
Bucknell University
Bucknell Digital Commons

Master’s Theses Student Theses

Spring 2019

Testing and Validation Framework for Closed-
Loop Physiology Management Systems for Critical
and Perioperative Care
Farooq M. Gessa
Bucknell University, fmg005@bucknell.edu

Follow this and additional works at: https://digitalcommons.bucknell.edu/masters_theses

Part of the Biomedical Devices and Instrumentation Commons, and the Computer and Systems
Architecture Commons

This Masters Thesis is brought to you for free and open access by the Student Theses at Bucknell Digital Commons. It has been accepted for inclusion in
Master’s Theses by an authorized administrator of Bucknell Digital Commons. For more information, please contact dcadmin@bucknell.edu.

Recommended Citation
Gessa, Farooq M., "Testing and Validation Framework for Closed-Loop Physiology Management Systems for Critical and
Perioperative Care" (2019). Master’s Theses. 220.
https://digitalcommons.bucknell.edu/masters_theses/220

https://digitalcommons.bucknell.edu?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/masters_theses?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/student_theses?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/masters_theses?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/235?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/masters_theses/220?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@bucknell.edu

TESTING AND VALIDATION FRAMEWORK FOR CLOSED-LOOP
PHYSIOLOGY MANAGEMENT SYSTEMS FOR CRITICAL AND

PERIOPERATIVE CARE

By

Farooq Mousal Gessa

A Thesis

Presented to the Faculty of
Bucknell University

In Partial Fulfillment of the Requirements for the Degree of
Master of Science in Electrical Engineering

Approved:

Advisor: Dr. Philip Asare

Department Chairperson: Dr. Michael Thompson, PhD

Engineering Thesis Commi�ee Member: Dr. Joseph V. Tranquillo, PhD

Engineering Thesis Commi�ee Member: Dr. S. Mark Poler, MD

(Date: May 2019)

mst008
Stamp

1

Acknowledgements
I wish to thank my advisor Dr. Philip Asare for taking me on and giving me the
opportunity to work on such an exciting research project. His insightful advice and
feedback helped me through my progress.

I am also thankful to my committee advisors Dr. Joseph V. Tranquillo and Dr. Mark
Poler (MD), this thesis would not have been possible without their continued support
and guidance.

My deepest gratitude to Dr. John Mcilwane for taking the time to explain the infusion
protocol.

Dikendra, Win, Adit, Raphael and Sarah, the open connected medicine group, you have
been such great colleagues.

Special thanks to my family and friends for the moral support.

2

Table of Contents

Acknowledgements 2

Table of Contents 3

Chapter 1
Introduction 6

1.1 Background 6

1.2 Motivation 6

1.3 Research Objectives 8

Chapter 2
Background and Literature Review 10

2.1 Closed-Loop Systems in Medicine 10

2.2 Testing of Closed-Loop Medical Systems 11

2.3 Testing of Medical Devices Using Simulations 11

Chapter 3
Software Simulation of CLA-Patient Interactions 12

3.1 Motivation 12

3.2 Architecture Overview and Design 12

3.3 Implementation 14

3.3.1 Pulse Physiology Engine 14

3.3.1.1 Physiology Models 15

3.3.1.2 The Common Data Model and Common Software Framework 17

3.3.2. Modeling devices 17

3.3.2.1 Patient Monitors 18

3.3.2.2 Physiology Management Algorithms 18

3.3.2.3 Pumps 19

3

3.3.3 Running a simulation 19

3.3.4 Simulation Development 20

3.4 Case Study and Results 20

3.4.1 Clinical Scenario and General Strategy for Intervention 20

3.4.2 Simulation Setup 21

3.4.3 Results 25

3.4.3.1 Example Output 25

3.4.3.2 Single Patient Multiple CLA Designs 27

3.4.3.2 Full Design Space Exploration: Multiple Patients Multiple CLA
Designs 28

Chapter 4
System-in-the-Loop Simulation 30

4.1 Motivation 30

4.2 Architecture Overview and Design 30

4.3 Implementation 31

4.3.1 openmedap Platform 31

4.3.1.1 Platform Design 31

Hardware 32

Operating System and Network Services 32

Middleware: Robot Operating System (ROS) 33

4.3.1.2 Example Applications 35

Patient Monitor Demo 35

Pump Demo 35

Closed-Loop Demo 36

4.3.2 Time synchronization 36

4.3.3 Instrumenting the CLA 37

4.3.4 Simulating Pulse Virtual Patients in Real-Time 38

4

4.3.4.1 Virtual Patients with Simulated Devices in Real-Time 39

4.3.4.2 Virtual Patient with Real Devices in Real-Time 41

4.4 Case Study and Results 42

4.4.1 Real-Time Performance 42

4.4.2 Comparison of Patient Outcomes Across Simulation Types 45

Chapter 5
Discussion and Conclusion 50

References 52

5

Chapter 1
Introduction

1.1 Background
In today’s modern operating room, care of the surgical patient during an operation is
provided by a team of individuals referred to as the care team. The care team monitors
the patient’s physiological status by regularly checking the vital signs on display
monitors and other devices. Usually, the care process requires balancing administration
the appropriate amounts of intravenous fluids and drugs, often employing infusion
pumps whose parameters may be manually adjusted to keep the patient’s vital signs at
desired levels. During complex surgical procedures, more fluids are required. This
necessitates the simultaneous use of multiple pumps and, in most cases, these pumps
differ in purpose and monitored parameters. Further, utilization of multiple pumps can
prove to be cumbersome, requiring meticulous attention to input parameters to avoid
fatal medical errors.

To assist the team in such circumstances, we are designing and developing a
proof-of-concept computer-based system also known as a closed-loop assistant (CLA).
This system will handle all communication and connections between devices and
evaluate data obtained from monitoring equipment. The system will also process the
collected data and execute changes to the infusion pump parameters in order to let the
care team concentrate on other tasks. A conceptual picture of the CLA is shown in
Figure 1.1.

The focus of this thesis was on testing and validating systems like the CLA. Without
proper testing and validation tools, it is very difficult to design a CLA that is safe and
effective for use with patients.

1.2 Motivation
Since the care team will rely upon the stability of the CLA throughout the patient’s
surgery experience, it is crucial that the CLA is accurate to ensure the safety of the
patient and success of the surgery. The CLA should have the ability to perform

6

fundamental tasks such as informing the team of technical glitches like lost connection
to other devices. It should also be able to yield control to teams in similar situations.

Figure 1.1.​ CLA concept

Patient safety being a major concern, methods for verifying and validating the CLA, in
order to guarantee reliability, need to be developed. In addition, there should be a way
to confirm that the designed system meets its original specifications. One way to do this
would be to perform human trials but this process is complicated, potentially
hazardous, not reproducible, and expensive. Thus, human trials necessitate intricate
safety precautions. Animal studies are only somewhat easier, having similar limitations.
Furthermore, performing repeatable physiological trials to evaluate design
modifications is functionally impossible.

Models have been used before in this process. For example, in the study of glucose
regulation in patients with type 1 diabetes, ​in silico patients have been developed and
used to provide a basis for testing as well as optimization of diabetes treatment [1]–[5].
The same technique has been used to verify the safety properties of a closed loop
system which consists of the heart and a pacemaker [6]–[8]. Therefore, to achieve the
desired test coverage without worrying about test failures that can harm patients, we
have to design a software patient model that simulates human physiology.

For more realistic testing, this patient model can be connected to the rest of our system
through a physical simulator that generates and sends signals to the monitoring
devices. The patient model is designed to mimic human dynamics and responses and
therefore can be used to test our system in a closed loop. By mimicking the behavior of
the environment in which the CLA is expected to be used, the ​in silico model will allow
us to validate the CLA’s performance by testing the software algorithm that controls the

7

CLA and observe its interactions with the rest of the system. Consequently, we will
learn the response of the model to variations in the CLA’s parameters. Having such a
model will enhance safety by allowing us perform potentially dangerous tests in a
virtual environment.

1.3 Research Objectives
My research broadly focused on developing tools for testing systems like the CLA. Such
tools are critical to the development of CLA technologies. Figure 2 shows the
conceptual picture of the CLA as well as the identified key enabling science and
technologies. The patient models mentioned previously as critical to testing CLA
interaction with patient physiology is indicated as T1. The intelligent algorithms and
the platform on which they run which connect them to the various medical devices are
labeled as T2 and T3 respectively. For this thesis we did not focus on the interaction
between the CLA and the care team (T4), though this is important for full CLA
validation.

Figure 2.​ The CLA concept with enabling science and technologies highlighted.

8

Due to the distributed architecture, networking equipment, and interactions between
cross-vendor devices present in the CLA, there is uncertainty in the system behavior.
Testing allows to address this uncertainty because it facilitates the detection of defects
and evaluation of system performance before deployment.

The two main objectives of my thesis were:

1. Develop pure software simulation of CLA-patient interaction to provide early
insights into potential CLA behavior (​Chapter 3​)

2. Develop a framework for connecting a virtual patient model (T1) with a CLA (T2
and T3) consisting of real medical devices to facilitate realistic real-time,
system-in-the-loop testing of CLA to complement the results obtained for pure
software simulations in the first objective (​Chapter 4​).

