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Abstract 

Heterobimetallic cofactors are commonly found in proteins and allow them to 

perform unique chemical processes that would otherwise not be possible. The interactions 

between these metals allow the protein to accomplish difficult chemical transformations. 

Previously, the thermodynamic stability of a FeII /MnII cluster in the dinucleating ligand 

F-HXTA (5-fluoro-2-hydroxy-1,3-xylene-α,α′-diamine-N,N,N′,N′-tetraacetic acid) has 

been investigated in our lab as a model of cluster assembly in the proteins ribonucleotide 

reductase (RNR) and R2-like ligand binding oxidases (R2lox). By measuring equilibrium 

concentrations of F-HXTA complexes via 19F-NMR, it was found that the equilibrium for 

metal exchange between the homobimetallic FeII /FeII and MnII /MnII complexes favored 

the hetereobimetallic FeII /MnII product (K = 2.2) This work has been extended to see if 

the enhanced heterobimetallic stability is a general phenomenon or if it is specific to  FeII 

and MnII. We investigated three new pairs of divalent metal ions: FeII /MgII, ZnII /FeII, and 

ZnII /MgII using the same methodology. Crystals of the complexes [Mg(H2O)6][Mg2(F-

HXTA)(H2O)4]2•14H2O and [Zn(H2O)6][Zn2(F-HXTA)(H2O)3] 2•10H2O were grown and 

characterized via x-ray crystallography 1H-NMR and 19F-NMR confirming the proposed 

structures of each complex in solution. It was found that each new metal ion pair 

exhibited enhanced stability for their respective heterobimetallic complexes. The metal 

exchange equilibria for FeII /MgII, ZnII /FeII, and ZnII /MgII complexes had equilibrium 

constants favoring the hetereobimetallic products with KFeMg = 4.15(0.07), KZnFe = 

4.4(0.3), and KZnMg = 5.59(0.09). 
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Chapter 1: INTRODUCTION 

1.1 Metal Clusters in Proteins 

 Metallocofactors are a cluster of one or more metals that are essential to the 

activity of an enzyme.  Proteins sometimes require metal cofactors in order to carry out 

certain chemical processes that the protein would otherwise be unable to perform. 

Sometimes these cofactors can be composed of more than one metal, and those metals 

may be different. The interactions between these metals allows unique chemistry within 

an enzyme and allows it to accomplish difficult chemical transformations. 

 An example of a heterobimetallic cofactor is found in [NiFe] hydrogenase.1 

Hydrogenases catalyze the oxidation of hydrogen gas to protons and electrons and can be 

found in archaea bacteria and selected eukaryotes, this was studied by the Hausinger 

group. Hydrogenases can consume excess reducing equivalents or provide electrons for 

energy generating pathways. NiFe hydrogenase contains at least 2 subunits, the first is 60 

k-Da containing the NiFe active site and the second is a 30 k-Da subunit with one or 

more Fe-S clusters carrying out the electron transfer. The nickel is coordinated by 4 

cysteine residues in the first subunit. Interestingly, the activity of the enzyme is limited 

by how buried the metal center is into the protein: the substrate must be small enough to 

reach the center. An example of an appropriate substrate would be H2. These 

hydrogenases move energy by using H+ as a bridging ligand; they take H2 and break it 

into H+ and H-. The metallic core removes the electron from the H- ion and transfers the 
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electron like an electron transport chain. At this point the proton transfer mechanisms are 

not clear. 

Another example of a metal core is Fe(III)M(II) (M(II)= Fe, Zn or Mn) in purple 

acid phosphatases (PAPs)2a. PAPs are a type of enzyme classified as binuclear 

metallohydrolases: they require two closely spaced transition metal ions to carry out 

hydrolytic reactions. The two metal ions in the active site catalyze the hydrolysis of 

amides and esters of phosphoric acid and are linked by bridging groups, normally 

hydroxides. One function that PAPs perform is the metabolism of bones in the body. The 

Fe3+ forms a charge transfer complex with an invariant tyrosine ligand making the purple 

color. The divalent metal is Fe2+ in animals and Zn2+ or Mn2+ in plants; bacterial PAPs 

have not yet been characterized2b. Both plant and animal PAPs have a dimetal center 

coordinated to one aspartate, one tyrosine and one histidine for Fe3+ and two histidines 

and one asparagine for the divalent ion with an aspartate residue bridging the two ions. 

Waters coordinated to the metal atoms are present, but the exact number must be 

determined experimentally because the number of waters is pH dependent. 

Predominantly PAPs are hydrolases but they also have the capacity to oxidize lipids. 

PAPs play significant roles in Fe transport, the generation of reactive oxygen species as 

an immune response, energy metabolism, bone resorption, the uptake of phosphates and 

the degradation of organophosphates. Mimics of PAPs act as good drug leads due to the 

wide array of functions. 

PAPs binding sites are nonsymmetrical, therefore metals in these binding sites 

reside in chemically different environments2. The first core metal in all of these examples 
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are found to act as a redox catalytic metal center, the second metal functions to help 

maintain the structural integrity of the core while the first metal is bound. The second 

metal also controls the redox potential of the first metal center and this could possibly 

accelerate the redox processes. Substrates bound to metals can react with another 

molecule either bound or not bound to metal center. There are systems with similar 

properties to PAPs such as Cu-Zn superoxide dismutase (SOD) and catechol oxidases 

(COs).  

The cofactor of most interest for our study is the bimetallic core in ribonucleotide 

reductase (RNR)2a. RNR is an enzyme that reduces DNA to RNA. Class 1 RNRs contain 

two nonidentical dimeric subunits, R1 and R2, arranged as a R1-R2 heterodimer. 

Generally, in the R2 subunit of class 1 there is a diiron center, and ribonucleotide 

reduction is performed by an active cysteine within the R1 subunit. A tyrosyl radical in 

subunit R2 is formed by the reduced diiron center after oxidation with dioxygen and this 

initiates the reactivity of the enzyme. Class 1c of RNR is a unique case of the enzyme in 

which the cofactor is composed of Fe and Mn3. Researchers speculate that the inclusion 

of Mn in the cofactor is due to an extremophile adaptation to a lack of Fe available in the 

environment. For class 1c, the R2 subunit lacks the canonical tyrosine4. The Fe-Mn 

cofactor replaces the tyrosyl radical when the reduced FeIIMnII enzyme is oxidized to the 

FeIIIMnIV state by O2. For example, the proteins Chlamydia trachomatis (Ct.) RNR-R2 

and RNR-R2 homologue (R2lox) from Mycobacterium tuberculosis lack the canonical 

tyrosine but possesses a FeII-MnII cofactor which replaces the tyrosyl radical when 

oxidized to FeIIIMnIV with dioxygen. The manganese ion occupies the position directly 
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adjacent to the tyrosyl radical site in the other R2 subunits of other classes of RNR. This 

leads to the assumption that the high-valent MnIV species functions as a direct substitute 

for the tyrosyl radical in class 1c RNR.  

1.2 Synthesis of Bimetallic Clusters 

Systems like [NiFe] hydrogenase, PAPs and RNR have inspired chemists to 

synthesize heterobimetallic clusters in order to better understand the chemical 

environment in which these species are assembled. It is therefore important to study the 

electronic and magnetic interactions between metal ions, as well as the mechanism of 

assembly. Syntheses of these systems can be achieved selectively if there are subtle 

differences in the metals, usually a difference in binding affinity or differences in the 

substitution kinetics of the metals. Small molecules that model the binding sites of the 

metals are easier to work with than proteins since proteins can be denatured and are 

overall more complex. It is simplest to synthesize a ligand that has symmetrical binding 

sites for both the metals. However, success in the selective formation of the metal cluster 

is simpler to achieve in a ligand that is nonsymmetric with different binding sites for the 

metals. These scenarios are reviewed below.  

1.2.1 Selectivity from Different Oxidation States 

Symmetric ligands 

The simplest syntheses of heterobimetallic clusters occurs when the two metals 

are in different oxidation states because trivalent ions tend to bind more strongly to 

ligands than divalent ones. For example, the Que group studied the heterobimetallic 
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complex [M(III)M(II)BPMP(O2CR)2](BPh4)2 which may be assembled from the 

symmetric ligand 2,6-bis[(bis(2-pyridyl-methyl)amino)methyl)]-4-methylphenol (Figure 

1).5 This ligand was mixed with a several different combinations of two metal salts. The 

salts were always added in the same order sequentially: first M(III) then M(II). This 

addition was to take advantage of M(III) being more substitutionally inert than M(II), 

thus M(III) is less likely to exchange coordination sites. With the addition of the more 

inert metal first, when bound to the ligand it will not be displaced by the labile M(II). A 

carboxylate salt was also added to the mixture forming carboxylate bridges between the 

two metals made up of acetates.  

 

Figure 1: The symmetric dinucleating ligand 2,6-bis[(bis(2-pyridyl- methyl)amino)methyl)]-4-

methylphenol (H(BPMP)) 

 

Different combinations of trivalent and divalent metal ions were used when 

making BPMP-dimetal complexes. The combinations are as follows: FeIIIZnII, FeIIIMnII, 

FeIIICuII, GaIIIFeII, and FeIIIFeII. The triply bridged FeIIIFeII cluster has the two 

carboxylate groups and a phenolate oxygen between them and the cluster was further 

probed in order to see its electronic and steric properties.6 The FeIIIFeII cluster presents 
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the first example of a well characterized structure of a triply bridged heterobimetallic 

cluster. The particular structure being characterized here has (µ-Phenoxo)bis(µ-

carboxylato) bridges. Similarly, another series of bimetallic complexes were synthesized 

with the form: [MIIM’III BPMP(O2CR)2]X2 (M= M'= Fe, R= C2H5, X= BPh4; M= M'= Fe, 

R= C6H5, X= PF6; M= Fe, M'= Ga, R =C2H5, X =BPh4; M= Zn, M'= Fe, R= CH3, X= 

BPh4; M= Zn, M'= Fe, R= C2H5, X= BPh4). These complexes provide models for 

binuclear metal-oxo centers in proteins. 

Non-symmetric Ligands: 

Examples of heterobimetallic cluster formation in non-symmetric ligands are also 

found in the literature. Heterometallic clusters in asymmetric ligands are generally easier 

to prepare because one metal binding site usually has a higher affinity than the other so 

that difference can be exploited. The investigation of these asymmetric bimetallic clusters 

is relevant for understanding catalysis in metalloproteins. Different coordination numbers 

in the binding sites can present the possibility for open coordination sites on the metals.  

A synthesis of the iron-manganese complex [FeIIIMnII(LBn)(μ-OAc)2](ClO4)2 was 

performed by the Latour group where the unsymmetrical dinucleating ligand HL-Bn 

is{[2-bis[(2-pyridylmethyl)aminomethyl]]-6-[benzyl-2-(pyridylmethyl)aminomethyl]-

4methylphenol} (Figure 2).7 This complex was studied with electron paramagnetic 

resonance (EPR) and was one of the first times a center of FeIIIMnII was prepared in order 

to investigate the bimetallic core in systems like RNR. HL-Bn has a binding site with a 

high affinity for metal on the side with the two pyridines. FeIII is added first and binds to 
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this site followed by the addition of MnII. The FeIII binds to the preferred site with two 

pyridines and since it is more substitutionally inert than MnII, FeIII does not leave that site 

when manganese is added. The electronic structure of the Fe(III)Mn(II) pair was found 

and characterized. As seen in previous examples, the Fe(III)Mn(II) core has three 

bridging ligands, two carboxylates and a phenolate oxygen.  

 

Figure 2: The non-symmetric dinucleating ligand {[2-bis[(2-pyridylmethyl)aminomethyl]]-6-[benzyl-2-

(pyridylmethyl)aminomethyl]-4methylphenol (H(L-Bn)) 

 

In order to further study a metallic cluster with non-symmetric ligand binding 

sites we look again to models of PAPs.8 A study by Norlander created a structural and 

functional model for PAP with heterodinuclear complex: [FeMn(ICIMP)(OAc)2Cl] 

where the ligand ICIMP is  2-(N-carboxylmethyl)-[N-(N-methylimidazolyl-2-

methyl)aminomethyl]-[6-(N-isopropylmethyl)-[N-(N-methylimidazolyl-2-

methyl)]aminomethyl-4-methylphenol]  and the ligand is shown in Figure 3. A 

biomimetic hydrolysis reaction was examined at different pH levels on the 

substrate bis(2,4-dinitrophenyl) phosphate (BDNPP) (Figure 4). The metal ions FeIII and 

MnII are in high-spin configurations and have distorted-octahedral geometry. 
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Interestingly, the substrate coordinates monodentate to the MnII ion and the bridging 

hydroxide between the metals becomes terminally bound to the FeIII ion becoming a 

natural nucleophile when attacking the phosphorus center of BDNPP. 

 

Figure 3: The non-symmetric dinucleating ligand 2-(N-carboxylmethyl)-[N-(N-methylimidazolyl-2-

methyl)aminomethyl]-[6-(N-isopropylmethyl)-[N-(N-methylimidazolyl-2-methyl)]aminomethyl-4-

methylphenol] (H(ICIMP)) 

 

 

Figure 4: The hydrolysis substrate bis(2,4-dinitrophenyl) phosphate (BDNPP) 

 

A study by Powell involving non-symmetric ligands prepared the heterodinuclear 

complex [FeCu(Flo)OAc](BPh)4 where H(Flo) is the asymmetric ligand [2-({Bis[2-

(pyridin-2-yl)ethyl]amino}methyl)-6{[bis(pyridin-2-ylmethyl)amino]methyl}-4-

methylphenol] (Figure 5).9 H(Flo) has 2 metal binding sites with one preferred over the 
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other, a bis(2-pyridylmethyl)amino group which is preferred over the bis(2-

pyridylethyl)amino group; the groups can be seen on either side of the ligand in Figure 5. 

