C1-2b 0.346 0.736 1.060 0.201 0.895 1.170 
C1-3 0.997 0.000 1.320 0.533 0.000 1.380 
B1-1 0.011 0.611 1.380 0.011 0.611 1.380 
B1-2 0.009 0.636 1.380 0.009 0.636 1.380 

Bracing 0.155 0.000 1.380 0.155 0.000 1.380 
DM: KL = 20' for C1-2 and C1-2b 

     
Structural System 8 
 

Table 23: Comparison 1 (H1-1 at ALR =1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection  Direct Modeling 
 

Stiffness 
Adjustment 0.8E and tauAISC 

 
 

second-order elastic; P-C; increment 0.01 
    

1 
Eq. H1-1 at an Applied Load Ratio =1.00 

DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mux/ɸMnx Muy/ɸMny Eq. H1-1 Pu/ɸPn Mux/ɸMnx Muy/ɸMny 
Eq. 

H1-1 
TC-1 0.278 0.414 0.361 0.967 0.072 0.414 0.361 0.811 
TC-2 0.653 0.372 0.770 1.668 0.169 0.372 0.770 1.226 
TC-3 0.858 0.198 0.932 1.862 0.222 0.198 0.932 1.226 
BC-1 0.074 0.576 0.083 0.696 0.074 0.576 0.083 0.696 
BC-2 0.169 0.409 0.046 0.540 0.169 0.409 0.046 0.540 
BC-3 0.222 0.205 0.009 0.411 0.222 0.205 0.009 0.411 
W-1 0.108 0.629 0.034 0.717 0.104 0.629 0.034 0.715 
W-2 0.042 0.810 0.036 0.866 0.040 0.791 0.031 0.842 
W-3 0.029 0.434 0.024 0.473 0.028 0.434 0.022 0.470 
W-4 0.029 0.000 0.025 0.040 0.028 0.000 0.015 0.030 

DM: KL = 48' for TC-1, TC-2, and TC-3; KL = 8' for W-1,W-2,W-3 and W-4    
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Table 24: Comparison 2 (ALR at H1-1=1.0) Using Direct Modeling Approach with τAISC 
 

Imperfection  Direct Modeling 
 

Stiffness 
Adjustment 0.8E and tauAISC 

 
  

second-order elastic; P-C; increment 0.005 
   

1 Applied Load Ratio when Eq. H1-1 = 1.00 
DM: K = 1 MDM: Pn = Py 

Member Pu/ɸPn Mux/ɸMnx Muy/ɸMny ALR Pu/ɸPn Mux/ɸMnx Muy/ɸMny ALR 
TC-1 0.280 0.403 0.398 1.010 0.076 0.279 0.680 1.085 
TC-2 0.546 0.329 0.173 0.830 0.163 0.372 0.532 0.965 
TC-3 0.691 0.168 0.176 0.800 0.216 0.197 0.678 0.970 
BC-1 0.297 0.664 0.110 1.040 0.081 0.814 0.137 1.095 
BC-2 0.628 0.384 0.033 0.955 0.215 0.656 0.226 1.320 
BC-3 0.814 0.198 0.009 0.945 0.296 0.351 0.434 1.485 
W-1 0.111 0.868 0.076 1.165 0.107 0.868 0.076 1.165 
W-2 0.068 0.891 0.074 1.100 0.065 0.891 0.074 1.100 
W-3 0.004 0.225 0.536 2.515 0.004 0.225 0.536 2.515 
W-4 0.191 0.000 0.277 2.515 0.184 0.000 0.277 2.515 

DM: KL = 48' for TC-1, TC-2, and TC-3; KL = 8' for W-1,W-2,W-3 and W-4 
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Column Study 
 
Major Axis Orientation 
 
Table 25: Comparison of Major Axis Strength of Column Obtained by Different Analysis 

Methods (Appx1, DM and MDM (τAISC)) and Their Percent Differences 
 

 
Major Axis Strength (Pu/Py) 

Percent Difference 
(%) 

L/rx Appx 1 DM MDM 
(tau_AISC) 

DM vs 
Appx 1 

MDM 
(tau_AISC) 
vs Appx 1 

0 0.900 0.9 0.9 0.000 0.000 
10 0.890 0.893 0.891 0.395 0.158 
20 0.874 0.874 0.881 0.060 0.912 
30 0.848 0.843 0.868 -0.601 2.431 
40 0.813 0.801 0.846 -1.478 4.150 
50 0.770 0.750 0.803 -2.705 4.195 
60 0.717 0.692 0.736 -3.559 2.657 
70 0.656 0.629 0.659 -4.079 0.429 
80 0.583 0.564 0.577 -3.341 -1.044 
90 0.506 0.498 0.496 -1.652 -1.906 
100 0.435 0.433 0.421 -0.348 -3.139 
110 0.373 0.372 0.354 -0.257 -4.942 
120 0.321 0.314 0.301 -2.120 -6.195 
130 0.278 0.267 0.258 -3.744 -7.083 
140 0.242 0.231 0.224 -4.895 -7.633 
150 0.213 0.201 0.196 -5.732 -8.091 
160 0.189 0.176 0.173 -6.428 -8.369 
170 0.168 0.156 0.153 -6.971 -8.863 
180 0.151 0.139 0.137 -7.422 -8.893 
190 0.136 0.125 0.123 -7.793 -9.248 
200 0.123 0.113 0.111 -8.129 -9.333 

 

142 
 



 

Figure 26: Comparison of Major Axis Strength of Column Obtained by Different Analysis 
Methods 
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Minor Axis Orientation 

Table 26: Comparison of Minor Axis Strength of Column Obtained by Different Analysis 
Methods (Appx1, DM and MDM (τAISC)) and Their Percent Differences 

 

 
Minor Axis Strength (Pu/Py) 

Percent Difference 
(%) 

L/ry Appx 1 DM MDM 
(tau_AISC) 

DM vs 
Appx 1 

MDM 
(tau_AISC) 
vs Appx 1 

0 0.9 0.9 0.9 0.000 0.000 
10 0.892 0.893 0.889 0.126 -0.320 
20 0.872 0.874 0.878 0.194 0.617 
30 0.838 0.843 0.862 0.510 2.793 
40 0.776 0.801 0.837 3.197 7.885 
50 0.706 0.75 0.793 6.169 12.371 
60 0.646 0.692 0.728 7.015 12.609 
70 0.585 0.629 0.651 7.432 11.120 
80 0.521 0.564 0.567 8.285 8.879 
90 0.457 0.498 0.489 9.000 7.077 
100 0.397 0.433 0.415 9.133 4.425 
110 0.344 0.372 0.349 7.926 1.497 
120 0.299 0.314 0.297 4.982 -0.486 
130 0.261 0.267 0.256 2.495 -1.957 
140 0.229 0.231 0.222 0.709 -3.008 
150 0.202 0.201 0.194 -0.688 -3.868 
160 0.18 0.176 0.171 -1.820 -4.638 
170 0.161 0.156 0.152 -2.743 -5.303 
180 0.145 0.139 0.136 -3.522 -5.703 
190 0.131 0.125 0.123 -4.155 -6.026 
200 0.119 0.113 0.111 -4.717 -6.361 

 

144 
 



 
 
Figure 27: Comparison of Minor Axis Strength of Column Obtained by Different Analysis 

Methods 
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