9

Chapter 2
Background and Literature Review

2.1 Closed-Loop Systems in Medicine
One of the more well-known closed-loop system used in medicine is the pacemaker. It
is a device that is implanted underneath the skin that senses the activity of heart (and
sometimes other factors), and sends electrical signals to slow or increase the heart rate
[9], [10]. A more recent system is the artificial pancreas [11], [12] used in the
management of type 1 diabetes [13]. It consists of a continuous glucose monitor and an
insulin pump, and algorithm (either implemented on the pump or separate device), that
monitors the blood glucose and adjusts the insulin infusions based on this sensed
information. These two systems share some similarities. In both cases the patient
condition is chronic (or permanent). The devices compensate for lost function in the
body. Both these systems are also used by the patient outside the clinical environment
and provide care that enhance the quality of life for the patient.

There are closed-loop systems that are used in the clinical environment as well. Patients
during surgery or in the intensive care unit (ICU) sometimes temporarily lose the ability
to control their blood glucose properly. There is a commercial available
computer-system called Glucommander [14]. [15] that directs clinicians on how to
adjust insulin infusion based on the glucose test results input to the computer by the
clinician. Although this can be described as more of a decision support system, the
system can also be considered closed-loop because it decides on the infusion. There is
also recent work in closed-loop management of fluids [16], [17], blood pressure [18],
and anesthetics [19] during surgery. These systems are examples of the closed-loop
assistant (CLA) technology that is the focus of this thesis. They focus on treatment of
specific conditions that are temporary and are used under the supervision of clinicians
in the clinical environment. In addition, CLAs have to deal with more complex
physiological conditions since there can be multiple simultaneous treatment actions
going on.

10

2.2 Testing of Closed-Loop Medical Systems
At different phases of development, closed-loop systems undergo various tests. Early in
development, simulation is used to validate ideas and algorithms. When a feasible
prototype is developed, pre-clinical trials using animals is usually undertaken. At later
stages in the development various phases of human trials would be conducted [20].

However, not all closed-loop systems may go through all these phases. Where the
closed-loop system can start out as a decision support system, animal trials are
sometimes skipped altogether. The Glocummander systems [14] seems to have started
off this way as an automation of an already existing clinical protocol. In this case the
system functions as a decision support suggesting the new infusion but leaving the
option of whether to follow that suggestion or do something else to the clinician who
then implements whatever decision was taken.

For the diabetes case, a simulator was developed that was eventually approved as an
alternative to animal trials [1], [4].

2.3 Testing of Medical Devices Using Simulations
As mentioned previously, simulations are typically used earlier in the development
process to test and validate algorithm ideas. Recently, however, there has been interest
in leveraging simulations for testing much later in the design and development process.
The diabetes case, where the simulator has a patient population in addition to realistic
models of the medical devices involved is one example. The pacemaker verification case
mentioned earlier is another example. In that work, a hardware version of the virtual
heart model that can interact with real pacemakers was developed [21]. The ability to
run a test of a prototype of the real medical system with a simulated patient is typically
called ​in silico​ testing.

There is recent interest by the FDA in ​in silico testing as part of the evidence provided to
support the safety and efficacy claims made for closed-loop systems [22]. A recent
paper by FDA authors reviewed the use of simulations in testing various closed-loop
systems and offered suggestions on ways in which these simulations could be used to
support device claims, focusing on the validity of the simulation results [23].

The work in this thesis is aimed at provide such testing capabilities for CLAs at the later
stages of the design process in the hopes that this could help with safety and efficacy
analysis of these devices for the regulatory process.

11

Chapter 3
Software Simulation of CLA-Patient
Interactions 1

3.1 Motivation
The most ideal controllable and repeatable testing scenario for a CLA is with real
devices interacting with a realistic patient model. Pure software simulations, however,
provide a lower overhead but useful environment in which to explore early designs.
Because pure software simulations ran much faster than real-time, many scenarios can
be explored quickly. Even in pure software simulation, some non-idealities in system
behavior can be represented giving faster insights into potential issues and allowing for
improving early concept designs before committing to hardware and software that is
closer to the final product, which is also more expensive to iterate on. This chapter
focuses on a software framework we developed that allows for quicker early
explorations to complement the higher-fidelity real-time framework.

3.2 Architecture Overview and Design
A conceptual representation for the framework is shown in Figure 3.1. It is comprised of
models of medical devices such as monitors and infusion pumps, a physiology
management algorithm, and a patient physiology model. The monitor models the
interaction with the patient to derive vital signs that are reported periodically to the
algorithm. The pump models taking instructions from the algorithm and turning them
into infusion actions which results in fluids or drugs entering the patient at a particular
rate. The algorithm models software that receives data periodically for the monitors,
decides on actions (or inactions) based on this data and then instructs the pump on the
rate of infusion of various fluids or drugs. Although the platform that enables
connectivity between the devices and the algorithm and also runs the algorithm is not
shown explicitly, the communication between the different parts are modeled and
real-world issues like loss of data and delays are captured in a conceptual manner.

1 Most of the information in this chapter is reproduced from [24], which we presented at the 2018
Medical Cyber-Physical Systems Workshop in,Porto, Portugal

12

Figure 3.1.​ Conceptual architecture of software simulation framework for CLA-patient interactions

In spite of the fact that a only single a physiology management algorithm is
demonstrated in Figure 3.1, the framework is capable of handling interactions between
devices and several algorithms (with the potential for algorithms to interact with each
other). In addition, variations in any part of the architecture (patient, devices,
algorithm(s)) can be explored. The exploration of variations of such scenarios is
facilitated by the modular architecture of the key components of the framework. For
example, given a particular patient, we were able to explore the impact of various
renditions of the CLA. This can be achieved by changing either the devices or
algorithm, or their parameters. Likewise, we can also explore interactions between a
particular CLA instance with different patients. This allows us to undertake a design
space exploration using a patient population instead of a single patient model. The use
of the patient population allows us to understand how robust a particular design is to
inter-patient variability. This can also allow us to begin to see the potential safety level
of our early concept design using some of the techniques developed in [25]. The
conceptual picture of this design space exploration is shown in Figure 3.2.

13

Figure 3.2.​ Conceptual diagram showing the design space exploration using in-silico patient
models

3.3 Implementation
The software simulation framework is implemented using the Pulse Physiology
Platform [26], an open-source physiology platform based on well-validated models that
provides a software development kit (SDK) for interacting with the physiology models
that allow you to control and extract patient state, and present inputs to the patient (e.g.
infusion of fluids, or consumption of meals). We build our framework by developing
models of monitors, pumps, algorithms, and the connections between these, and
leveraged the Pulse SDK to connect the relevant parts to Pulse and to control to the
overall simulation.

3.3.1 Pulse Physiology Engine
One of the main objectives of the Pulse Physiology Platform is to aid in the design,
development and the adoption of physiologic modeling. Through the creation of a
modular and extensible ontology for the simulation of human physiology, Pulse can
speed up model development and also simplify integration with third party (for both

14

hardware testing and software simulation). To facilitate its integration, the Pulse
platform comprises a Common Data Model (CDM), a software framework, and the
Pulse Physiology Engine, as indicated in figure 3.3. Pulse has been used in a number of
medical simulations (e.g. [27], [28]), has a sizeable user community, and is developed by
a company known for delivering quality open-source tools useful for medical and other
applications. These reasons make it a good choice for software on which on our
framework is based.

Figure 3.3.​ ​Pulse Physiology Platform software architecture.

3.3.1.1 Physiology Models

This engine is built on top of various abstract models (model architecture illustrated in
Figure 3.4), that are used to simulate the feedback mechanisms and interactions
between the systems, pharmacodynamics/pharmacokinetics (PD/PK) and the medical
equipments like the anesthesia machine. These models are meant to represent the
different systems of the body.

15

The particular systems of the body consist of numerical models which use of circuit
analogues (like capacitors and resistors) to approximate behavior of a region of interest
or even system of the entire body.

Figure 3.4.​ Pulse Physiology Engine model architecture.

The PK model symbolizes substance movement, particularly the movement of drugs
through the whole body by means of clearance and diffusion focusing on the plasma
concentration after a period of time. The moment the plasma concentration has been
calculated accurately, the drug effects or even the PD effects on the vital signs are
implemented. This particular model is just like the feedback mechanisms, since
whenever the concentration of plasma increases, the lumped-parameter model [29] is
modified which turn adjusts the individual parameters such as the heart rate, blood
pressure and respiratory.

Also, the Pulse mechanisms that link the different systems together are important in the
modeling of the impact of multiple interventions (for instance, combining drug

16

infusions and ventilations) and also side effects of any interventions (for instance,
interventions that only reduce blood pressure will lead to an increased heart rate).

For additional flexibility, Pulse provides for patient variability, eight patients are
included by default in the Physiology Engine's repository. These patients are
characterized by a several parameters that can be modified through the patient files in
order to tweak their baselines. The individual files are then utilized in the initialization
of the computational. Only after the engine stabilizes can conditions such as chronic
obstructive pulmonary disease and renal stenosis be applied to the patient. This process
allows for analysis of different health conditions and treatments. Additionally, it is
possible to add custom patients by creating new patient files and changing values for
the different parameters within those files.