The assembly of the H(Flo) complexes are again stepwise; FeIII is first added and bound 

to the bis(2-pyridylmethyl)amino side (left side of Figure 5) and then CuII is added which 

binds to the bis(2-pyridylethyl)amino side (right side of Figure 5).  The unsymmetrical 

nature of this ligand allows site-directed FeIIICuII complex formation with high yield. 

 

Figure 5: The non-symmetric dinucleating ligand [2-({bis[2-(pyridin-2-yl)ethyl]amino}methyl)-

6{[bis(pyridin-2-ylmethyl)amino]methyl}-4-methylphenol] H(Flo). The left bis(2-pyridylmethyl)amino 

binding site has higher affinity than the right bis(2-pyridylethyl)amino binding site. 

 

1.2.2 Selectivity from Substitutionally Inert Metals  

Another way to get site directed bimetallic clusters is by using one kinetically 

inert metal like Cr(III) or Fe(III) paired with a more labile metal. The synthesis of 

asymmetric heterodinuclear complexes with two first-row trivalent transition metals is a 

good example of using substitutionally inert metals for a site directed synthesis.10 The 

complex of the form [(TACN)M'(μ-O)(μ-CH3CO2)2M(TMTACN)](ClO4)2  was prepared. 



10 
 

TACN is 1,4,7-triazacyclononane (R=H) and TMTACN is 1,4,7-trimethyl-1,4,7-

triazacyclononane (R=Me) (Figure 6) and the core combinations (MIIIM’III) were 

FeIIIFeIII, MnIIIMnIII, FeIIIMnIII, FeIIICrIII, CrIIIMnIII, and CrIIIVIII. The complex 

[(TACN)M'(μ-O)(μ-CH3CO2)2M(TMTACN)](ClO4)2  was synthesized in a way that is 

slightly different than what has been seen thus far. Separately, the ligand TMTACN is 

mixed with its respective metal (M) while TACN is mixed with its metal (M’). The two 

mixtures are then reacted with each other in water containing NaOAc to form the 

complex [(TACN)M'(μ-O)(μ-CH3CO2)2M(TMTACN)](ClO4)2.The structures predicted 

are all confirmed by both electronic and magnetic spectroscopy. 

 

Figure 6: The general form of the ligand 1,4,7-triazacyclononane. (1) TACN: R=H  (2) TMTACN: R=Me 

(3) MST: R= tosylate. 

 

Another example using CrIII is of the general form: [(TMTACN)Cr(μ-OH)(μ-

CH3COO)2M(TMTACN)](ClO4)2  where M = ZnII, CuII, NiII, CoII, FeII, and MnII.11 The 

metal centers Cr(III) and Fe(II) or Co(II) are linked together via a hydroxo bridge and 

two further acetate bridges and both metals have a distorted octahedron geometry. 

[(TMTACN)Cr(μ-OH)(μ-CH3COO)2M(TMTACN)](ClO4)2 is synthesized in the same 
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manner as the previous example; this preparation method can be used for a variety of 

heterodinuclear complexes with a variety of different bridging ligands. 

Site directed metallic clusters can also be synthesized where FeIII is the kinetically 

inert ion which is highly unlikely to exchange binding sites once bound.12  The complex 

of the form [(TMTACN)MII(μ-OH)FeIIIMST]OTf, was prepared where the ligand  

[MST]3− is N,N′,N″-[2,2′,2″nitrilotris(ethane-2,1-diyl)]tris(2,4,6-

trimethylbenzenesulfonamido) is a TACN derivative (Figure 6). [(TMTACN)MII(μ-

OH)FeIIIMST]OTf has unsymmetrical metal binding sites and utilizes inert FeIII for 

directing metal binding. FeIII is combined with a divalent metal that is more labile such as 

CoII, NiII, CuII or ZnII. The clusters electronic properties can be altered systematically by 

inserting different transition metals using the same synthetic method as the previous two 

examples. The findings indicate that changing out metals does little to change the 

properties of [(TMTACN)MII(μ-OH)FeIIIMST]OTf complexes. The two metal centers 

have different coordination environments, with the FeIII centers having five-coordinate, 

distorted-tbp primary coordination spheres. The MII center having six-coordinate, 

distorted octahedral primary coordination spheres. 

1.2.3 Selectivity from Redox Reactions 

Another way to site direct bimetallic clusters is via redox reactions. One can 

create a core of FeIIIMII by reducing a core of FeIIIMIII.13 A way to create a stable FeIIIFeII 

core in the complex [Na][Me4N][Fe2(HXTA)(OAc)2] was found by the Munck group by 

using the symmetric ligand N,N'-(2- hydroxy-5-methyl-1,3-xylylene) bis [ N-
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(carboxymethyl)glycine] (HXTA), the structure is shown in Figure 7. The core of 

FeIIIFeIII in the complex [Me4N][Fe2(HXTA)(OAc)2] was reduced in a 50:50 HOAc 

buffer with β-mercaptoethanol and excess Me4NCl to produce the 

[Na][Me4N][Fe2(HXTA)(OAc)2] complex. The core FeIIIFeII is common in hemerythrin 

and the reduced forms of PAPs. FeIIIFeII was characterized by NMR, absorption 

spectroscopy and magnetic experiments. 

 

Figure 7: The symmetric dinucleating ligand N,N'-(2-hydroxy-5-methyl-1,3-xylylene) bis [ N-

(carboxymethyl)glycine] (HXTA) 

 

Core assembly via metal cluster reduction was furthered by the Que group who 

created similar complexes with cores composed of FeIIIMnII and FeIIMnII, instead with the 

ligand HBPMP (Figure 1).14 The species [FeIIMnII(BPMP)(O2CCH2CH3)2](BPh4) is 

isoelectronic to [FeIIIFeII(BPMP)(O2CCH2CH3)2](BPh4); however, the species with the 

FeIIMnII  center is much easier to probe spectroscopically because there is only one iron 

instead of two. The MnII is NMR silent, making the FeIIMnII core advantageous to 

investigate its individual atoms. The [FeIIMnII(BPMP)(O2CCH2CH3)2](BPh4) core was 

created by preparing [FeIIIMnII(BPMP)(O2CCH2CH3)2](BPh4) and then reducing the FeIII 

to FeII with cobaltocene, similar to the technique used by Munck.  
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A core of Fe(III)M(III) can be made by trapping M(II) with Fe(IV)O.15 The 

pentadentate ligands used were: 1-(Pyridyl-2′-methyl)-4,8,11-trimethyl-1,4,8,11-

tetrazacyclotetradecane (abbreviated TMC-py), N,N-bis(2-pyridylmethyl)-N-bis(2-

pyridyl) methylamine (abbreviated N4Py) and N-benzyl-N,N′,N′-tris(2-pyridylmethyl)-

1,2 diaminoethane (abbreviated BnTPEN) and are shown in Figure 8. FeIVO(TMC), 

where TMC is 1,4,8,11-tetramethylcyclam, is mixed with a separate ML solution where 

M=CrII or MnII and L= TMC-py, N4Py or BnTPEN, similar to the synthesis of the 

examples with the TACN derivatives in section 1.2.2. A bridge between the two metals is 

formed from the oxygen atom from the oxoiron and the oxidation states on FeIV and MII 

change to FeIII and MIII. High-valent mimics of the RNR 1c active site such as this allow 

for the investigation of O2 activation and other factors that modulate the redox properties 

of the Fe-O-Mn center. 

 

Figure 8: The ligands: A= 1-(Pyridyl-2′-methyl)-4,8,11-trimethyl1,4,8,11-tetrazacyclotetradecane 

(abbreviated TMC-py); B= N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl) methylamine (abbreviated N4Py); 

C=N-benzyl-N,N′,N′-tris(2-pyridylmethyl)-1,2 diaminoethane (abbreviated BnTPEN) 
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1.2.4 Selectivity for MII
a

 MII
b clusters 

MII
a
 MII

b clusters are difficult to make selectively under kinetic control because 

ligand substitution rates are usually very fast.16 The water self-exchange rate constants of 

transition metal ions are strongly influenced by the occupancy of the d-orbitals. For 

example, the order of reactivity for water exchange of divalent 3d-transition metal ions is 

V2+ < Ni2+< Co2+ <Fe2+ <Mn2+ <Cu2+.  

It is possible to make MII
a
 MII

b clusters under kinetic control if one binding site is 

inaccessible and cannot rapidly exchange metal ions. The Lu research group created 

several different combinations of MIIMII clusters metal pairings with the ligand N,N,N-

tris(2-(2-pyridylamino)ethyl)amine H3(py3tren) shown in Figure 9.17 The metal-metal 

pairings are CoIICoII, CoIIFeII, CoIIMnII, FeIIFeII, and FeIIMnII and the general form of 

their complex was M1M2Cl(py3tren). Adding an equivalent of CoCl2 or FeCl2 to the 

ligand H3(py3tren) along with a solution of benzylpotassium to deprotonate the ligand 

gives a monometallated complex and then another equivalent of a different metal salt 

completes the bimetallic core of the synthesized complex. It is not possible to fill the 

second binding site before the first and the steric constraints for the binding site of M1 do 

not allow the exchange of ligands for the metals once the second metal is added (Figure 

9A). 
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Figure 9: A: The complex M1M2Cl(py3tren) B: The ligand N,N,N-tris(2-(2-pyridylamino)ethyl)amine 

H3(py3tren) 

 

The Latour group also used the ligand HL-Bn (Figure 2) to synthesized the 

complex [FeIIMnII(L-Bn)(μ-OAc)2](ClO4). This complex is considered to be a 

biologically relevant model compound to Fe/Mn nonheme enzymes similar to RNR class 

1c. This complex is nonsymmetric, and the same technique for the synthesis of 

[FeIIIMnII(L-Bn)(μ-OAc)2](ClO4)2used by Latour was used again for the metal cluster 

FeIIMnII. Sequential addition of very carefully measured amounts of the metal was 

required, first the FeII and then the MnII. There was enough affinity for the FeII in the high 

metal affinity site that MnII ions did not replace the FeII. The addition of excess metal to 

each homonuclear complex did not lead to metal replacement, showing that they are not 

labile complexes.7  
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1.2.5 Thermodynamic Selectivity for FeIIMnII clusters in R2C and R2lox 

Thermodynamic selectivity for a Fe(II)Mn(II) cofactor has been observed in 

Chlamydia trachomatis (Ct) R2c and the assembly mechanism has been studied in 

vitro18. The cofactor is formed first by the MnII ion binding to either site in the complex 

of Ct R2c, but once FeII is introduced the MnII is displaced to site 1. A cluster is formed 

anaerobically with equimolar MnII and FeII revealing MnII exclusively at site 1 with FeII 

in site 2. The proposed assembly is shown in Figure 10. Once O2 is introduced, the 

cofactor becomes oxidized to MnIVFeIII and is now activated and does not undergo further 

substitution. When FeII is substoichometric it has specificity for site 2 and drives the 

selectivity.  

 

 

Figure 10: The proposed metallocofactor assembly mechanisms in Ct R2c and Gk R2lox. 
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In a study of Gk. R2lox we see that Mn(II) binds to R2lox only after Fe(II) is 

located in site 2.19 Site 2 is specific for FeII and must be filled with Fe before MnII fills 

site 1. The metal ions in site 1 can exchange as long as the metal sites are reduced 

because of the greater lability of divalent metals. After the cofactor is assembled within 

the protein and O2 is added, there is kinetic selectivity that favors oxidation of the 

MnIIFeII cofactor. R2lox activates significantly faster with oxygen with a MnIIFeII core 

than a FeIIFeII and the metals do not exchange after oxygen activation. The R2lox 

heterodinuclear cofactor of MnIIFeII can spontaneously assemble in vitro and the protein 

itself can provide site-specific discrimination. These findings imply a metallochaperone 

to organize the metals may not be necessary in vivo and that the availability of metals 

plays a role in the assembly. 

A factor that contributes to the site direction of Ct R2c and Gk R2lox (Figure 11) 

for assembly of the metal core is the difference in coordination sites 1 and 2.19 An extra 

water ligand in site 1 and a more distorted coordination sphere in site 2 are the most 

distinct differences. It is speculated that the six-coordinate environment and the ability to 

complex with waters in the first coordination sphere might help favor MnII occupancy in 

both sites, but it is not clear why site 1 should be more stringent than site 2 for its 

selectivity of MnII over FeII.  An alternate theory for the site selectivity is site 2 favors 

FeII binding by stabilizing the asymmetrically filled t2g subshell of high-spin d6 in a weak 

octahedral ligand field.  
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Figure 11: Schematic of the reduced active site of C. trachomatis R2c protein and G. kaustophilus R2lox 

homologue 1 protein. 

 

1.3 Stability of heterobimetallic complexes of HXTA 

In our lab, we have previously investigated the thermodynamics of Fe(II)/Mn(II) 

clusters in a model of R2c/R2lox.20 The model compound elected for use was F-HXTA 

(5-fluoro-2-hydroxy-1,3-xylene-α,α′-diamine-N,N,N′,N′-tetraacetic acid), shown in Figure 

12 along with the M2(F-HXTA) complex. 

  

Figure 12: A: R2c/R2lox model compound H5(F-HXTA): (5-fluoro-2-hydroxy-1,3-xylene-α,α′-diamine-

N,N,N′,N′-tetraacetic acid) B: General [MII
2(F-HXTA)]- complex without aquo ligands. 
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 F-HXTA is a ligand with two identical binding sites shown in Figure 12 similar to 

R2c/R2lox. There is a bridging oxygen atom between the two metals, and each metal is 

bound to two carboxylate moieties and an amine nitrogen. Homobimetallic complexes of 

F-HXTA were anaerobically synthesized by the addition of MCl2 (3 equiv; M=Fe, Mn) 

and NaOH (5 equivalents) to H5(F-HXTA). The complexes are shown in Figure 13. The 

crystal for [Fe2(F-HXTA)(H2O)4]
- were characterized via 19F-NMR and 1H-NMR, shown 

in Figure 14 and Figure 15 respectively. FeII is paramagnetic so the signals on the NMR 

experiments are broadened and shifted downfield, evident from the large spectra range in 

Figure 15. The [Mn2(F-HXTA)(H2O)4]
-
 crystals are NMR silent due to the slower 

electronic relaxation rate and the high paramagnetism of MnII which causes extreme line 

broadening.  

 

Figure 13: Displacement ellipsoid plots of [MII
2(F-HXTA)(H2O)4]-anions (A, M=Fe; B, M=Mn).The 

counterions are [M(H2O)6]2+ 
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Figure 14: 19F-NMR spectrum of [Fe2(F-HXTA)(D2O)4]-. 20 

 

 

 

Figure 15: 1H-NMR spectrum of [Fe2(F-HXTA)(D2O)4]-. 20 

 

A series of equilibrium exchange experiments were performed in order to 

measure the relative stability of FeII/FeII, MnII/MnII and FeII/MnII complexes in 

equilibrium mixtures. To a constant amount of F-HXTA an excess total amount of metal 

(FeII/MnII) was added in different ratios. The mixture was allowed to reach equilibrium 

and the concentrations of the different dimetal-HXTA complexes were measured by 19F-

NMR. [Fe2(F-HXTA)(H2O)4]
- and [FeMn(F-HXTA)(H2O)4]

- mixtures are observable 

however [Mn2(F-HXTA)(H2O)4]
- is not, but the concentration of the latter was calculated 
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from F-HXTA mass balance. The overall metal replacement is shown in equation 1. 

Equations 2 and 3 are sequential single atom replacements. Measured values of the 

equilibria constants are given above the arrow. 

 

As expected from the Irving-Williams series FeII is preferred over MnII for the F-

HXTA binding sites (Eq. 1);16 however there is an unexpected stability of the mixed 

FeII/MnII cluster: if the metal binding sites were isolated from each other, it would be 

expected that the preference for replacement of MnII with FeII would be equivalent at 

each site. This would make the equilibrium constants in Eq 2 and 3 identical; however, 

they are not. The replacement of the first MnII atom (K = 20.1) is more favorable than the 

replacement of the second MnII atom (K = 9.1). Equation 4 shows the enhanced stability 

of the heterobimetallic species directly, where the K value is greater than 1 and therefore 

is marginally favoring the heterobimetallic products over the reactants. Note that 

K4=K2/K3 There is not an obvious reason for enhanced stability of the heterobimetallic 

species but it is suspected to be due to the bridging oxygen atom.20 

The concentrations of each species formed from the equilibrium between MnII, 

FeII and F-HXTA is shown graphically in Figure 16. The smooth curves are the calculated 
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concentrations of each species based on the exchange equilibria between the metal and F-

HXTA (K1-K3) and the points are the experimental concentrations. It should be noted that 

where the two homobimetallic species curves intersect, the heterobimetallic curve is 

slightly higher indicating this relative enhanced stability (K2>K3). If the enhanced 

stability were not present, then all three curves would intersect (K2=K3).  

 

Figure 16: Concentrations of the bimetallic species of HXTA as a function of the FeII/MnII ratio.20 

 

As an extension to the study with FeII and MnII binding to F-HXTA, the work 

moving forward by our lab sought to answer the question of whether or not the relative 

enhanced stability of F-HXTA clusters is a general phenomenon or if it is specific to FeII 

and MnII. In order to do so, two more metals were introduced: ZnII and MgII. They were 

chosen because they are both divalent metals that are similar in size to both FeII and MnII. 

The same equilibrium experiments were performed in three different combinations: 
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ZnII/MgII, ZnII/FeII and FeII/MgII with the same ligand F-HXTA in order to see if the 

phenomenon of relative enhanced stability of the heterobimetallic mixture is still present. 
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Chapter 2: EXPERIMENTAL 

2.1 Experimental Procedures 

 

General. Aqueous solutions were made in Type I ultra-pure water with a resistivity of at 

least 18 MΩcm-1. Fe(ClO4)2 ۰4H2O, Mg(ClO4)2۰6H2O were obtained from Strem 

Chemicals and  Zn(ClO4)2 ۰6H2O was obtained from Alfa Aesar and stored in a 

desiccator. 4-Flourophenol was sublimed under vacuum. N-Methylmorpholine was 

distilled from sodium metal under N2(g). Air sensitive samples were prepared in a COY 

Laboratories anaerobic chamber containing <1% O2 using freeze-pump-thaw degassed 

solvents. H5(F-HXTA)•XH2O was prepared according to the procedure previously 

described by Kerber et. al.1 Target concentrations of  H5(F-HXTA)•XH2O are higher than 

the actual concentrations due to unknown waters of hydration in the crystal structure. 

Caution! Although no difficulties were encountered in this work, organic perchlorates 

are potentially explosive. They should be prepared in small quantities and handled with 

care. 

[Zn(H2O)6][Zn2(F-HXTA)(H2O)3]2•10H2O. A 147.3 mg portion of H5(F-HXTA) (0.366 

mmols) was dissolved in 6.000 mL of a 0.207 M solution of NaOH solution (1.242 

mmols). A 311.1 mg portion of Zn(NO3)2۰6H2O (1.198 mmols) was dissolved in this 

solution and the pH was raised to 6.94 with the 0.207 M NaOH solution at which point a 

white precipitate formed. After syringe filtration with a 0.45 μm nylon filter, the solution 

was capped and stored at 5°C. Colorless crystals suitable for X-ray structure 

determination formed after 3 weeks, this procedure yielded 0.1115g of crystals for a 
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19.16% yield. 1H-NMR (D2O, 400 MHz): δ 6.75 (d, 2H, 3JHF=9.0 Hz),  δ 3.469 (br, 4H),  

δ 3.216 (s,  8H). (19F-NMR (D2O, 376 MHz): δ -133.06 (t, 1F, 3JHF=8.91 Hz). 

[Mg(H2O)6][Mg2(F-HXTA)(H2O)4]2•14H2O. A 120.0 mg portion of H5(F-HXTA) 

(0.298 mmol)  was dissolved in 3.300 mL of a 0.245M solution of NaOH (0.809 mmol). 

A 220.5 mg portion of Mg(NO3)2۰6H2O (0.897 mmol) was dissolved in this solution and 

the pH was adjusted to 8.31 by addition of 0.245M NaOH and left open in the laboratory 

for evaporation. After 10 weeks the solution was filtered with a 0.45 μm nylon syringe 

and was capped and placed in a 5°C refrigerator. One week later crystals formed yielding 

0.0601 g (7.72%). 1H-NMR (D2O, 400 MHz):  δ 6.760 (d, 2H, 3JHF=9.1 Hz),  δ 3.720 (d, 

2H),  δ 3.384 (d, 2H), δ 3.241 (d, 2H), δ 3.139 (d, 2H), δ 3.021 (d, 2H), δ 2.942 (d, 2H).  

19FNMR (D2O, 376 MHz): δ -134.10 (t, 1F, 3JHF=9.01 Hz) 

Standardization of Zn(ClO4)2 and Mg(ClO4)2 .  Using an Eriochrome Black T 

indicator, along with an ammonia/ammonium buffer, 0.2M M(ClO4)2, solutions were 

standardized by titration according to a published procedure.2 The titrant was standard 

0.05M EDTA from Alfa Aesar, yielding [Zn(ClO4)2] = 0.1975 M and [Mg(ClO4)2] = 

0.1906 M. 

Metal Titration Experiments. A 10.00 mL solution of Na3H2(F-HXTA) (0.1000 M) was 

made by adding 0.0402 g (0.0001 mols) of H5(F-HXTA) and 3 equivalents of NaOH 

(0.0003 mols) to a 10 mL volumetric flask. A 19F-NMR was taken of this solution. 

Increments of 0.5 equivalents of metal solutions (M(ClO4)2 M= MgII, ZnII) were added to 
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this Na3H2(F-HXTA) solution. 19F-NMR spectra were taken until 2.5 equivalents of 

metal compared to Na3H2(F-HXTA) was added.  

Metal Exchange Experiments. Solutions were prepared by diluting aliquots of aqueous 

stock solutions to the final target concentrations. Calibrated automatic pipettes and 

volumetric flasks were used throughout. Because H5(F-HXTA) is insoluble in water, 

stock solutions were prepared as Na3H2(F-HXTA) by adding 3 equivalents of NaOH. 

Samples were prepared in an anaerobic chamber and sealed in J-Young style NMR tubes 

for analysis. Sample pH measured in H2O/D2O mixture was corrected for isotopic 

composition using the formula pHcorr=pHmeas-n(0.073 х pHmeas - 0.42) where n is the 

deuterium mole fraction of the sample.3 Target concentrations for the species in solution 

were as follows: Na3H2(F-HXTA) 0.010 M, NTA 0.005 M, total metal 0.040 M, N-

methylmorpholine 0.042 M, 4-fluorophenol 0.005 M. F-HXTA concentrations were 

calculated to be 90% of the target range because unknown waters of hydration add mass 

in the crystal structure. The pH was targeted to be around 7.5 and the D2O content 10%. 

These numbers were for the Zn/Mg and Mg/Fe combinations of metals; 70% lower 

concentrations were used for all materials in solution for Zn/Fe due to lower solubility of 

F-HXTA complexes. 

Representative Procedure. To a 5.00 mL volumetric flask containing 10% of D2O, was 

added 1.520 mL of Na2H3(F-HXTA) (0.0330 M, 0.050 mmol), 0.498 mL of NTA 

(0.0502M, 0.025 mmol), 0.430 mL of Zn2(ClO4)2 (0.1975 M; 0.085 mmol), 0.604 mL of 

Mg2(ClO4)2 (0.1906 M; 0.115 mmol), 0.126 mL of 4-fluorophenol (0.1980 M; 0.025 

mmol), and 0.230 mL of N-methylmorpholine (0.9823 M; 0.226 mmol). The flask was 
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diluted to the mark with H2O. The pH was measured and an aliquot was sealed in an 

NMR tube and equilibrated at 25℃ for 8 hours prior to analysis. 

NMR Spectroscopy. Spectra were acquired on a Varian 400 MHz DirectDrive 

spectrometer equipped with a 5 mm ASW PFG probe. Data were processed in iNMR. 

Chemical shifts are reported relative to solvent resonances for 1H and relative to sodium 

hexafluorophosphate for 19F-NMR of the homobimetallic crystallizations and 4-

fluorphenol for the metal exchange experiments. T1 measurements were made with a 

calibrated 90° pulse using a standard inversion-recovery pulse sequence. 

Equilibrium Measurements. Initially for each metal combination, the largest T1 value 

was found, which always corresponded to the 4-fluorphenol peak. The recycle time used 

was 7x that T1 value. A 90° pulse was calibrated for each acquisition of the experiment. 

For the combinations including Fe, it was necessary to use two acquisitions with different 

sweep widths changing the TOF due to the wide dispersion of peaks in the spectra. This 

allowed all peaks of interest to be measured with a 90° pulse relative to the internal 

standard. A total of 1024 to 2000 transients were collected for quantitative experiments 

based on the signal to noise ratio of each sample. The FID was 9058 points for the Mg/Zn 

combination and was around 37,500 points for the other two metal combinations. The 

probe temperature was set to 25°C and 10 Hz of exponential line broadening was used 

during analysis. 

Speciation Modeling. Concentration curves for the bimetallic species were calculated in 

HYSS20084 at the following initial conditions: [Ma
II] = 0-40 mM; [Mb

II] = 40-0 mM; [F-
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HXTA] = 8.4 mM; [NTA] = 5 mM; [ClO4
-] = 80 mM. Except for the Fe/Zn combination 

which was cut by 70% from these concentrations because it is slightly more insoluble 

than the other mixtures. The model used for this calculation consisted of the formation 

constants (β) for each bimetallic species. β1-3 were calculated from K1-3 by choosing an 

arbitrarily large value for β1 (1020) such that essentially no F-HXTA was present and then 

calculating the relative values of β2 and β3 from the equilibrium equations. 
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Chapter 3: RESULTS AND DISCUSSION 

3.1 Preparation and Characterization of Homobimetallic Complexes 

Dizinc(II) and dimagnesium(II) complexes of the ligand H5(F-HXTA) (5-fluoro-

2-hydroxyl-1,3-xylene-α,α’-diamine-N,N,N’,N’-tetraacetic acid) were prepared and 

isolated in order to structurally characterize the metal complexes. A previous study has 

characterized the crystal structures for the diiron and dimanganese complexes of H5(F-

HXTA).1 Addition of excess M(NO3)2 (3 equiv; M= Mg, Zn) and NaOH (5 equiv) to 

H5(F-HXTA) gave neutral to slightly basic (pH 7-8) solutions from which the complex 

anions [Zn2(F-HXTA)(H2O)3]
- (1) and [Mg2(F-HXTA)(H2O)4]

-
 (2) crystallized after a 

period of weeks to months [Zn(H2O)6][1]2•10H2O  and [Mg(H2O)6][2]2•14H2O, as 

determined by X-ray crystallography. The dimagnesium(II) species was more difficult to 

crystallize because it is much more soluble than the dizinc(II) species. Recrystallization 

of [Zn(H2O)6][1]2•10H2O  using a seed crystal gave an isolated yield of 19 %. Seeding 

was ineffective for [Mg(H2O)6][2]2•14H2O and a lower isolated yield of 8% was 

obtained. 