3.3.1.2 The Common Data Model and Common Software Framework

As earlier stated, the Pulse architecture was specifically designed for reduction of model
development time and increase the usability of the engine in simulations through a
modular, extensible software system that represents the human physiology. For these
goals to be achieved, the Pulse architecture provides a Common Software Framework
and a Common Data Model (CDM).

The CDM specifies the data and the associated relationships with physiology
simulation software in a dictionary-like format. The purpose of the Common Software
Framework was to speed up the development time through the provision of a place to
where common reusable algorithms can be implemented so as to ensure the basic
functionality between programs is maintained. Consequently, the implementation of
these common algorithms, simplifies reusability and validation which greatly speeds up
model development time and ensure consistency in the results.

A single interface for both inputs and outputs and also controlling the engine defines all
the methods, based on the CDM. This is an interface that enables hardware and
software developers to integrate Pulse into their respective application. It provides a
standardized approach for interacting with Pulse. For instance, controls to injecting
messages, output computed data values and advancing the engine time are provided.

3.3.2. Modeling devices
The CLA comprises of algorithms (assumed to be on a separate computer) and medical
devices as stated previously. In the software framework these devices are abstract
models of patient monitors and pumps. Interaction between these device components
and Pulse is achieved by utilizing Pulse’s engine interface to directly observe the patient
state and take appropriate action when needed. Similarly, the algorithm components

17

indirectly observer and effect action on patient state by interacting with the device
components.

3.3.2.1 Patient Monitors

Patient monitors directly interact with the Pulse physiology engine to access the
patient’s physiologic parameters. They can query these parameters at a rate whose
equivalent sample period is a multiple of Pulse’s timestep of 20ms (i.e. the monitor can
get a value from Pulse every 20·N ms where N = {1,2, ...}). At the same time, patient
monitors can output these physiologic variables to algorithms at a rate whose
equivalent period is an integer multiple of its input sample period (i.e. the monitor can
output values every inputPeriod·N where inputPeriod is how often it gets a value from
pulse and N = {1, 2, ...}). Each one of these variables can be sampled and produced by
the monitor at different rates provided there is a valid relationship between the rate at
which a variable is sampled from Pulse and its output rate.

The variables passed to the algorithm from the patient monitors can either be unaltered
values (i.e. as directly sampled from Pulse) or computed values (i.e. calculated from the
input variables especially if the computed value requires multiple sequential unaltered
values). For instance, we could model a monitor and computes the mean arterial
pressure (MAP) from the systolic and diastolic blood pressures values in spite of the
fact that it can we can directly obtain it from Pulse. Another example would be
computing the value of stroke volume variation from a sequence of multiple stroke
volume samples from Pulse.

Inaccuracies in values can be modeled by adding deviations from the true values before
they are output to the management algorithms. Though the current implementation
does not support modeling inaccuracies, it is extensible to support the inaccuracies plus
other behaviors. This should be in the future revisions as more cases are being
developed.

3.3.2.2 Physiology Management Algorithms

These receive patient physiologic data from the monitors and query any of the
accessible physiological parameters from the patient monitor at rate whose equivalent
sample period is a multiple of the monitor’s output rate for that parameter (i.e.
outputPeriodFromMonitor·N where N = {1, 2, 3...}).

Whenever new data retrieved, the algorithm can decide to either make a decision based
on the current input or delay the decision until enough samples are collected. The
algorithm will send a command instructing the pump to take specific actions depending

18

on the on the decision. In addition, it is capable of making decisions in-between data
arrivals since it has the opportunity to act in each time step of the simulation.

Since the case study we are working with operates on the order of minutes, we
currently do not model any issues of the algorithms executing on a computational
platform. In future as we encounter cases with finer time scales, reasonable issues like
computation time causing delayed decision making and interventions will be included.

3.3.2.3 Pumps

The pump conceptually delivers medicines and fluids into the patient at specific rates.
Pumps can receive and execute instructions which include start, adjust, or stop
infusions. Generally, they have a delay parameter that models computation time and
time for mechanical components to adjust to a command from the algorithm. To model
an ideal situation without physical effects this delay can be set zero. Inaccuracies such
as adjusting the rate before the infusion is applied or during the application of infusion
between adjustments can also be modeled. However, during our simulation the delays
were modeled but the framework can be easily extended to support inaccuracies as
well.

3.3.3 Running a simulation
The framework execution cycle relies on Pulse and because of this dependency, the
system is advanced at the same speed as Pulse which updates at discrete time steps
each representing 20ms of wall clock time in manner corresponding to a synchronous
reactive computation model [30].

Through the simulation engine component, the framework controls scenario events
specifically actions that happen to the patient independent of the CLA. As long as all
other components have been initialized, the execution cycle of the simulation engine we
built on top of Pulse is as follows:

(1) Check for scenario events (including stop conditions)
(2) Set up and apply any scenario events to patient
(3) Execute one timestep of Pulse
(4) Execute patient monitors
(5) Execute algorithms
(6) Execute pumps

The update function in each of the CLA components is invoked on each timestep to act
on the inputs at the point in time or not. There is also configuration file associated with
the system that allows the user to set and modify certain properties of the devices such

19

as the input and output rates, simulation running time, among others. The rate
information from the configuration file is used to regulate when inputs and outputs are
taken in and produced respectively. The benefit here, is that all changes to the
properties in the file can be made without the need to recompile the code.

3.3.4 Simulation Development
Developing a simulation in our framework entails writing C++ code as well as putting
information in a configuration file. The configuration settings are read and loaded into
the CLA components using the provided methods. Inside these methods we perform
basic error checking for example, confirming whether input and output out rates of the
different models align. Provided there are no errors, an executable file is created in The
folder where Pulse expects its executables to run from. That created executable is what
runs the simulation.

3.4 Case Study and Results
We developed and simulated a case study simulation based on low blood pressure
management in the ICU to demonstrate what the framework can do and the sorts of
explorations we hope to avail users.

In light of the discussion with Dr. John McIlwaine, DO, Medical Director for the Center
for Telehealth and eICU at the Geisinger Health System about they manage low blood
pressure cases, a greater part of what is presented here is specific to Geisinger, however
it is in accordance with general practice at other medical institutions. For demonstration
purposes and simplicity’s sake, several things were left out, in contrast to how it is
actually done in hospitals.

3.4.1 Clinical Scenario and General Strategy for Intervention
Low blood pressure (hypotension) usually categorized as mean arterial blood (MAP)
below 65mHg [31], [32] is not uncommon among patients in ICUs particularly those
under post-operative care. It is crucial that MAP is regulated to ensure oxygen delivery
to all organs in the body. One of the ways hypotension is managed is by infusing the
patient with both saline and a vasopressor drug such as norepinephrine meant to
narrow the blood vessels. Concurrently, the doctors may attempt to determine and
address its underlying cause during this process.

The case study was centered around the intervention using norepinephrine infusion. A
quasi-hybrid system shown in Figure 3.5 is a representation of procedures followed
during the infusion process. The primary objective of hypotension management is to get

20

the MAP into a tolerable range (i.e., between 65 mmHg and 85 mmHg) and keep it
within that range.

The procedure comprises three parts. The first part involves the initial response to the
hypotension where the patient is hit with the maximum allowed dose of the drug and
fluid infusion is also started (the initial transition in Figure 3.5). In our case study this
was maintained at a constant rate thus it was not included in Figure 3.5. The system
then waits for the MAP to increase (in the state labeled “Wait for increase” in Figure
3.5), checking every five minutes.

The second part starts after the MAP has increased to or beyond the threshold (denoted
by INC in Figure 3.5), which is usually around 100 mmHg. The dose is reduced to some
fraction of the maximum rate to avoid issues like high blood pressure and other side
effects that can result from infusing a high dose of the drug. The dose is reduced until
the MAP stops rising and begins to drop.

When the MAP drops to within the target range (denoted by MAP_MAX and
MAP_MIN in Figure 3.5), the third part which ensures that MAP is maintained within
this range (usually 65 mmHg and 85 mmHg) begins. Whenever the MAP falls below or
goes above this range, the dose is increased and reduced respectively to counter this
change. This process can continue for up to 24 hours or more, or until it is confirmed
that infusion of norepinephrine is no longer required. The MAP is consistently checked
every 10 minutes between actions, however, when it falls below range (i.e. 65 mmHg)
the frequency increases to every 5 minutes.

3.4.2 Simulation Setup
To explore the variability in both the CLA and the patients it must interact with, we
examined two slightly different infusion protocols across a small patient population
using the framework. We used three of the patients provided with Pulse. The three
patients were selected because they were able to withstand the initial hemorrhaging
used to create hypotension and the result intervention. The parameters tha Pulse uses to
define these patients are shown in Table 3.1. For more information on how Pulse uses
patient parameters to define different physiologies see [33].

We mimic postoperative hypotension in every patient by starting off with a lower
baseline MAP and hemorrhaging them until the MAP falls to 70 mmHg, whereupon the
protocol is triggered. For each patient, we ran the whole scenario for one hour of
simulation time.

21

Figure 3.5.​ State machine representation of hypotension management algorithm (i.e. the

norepinephrine infusion protocol).