X-ray structures of [ZnII
2(F-HXTA)(H2O)3]

- and [MgII
2(F-HXTA)(H2O)4]

- are 

given in Figure 1 and the results of X-ray structural determination are reported in Table 1 

and Table 2. (Crystallographic data is found in Table 1 and selected bond lengths and 

angles are in Table 2.) The most obvious difference between the two is that both Mg sites 

in 2 are 6-coordinate however Zn2 at site 2 (Zn2) is 5-coordinate in 1, with one fewer 

water molecule attached. Zn1 has a distorted octahedral configuration with angles that 

range from 79.16° to 101.82°. The Zn atom is displaced by the mean square plane 
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(defined by N1, O1W, O2W and O5) by 0.061 Å. The carboxylate ligands are trans 

across the square plane and also substantially deviate from linearity with the O1-Zn1-O3 

angle found to be 158.61°. Since Zn2 is 5-coordinate and has only one aquo ligand, the 

structural parameter τ5 may be used to define the geometry of Zn2 with the limiting 

square pyramidal and trigonal bypyramidal structures represented by τ5 = 0 and 1 

respectively2. Complex 2 has τ5 = 0.448 indicating an intermediate geometry slightly 

biased towards a square pyramid. Zn2 is displaced from the mean square plane defined 

by N2, O6, O3W, and O8 by 0.371 Å, and the angles between apical O5 and the atoms in 

the square plane range from 93.78° to 109.78°.         

             

Figure 1. X-ray structures of [ZnII
2(F-HXTA)(H2O)3]- (1) and [MgII

2(F-HXTA)(H2O)4]- (2). Hydrogen 

atoms omitted for clarity. 

Complex 2 was found to have approximate C2 symmetry, similar to previous 

structures of Fe(II) and Mn(II) with this ligand.1 The metal-ligand angles in the distorted 

octahedron of 2 range from 76.42° to 103.94°. The Mg atoms are displaced from the 

mean square plane (defined by N1, O1W, O2W, and O5 and N2, O3W, O4W and O5) by 

0.070 Å and 0.009 Å. The carboxylate ligands are trans across the square plane and 
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deviate substantially from linearity, with angles of 152.97° for O1-Mg1-O3 and 153.52° 

for O6-Mg2-O8.  

Table 1: Crystallographic data for [Zn(H2O)6][1]2●10H2O and [Mg(H2O)6][2]2●14H2O. 

 [Zn(H2O)6][1]2•10H2O [Mg(H2O)6][2]2•14H2O 

Crystal data 

Empirical formula C32H72F2N4O40Zn5 C32H84F2Mg5N4O46 

Formula weight 1517.78 1420.58 

Crystal system Triclinic Triclinic 

Space group P-1 P-1 

a [Å] 10.5309 (3) 10.8336(3) 

b [Å] 10.8052 (3) 11.3855(3) 

c [Å] 13.7649 (4) 13.3069(4) 

α (°) 102.549 (2) 92.844(2) 

β (°) 109.982 (3) 113.681(3) 

γ (°) 105.130 (3) 90.617(2) 

V (Å3) 1337.44(7) 1500.45(8) 

Z 1 1 

T (K) 110(2) 110(2) 

Crystal size (mm) 0.26 × 0.18 × 0.06 0.28 × 0.24 × 0.22 

μ (mm-1) 2.33 1.78 

Data collection 

Tmin, Tmax 0.629, 1.000 0.714, 0.778 

Measd reflections 21754 8695 

Unique reflections 6140 8695 
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Obsd reflns [I>2σ(I)]  5576   7952   

Rint 0.023 0.021 

(sin θ/λ)max (Å
-1) 0.650 0.616 

Refinement 

R[F2 > 2σ(F2)] 0.022 0.031 

wR(F2) 0.053 0.091 

S 1.04 1.07 

Parameters (Restraints) 442 (33) 488 (42) 

Δmax, Δmin (e Å-3) 0.41, -0.30 0.38, -0.25 

 

Table 2: Selected bond lengths and angles for [Zn2(F-HXTA)(H2O)3]- (1) and [Mg2(F-HXTA)(H2O)4]- (2) 

 [Zn2(F-HXTA)(H2O)3]
- (1) [Mg2(F-HXTA)(H2O)4]

- (2) 

Bond lengths (Å)   

M1-N1 2.1504(13) 2.2042(12) 

M2-N2 2.1588(14) 2.2156(12) 

M1-O5 2.0755(11) 2.0761(10) 

M2-O5 2.0035(11) 2.0724(10) 

M1-O1 2.0653(11) 2.1345(11) 

M2-O6 2.0442(12) 2.0528(10) 

M1-O3 2.1002(12) 2.0674(11) 

M2-O8 2.0235(12) 2.0928(11) 

M1-O1W 2.0257(12) 2.0175(11) 

M1-O2W 2.2029(12) 2.1119(11) 

M2-O3W 2.0338(12) 2.1179(11) 

M2-O4W N/A 2.0127(11) 
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Bond angles (°)   

M1-O5-M2 129.31(5) 129.57(5) 

N1-M1-O5 92.33(5) 91.00(4) 

N1-M1-O2W 88.37(5) 91.04(4) 

O1W-M1-O5 93.81(5) 87.63(4) 

O1W-M1-O2W 85.29(5) 90.12(4) 

O1-M1-O3 158.61(4) 152.97(4) 

N2-M2-O5 93.78(5) 91.00(4) 

N2-M2-O3W 169.82(5) 90.42(4) 

O4W-M2-O5 N/A 89.48(4) 

O3W-M2-O4W N/A 89.19(5) 

O6-M2-O8 142.93(5) 153.52(4) 

O5-M2-O6 109.78(5) 98.34(4) 

O5-M2-O8 103.61(5) 93.62(4) 

 

 Elemental analysis (C,H,N) was performed on the crystals of 

[Zn(H2O)6][1]2•10H2O and [Mg(H2O)6][2]2•14H2O as another method of characterization 

of the isolated complexes. The samples were dried under vacuum before analysis and as a 

result, some of the waters of hydration were lost from the crystal lattice. The results 

suggest [Zn(H2O)6][1]2•10H2O crystals lost a total of 14 water molecules and the 

[Mg(H2O)6][2]2•14H2O crystals lost 10 water molecules. It is unclear which molecules of 

water were lost from the crystals, but the mostly likely candidates are the waters of 
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crystallization. The theoretical composition of the formulas Zn5(F-HXTA)2(H2O)8 and 

Mg5(F-HXTA)2(H2O)18 gives C, H, N compositions within 0.4% of the experimental 

analysis values we observed. Previous homobimetallic species with Fe and Mn both lost 

22 molecules of water when dried for the elemental analysis.1  

Figure 2 shows the 19F-NMR spectrum of [Mg2(F-HXTA)(H2O)4]
- (2) after 

dissolving the isolated crystals in D2O, which has a triplet peak at -134.10 ppm 

(3JHF=9.01 Hz). Figure 4 is the 19F-NMR spectrum of the [Zn2(F-HXTA)(H2O)3]
- (1) 

crystals with a triplet peak at -133.06 ppm (3JHF=9.1 Hz). These spectra are what was 

expected for their respective compounds; a single peak per complex but split into a triplet 

peak with the F coupling to the aryl H’s. Figure 3 is the 1H-NMR of [Mg2(F-

HXTA)(H2O)4]
- (2). The complex anion in [Mg(H2O)6][2]2•14H2O has C2 symmetry and 

7 unique sets of F-HXTA protons: the two equivalent aryl protons, two distinct benzylic 

protons, and then four ditinct protons on each arm of the amines. When dissolved in D2O, 

the 1H-NMR spectrum shows 7 resonances indicating the C2 symmetry observed in the 

crystal structure is maintained in solution. A clear aromatic doublet at 6.75 ppm (3JHF=9.1 

Hz) with an integration of 2 is observed; it is split into a doublet due to the aryl H 

coupling with the F. A series of 6 doublets corresponding to the different sets of 

hydrogens on the F-HXTA ligand is also present. The doublets are distinct diastereotopic 

methylene peaks, because the two hydrogens on each carbon are not equivalent and 

therefore split each other with a large coupling constant (JHH=12-18 Hz). This conclusion 

is supported by an integration of 2 for each doublet; diastereotopic methylene peaks were 

also previously observed for the [Fe2(F-HXTA)(H2O)4]
- complex.1  
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Figure 5 shows the 1H-NMR spectrum of [Zn2(F-HXTA)(H2O)3]
- crystals and this 

is generally less sharp than the [Mg2(F-HXTA)(H2O)4]
- spectrum. The aromatic peak at 

6.79 ppm is clear with an integration of 2 but the diastereotopic methylenes that were 

apparent in the [Mg2(F-HXTA)(H2O)4]
- spectrum have collapsed together into two peaks 

around the same area. The 1H-NMR spectrum of [Zn(H2O)6][1]2•10H2O crystals 

dissolved in D2O shows only 3 broad resonances indicating rapid inter conversion of the 

C2 enantiomers on the NMR timescale. The most likely mechanism is loss of coordinated 

water molecules and flattening of the complex anion into an intermediate with Cs 

symmetry.  

 

Figure 2: 19F-NMR of [Mg(H2O)6][2]2•12H2O in D2O referenced to C6F6. 
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Figure 3: 1H-NMR of [Mg(H2O)6][2]2•12H2O in D2O. 

 

 

Figure 4: 19F-NMR of [Zn(H2O)6][1]2•2H2O in D2O referenced to NaPF6. 
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Figure 5: 1H-NMR of [Zn(H2O)6][1]2•2H2O in D2O. 

 

3.2 Designing Metal Exchange Experiments 

Our previous FeII/MnII exchange experiments with F-HXTA were performed by 

measuring the amounts of the different bimetallic-HXTA complexes in equilibrium after 

adding different ratios of the two metal salts. We proposed to repeat these experiments 

with pairs from the group: Fe2+, Mg2+ and Zn2+. The purpose of the exchange 

experiments is to investigate the relative stabilities of the different F-HXTA species 

formed. The total amount of the two metals added, regardless of the ratio, was in excess 

of the amount of F-HXTA (greater than two equivalents). Under these conditions, F-

HXTA is saturated with metal and an equilibrium is established between the two 

homobimetallic F-HXTA species and a heterobimetallic F-HXTA species, as shown in 

Eqs 1 – 3. Equation 1 is the net overall reaction from one homobimetallic species to 

another, and equation 2 and equation 3 are the single step metal replacements that sum to 

equation 1. In order to measure the equilibrium constants, 19F-NMR was used with an 

internal standard (4-fluorophenol) of known concentration to measure against the 
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concentrations of all three bimetallic-HXTA complexes. 

 

 

Before comprehensive equilibrium experiments could be conducted, it was 

important to first perform three control experiments: the first was to determine how long 

it takes mixtures of metal and F-HXTA to reach equilibrium, the second was to confirm 

all coordination sites are occupied under the conditions of interest, and the third was to 

make sure all species are present at measurable concentrations. In order to accomplish the 

first objective, a series of 19F-NMR spectra were taken of the Zn2+/Mg2+ exchange at 

different time intervals. The first was when the mixture was initially made, then 4.5 and 

24 hours later. During the time between the initial solution being made and the NMR 

measurements, the mixture was kept in a water bath at a constant temperature of 25°C. 

Peak areas were compared to each other to see how long it took for concentrations of 

each F-HXTA species in the solution to reach a constant value. The integrated 19F-NMR 

spectra at each time interval can be found in Figure 6. As expected, each spectrum had 

similar integrals for each peak and therefore reaches equilibrium rapidly enough that 

essentially no wait time is required. However, for consistency the time between solution 

preparation and beginning of the NMR acquisition was chosen to be 6.5 hours. 