22

Table 3.1.​ Patient Parameters

Parameter
Value for Patient

Diana
(ExtremeFemale)*

Gus Hassan

Sex Female Male Male

Age (yr) 18 32 28

Height (in) 54 70 72

Weight (lbs) 90.2 190 185

Body Fat Fraction
(0 to 1)

0.32 0.18 0.18

Right Lung Ratio
(0 to 1)

0.5 0.525 0.525

Systolic Blood
Pressure Baseline

(mmHg)

90 90 90

Diastolic Blood
Pressure Baseline

(mmHg)

60 60 60

Heart Rate Baseline
(BPM)

60 93 110

Respiration Rate
Baseline (1/min)

12 14 18

* See Pulse Patient Methodology [33]
By parameterizing the infusion protocol (depicted in Figure 3.5) and tweaking one of
the constants we were able to get two distinct strategies. That is, living all other
parameters unaltered, we changed the only the percentage reduction in the dose in both
algorithms. Table 3.2 shows the full infusion protocol parameters for both strategies.

For simplicity in the software framework, the modeled patient monitor outputs MAP
directly from Pulse as opposed to computing it from systolic and diastolic pressures like
real monitors do. We also assume the value is accurate and does not introduce any
error.

23

Table 3.2.​ Algorithm and General Simulation Parameters

Parameter

Symbol in
Figure 3.5

Value
Units

Algorithm 1 Algorithm 2

Patient MAP at start - 70 mmHg

Saline rate - 50 ml/hr

Norepinephrine
concentration

- 16 µg/ml

Maximum
norepinephrine
infusion rate

MAXRATE 84 84 ml/hr

Percentage reduction
in norepinephrine
infusion rate

PERCENT 75 87.5 %

MAP threshold to
start reducing dose

INC 80 80 mmHg

Upper threshold of
MAP target range

MAP_MAX 80 80 mmHg

Lower threshold of
MAP target range

MAP_MIN 75 75 mmHg

The timing of monitor, algorithm, and pump in terms of how often data is acquired,
output, or decided on is shown in Table 3.3. For the algorithm, we considered two
scenarios in terms of how often it checked and decided on the MAP. The first is based
on information from Dr. McIlwane, which represents what clinicians do (we called the
clinician behavior or the baseline), where the algorithm checks every 5 or 10 minutes
depending on the algorithm state. This represents realistically what clinicians in the
ICU are able to do given that they have multiple patients to check on as well as other
clinical tasks to perform. The second scenario has the algorithm checking once every
minute, since this is typically the rate at which data is recorded into electronic health
records [34], and represents the capability of a computer system being able to monitor
more frequently than a human.

24

Table 3.3.​ Model Timing Parameters

Parameters

Value

Units Clinician
Behavior
(Baseline)

Computer
System

Behavior

Monitor
Sampling From
Patient

Rate 2 points/minute

Period 30 secs

Monitor Output
to Algorithm

Rate 1 points/minute

Period 60 secs

Algorithm check
period

Wait for increase state* 5 1 minutes

After Wait for increase
state

(MAP > MAP_MIN)*

10 1 minutes

After Wait for increase
state

(MAP < MAP_MIN)*

5 1 minutes

Pump Infusion Action Delay 15 secs
* See Figure 3.5

3.4.3 Results

3.4.3.1 Example Output

Figures 3.6 shows plots of the various information extracted from an example
simulation. The results are shown in such a way that they highlight how patient data is
processed before it is presented on the monitor in a real patient monitor. For instance,
the patient monitor has to convert the sensed input signals into digital values for further
refinement before reporting them as the final observed values. The algorithm then sees
a further sampled version of what the monitor observes. The patient data shown depicts
the ‘ground truth’ MAP values coming directly from Pulse. In our simulation, the
patient monitor samples data from Pulse every 30 seconds, and then reports it as
observed data to the algorithm every minute. This shows that although a monitor can
observe values at higher time resolutions, it may only report values to other systems at
lower time resolutions so the algorithm’s view of the patient may not necessarily be the
same as the monitor’s view of the simulated patients. The algorithm uses this
information to decide when to send commands to pump to regulate infusion rates.

25

Though not noticeable in the figure, the pump has a delay of 15 seconds from when it
gets command till when the new infusion rate starts.

Both the target MAP range and the period the CLA starts interacting are highlighted in
all the plots to easily distinguish between the different parts of the scenario. From the
results, we can also confirm that algorithm is indeed following the logic detailed in
Figure 3.5 in line with the parameters in Table 3.2 by observing algorithm’s response to
the to changes in MAP data. Although we do not show explicitly which of the three
states the algorithm is in, the framework can be extended to capture and present this
information as well. Regarding this particular situation, it can be seen in Figure 3.6 that
the Algorithm 1 using the clinician behavior (baseline) timing successively got the
patient (Hassan) from a state of low blood pressure after a few minutes and then into
the targeted range within less 30 minutes from the start of the infusion process and was
also able to maintain his MAP in that range for remaining part of the simulation.

Figure 3.6.​ Result of running CLA with algorithm 1 parameters from Table 3.1

with a single virtual patient.

26

3.4.3.2 Single Patient Multiple CLA Designs

As mentioned earlier, one of the key advantages of this simulation framework is ability
to explore the impact of designs along two dimensions: the impact of different design
choices on a given patient, or the impact of patient variability on a given design. Both
dimensions can be explored simultaneously to understand how different designs
perform across the same patient population. Here, we look at the impact of different
design choices on a single patient to get an initial sense of the kind of results we can
expect from a design space exploration.

Figure 3.7 shows the results of of running the two different algorithms, and varying the
timing behavior in each algorithm, with a given patient (Hassan).

Timing
Behavior

Algorithm 1 Outcome Algorithm 2 Outcome

Clinician
(Baseline)

Computer
System

Figure 3.7.​ Results of varying CLA behavior for a given patient (Hassan).

The results show the advantage of simulation of over testing in biological systems
(humans or animals). For each simulation, the CLA version starts with the exact same
patient state. In addition, the only parameters that change are how often the CLA makes
decisions on adjusting infusions based on the MAP and how much it reduces or

27

increases the norepinephrine infusion rate. All other parameters remain the same. We
see four different patient physiology responses for the four different behaviors.

Based on the results, it seems like for this simulation scenario, when adjusting infusions
less often (clinician/baseline behavior), more aggressive rate changes (Algorithm 1)
yield better results. However, when adjusting infusions more often (computer system
behavior), less aggressive rate changes (Algorithm 2) yield better results. Although
overall adjusting rates more often keeps the patient within the range more, the more
aggressive rate changes cause the MAP to oscillate between the target boundaries
whereas the less aggressive rate changes provide a smoother MAP response.

For each case, we can dig deeper like in Figure 3.7 to see how the specific behavior of
the various entities may be contributing to the outcomes we observe.

3.4.3.2 Full Design Space Exploration: Multiple Patients Multiple CLA Designs

We can compare the four different CLA designs across the patient population as shown
in Figure 3.8. Here we are only looking at the patient physiology outcome. However, for
each patient, or each algorithm behavior we can examine the other outputs of the
simulation to understand how the physiology outcome arises. It seems like all the CLA
designs in this scenario have trouble keeping one patient in the desired range.
Algorithm 2 with the computer system timing seems to do the best job of keeping the
patients within the target range without too many oscillations in the MAP.

For larger populations, we could use these visualizations to get a general sense of how
the CLA does, or we could define metrics using techniques in (Asare dissertation) to
define the performance of the CLA and compute these metrics to compare different
designs. This ability to examine the performance of different CLA design choices across
a patient population is the kind of capability we hope to provide to designers. The
results from the software-only simulation part of the framework allow for rapid
exploration of various designs in the early development stages, especially when no
prototype of the system exists. The results here can inform the design of a prototype. In
the later stages of the development when a prototype exists, however, it would be more
desirable to be able to test the actual prototype with virtual patients. This capability is
described in the next chapter.

28

Timing
Behavior

Algorithm 1 Outcome Algorithm 2 Outcome

Clinician
(Baseline)

Computer
System

Figure 3.8.​ Results of varying CLA behavior for a patient population (Hassan, Gus, and Diana).
Gus and Hassan behave similarly. The algorithms have trouble with is Diana.

29

Chapter 4
System-in-the-Loop Simulation

4.1 Motivation
As mentioned at the end of the previous chapter, once a prototype of the system exists,
it is more desirable to test the actual prototype with virtual patients. This provides the
repeatability and controllability advantages of simulation, while increasing the realism
of the environment in which the design is tested. This chapter describes the design and
implementation of the part of our framework that allows for such real-time testing with
real CLA prototypes.

4.2 Architecture Overview and Design
The conceptual architecture for this part of the framework is very similar to the
software only part of the framework as shown in Figure 4.1. The main difference is that
we now have to develop physical versions of the lines that connect all the pieces. In
particular, on the device-patient interaction side, we have to design and develop
physical systems for converting the information from Pulse into physical signals, that
mimic signals from an actual human, that the patient monitor can capture and interpret,
as well as for providing the right vascular resistance to the pump and converting
measured fluid flow out of the pump into fluid flow into the virtual patient model. On
the devices-algorithm side, we either have to leverage an existing CLA that can connect
to existing medical devices to receive patient data from the monitor and control
infusions on the pump, or develop our own CLA for testing. Fortunately, we have our
own research prototype medical application platform on which CLA behavior can be
developed to leverage. In addition to connecting all the various pieces, we also have to
ensure that information flows in and out of the virtual patient to guarantee real-time
behavior of the overall system.