41 

 

 

Figure 6: Time interval NMR spectra, bottom to top: initial, 4.5 hours, 24 hours. Peaks: 4-fluorphenol (-

125.05 ppm), Zn2HXTA (-128.30 ppm), ZnMgHXTA(-128.88 ppm), Mg2HXTA(-129.79 ppm) 

 

It was also important prior to the equilibrium experiment to determine if under the 

conditions of the experiment that F-HXTA was fully saturated with metal so all the 

coordination sites are occupied. In order to do so, a series of experiments were performed 

in which the concentration of F-HXTA was held constant and the amount of M(ClO4)2 

(M=MgII, ZnII) was added in increments of 0.5 molar equivalents with respect to F-

HXTA. The range of equivalents added were from 0.0:1 to 2.5:1, Metal:F-HXTA. The 

mixtures were monitored via 19F-NMR and the results can be seen in Figure 7 and Figure 
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8 for ZnII and MgII respectively. A similar experiment with FeII and F-HXTA was 

performed previously.1 

Figure 7 and Figure 8 show a similar trend: In the initial spectrum A, only F-

HXTA is present without any metal added and that is the largest peak shown in the 

spectrum. After the first 0.5 M equivalent of metal is added, two peaks upfield from that 

initial F-HXTA peak begin to form and those are from mononucleated M-(F-HXTA) and 

dinucleated M2(F-HXTA), seen in spectrum B. As each new equivalent of metal is added 

to the mixture, the initial F-HXTA peak and the M(F-HXTA) peak decrease in intensity 

as the M2(F-HXTA) peak increases in intensity. At the exchange equilibrium ratio of 

2.0:1 metal:F-HXTA, the initial F-HXTA peak and the M(F-HXTA) peak are 

insignificant intensities and therefore not factors in the exchange experiment. In both 

Figure 7 and Figure 8, there is a small peak up field from the rest of the F-HXTA and 

complex peaks. That is due to the slow degradation of the F-HXTA which can happen 

over time while the compound is in solution. 
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Figure 7: Incremental addition of Zn(ClO4)2 to F-HXTA: A= 0.0 equivalents of Zn(ClO4)2; B= 0.5 

equivalents of Zn(ClO4)2; C= 1.0 equivalents of Zn(ClO4)2; D= 1.5 equivalents of Zn(ClO4)2; E= 2.0 

equivalents of Zn(ClO4)2; F= 2.5 equivalents of Zn(ClO4)2, The equivalence is with a respect to the F-

HXTA concentration. 
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Figure 8: Incremental addition of Mg(ClO4)2 to F-HXTA: A= 0.0 equivalents of Mg(ClO4)2; B= 0.5 

equivalents of Mg(ClO4)2; C= 1.0 equivalents of Mg(ClO4)2; D= 1.5 equivalents of Mg(ClO4)2; E= 2.0 

equivalents of Mg(ClO4)2; F= 2.5 equivalents of Mg(ClO4)2, The equivalence is with a respect to the F-

HXTA concentration. 

Equations 1-3 are representative of the metal exchange equilibria for each of the 

experimental metal combinations Zn2+, Mg2+ and Fe2+. The experimental approach for 

measuring K1-3 described above will only work if all species are present in reasonable 

amounts i.e. K1-3 are neither too large nor too small. In order to get a good idea of what 

the formation constants between F-HXTA and these metals might look like, we found it 
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helpful to examine metal complexes of the similarly structured, but mononucleating 

ethylenediaminetetraacetic acid (H4EDTA) ligand. Equations 4-6 illustrate the formation 

constants () of the metals of concern with EDTA on a logarithmic scale.3 A formation 

constant is an equilibrium constant for the formation of a complex between a free metal 

ion and a ligand. β values are typically very large between a metal and a chelating ligand; 

therefore, it is convenient to deal with these values on a logarithmic scale. 

 

 

Since EDTA’s structure is similar to that of F-HXTA, it can be inferred that both 

ligands will have similar relative affinities for Mg/Zn, Mg/Fe and Zn/Fe. The metal 

affinities for EDTA are illustrated in equations 7-9, and these equations are considered 

analogous to equation 1 for F-HXTA. These numbers are significantly larger than 1 and 

thus all favor the products. We therefore expect that for F-HXTA the formations 

constants of each metal are too different to accurately measure the concentrations of all 
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M2(F-HXTA) complexes simultaneously.  One metal binds much more favorably than the 

other in a mixture of two metals and F-HXTA. Therefore, the concentration of one of the 

metal species will approach zero thus making equilibrium constants impossible to 

calculate by the method outlined above. Preliminary experiments using F-HXTA and 

Zn/Mg mixtures showed this to be the case. The solution to be able to perform 

equilibrium calculations for this system is to introduce a leveling agent into the system. A 

leveling agent is a molecule that has relative binding affinity to the ligand of interest, in 

this case F-HXTA. The leveling agent will bias the system towards a more even 

distribution of the different dimetal-HXTA complexes that can all be measured via 19F-

NMR. 

Initially, EDTA was used as the leveling agent. EDTA is commercially available 

in high purity and has a similar molecular structure to F-HXTA so seemed to be the most 

obvious choice. However after several trials it was determined that EDTA would not 

sufficiently differentiate the different metal species. The concentration of the 

[Mg(EDTA)]2- complex was still too low to calculate the equilibrium constants of 

interest. The next leveling agent tested was nitrilotriacetic acid (NTA). As was the case 

with EDTA, the formation constants (β) of the metals of interest with NTA are well 

established and thus reliably accurate.4 After preliminary trials with NTA, we found that 

the equilibrium values were close enough that they could be simultaneously calculated 

with 19F-NMR. It was settled that NTA would be an effective leveling agent to allow us 

to observe the equilibria.  
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The two ligands partition the stronger binding metal which shifts the equilibrium 

constants towards 1 so the constant becomes measurable for our experiment. The amount 

of NTA needed to satisfy this equilibrium shift had to be more than the amount of the 

high affinity metal not complexed to HXTA, so that there were measurable amounts of 

both Ma(NTA) and Mb(NTA) present in equations 10-12 (See Appendix B Tables 1, 5 

and 9). It is assumed that the remainder of the high affinity metal not bound to F-HXTA 

is bound to NTA and the remainder of the NTA binds the low affinity metal.  

The mixture of ZnII/MgII will be used for the following example: The 

concentrations of all F-HXTA complexes are measured by 19F-NMR. The amount of the 

Zn(NTA) complex is known because the remaining ZnII not bound to F-HXTA is 

assumed to preferentially complex with NTA because βZnNTA>> βMgNTA and [NTA]total > 

[Zn]free, where [Zn]free is the concentration of Zn not bound to F-HXTA. Since the total 

amount of ZnII added to the mixture is known, the amount of Zn(NTA) can be calculated 

by subtracting the F-HXTA bound ZnII concentration from the total ZnII  added. The 

amount of total NTA added was also known, so the Mg(NTA) concentration could also 

be found by subtracting the Zn(NTA) concentration from the total NTA concentration. It 

is assumed that all NTA is bound because of the high formation constants with each of 

the metals being used (equations 13-15). With these concentrations known, it is possible 

to calculate K1-3’.  
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Addition of NTA allowed us to measure equilibrium constants for F-HXTA 

competition with M(NTA) (Eqs 10-12) via the 19F-NMR technique described above; 

however, the equilibria that we are interested in are between F-HXTA with the free 

metals, not metal-NTA complexes. In order to convert the measured equilibrium values 

(K1-3’) containing NTA in the equilibrium back to K1-3 which contain free metal ions, we 

can use the known formation constants (β) between each metal and NTA. Equations 13-

15 illustrates each of these equilibria.4 Again these values are reported on the logarithmic 

scale. 

 



49 

 

The known values of βZnNTA and βMgNTA were used to convert K’ into K, which is 

shown in equations 16-18. By doing this conversion it gives us a way to measure the 

exchange equilibrium concentrations via 19F-NMR and using the leveling agent NTA.  

(16)   𝐾1 =
𝐾1′ * (𝛽𝑍𝑛𝑁𝑇𝐴)2

(𝛽𝑀𝑔𝑁𝑇𝐴)2
 

(17)   𝐾2 =
𝐾2′ * (𝛽𝑍𝑛𝑁𝑇𝐴)

(𝛽𝑀𝑔𝑁𝑇𝐴)
 

(18)   𝐾3 =
𝐾3′ * (𝛽𝑍𝑛𝑁𝑇𝐴)

(𝛽𝑀𝑔𝑁𝑇𝐴)
 

 

 3.3 Results from the Metal Exchange Experiments 

The metal exchange experiment was performed by preparing solutions of 

Na2H3(F-HXTA) with four total equivalents of two metals in different ratios from stock 

solutions of Zn(ClO4)2, Mg(ClO4)2 and Fe(ClO4)2. These mixtures were buffered at pH 

7.5 with N-methylmorpholine and 19F-NMR data was taken using 4-fluorophenol as an 

internal standard to measure the concentrations of M2(F-HXTA) complexes. By using the 

measured concentrations of bimetallic F-HXTA complexes, it is possible to calculate the 

free metal and M(NTA) complex concentrations. The net ionic strength of each mixture 

was maintained at 0.106 M, 0.110 M and 0.033 M for the Fe/Mg, Zn/Mg, and Zn/Fe 

mixtures respectively. The ionic strength of the Zn/Fe mixture is about 3 times lower than 

the other two mixtures, which is due to this metal pair being significantly less soluble 
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than the others. It would not be possible to obtain accurate concentrations of each species 

via 19F-NMR with a significant amount of precipitate in the NMR tube. The precipitate 

problem was solved by decreasing the concentrations of each species in the mixture by a 

factor of 3. The concentration of each metal-(F-HXTA) complex is therefore much lower 

for this combination than the other two involving Mg.  

Another obstacle that was encountered during the experimentation was the 

paramagnetic metal ion Fe2+ in the NMR. Paramagnetism broadens the peaks of each of 

the metal-(F-HXTA) complexes turning them from a triplet to singlet, which is apparent 

in Figures 9-36 in Appendix C. In addition to peak broadening, the paramagnetic Fe2(F-

HXTA) peak in the 19F-NMR was shifted significantly more downfield than the 

homobimetallic species of Mg and Zn. The heterobimetallic species involving the Fe as 

expected showed up in between the two homobimetallic peaks. These spectra can be seen 

in Figures 9-36 in Appendix C. 

 There are two spectra per experiment for FeII/ZnII and FeII/MgII experiments 

because the peaks are so significantly spaced out that a 90° pulse could note be calibrated 

for all peaks in a spectrum. When the transmitter offset (TOF) is centered between two 

distant signals in a given NMR spectrum it is possible to get an accurate 90° pulse width 

for each. It was determined that two spectra would be sufficient to properly integrate 

every species peak compared to the internal standard in a given experiment. Both spectra 

were done in separate trials, with their own pulse widths calibrated and TOF measured to 

account for the large space between peaks. TOF1 is between the Fe2(F-HXTA) peak and 
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the close clusters of diamagnetic peaks and TOF2 is between FeM(F-HXTA) and the 

diamagnetic peaks (M=Mg or Zn). 

It was found that there was a relative enhanced stability of each of the 

heterobimetallic species as observed previously. This means that although both site 1 and 

site 2 of the F-HXTA ligand are equivalent, the replacement of two atoms of the same 

metal with two atoms of another metal are not equivalent. This inequality is apparent 

because in none of the metal combinations does K2=K3. Physically, if K2=K3 were true it 

would mean that the replacement of the first metal creating a heterobimetallic species 

(equation 24) would be thermodynamically equivalent to replacement of the second metal 

creating the second homobimetallic species equation 25. Thermodynamic equivalence 

would be the case if the two sites were completely isolated from each other rather than 

share the bridging oxygen atom. Equations 19-22 summarize the enhanced stability of 

each of the metal combinations, including Fe and Mn from previous works.1  
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Each one of the equilibrium values for equations 19-22 are equivalent to  
𝐾2

𝐾3
. We 

denote this constant K exchange (𝐾𝑒𝑥) so therefore: 𝐾𝑒𝑥 =
𝐾2

𝐾3
. Table 3 gives the different 

metal combination K1-3 values as well as their respective Kex, they are all larger than 1 

indicating that the heterobimetallic species are more stable. The individual stability 

constants β1-3 must be large because there are no clear MII (F-HXTA) mononucleated 

ligands present in this mixture. An interesting observation was that the Kex of each of the 

new metal combinations were greater than the Kex of Fe/Mn, the metals present in the 

original study of the protein RNR class 1c. The greater Kex for the non-protein metal 

mixtures indicates that the heterobimetallic species of the new metal combinations are 

even more relatively stable compared to the original mixture. 

Table 3: Comprehensive summary of average K1-3 and Kex values with uncertainties, where Kex=K2/K3, for 

each metal ion pair 

Ma Mb K1 K2 K3 Kex 

Mg(II)  Zn(II) (1.4±0.8)*1011 (8±2)*105 (1.5±0.4)*105 5.59(0.09) 

Fe(II)  Zn(II) (7±4)*102 50(20) 11(5) 4.4(0.3) 

Mg(II)  Fe(II) (2.6±0.8)*107 (1.0±0.2)*104 (2.5±0.4)*103 4.15(0.07) 

Mn(II) Fe(II) 182(13) 20.1 (1.3) 9.1 (1.1) 2.2(0.3) 
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The speciation of each mixture as a function of the ratios of the metal species in 

the presence of the leveling agent NTA are shown in Figures 9-11. The curves are the 

theoretical models of the speciation done in the program HySS while the points along 

each of the curves are the experimental values recorded from the NMR experiments. 