Similar to the case of the software-only simulation, what is most useful is the data that
comes out of the simulation: not only the patient physiology data, but data about the
behaviors of all the parts of the CLA. This means we must able to instrument the CLA
system and capture the data flowing between the devices and the algorithm as well as
the algorithms internal state and decision-making.

30

Figure 4.1.​ Conceptual architecture of system-in-the-loop simulation framework for CLA-patient

interactions

4.3 Implementation

4.3.1 openmedap Platform
The research prototype medical application platform we used to implement the CLA for
this work is openmedap [35]. It provides an ‘abstraction layer’ of the inner workings of
the CLA system in order to enable the developers focus on building applications
without the details of the devices being a major bottleneck. In addition, drivers for
hardware devices such as the monitor and pump are provided to facilitate interaction
and software development process.

4.3.1.1 Platform Design

Figure 4.2 shows the openmedap system architecture. From a connectivity or dataflow
perspective, there are the medical devices that provide variables or abilities to act (e.g.
infusing fluids) that the algorithm (or application) wants to make use of. The device
drivers abstract away the specific devices and provide these variables and abilities to

31

act to applications through the device manager. The device drivers and manager work
together to ensure that all pieces act safely when connectivity fails.

Figure 4.2.​ ​openmedap architecture.

Hardware

From the abstraction layer perspective, at the lowest level is the hardware, which
consists of the devices (in this case a monitor and pump), a host computer, one network
switch, and 2 single-board computers (SBCs) that serve as the devices drivers (one per
device). In this case, the SBCs are the BlackBone Black (BBB) [36]. Each of the BBB is
connected to a medical device and they host drivers of the attached devices to enable
communication with the rest of the system and vice versa.

Operating System and Network Services

Above the hardware level is the operating system level that provides services that
higher layers can access. All the hardware in the system run on The Ubuntu [37]
operating system. The current version of openmedap runs on Ubuntu 16.04.6 LTS [38],
which is a long term support version and will have maintenance updates until 2022.

32

Ubuntu was chosen as the operating system because of the software available to control
more easily the operating system services that the platform needs. The main services
are the domain name system (DNS), the dynamic host connection protocol (DHCP), and
transmission control protocol/internet protocol (TCP/IP) deal with network connectivity
and communication and allow us to connect the host computer to the BBB in ways the
make the other layer so the platform run well.

The host computer (which also acts as a router) manages all the data communication
across the network. By using the dnsmasq tool the host PC is able to act as both DNS
and DHCP server. In other words, it can automatically assign, reclaim and manage the
IP addresses centrally in a pool. The dnsmasq [39] tool is a lightweight infrastructure for
small networks used for providing both Domain Name Server (DNS) and Dynamic
Host Configuration Protocol (DHCP) server capabilities. Because computers in a
network do not communicate in a human-like manner rather they use IP addresses that
reference to a certain device in a network. The DNS server is used to automatically
convert IP address like ‘192.168.xxx.xxx’ to their respective domain name such as
‘example.com’ and vice versa. This enables the computer to be identified by a
‘user-friendly’ name over the network.

The DHCP server automatically assigns and distributes IP address to computers in a
defined network range. It also packages other network parameters such as the subnet
mask and the default gateway to each device in a network. Without the DHCP server,
each computer added or removed from the network would require their IP addresses to
be manually configured and reclaimed respectively. The DHCP server helps to solve
this problem by performing dynamic assignment of IP addresses and returning IP
addresses that are no longer in use to the DHCP pool which manages them centrally for
reallocation to other DHCP-enabled clients. Since IP addresses are assigned
dynamically, the same computer may not get the same IP address each time it joins.
This is why the DNS is important, since it keeps track of which computer name (which
doesn’t change) is assigned to which IP address. That way we can keep referring to the
same computer by name even if its IP address changes each time it joins the network.

Middleware: Robot Operating System (ROS)

Above the operating system level is the middleware which handle messaging processes
within the application and provides simpler mechanism for communication between
the application, devices drivers, and the device manager than the lower-level operating
system mechanisms. The current version of openmedap uses the robot operating system
(ROS) [40] as its middleware because of the flexibility it provides as the system evolves
over time. ROS is used to handles connections and communication between the

33

different software pieces (nodes) that make up the various endpoints of our system.
These endpoints include the device drivers, the device manager, and the applications.

Figure 4.3.​ ​Overview of ROS interactions showing two nodes named “Talker” and
“Listener”. Master is the part of ROS the manages all the interactions between nodes.

ROS is made up of various packages, libraries and tools that help it to perform its
functionalities. Among these tools are communication processes referred to as nodes.
ROS encourages modularity by ensuring that application is separated into components
where each performs a specific task. These components are referred to as nodes. In the
current setup, the endpoints (pump, monitor and the computer hosting algorithm) are
the nodes.

In order for these nodes to communicate, messages are published (e.g. by Talker node)
through a particular channel (or topic). The message are received by all the nodes (e.g.
Listener node) subscribing to that topic. The setup is shown in figure 4.3. The peer-to
peer model used by ROS to enable nodes to either transmit or receive data known as the
publish/model.

Before establishing a peer to peer communication, the nodes need to register with the
‘Master’. The Master is mainly concerned with registration of names and any other
information pertaining to the nodes on the network. This is useful because it ensures
that all the nodes can easily locate each other, otherwise, it would be impossible for
them to communicate. It is usually invoked by issuing ‘roscore’ command in the
terminal.

34

Furthermore, ROS supports inter-process messaging between components that are
distinct from each other and are operating in different programming languages that are
different from each other. This feature greatly simplifies communication between
components in our system which are built in different languages (i.e., python and C++
components).

4.3.1.2 Example Applications

Openmedap comes with example applications that demonstrate its capabilities for
connecting to medical devices as well as for development software that makes use of
these medical devices. There are three current example applications: an application that
displays the heart rate and oxygen saturation from a Philips Intellivue patient monitor
(patient monitor demo), one that starts, adjusts, and displays infusions from a
BodyGuard 121 Twins infusion pump developed by CME America (pump demo), and
an application that reacts to data coming from the Philips monitor by adjusting the
infusion rate on the CME pump (closed-loop demo).

Patient Monitor Demo

This demo application demonstrates the communication management capabilities of
openmedap and also its ability to send messages from a device to an application for
display. The application connects to a receives information from a device driver for the
Philips Intellivue patient monitor (in this case an MP50).

On startup, the application checks to see if the device is available for connection. If it is
not, the application indicates this and does not allow the user to start the monitoring.
Once the device is detected, the connection is indicated as green and the user can now
start the monitoring. At any time during the monitoring, if the device is disconnected,
the user is alerted. Once the user acknowledges receipt of the alert, the application goes
back to the start screen and indicates in red or yellow that the driver or device
connection is lost respectively.

Pump Demo

The Pump Demo application provides an interface for users interact with a pump (in
this case the CME America BodyGuard 121 Twins pump). Like the Patient Monitor
Demo, this application also displays the device and driver connection status on startup,
and monitors this connection while the pump is running in order to alert the user if the
connection is lost while the pump is running. The application lets the user initializes
pump with specific setting parameters (i.e. bag volume and infusion rate) provided the
pump is connected. While the pump is running, it displays the current rate and volume

35

left to be infused. The user can also adjust the infusion rate while the pump is running.
They can also pause, resume, or completely stop the infusion.

Closed-Loop Demo

The Closed-Loop Demo application demonstrates automated monitoring and infusion.
The application monitors the heart rate and oxygen saturation and adjusts the pump
infusion rate based on the heart rate value. Like the other two applications, it also
continually monitors the connection to the two devices it works with and will alert the
user and stop operation if a connection is lost. On startup, if both devices and drivers
are connected, the user can start the application. Both the monitor values and the
current state of the pump are displayed in the application while in action so the user
can see what data the algorithm that adjusts infusions is acting on and what actions it
takes.

4.3.2 Time synchronization
The CLA being a distributed system, it demonstrates the critical importance of clock
synchronization. Typically, each device on the network runs off its own internal clock.
This can be a major constraint for applications that depend on the clock accuracy and
synchronicity in such systems (for instance the logging service on which the system
may relies to record events in the order in which they occurred). To overcome this
limitation the Network Time Protocol (NTP) was utilized.

NTP is a standard computer protocol used throughout the internet as a means of
achieving and maintaining synchronization of clock times among communicating
computers and other network infrastructure in a network [41]. When computer devices
communicate in a network, the timestamps of the data packets, time difference, and the
latency duration are encoded on the message and when the receiver gets the message, it
decodes and reads the information. NTP is an application layer protocol and in its
implementation, NTP comprises the following phases, network time servers (NTS),
NTP stratum, precision oscillators, and the client software.

A network time server is a device (which in our case is the host computer) that receives
precise time from an external hardware clock and provides the accurate timing
reference to the network. This accurate time is maintained internally and passed to the
network time clients upon request. The network time server then provides a time
reference to all devices in a network. NTP stratum is a series of hierarchical protocols.
Each stratum is synchronized to the level above in the hierarchy. At the top level, there
is a stratum 1 server which provides an accurate time reference to an external hardware

36

clock. The precision oscillators are used to provide time reference backup, examples
include rubidium and an oven-controlled crystal oscillator.

In practice, the NTP works in a request and response format where the NTP clients
(beaglebones connected to the CLA components in our case) initiate a request to the
time servers then it synchronizes it’s time to match the time on the server clock. The
client is also able to calculate the link delay (latency) and its local offset (The absolute
difference on the time value of the two clocks). It includes a pair of peer/poll processes
for each reference clock or remote server used as a synchronization source. Packets are
exchanged between the client and server using the on-wire protocol. The poll process
sends NTP packets at intervals ranging from 8 s to 36 hr. The peer process receives NTP
packets and performs the packet sanity tests and the results of various access control
and security check.

Once synchronized, the client updates the clock about once every 10 minutes, usually
requiring only a single message exchange. This transaction occurs via the User
Datagram Protocol on port 123.

The architecture for our NTP implementation is shown in Figure 4.3.

Figure 4.3​.​ ​NTP Architecture

4.3.3 Instrumenting the CLA
To be able to gather and collect data generated during simulations, some form of
instrumentation was required. We developed a logger using the python. The logger
records its data in CSV files. The recorded data contains all the events as well as the

37

time at which they occurred during the simulation run. For instance in case of the
physiology algorithm, the logger was able to capture the invasive blood pressure (IBP)
values received from monitor on each time step, instructions that were sent to the
infusion pump and other useful things which the user can analyze at a later point. The
information captured is formatted in such a way that it can easily understood by the
user. Figure 4.4 is a snippet showing the kind of formatted messages captured by the
logger. Each instance of an event has the date, time, module name, logging severity
level and the message.

Figure 4.4.​ Snippet of logged messages

4.3.4 Simulating Pulse Virtual Patients in Real-Time
Pulse drives the entire execution process and as stated earlier, it can execute and
produce outputs relating to the patient’s state at a rate of 50Hz by default. Since we are
using actual medical devices in this case, it is desirable that we run simulations in real
time in order to try to mimic what actually happens in a clinical setting in real time
(specifically the ICU in our case). The synchronization process which involves sending
the data from Pulse to monitor and initiating infusion is handled within the Prosim
driver update method. Figure 4.5 shows how the synchronization between Pulse and
the system clock time is achieved. N and t denote the total number of simulation steps
and time between updates in the real world respectively (put simply,

N = TotalSimulationTime/t, where t = {1,2,3…}). The steps involved in this process are
as follows.

(1) Pulse Advance time
(2) Send physiologic variables to monitor
(3) Initiate infusions
(4) Wait until next update

38

Figure 4.5.​ Pulse to real-time synchronization

The Pulse Advance time should be equal to the update period t in real world. The time
information is set by the user in the configuration file and for the case study the update
period was set to 1s. Figure 4.6 is an excerpt of the recorded data demonstrating a 1
second interval between each timestep in a real-time simulation. We analyze the
real-time performance of the system in ​Section 4.4 where we present and discuss the
results of evaluating this realtime framework based on the case study introduced in
Section 3.4​.

Figure 4.6​ Snippet of recorded real-time durations

4.3.4.1 Virtual Patients with Simulated Devices in Real-Time

Before committing to a setup with real medical devices, we propotyped a scenario
where everything operated in real-time but with simulated devices. Where the virtual
patient interacts with the openmedap platform and openmedap-based algorithm
through a simulated pumps and monitors. This allows us to identify any issues in the
real-time architecture while eliminate issues from the devices themselves as possibility.
It also serves as a useful real-time testing framework for those who may not have access
to the medical devices.

39

https://docs.google.com/document/d/1WTwvDBF4jF7IDWvCXyFwnzWQRpauGcEf0o5XOdRiviE/edit#heading=h.2ercga988ggf
https://docs.google.com/document/d/1WTwvDBF4jF7IDWvCXyFwnzWQRpauGcEf0o5XOdRiviE/edit#heading=h.ahfgasqhprdo

Pulse which implements the virtual patient needs a way to interact with the
openmedap-based CLA. We rely on ROSBridge [42] to to achieve this functionality as
shown in Figure 4.7. ROSBridge is a collection of different ROS packages that enable
non-ROS applications (like our patient simulation in Pulse) to interact with ROS
applications. This package allows non-ROS apps to create ROS channels, through which
data can be published and received as JSON strings using ROSBridge API.

Figure 4.7.​ Conceptual picture of Pulse interacting with openmedap-based CLA algorithm in
real-time using the simulated devices.

The simulated monitor publishes to the ‘/monitor’ channel which the openmedap-based
algorithm subscribes to in order receive patient related information. The data published
on this channel includes both the systolic (​ABP​sys​) and the diastolic (​ABP​dias​) blood
pressure values. The algorithm uses this data to compute the mean arterial blood
pressure (MAP) (using the equation 4.1), on which it bases to make decisions (i.e., send
commands to pump). The value obtained from the formula is only an estimate of the
true MAP value, which is more accurately derived using the area under the curve of the
arterial blood pressure waveform.

 ​ ​ (4.1)APM = 3
1 · ABP sys + 3

2 · ABP dias

40

The pump provides a ‘/pump’ channel where it receives action commands from the
algorithm. Pulse intercepts the messages from the algorithm to the pump and
implements the action that the algorithm wants in the simulation.

4.3.4.2 Virtual Patient with Real Devices in Real-Time

In contrast to the simulated devices setup, here the virtual patient interacts with the
openmedap platform via real devices. The architecture is shown in Figure 4.8

Figure 4.8.​ Conceptual picture of Pulse interacting with openmedap-based CLA algorithm
using real devices.

In order for Pulse to interact with the monitors we use The Fluke Biomedical Prosim 8
patient vitals simulator hardware [43]. The Prosim 8 hardware is a device that converts
the physiologic values from Pulse into physical signals that can be detected by standard
patient monitors. Pulse communicates with the Prosim 8 hardware via a driver that we
developed.

Currently, Pulse with the pump via ROSBridge. We are currently working on a solution
that does not require intercepting the messages to adjust infusion rates to the pump.

41

This would make the interface between the virtual patients and the medical devices
(patient monitor and pump) fully agnostic to the specific devices used.

4.4 Case Study and Results
We repeated the scenarios using the clinician (baseline) timing behavior of the
algorithm that were run in the software-only framework in the real-time framework
both for the case with simulated devices and for the case with real devices. These
allowed us to compare how the results change as we increase the realism of the test
environment from low level for realism in the software-only simulations to the higher
level of realism in system-in-the-loop simulation with real devices. We worked with the
clinician baseline because that is the scenario against which we can validate the data in
the future once we have access to clinical data.

4.4.1 Real-Time Performance
In order for this part of the framework to be useful, it must be able to operate in
real-time on reasonable computing resources. Earlier, in Section 4.3.4, we showed a
snippet of the logged timing data to show that the system updates once every second as
intended. For our case study, updates once every second was chosen because this is the
minimum rate at which monitors and pumps are able to respond over their respective
computer interfaces. It also represents the order of magnitude of time at which humans
who interact with the system are able to reasonably respond.

The specification for the computer on which virtual patient was run for all real-time
experiments is shown in Table 4.1.

Table 4.1. ​Virtual patient computer specifications

Parameter Value

Brand Lenovo ThinkCentre M83 Tiny

CPU Intel® Core™ i5-4590T CPU @ 2.00GHz (4 cores)

RAM 15.6 GiB

Operating System Ubuntu 16.04 LTS

We found in experimentation that capturing the infusion information from the pump
works consistently when there is a 0.2s timeout on reading the information. In

42

measurements, we found that this timeout dominates the infusion update. For updating
the Prosim 8 hardware, we send four different commands and wait 0.1s between
sending commands. In measurements, we found that this waiting time dominates the
overall updates to the Prosim 8 and measured consistently that the Prosim 8 hardware
took 0.4s to update. This means the remaining 0.4s in the update time is what Pulse has
to work with. Figure 4.9 shows how long each 1s step of the simulation took to update
in Pulse over the course of each of the 12 one-hour real-time simulations. Figures 4.10
and 4.11 shows the distribution of Pulse update time values for each simulation for the
simulated devices and real devices cases respectively.

In all cases, none of the simulations exceed the 0.4s bound at any point during the
simulation. Most of the simulations stay around the 0.2s mark or less.

Figure 4.9. ​Pulse time to simulate 1s of simulation time at each point in the real-time

simulation for 12 different simulations. The blue line indicates the maximum allowed time.

43

Patient Algorithm 1 Algorithm 2

Diana

Gus

Hassan

Figure 4.10. ​Distribution of Pulse time to simulate 1s of simulation time
for the simulated devices case. The blue line indicates the maximum allowed time.

44

Patient Algorithm 1 Algorithm 2

Diana

Gus

Hassan

Figure 4.11. ​Distribution of Pulse time to simulate 1s of simulation time
for the real devices case. The blue line indicates the maximum allowed time.

4.4.2 Comparison of Patient Outcomes Across Simulation Types
One simple comparison of the difference in behavior of the different simation types
(software-only, real-time with simulated devices, real-time with real devices), is to
examine the ‘ground truth’ MAP of the virtual patient for the same simulation scenario.
If there is any significant disagreement between values across the simulations, we can
use the other logged data to examine the behavior of other parts of the system using the

45

data that is logged. Figure 4.12 shows the plot of the MAP for all three simulation types
for each patient under the baseline timing behavior of the algorithm. For these plots the
results mostly agree with the exception of the versions with simulated devices for Gus
and Hassan. We can dig deeper into these specific simulations to understand why the
differences arise.