Remarkably, at the point where the homobimetallic species are equal, the 

heterobimetallic species concentration is considerably greater in the mixture which 

indicates an enhanced stability of this mixed species. If the replacement of the two metals 

were equivalent thermodynamically, then all three of the curves would intersect at that 

point. The observation that the heterobimetallic peak at the intersection of the two 

homobimetallic curves is higher was consistent through each of the mixtures as shown 

below in the speciation charts shown in Figures 9-11. The mixture containing Zn and Fe 

in Figure 11 has a noticeably larger deviation from the predicted trend lines than the other 

two mixtures. This is due to the lower concentration of all reacting species compared to 

the other two mixtures. 
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Figure 9: concentrations of Mg2HXTA, Zn2HXTA and ZnMgHXTA as a function of MgII/ZnII ratio. [F-

HXTA]=8.73 mM; [M(ClO4)2]total=40.1 mM; pH=7.61 [NTA]=5 mM; [4-fluorophenol]= 4.99 mM; Ionic 

strength= 0.110 at 25°C. 
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Figure 10: concentrations of Fe2HXTA, Mg2HXTA and FeMgHXTA as a function of MgII/FeII ratio. [F-

HXTA]=8.40 mM; [M(ClO4)2]total=40.0 mM; pH=7.50 [NTA]=5 mM; [4-fluorophenol]= 4.99 mM; Ionic 

strength= 0.106 at 25°C. 
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Figure 11: concentrations of Fe2HXTA, Zn2HXTA and ZnFeHXTA as a function of FeII/ZnII ratio. [F-

HXTA]=2.57 mM; [M(ClO4)2]total=12.0 mM; pH=7.01 [NTA]=3.01 mM; [4-fluorophenol]= 1.50 mM; 

Ionic strength= 0.033 at 25°C. 

The major result of these experiments was the enhanced stability of the 

heterobimetallic species, and not just in the Fe/Mn mixture but in all of the metal 

mixtures. The result indicates that the factor causing the observed relative enhanced 

stability is not dependent on the metals in the binding sites but rather the binding site of 

F-HXTA itself. The next step of this study is now to synthesize a new model ligand that 

has a slightly different binding site than F-HXTA perhaps with two isolated metal sites to 

see if the replacements are now equivalent. Or the binding site could be made 

asymmetrical to see how this effects the exchange experiments. 
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Appendix A: Crystal Structure of [Zn(H2O)6][1]2•10H2O and 

[Mg(H2O)6][2]2•14H2O 

 

[Zn(H2O)6][1]2•10H2O 
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Bond Lengths (Å): 

Zn(1) –O(1)W………………2.0257(12)  

Zn(1)-O(1)…………………..2.0653(11)  

Zn(1)-O(5)…………………..2.0755(11)  

Zn(1)-O(3)…………………..2.1002(12)  

Zn(1)-N(1)…………………..2.1504(13)  

Zn(1)-O(2)W………………..2.2029(12)  

Zn(2)-O(5)…………………..2.0035(11)  

Zn(2)-O(8)…………………..2.0235(12)  

Zn(2)-O(3)W………………..2.0338(12)  

Zn(2)-O(6)…………………..2.0442(12)  

Zn(2)-N(2)…………………..2.1588(14)  

C(1)-O(2)……………………1.2532(19)  

C(1)-O(1)……………………1.2715(19)  

C(1)-C(2)……………………1.521(2)  

C(2)-N(1)……………………1.473(2)  

C(2)-H(2)A………………….0.9900  

C(2)-H(2)B………………….0.9900  

C(3)-N(1)……………………1.474(2)  

C(3)-C(4)……………………1.527(2)  

C(3)-H(3)A………………….0.9900  

C(3)-H(3)B………………….0.9900  

C(4)-O(4)……………………1.239(2)  

C(4)-O(3)……………………1.280(2) 

C(5)-N(1)……………………1.486(2)  

C(5)-C(6)……………………1.506(2)  

C(5)-H(5)A………………….0.9900  

C(5)-H(5)B………………….0.9900  

C(6)-C(7)……………………1.399(2)  

C(6)-C(11)…………………..1.403(2)  

C(7)-C(8)……………………1.379(2)  

C(7)-H(7)……………………0.9500  

C(8)-F(1)…………………….1.3663(18) 

C(8)-C(9)……………………1.375(2)  

C(9)-C(10)…………………..1.396(2) 

C(9)-H(9)……………………0.9500  

C(10)-C(11)…………………1.404(2)  

C(10)-C(12)…………………1.504(2)  

C(11)-O(5)…………………..1.3574(19)  

C(12)-N(2)…………………..1.493(2)  

C(12)-H(12)A……………….0.9900  

C(12)-H(12)B……………….0.9900  

 

 

 

 

 

 

 

 

 

 

C(13)-N(2)…………………..1.473(2)  

C(13)-C(14)…………………1.520(2)  

C(13)-H(13)A……………….0.9900  

C(13)-H(13)B……………….0.9900  

C(14)-O(7)…………………..1.250(2)  

C(14)-O(6)…………………..1.271(2) 

C(15)-N(2)…………………...1.473(2) 

C(15)-C(16)………………….1.527(2) 

C(15)-H(15)A………………..0.9900  

C(15)-H(15)B………………..0.9900 

C(16)-O(9)…………………...1.247(2)  

C(16)-O(8)…………………...1.270(2) 

O(1)W-H(1)W(1)…………….0.846(18)  

O(1)W-H(1)W(2)…………….0.827(18)  

O(2)W-H(2)W(1)…………….0.785(18)  

O(2)W-H(2)W(2)…………….0.828(18)  

O(3)W-H(3)W(1)…………….0.819(18)  

O(3)W-H(3)W(2)…………….0.822(18)  

Zn(3)-O(6)W…………………2.0714(12)  

Zn(3)-O(6)W…………………2.0714(12) 

Zn(3)-O(5)W…………………2.0923(12)  

Zn(3)-O(5)W…………………2.0924(12)  

Zn(3)-O(4)W…………………2.1062(13)  

Zn(3)-O(4)W…………………2.1062(13) 

O(4)W-H(4)W(1)…………….0.828(18)  

O(4)W-H(4)W(2)…………….0.802(18)  

O(5)W-H(5)W(1)…………….0.811(18)  

O(5)W-H(5)W(2)…………….0.818(18)  

O(6)W-H(6)W(1)…………….0.801(18) 

O(6)W-H(6)W(2)…………….0.827(18) 

O(7)W-H(7)W(1)…………….0.827(19) 

O(7)W-H(7)W(2)…………….0.81(2) 

O(8)W-H(8)W(1)…………….0.841(19) 

O(8)W-H(8)W(2)…………….0.815(19) 

O(9)W-H(9)W(1)…………….0.869(19) 

O(9)W-H(9)W(2)…………….0.803(19) 

O(10)W-H(101)……………....0.831(18) 

O(10)W-H(102)………………0.819(18) 

O(11)W-H(111) ……………...0.809(19) 

O(11)W-H(112)……………....0.812(18) 
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Bond Angles (°): 

O(1)W-Zn(1)-O(1)…………………101.82(5) 

O(1)W-Zn(1)-O(5)………………….93.81(5)  

O(1)-Zn(1)-O(5)…………………….97.81(4)  

O(1)W-Zn(1)-O(3)………………….97.08(5)  

O(1)-Zn(1)-O(3)……………………158.61(4)  

O(5)-Zn(1)-O(3)……………………90.78(4)  

O(1)W-Zn(1)-N(1)…………………172.85(5)  

O(1)-Zn(1)-N(1)……………………80.94(5)  

O(5)-Zn(1)-N(1)……………………92.33(5)  

O(3)-Zn(1)-N(1)……………………79.16(5)  

O(1)W-Zn(1)-O(2)W……………….85.29(5)  

O(1)-Zn(1)-O(2)W………………….85.44(5)  

O(5)-Zn(1)-O(2)W………………….176.74(5)  

O(3)-Zn(1)-O(2)W………………….86.22(5)  

N(1)-Zn(1)-O(2)W………………….88.37(5)  

O(5)-Zn(2)-O(8)……………………103.61(5)  

O(5)-Zn(2)-O(3)W………………….95.17(5)  

O(8)-Zn(2)-O(3)W………………….101.08(5)  

O(5)-Zn(2)-O(6)…………………….109.78(5)  

O(8)-Zn(2)-O(6)…………………….142.93(5)  

O(3)W-Zn(2)-O(6)………………….91.66(5)  

O(5)-Zn(2)-N(2)…………………….93.78(5)  

O(8)-Zn(2)-N(2)…………………….81.46(5)  

O(3)W-Zn(2)-N(2)………………….169.82(5)  

O(6)-Zn(2)-N(2)…………………….80.74(5)  

O(2)-C(1)-O(1)……………………...123.45(16)  

O(2)-C(1)-C(2)……………………...117.54(14)  

O(1)-C(1)-C(2)……………………...118.93(14)  

N(1)-C(2)-C(1)……………………...112.64(13)  

N(1)-C(2)-H(2)A……………………109.1  

C(1)-C(2)-H(2)A……………………109.1  

N(1)-C(2)-H(2)B……………………109.1  

C(1)-C(2)-H(2)B……………………109.1  

H(2)A-C(2)-H(2)B………………….107.8  

N(1)-C(3)-C(4)……………………...111.28(13)  

N(1)-C(3)-H(3)A……………………109.4  

C(4)-C(3)-H(3)A……………………109.4  

N(1)-C(3)-H(3)B……………………109.4  

C(4)-C(3)-H(3)B……………………109.4  

H(3)A-C(3)-H(3)B………………….108.0  

O(4)-C(4)-O(3)……………………...123.87(15)  

O(4)-C(4)-C(3)……………………...118.08(15)  

O(3)-C(4)-C(3)……………………...118.04(14)  

N(1)-C(5)-C(6)……………………...114.65(13)  

N(1)-C(5)-H(5)A…………………....108.6  

C(6)-C(5)-H(5)A……………………108.6  

N(1)-C(5)-H(5)B……………………108.6  

C(6)-C(5)-H(5)B……………………108.6  

H(5)A-C(5)-H(5)B………………….107.6  

C(7)-C(6)-C(11)……………………119.92(15)  

C(7)-C(6)-C(5)……………………..120.77(15)  

 

 

C(11)-C(6)-C(5)……………………119.12(14)  

C(8)-C(7)-C(6)……………………..118.60(15)  

C(8)-C(7)-H(7)……………………..120.7  

C(6)-C(7)-H(7)……………………..120.7  

F(1)-C(8)-C(9)……………………...118.61(15)  

F(1)-C(8)-C(7)……………………...118.60(15)  

C(9)-C(8)-C(7)……………………...122.79(15)  

C(8)-C(9)-C(10)…………………….119.06(15)  

C(8)-C(9)-H(9)……………………...120.5  

C(10)-C(9)-H(9)…………………….120.5  

C(9)-C(10)-C(11)…………………...119.65(15)  

C(9)-C(10)-C(12)…………………...120.39(15)  

C(11)-C(10)-C(12)………………….119.91(14)  

O(5)-C(11)-C(6)…………………….119.44(14)  

O(5)-C(11)-C(10)…………………...120.62(15)  

C(6)-C(11)-C(10)…………………...119.94(15)  

N(2)-C(12)-C(10)…………………...112.19(13)  

N(2)-C(12)-H(12)A………………....109.2  

C(10)-C(12)-H(12)A………………..109.2  

N(2)-C(12)-H(12)B…………………109.2  

C(10)-C(12)-H(12)B………………..109.2  

H(12)A-C(12)-H(12)B……………...107.9  

N(2)-C(13)-C(14)…………………...113.11(13)  

N(2)-C(13)-H(13)A………………....109.0  

C(14)-C(13)-H(13)A………………..109.0  

N(2)-C(13)-H(13)B…………………109.0  

C(14)-C(13)-H(13)B………………..109.0   

H(13)A-C(13)-H(13)B……………...107.8   

O(7)-C(14)-O(6)…………………….124.24(16)   

O(7)-C(14)-C(13)…………………...116.84(14)   

O(6)-C(14)-C(13)…………………...118.91(14)   

N(2)-C(15)-C(16)…………………...111.45(13)   

N(2)-C(15)-H(15)A…………………109.3   

C(16)-C(15)-H(15)A………………..109.3   

N(2)-C(15)-H(15)B…………………109.3  

C(16)-C(15)-H(15)B………………..109.3  

H(15)A-C(15)-H(15)B……………...108.0  

O(9)-C(16)-O(8)…………………….123.48(16)  

O(9)-C(16)-C(15)…………………...118.27(16)  

O(8)-C(16)-C(15)…………………...118.23(15)  

C(2)-N(1)-C(3)……………………...114.72(12)  

C(2)-N(1)-C(5)……………………...111.81(12)  

C(3)-N(1)-C(5)……………………...108.10(12)  

C(2)-N(1)-Zn(1)…………………….106.13(10)  

C(3)-N(1)-Zn(1)…………………….106.47(9)  

C(5)-N(1)-Zn(1)…………………….109.38(9)  

C(13)-N(2)-C(15)…………………...113.29(13)  

C(13)-N(2)-C(12)…………………...112.07(13)  

C(15)-N(2)-C(12)…………………...109.64(13)  

C(13)-N(2)-Zn(2)…………………....109.56(10)  

C(15)-N(2)-Zn(2)……………………103.51(10)  
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C(12)-N(2)-Zn(2)……………………108.33(10)   

C(1)-O(1)-Zn(1)……………………..114.73(10)   

C(4)-O(3)-Zn(1)……………………..114.67(10)   

C(11)-O(5)-Zn(2)……………………116.83(9)   

C(11)-O(5)-Zn(1)……………………113.82(9)   

Zn(2)-O(5)-Zn(1)……………………129.31(5)   

C(14)-O(6)-Zn(2)……………………117.62(11)   

C(16)-O(8)-Zn(2)……………………114.81(11)   

Zn(1)-O(1)W-H(1)W(1)……………..117.5(14)   

Zn(1)-O(1)W-H(1)W(2)……………..125.5(15)   

H(1)W(1)-O(1)W-H(1)W(2)………...104.7(19)   

Zn(1)-O(2)W-H(2)W(1)……………..126.3(16)   

Zn(1)-O(2)W-H(2)W(2)……………..118.8(15)   

H(2)W(1)-O(2)W-H(2)W(2)………...111(2)   

Zn(2)-O(3)W-H(3)W(1)……………..127.4(15)   

Zn(2)-O(3)W-H(3)W(2)……………..114.0(15)   

H(3)W(1)-O(3)W-H(3)W(2)………...107.6(19)   

O(6)W-Zn(3)-O(6)W………………...180.0   

O(6)W-Zn(3)-O(5)W………………...92.24(5)   

O(6)W-Zn(3)-O(5)W………………...87.76(5)   

O(6)W-Zn(3)-O(5)W………………...87.76(5) 

O(6)W-Zn(3)-O(5)W………………...92.24(5)   

O(5)W-Zn(3)-O(5)W………………..180.00(8)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O(6)W-Zn(3)-O(4)W………………...91.69(5)   

O(6)W-Zn(3)-O(4)W………………...88.31(5)   

O(5)W-Zn(3)-O(4)W………………...90.73(5)   

O(5)W-Zn(3)-O(4)W………………...89.27(5)   

O(6)W-Zn(3)-O(4)W………………...88.31(5)   

O(6)W-Zn(3)-O(4)W………………...91.69(5)   

O(5)W-Zn(3)-O(4)W………………...89.27(5)   

O(5)W-Zn(3)-O(4)W………………...90.73(5)   

O(4)W-Zn(3)-O(4)W………………..180.0   

Zn(3)-O(4)W-H(4)W(1)……………..117.5(15)   

Zn(3)-O(4)W-H(4)W(2)……………..118.6(16)   

H(4)W(1)-O(4)W-H(4)W(2)………...105(2)   

Zn(3)-O(5)W-H(5)W(1)……………..119.5(15)   

Zn(3)-O(5)W-H(5)W(2)……………..116.4(15)   

H(5)W(1)-O(5)W-H(5)W(2)………...108(2)   

Zn(3)-O(6)W-H(6)W(1)……………..115.6(15)   

Zn(3)-O(6)W-H(6)W(2)……………..114.6(15)   

H(6)W(1)-O(6)W-H(6)W(2)………...108.9(19)   

H(7)W(1)-O(7)W-H(7)W(2)………...109(2)   

H(8)W(1)-O(8)W-H(8)W(2)………...107(2)   

H(9)W(1)-O(9)W-H(9)W(2)………...106(2)   

H(101)-O(10)W-H(102)……………..103.2(19)   

H(111)-O(11)W-H(112)……………..108(2)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 
 

 

 

 

Torsion Angles (°): 
 

O(2)-C(1)-C(2)-N(1)…………..166.80(13)  

O(1)-C(1)-C(2)-N(1)…………..-16.5(2)  

N(1)-C(3)-C(4)-O(4)…………..-161.42(14)  

N(1)-C(3)-C(4)-O(3)…………...19.8(2)  

N(1)-C(5)-C(6)-C(7)…………...-115.75(17)  

N(1)-C(5)-C(6)-C(11)………….69.18(19)  

C(11)-C(6)-C(7)-C(8)………….1.3(2)  

C(5)-C(6)-C(7)-C(8)…………...-173.73(15)  

C(6)-C(7)-C(8)-F(1)……………-179.12(14)  

C(6)-C(7)-C(8)-C(9)…………...0.5(3)  

F(1)-C(8)-C(9)-C(10)………….177.70(14)  

C(7)-C(8)-C(9)-C(10)………….-2.0(3)  

C(8)-C(9)-C(10)-C(11)………...1.5(2)  

C(8)-C(9)-C(10)-C(12)………...-175.80(15)  

C(7)-C(6)-C(11)-O(5)………….177.79(15)  

C(5)-C(6)-C(11)-O(5)………….-7.1(2)  

C(7)-C(6)-C(11)-C(10)………...-1.7(2)  

C(5)-C(6)-C(11)-C(10)………...173.40(15)  

C(9)-C(10)-C(11)-O(5)………...-179.21(15)  

C(12)-C(10)-C(11)-O(5)……….-1.9(2)  

C(9)-C(10)-C(11)-C(6)………...0.3(2)  

C(12)-C(10)-C(11)-C(6)……….177.61(15)  

C(9)-C(10)-C(12)-N(2)………...-117.05(16)  

C(11)-C(10)-C(12)-N(2)……….65.65(19)  

N(2)-C(13)-C(14)-O(7)………...-178.29(14)  

N(2)-C(13)-C(14)-O(6)………...2.8(2)  

N(2)-C(15)-C(16)-O(9)………...-156.40(15)  

N(2)-C(15)-C(16)-O(8)………...24.8(2)  

C(1)-C(2)-N(1)-C(3)…………...143.33(13)  

 

 

 

 

 

 

C(1)-C(2)-N(1)-C(5)……………-93.12(15)  

C(1)-C(2)-N(1)-Zn(1)…………...26.07(14)  

C(4)-C(3)-N(1)-C(2)…………….-149.65(13)  

C(4)-C(3)-N(1)-C(5)…………….84.84(15)  

C(4)-C(3)-N(1)-Zn(1)…………...-32.59(15)  

C(6)-C(5)-N(1)-C(2)…………….65.35(17)  

C(6)-C(5)-N(1)-C(3)…………….-167.44(13)  

C(6)-C(5)-N(1)-Zn(1)……………-51.90(15)  

C(14)-C(13)-N(2)-C(15)………...113.39(16)  

C(14)-C(13)-N(2)-C(12)……….. -121.90(15)  

C(14)-C(13)-N(2)-Zn(2)………...-1.62(16)  

C(16)-C(15)-N(2)-C(13)………...-151.78(14)  

C(16)-C(15)-N(2)-C(12)………...82.21(16)  

C(16)-C(15)-N(2)-Zn(2)………...-33.21(15)  

C(10)-C(12)-N(2)-C(13)………...61.35(17)  

C(10)-C(12)-N(2)-C(15)………...-171.95(13)  

C(10)-C(12)-N(2)-Zn(2)…………-59.64(14)  

O(2)-C(1)-O(1)-Zn(1)……………172.68(12)  

C(2)-C(1)-O(1)-Zn(1)……………-3.77(17)  

O(4)-C(4)-O(3)-Zn(1)……………-173.49(12)  

C(3)-C(4)-O(3)-Zn(1)……………5.16(17)  

C(6)-C(11)-O(5)-Zn(2)…………..130.13(13)  

C(10)-C(11)-O(5)-Zn(2)…………-50.37(18)  

C(6)-C(11)-O(5)-Zn(1)…………..-51.88(17)  

C(10)-C(11)-O(5)-Zn(1)…………127.63(13)  

O(7)-C(14)-O(6)-Zn(2)…………..178.62(12)  

C(13)-C(14)-O(6)-Zn(2)…………-2.60(19)  

O(9)-C(16)-O(8)-Zn(2)…………..-178.67(13)  

C(15)-C(16)-O(8)-Zn(2)………….0.07(18)  
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[Mg(H2O)6][2]2•14H2O  
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Bond Lengths (Å): 

Mg(1)-O(1)W…………………………2.0175(11)  

Mg(1)-O(3)……………………………2.0674(11)  

Mg(1)-O(5)……………………………2.0761(10)  

Mg(1)-O(2)W…………………………2.1119(11)  

Mg(1)-O(1)……………………………2.1345(11)  

Mg(1)-N(1)…………………………....2.2042(12)  

O(1)W-H(1)W(1)……………………..0.864(19)  

O(1)W-H(1)W(2)…………………..…0.807(19)  

O(2)W-H(2)W(1)……………………..0.844(19)  

O(2)W-H(2)W(2)…………………..…0.833(19)  

Mg(2)-O(4)W…………………………2.0127(11)  

Mg(2)-O(6)……………………………2.0528(10)  

Mg(2)-O(5)……………………………2.0724(10)  

Mg(2)-O(8)……………………………2.0928(11)  

Mg(2)-O(3)W…………………………2.1179(11)  

Mg(2)-N(2)……………………………2.2156(12)  

O(3)W-H(3)W(1)……………………..0.796(19)  

O(3)W-H(3)W(2)…………………..…0.809(19)  

O(4)W-H(4)W(1)………………..……0.844(19)  

O(4)W-H(4)W(2)…………………..…0.867(19)  

C(1)-O(2)……………………………...1.2485(18)  

C(1)-O(1)……………………………...1.2715(17)  

C(1)-C(2)……………………………...1.5250(18)  

C(2)-N(1)……………………………...1.4727(17)  

C(2)-H(2)A……………………………0.9900  

C(2)-H(2)B……………………………0.9900  

C(3)-N(1)……………………………...1.4739(17)  

C(3)-C(4)……………………………...1.5281(19)  

C(3)-H(3)A……………………………0.9900  

C(3)-H(3)B……………………………0.9900  

C(4)-O(4)……………………………...1.2503(18)  

C(4)-O(3)…………………………...…1.2704(17)  

C(5)-N(1)…………………………...…1.4896(16)  

C(5)-C(6)…………………………...…1.5060(18)  

C(5)-H(5)A……………………………0.9900  

C(5)-H(5)B……………………………0.9900  

C(6)-C(7)…………………………...…1.394(2)  

C(6)-C(11)………………………….…1.407(2)  

C(7)-C(8)…………………………...…1.380(2)  

C(7)-H(7)………………………...……0.9500  

C(8)-F(1)………………………....……1.3714(16)  

C(8)-C(9)………………………...……1.376(2)  

C(9)-C(10)…………………………….1.3977(19)  

C(9)-H(9)……………………………...0.9500  

C(10)-C(11)……..………………1.4068(19)  

C(10)-C(12)…..…………………1.5040(19)  

C(11)-O(5)………………………1.3467(16)  

C(12)-N(2)………………………1.4831(17)  

C(12)-H(12)A……………………0.9900  

C(12)-H(12)B……………………0.9900  

C(13)-N(2)…….…………………1.4719(16)  

C(13)-C(14)………...……………1.5226(19)  

C(13)-H(13)A……………………0.9900  

C(13)-H(13)B……………………0.9900  

C(14)O(7)…………………..……1.2505(17)  

C(14)-O(6)……………………….1.2708(17)  

C(15)-N(2)………….……………1.4734(17)  

C(15)-C(16)…...…………………1.5258(18)  

C(15)-H(15)A……………………0.9900  

C(15)-H(15)B……………………0.9900  

C(16)-O(9)………………………1.2469(17)  

C(16)-O(8)………………………1.2723(17)  

Mg(3)-O(5)W……………………2.0403(10)  

Mg(3)-O(5)W……………………2.0403(10)  

Mg(3)-O(6)W……………………2.0429(10)  

Mg(3)-O(6)W……………………2.0429(10)  

Mg(3)-O(7)W……………………2.1413(10)  

Mg(3)-O(7)W……………………2.1413(10)  

O(5)W-H(5)W(1)………………..0.828(19)  

O(5)W-H(5)W(2)………………..0.832(19)  

O(6)W-H(6)W(1)………………..0.812(19)  

O(6)W-H(6)W(2)………………..0.881(19)  

O(7)W-H(7)W(1)………………..0.810(19)  

O(7)W-H(7)W(2)………………..0.841(18)  

O(8)W-H(8)W(1)………………..0.88(2)  

O(8)W-H(8)W(2)………………..0.84(2)  

O(9)W-H(9)W(1)………………..0.820(19)  

O(9)W-H(9)W(2)………………..0.856(19)  

O(10)W-H(0)W(3)………………0.838(19)  

O(10)W-H(0)W(4)………………0.817(19)  

O(11)W-H(1)W(3)………………0.83(2)  

O(11)W-H(1)W(4)………………0.78(2)  

O(12)W-H(2)W(3)………………0.85(2)  

O(12)W-H(2)W(4)………………0.82(2)  

O(13)W-H(3)W(3)………………0.83(2)  

O(13)W-H(3)W(4)………………0.86(2)  

O(14)W-H(4)W(3)………………0.84(2)  

O(14)W-H(4)W(4)………………0.87(2)  
 

 

 

 

 

 

 

 

 

 

  



65 
 

 

Bond Angles (°): 

O1W-Mg1-O3……………………103.29(5)  

O(1)W-Mg(1)-O(5)………………87.63(4)  

O(3)-Mg(1)-O(5)…………………100.42(4)  

O(1)W-Mg(1-O(2)W……………..90.12(4)  

O(3)-Mg(1)-O(2)W………………84.97(4)  

O(5)-Mg(1)-O(2)W………………174.51(5)  

O(1)W-Mg(1)-O(1)………………100.84(4)  

O(3)-Mg(1)-O(1)…………………152.97(4)  

O(5)-Mg(1)-O(1)…………………92.54(4)  

O(2)W-Mg(1)-O(1)………………82.97(4)  

O(1)W-Mg(1)-N(1)………………177.15(5)  

O(3)-Mg(1)-N(1)…………………79.42(4)  

O(5)-Mg(1)-N(1)…………………91.00(4)  

O(2)W-Mg(1)-N(1)………………91.04(4)  

O(1)-Mg(1)-N(1)…………………76.72(4)  

Mg(1)-O(1)W-H(1)W(1)…………122.4(13)  

Mg(1)-O(1)W-H(1)W(2)…………127.2(14)  

H1W1-O1W-H1W2………………105.1(18)  

Mg(1)-O(2)W-H(2)W(1)…………122.8(14)  

Mg(1)-O(2)W-H(2)W(2)…………128.9(14)  