Patient Algorithm 1 Outcome Algorithm 2 Outcome

Diana

Gus

Hassan

Figure 4.12.​ Comparison of patient outcomes across
simulation types (baseline timing behavior).

46

Figure 4.13 shows the case of Gus with the simulated devices in real-time under
algorithm 1 indicating the algorithm’s view of the patient’s MAP, as well as the ‘ground
truth’ patient MAP. Remember from equation 4.1 in Section 4.3.4.1 that for the
simulated devices case, the algorithm estimates the MAP from the systolic and diastolic
arterial pressures reported by the simulated monitor, and that this equation is an
approximation that does not account for the area under the curve of the arterial
pressure waveform which is the more accurate MAP measure. You can see in this
Figure that the algorithm consistently underestimates the MAP which causes it to
increase the norepinephrine infusion although the actual MAP is within range at
around the 53-minute mark.

Figure 4.13.​ Result of simulating Gus in real-time under algorithm 1 with baseline timing

behavior using the simulated devices.

The reason why the increase in infusion is not immediate is because around the
33-minute mark it changes the infusion to continue to ensure the decline of the MAP
and waits 10 minutes to check the MAP again, as spelled out in the algorithm
description in Section 3.4.1 and shown in Figure 3.5. At the 43-minute mark, the

47

algorithm realizes that the MAP has reduced below the intended decline threshold and
switches states to keeping the MAP within the target range. While switching states, the
algorithm does not adjust the infusion. This is the specified this behavior in Section 3.4.1
and Figure 3.5. After the state switch, the algorithm waits another 10 minutes before
checking the MAP to adjust infusions. At the 53-minute mark it estimates that the MAP
is below the target range so it increases the infusion. It then waits 5 minutes as
specified, and then adjusts the infusion again at the 58-minute mark.

The real devices simulation as shown in Figure 4.12 does not have this problem because
it uses the MAP value from the patient monitor which computes the MAP from the
arterial waveform.

The real devices simulation would sometimes encounter problems since it was
operating on the full openmedap platform. Figure 4.14 shows one such case (Hassan
under algorithm 1 with the baseline timing behavior) where the real-time simulation
does not agree with the software-only simulation. Upon further examination in Figure
4.15, we can see that the algorithm stops receiving MAP values from the patient
monitor around the 23-minute mark due to a lost connection to the monitor. Because of
this, the algorithm is unable to react to the MAP values and change infusions, and the
pump continues to infuse and the most recent rate that it was programmed to use by
the algorithm, which results in the patient MAP behavior seen.

Figure 4.14.​ Example of when real-time with real devices behavior deviates from

software-only-simulation behavior for Hassan under algorithm 1 using baseline timing.

48

Figure 4.15. ​More in-depth view of algorithm behavior of real-time simulation shown in

Figure 4.14.

49

Chapter 5
Discussion and Conclusion

In this thesis we presented the motivation for, design, and development of a framework
to examine the efficacy of a physiological management strategies or systems in
improving patient outcomes. To demonstrate the utility of the framework, we
simulated and compared different algorithm strategies across a group of patients
through both software-only only simulation and system-in-the-loop simulation. The
software-only framework allowed us to quickly gain insights into which physiology
management strategies or systems had the potential to result into better outcomes. The
system-in-the-loop framework allowed us to understand better the behavior of different
systems or strategies in a more realistic setting. In ​Chapter 4​, we showed how this
framework and its logging mechanisms can be used to understanding deviations of
real-time behavior from the software-simulation-only (more ideal) behavior.

Although the framework is targeted at testing and validating technologies for managing
physiology (CLAs), it actually serves as a good framework for also evaluating protocols
that humans would apply manually. The case study in ​Chapter 3 illustrated this where
we modeled the behavior of clinicians as a baseline. Since the real-time virtual patient
system actually only interfaces directly with the medical devices, it cannot tell whether
what is using the data from the monitor and adjusting the pump is a human or a
computer algorithm. This means we can also use that part of the system-in-the-loop
framework to evaluate clinical protocols applied by humans. More importantly, since
the CLA is an assistive tool and would be supervised by a clinician who can take over
treatment by working directly with the devices, the approach to the real-time
simulation actually allows for evaluating the CLAs that are working with clinicians.
This can prove to be a useful tool for learning about how clinicians might interact with
CLAs and also for training clinicians to work with CLAs.

The biggest limitation of the work is in the patient models and patient population.
Although we were able to show proof-of-concept of the kinds of exploration a designer
would be able to undertake, because of the limited set of patients in Pulse and also the
fact that the patients are not currently specifically designed to properly model patients
undergoing surgery or in critical care in the ICU, were a not able to make any
meaningful claims about the clinical relevance of our the results obtained from
simulation. One important direction for future work is to improve the patient models to
they can represent such physiologies and also to expand the number of different

50

patients so that more inter-patient variability can be explored, which would in turn help
to increase the robustness of systems that leverage the simulation capabilities we
provide for testing and validation.

51

References

[1] B. P. Kovatchev​ et al​, "In Silico Preclinical Trials: A Proof of Concept in
Closed-Loop Control of Type 1 Diabetes," ​J Diabetes Sci Technol, ​vol. 3, ​(1), ​pp.
44-55, 2009. Available:​ ​https://doi.org/10.1177/193229680900300106​.

[2] L. Magni​ et al​, "Evaluating the Efficacy of Closed-Loop Glucose Regulation via
Control-Variability Grid Analysis," ​J Diabetes Sci Technol, ​vol. 2, ​(4), ​pp. 630-635,
2008. Available:​ ​https://doi.org/10.1177/193229680800200414​.

[3] C. D. Man, R. A. Rizza and C. Cobelli, "Meal Simulation Model of the
Glucose-Insulin System," ​IEEE Transactions on Biomedical Engineering, ​vol. 54,
(10), ​pp. 1740-1749, 2007. DOI: 10.1109/TBME.2007.893506.

[4] S. D. Patek​ et al​, "In Silico Preclinical Trials: Methodology and Engineering
Guide to Closed-Loop Control in Type 1 Diabetes Mellitus," ​J Diabetes Sci
Technol, ​vol. 3, ​(2), ​pp. 269-282, 2009. Available:
https://doi.org/10.1177/193229680900300207​.

[5] M. Breton and B. Kovatchev, "Analysis, Modeling, and Simulation of the
Accuracy of Continuous Glucose Sensors," ​J Diabetes Sci Technol, ​vol. 2, ​(5), ​pp.
853-862, 2008. Available:​ ​https://doi.org/10.1177/193229680800200517​.

[6] Z. Jiang, A. Connolly and R. Mangharam, "Using the virtual heart model to
validate the mode-switch pacemaker operation," ​Annual International Conference
of the IEEE Engineering in Medicine and Biology Society​, August 2010, . DOI:
10.1109/IEMBS.2010.5626262.

[7] Z. Jiang and R. Mangharam, "Modeling cardiac pacemaker malfunctions with
the virtual heart model," ​Annual International Conference of the IEEE Engineering
in Medicine and Biology Society​, August 2011, . DOI: 10.1109/IEMBS.2011.6090051.

[8] Z. Jiang​ et al​, "Real-time heart model for implantable cardiac device validation
and verification," ​22nd Euromicro Conference on Real-Time Systems, ​July 2010, .
DOI: 10.1109/ECRTS.2010.36.

[9] U.S. National Library of Medicine. “Heart pacemaker: MedlinePlus Medical
Encyclopedia.” [Online]. Available:
https://medlineplus.gov/ency/article/007369.htm​. [Accessed Apr. 25, 2019]

[10] National Heart, Lung, and Blood Institute (NHLBI). ​Pacemakers​. [Online].
Available:​ ​https://www.nhlbi.nih.gov/health-topics/pacemakers​. [Accessed Apr.
25, 2019]

52

https://medlineplus.gov/ency/article/007369.htm
https://doi.org/10.1177/193229680800200414
https://doi.org/10.1177/193229680900300207
https://www.nhlbi.nih.gov/health-topics/pacemakers
https://doi.org/10.1177/193229680800200517
https://www.nhlbi.nih.gov/health-topics/pacemakers
https://doi.org/10.1177/193229680900300106
https://doi.org/10.1177/193229680900300106
https://doi.org/10.1177/193229680900300207
https://medlineplus.gov/ency/article/007369.htm
https://doi.org/10.1177/193229680800200414
https://doi.org/10.1177/193229680800200517

[11] U.S. Food and Drug Administration. “The Artificial Pancreas Device System”.
[Online]. Available:
https://www.fda.gov/medical-devices/consumer-products/artificial-pancreas-de
vice-system​ [Accessed Apr. 25, 2019]

[12] U.S. Food and Drug Administration, "What is the pancreas? What is an artificial
pancreas device system?". [Online]. Available:
https://www.fda.gov/medical-devices/artificial-pancreas-device-system/what-p
ancreas-what-artificial-pancreas-device-system​ [Accessed Apr. 25, 2019]

[13] National Institute of Diabetes and Digestive and Kidney Diseases. “Type 1
Diabetes”. [Online]. Available:
https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diab
etes/type-1-diabetes​. [Accessed Apr. 25, 2019]

[14] P. C. Davidson, R. D. Steed and B. W. Bode, "Glucommander: A
computer-directed intravenous insulin system shown to be safe, simple, and
effective in 120,618 h of operation," ​Diabetes Care, ​vol. 28, ​(10), ​pp. 2418-2423,
2005. Available:​ ​https://doi.org/10.2337/diacare.28.10.2418.

[15] Glytec. “eGlycemic Management System®”. [Online]. Available:
https://www.glytecsystems.com/Solutions.html​. [Accessed Apr. 25, 2019]

[16] A. Joosten​ et al​, "Feasibility of Fully Automated Hypnosis, Analgesia, and Fluid
Management Using 2 Independent Closed-Loop Systems During Major
Vascular Surgery," ​Anesthesia & Analgesia, ​vol. Publish Ahead of Print, 2018.
Available: https://doi.org/10.1213/ane.0000000000003433.

[17] A. Joosten​ et al​, “Implementation of closed-loop-assisted intra-operative
goal-directed fluid therapy during major abdominal surgery: a case-control
study with propensity matching”. ​European journal of anesthesiology​, vol. 35, (9),
pp. 650–658, 2018. Available: ​https://doi.org/10.1097/EJA.0000000000000827

[18] A. Joosten​ et al​, "Automated Titration of Vasopressor Infusion Using a
Closed-loop Controller: In Vivo Feasibility Study Using a Swine Model,"
Anesthesiology, ​vol. 130, ​(3), ​pp. 394-403, 2019. Available:
https://doi.org/10.1097/ALN.0000000000002581.

[19] M. Janda​ et al​, "Clinical evaluation of a simultaneous closed-loop anaesthesia
control system for depth of anaesthesia and neuromuscular blockade,"
Anaesthesia, ​vol. 66, ​(12), ​pp. 1112-1120, 2011. Available:
https://doi.org/10.1111/j.1365-2044.2011.06875.x​.

53

https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/type-1-diabetes
https://www.ncbi.nlm.nih.gov/pubmed/16186273
https://doi.org/10.1097/EJA.0000000000000827
https://www.fda.gov/medical-devices/artificial-pancreas-device-system/what-pancreas-what-artificial-pancreas-device-system
https://doi.org/10.1111/j.1365-2044.2011.06875.x
https://www.fda.gov/medical-devices/artificial-pancreas-device-system/what-pancreas-what-artificial-pancreas-device-system
https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/type-1-diabetes
https://www.glytecsystems.com/Solutions.html
https://www.glytecsystems.com/Solutions.html
https://www.fda.gov/medical-devices/consumer-products/artificial-pancreas-device-system
https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/type-1-diabetes
https://www.fda.gov/medical-devices/consumer-products/artificial-pancreas-device-system

[20] U.S. Food and Drug Administration. "The Device Development Process".
[Online]. Available:
https://www.fda.gov/ForPatients/Approvals/Devices/default.htm. [Accessed
Apr. 25, 2019]

[21] Z. Jiang​ et al​, "Heart-on-a-Chip: a closed-loop testing platform for implantable
pacemakers," 2014.

[22] B. Parvinian​ et al​, "Regulatory Considerations for Physiological Closed-Loop
Controlled Medical Devices Used for Automated Critical Care," ​Anesthesia &
Analgesia, ​vol. 126, ​(6), ​pp. 1916-1925, 2018. Available:
https://doi.org/10.1213/ANE.0000000000002329.

[23] B. Parvinian​ et al​, "Credibility Evidence for Computational Patient Models Used
in the Development of Physiological Closed-Loop Controlled Devices for
Critical Care Medicine," ​Front. Physiol., ​vol. 10, 2019. Available:
https://doi.org/10.3389/fphys.2019.00220.

[24] F. Gessa, P. Asare, R. Clipp, A. Bray and S. M. Poler, "A Test and Validation
Framework for Closed-Loop Physiology Management Systems for Critical and
Perioperative Care," ​Medical Cyber-Physical Systems Workshop​, Porto, 2018.

[25] P. Asare. “A Framework for Reasoning about Patient Safety of Emerging
Computer-Based Medical Technologies,” ​University of Virginia​, 2015

[26] A. Bray​ et al​, "Pulse Physiology Engine: an Open-Source Software Platform for
Computational Modeling of Human Medical Simulation," ​SN Compr. Clin. Med,
vol. 1, ​(5), ​pp. 362-377, 2019.
Available:https://doi.org/10.1007/s42399-019-00053-w.

[27] R. Brown​ et al​, "Enhancing combat medic training with 3D virtual
environments," ​IEEE International Conference on Serious Games and Applications for
Health (SeGAH), ​May 2016.
Available:https://doi.org/10.1109/SeGAH.2016.7586266.

[28] L. Potter et al, "Physiology informed virtual surgical planning: A case study
with a virtual airway surgical planner and BioGears," ​Medical Imaging 2017:
Image-Guided Procedures, Robotic Interventions, and Modeling​, vol. 10135​.
Available:https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10
135/101351T/Physiology-informed-virtual-surgical-planning--a-case-study-with
/10.1117/12.2252510.short. DOI: 10.1117/12.2252510.

[29] R. B. Clipp et al, "Pharmacokinetic and pharmacodynamic modeling in
BioGears," ​38th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC),​ August 2016. Available:
https://doi.org/10.1109/EMBC.2016.7590986.

54

[30] S. A. Edwards and E. A. Lee, "The semantics and execution of a synchronous
block-diagram language," ​Science of Computer Programming​, vol. 48, (1), pp.
21-42, 2003. Available:
http://www.sciencedirect.com/science/article/pii/S0167642302000965.
DOI: 10.1016/S0167-6423(02)00096-5.

[31] K. Maheshwari​ et al​, "The relationship between ICU hypotension and
in-hospital mortality and morbidity in septic patients," ​Intensive Care Med., ​vol.
44, ​(6), ​pp. 857-867, 2018. Available: https://doi.org/10.1007/s00134-018-5218-5.

[32] B. Yapps​ et al​, "Hypotension in ICU Patients Receiving Vasopressor Therapy,"
Scientific Reports, ​vol. 7, ​(1), ​pp. 8551, 2017.
Available:https://doi.org/10.1038/s41598-017-08137-0.

[33] Kitware Inc. “Pulse: Patient Methodology”. [Online].
Available:​https://physiology.kitware.com/_patient_methodology.html​.
[Accessed Apr. 25, 2019]

[34] Capsule Technologies. “Advanced Medical Device Integration“. [Online].
Available:https://www.capsuletech.com/integration [Accessed Apr. 25, 2019]

[35] P. Asare, C. Liu, Y. Xu, W. Kyaw, D. Karki, Y. Mittal, F. Gessa, A. Acharya, M.
Qureshi and S. M. Poler, "Enabling Translational Research on Integrated and
Closed-Loop Medical Systems Using an Open-Source Approach," in ​40th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC 2018)​, 2018.

[36] BeagleBone.org Foundation. “BeagleBone Black”. [Online].
Available:https://beagleboard.org/black [Accessed Apr. 25, 2019]

[37] Canonical Ltd. “Ubuntu”. [Online]. Available:https://www.ubuntu.com/
[Accessed Apr. 25, 2019]

[38] Canonical Ltd. “Ubuntu 16.04.6 LTS (Xenial Xerus)”. [Online]. Available:
http://releases.ubuntu.com/16.04/​ [Accessed Apr. 25, 2019]

[39] Simon Kelley. “Dnsmasq”. [Online]. Available
http://thekelleys.org.uk/dnsmasq/doc.html​ [Accessed Apr. 25, 2019]

[40] Open Robotics Software Foundation. Robot Operating System (ROS).
http://www.ros.org/​ [Accessed Apr. 25, 2019]

[41] D. L. Mills, "Internet time synchronization: the network time protocol," ​IEEE
Transactions on Communications​, vol. 39, (10), pp. 1482-1493, 1991.
Available:https://doi.rog/ 10.1109/26.103043.

[42] Open Source Robotics Foundation. "ROSBridge". [Online].

55

http://releases.ubuntu.com/16.04/
http://thekelleys.org.uk/dnsmasq/doc.html
https://physiology.kitware.com/_patient_methodology.html
http://www.ros.org/

Available:http://wiki.ros.org/rosbridge_suite [Accessed Apr. 25, 2019]

[43] Fluke Biomedical, "ProSim 8 Vital Sign and ECG Patient Simulator". [Online].
Available:​https://www.flukebiomedical.com/products/biomedical-test-equipme
nt/patient-monitor-simulators/prosim-8-vital-signs-patient-simulator​ [Accessed
Apr. 25, 2019]

56

https://www.flukebiomedical.com/products/biomedical-test-equipment/patient-monitor-simulators/prosim-8-vital-signs-patient-simulator
https://www.flukebiomedical.com/products/biomedical-test-equipment/patient-monitor-simulators/prosim-8-vital-signs-patient-simulator

	Bucknell University
	Bucknell Digital Commons
	Spring 2019

	Testing and Validation Framework for Closed-Loop Physiology Management Systems for Critical and Perioperative Care
	Farooq M. Gessa
	Recommended Citation

	tmp.1557452718.pdf.ibtpn