H(2)W(1)-O(2)W-H(2)W(2)……..106.6(19)  

O(4)W-Mg(2)-O(6)………….……99.72(5)  

O(4)W-Mg(2)-O(5)………….……89.48(4)  

O(6)-Mg(2)-O(5)……………….…98.34(4)  

O(4)W-Mg(2)-O(8)…………….…103.94(5)  

O(6)-Mg(2)-O(8)……………….…153.52(4)  

O(5)-Mg(2)-O(8)……………….…93.62(4)  

O(4)W-Mg(2)-O(3)W…………..…89.19(5)  

O(6)-Mg(2)-O(3)W……………..…84.57(4)  

O(5)-Mg(2)-O(3)W………….…….176.97(4)  

O(8)-Mg(2)-O(3)W……..…………84.06(4)  

O(4)W-Mg(2)-N(2)…………..……178.24(5)  

O(6)-Mg(2)-N(2)……………..……78.53(4)  

O(5)-Mg(2)-N(2)……………..……91.00(4)  

O(8)-Mg(2)-N(2)………………..…77.72(4)  

O(3)W-Mg(2)-N(2)………………...90.42(4)  

Mg(2)-O(3)W-H(3)W(1)………..…127.4(15)  

Mg(2)-O(3)W-H(3)W(2)…………..123.3(14)  

H(3)W(1)-O(3)W-H(3)W(2)………109(2)  

Mg(2)-O(4)W-H(4)W(1)…………..128.8(14)  

Mg(2)-O(4)W-H(4)W(2)………..…121.1(14)  

H(4)W(1)-O(4)W-H(4)W(2)………104.7(18)  

O(2)-C(1)-O(1)…………………….124.69(13)  

O(2)-C(1)-C(2)………………….…117.15(12)  

O(1)-C(1)-C(2)…………….………118.07(12)  

N(1)-C(2)-C(1)……….……………111.43(11)  

N(1)-C(2)-H(2)A..…………………109.3  

C(1)-C(2)-H(2)A……..……………109.3  

N(1)-C(2)-H(2)B………..…………109.3  

C(1)-C(2)-H(2)B……..……………109.3  

H(2)A-C(2)-H(2)B………...………108.0  

N(1)-C(3)-C(4) ……………………113.15(11)  

N(1)-C(3)-H(3)A..…………………108.9  

C(4)-C(3)-H(3)A..…………………108.9  

N(1)-C(3)-H(3)B………..…………108.9  

C(4)-C(3)-H(3)B……..………………...108.9  

 

 

H(3)A-C(3)-H(3)B……...……………...107.8  

O(4)-C(4)-O(3)…………………………125.48(13)  

O(4)-C(4)-C(3)…………………………116.25(12)  

O(3)-C(4)-C(3)…………………………118.20(12)  

N(1)-C(5)-C(6)…………………………113.68(11)  

N(1)-C(5)-H(5)A…………….…………108.8  

C(6)-C(5)-H(5)A…………….…………108.8  

N(1)-C(5)-H(5)B…………….…………108.8  

C(6)-C(5)-H(5)B…………….…………108.8  

H(5)A-C(5)-H(5)B…………..…………107.7  

C(7)-C(6)-C(11)………………..………120.17(13)  

C(7)-C(6)-C(5)…………………………120.72(12)  

C(11)-C(6)-C(5)…………………..……118.94(12)  

C(8)-C(7)-C(6)…………………………118.86(13)  

C(8)-C(7)-H(7)…………………………120.6  

C(6)-C(7)-H(7)…………………………120.6  

F(1)-C(8)-C(9)…………………….……118.73(13)  

F(1)-C(8)-C(7)…………………….……118.61(13)  

C(9)-C(8)-C(7)…………………………122.66(13)  

C(8)-C(9)-C(10)……………………..…118.92(13)  

C(8)-C(9)-H(9)…………………………120.5  

C(10)-C(9)-H(9)……………………..…120.5  

C(9)-C(10)-C(11)………………………120.04(13)  

C(9)-C(10)-C(12)………………………120.79(12)  

C(11)-C(10)-C(12)…………………..…119.09(12)  

O(5)-C(11)-C(10)………………………120.32(12)  

O(5)-C(11)-C(6)………………………..120.34(12)  

C(10)-C(11)-C(6)……………….………119.33(12)  

N(2)-C(12)-C(10)………………….……113.13(11)  

N(2)-C(12)-H(12)A………………….…109.0  

C(10)-C(12)-H(12)A………………...…109.0  

N(2)-C(12)-H(12)B………………….…109.0  

C(10)-C(12)-H(12)B……………...……109.0  

H(12)A-C(12)-H(12)B…………………107.8  

N(2)-C(13)-C(14)………………………112.51(11)  

N(2)-C(13)-H(13)A………………….…109.1  

C(14)-C(13)-H(13)A……………...……109.1  

N(2)-C(13)-H(13)B………………….…109.1  

C(14)-C(13)-H(13)B……………...……109.1  

H(13)A-C(13)-H(13)B…………………107.8  

O(7)-C(14)-O(6)…………………….…124.44(13)  

O(7)-C(14)-C(13)…………………...…117.40(12)  

O(6)-C(14)-C(13)……………………...118.09(11)  

N(2)-C(15)-C(16)…………………...…111.39(11)  

N(2)-C(15)-H(15)A……………………109.3  

C(16)-C(15)-H(15)A………………..…109.3  

N(2)-C(150-H(15)B………………....…109.3  

C(16)-C(15)-H(15)B…………………...109.3  

H(15)A-C(15)-H(15)B…………………108.0  

O(9)-C(16)-O(8)……………….…….…124.51(12)  

O(9)-C(16)-C(15)………………………116.91(12)  

O(8)-C(16)-C(15)………………………118.49(12)  

C(2)-N(1)-C(3)…………………………113.21(10)  

C(2)-N(1)-C(5)…………………………108.43(11)  

C(3)-N(1)-C(5)…………………………111.42(10)  

C(2)-N(1)-Mg(1)…………….…………106.22(8)  
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C(3)-N1-Mg(1)…………………………107.94(8)  

C(5)-N1-Mg(1)…………………………109.45(8)  

C(13)-N2-C(15)…………………………113.54(11)  

C(13)-N2-C(12)…………………………111.54(10)  

C(15)-N(2)-C(12)…………………….…109.00(11)  

C(13)-N(2)-Mg(2)………………………108.09(8)  

C(15)-N(2)-Mg(2)………………………105.32(8)  

C(12)-N(2)-Mg(2)………………………109.10(8)  

C(1)-O(1)-Mg(1)………………………..115.01(9)  

C(4)-O(3)-Mg(1)………………..………118.12(9)  

C(11)-O(5)-Mg(2)………………………114.60(8)  

C(11)-O(5)-Mg(1)…………………....…115.76(8)  

Mg(2)-O(5)-Mg(1)………………………129.57(5)  

C(14)-O(6)-Mg(2)………………………118.85(9) 

C(16)-O(8)-Mg(2)………………………115.44(8)  

O(5)W-Mg(3)-O(5)W…………………..180.0  

O(5)W-Mg(3)-O(6)W…………..………88.47(4) 

O(5)W-Mg(3)-O(6)W……………..……91.53(4)  

O(5)W-Mg(3)-O(6)W……………..……91.53(4)  

O(5)W-Mg(3)-O(6)W………………..…88.47(4)  

O(6)W-Mg(3)-O(6)W……………….…180.0  

O(5)W-Mg(3)-O(7)W…………….……89.42(4)  

O(5)W-Mg(3)-O(7)W…………….……90.58(4)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O(6)W-Mg(3)-O(7)W…………….……89.12(4)  

O(6)W-Mg(3)-O(7)W…………….……90.88(4)  

O(5)W-Mg(3)-O(7)W…………….……90.58(4)  

O(5)W-Mg(3)-O(7)W…………….……89.42(4)  

O(6)W-Mg(3)-O(7)W…………….……90.88(4)  

O(6)W-Mg(3)-O(7)W…………….……89.12(4)  

O(7)W-Mg(3)-O(7)W…………….……180.0  

Mg(3)-O(5)W-H(5)W(1)…………....…122.9(14)  

Mg(3)-O(5)W-H(5)W(2)………………126.8(14)  

H(5)W(1)-O(5)W-H(5)W(2)…………..108.6(19)  

Mg(3)-O(6)W-H(6)W(1)………...….…120.4(14)  

Mg(3)-O(6)W-H(6)W(2)………………120.6(13)  

H(6)W(1)-O(6)W-H(6)W(2)…………..105.8(18)  

Mg(3)-O(7)W-H(7)W(1)………………116.9(14)  

Mg(3)-O(7)W-H(7)W(2)………………119.6(14)  

H(7)W(1)-O(7)W-H(7)W(2)………..…105.2(18)  

H(8)W(1)-O(8)W-H(8)W(2)………..…103.2(19)  

H(9)W(1)-O(9)W-H(9)W(2)………..…104.2(19)  

H(0)W(3)-O(10)W-H(0)W(4)…………104.9(19)  

H(1)W(3)-O(11)W-H(1)W(4)…………105(2)  

H(2)W(3)-O(12)W-H(2)W(4)…………103(2)  

H(3)W(3)-O(13)W-H(3)W(4)…………106(2)  

H(4)W(3)-O(14)W-H(4)W(4)…………105(2)  
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Torsion Angle (°): 

O2-C1-C2-N1……………………167.97(12)  

O1-C1-C2-N1……………………-15.28(17)  

N1-C3-C4-O4……………………-170.44(11)  

N1-C3-C4-O3……………………12.37(17)  

N1-C5-C6-C7……………………116.26(14)  

N1-C5-C6-C11…….……………-68.53(16)  

C11-C6-C7-C8….………………-1.6(2)  

C5-C6-C7-C8……………………173.57(13)  

C6-C7-C8-F1……………………-179.21(12)  

C6-C7-C8-C9………….…………0.3(2)  

F1-C8-C9-C10…...………………-179.42(12)  

C7-C8-C9-C10…...………………1.1(2)  

C8-C9-C10-C11…………………-1.2(2)  

C8-C9-C10-C12…………………175.48(12)  

C9-C10-C11-O5…………………-179.20(12)  

C12-C10-C11-O5…..……………4.10(19)  

C9-C10-C11-C6…………………-0.1(2)  

C12-C10-C11-C6…..……………-176.78(12)  

C7-C6-C11-O5…………..………-179.41(12)  

C5-C6-C11-O5…..………………5.34(19)  

C7-C6-C11-C10…………………1.5(2)  

C5-C6-C11-C10…………………-173.77(12)  

C9-C10-C12-N2…………………114.48(14)  

C11-C10-C12-N2……….………-68.85(15)  

N2-C13-C14-O7……..…………-172.46(11)  

N2-C13-C14-O6…………………10.57(17)  

N2-C15-C16-O9…………………166.88(12)  

N2-C15-C16-O8…………………-16.31(18) 

C1-C2-N1-C3……………………151.51(11)  

C1-C2-N1-C5……………………-84.31(13)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C1-C2-N1-Mg1……………………33.24(12)  

C4-C3-N1-C2……………..………-135.74(11)  

C4-C3-N1-C5……………...………101.74(13)  

C4-C3-N1-Mg1……………………-18.46(12)  

C6-C5-N1-C2………………………170.83(11)  

C6-C5-N1-C3………………………-63.93(14)  

C6-C5-N1-Mg1………..……………55.37(12)  

C14-C13-N2-C15…..………………-135.80(12)  

C14-C13-N2-C12………...…………100.57(13)  

C14-C13-N2-Mg2…….……………-19.36(13)  

C16-C15-N2-C13……..……………150.27(12)  

C16-C15-N2-C12…..………………-84.73(13)  

C16-C15-N2-Mg2…..………………32.21(13)  

C10-C12-N2-C13…..………………-63.56(14)  

C10-C12-N2-C15……...……………170.29(10)  

C10-C12-N2-Mg2………..…………55.77(12)  

O2-C1-O1-Mg1……..………………163.45(11)  

C2-C1-O1-Mg1…..…………………-13.03(14)  

O4-C4-O3-Mg1….…………………-175.12(10)  

C3-C4-O3-Mg1……..………………1.79(15)  

C10-C11-O5-Mg2……..……………54.19(15)  

C6-C11-O5-Mg2……………………-124.91(11)  

C10-C11-O5-Mg1…..………………-128.45(11)  

C6-C11-O5-Mg1….…………………52.45(15)  

O7-C14-O6-Mg2……………………-170.97(10)  

C13-C14-O6-Mg2……...……………5.77(15)  

O9-C16-O8-Mg2……………………165.27(11)  

C15-C16-O8-Mg2……..……………-11.28(16)  
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Appendix B: EXPERIMENTAL DATA 

 

Zn(II)/Mg(II) Competition Experiments 

Table 1. Initial conditions for Zn(II)/Mg(II) competition.1 

entry 
Na3H2(HXTA) 

(mM) 

Zn(ClO4) 2 

(mM) 

Mg(ClO4) 2 

(mM) 

Na2H(NTA) 

(mM) 

[4-FP] 

(mM) 

pH2 

A 10.05 ± 0.06 10.03 ± 0.07 30.00 ± 0.24 5.00 ± 0.03 4.99 ± 0.03 7.58 

B 10.05 ± 0.06 16.99 ± 0.12 23.02 ± 0.18 5.00 ± 0.03 4.99 ± 0.03 7.58 

C 10.05 ± 0.06 15.01 ± 0.11 25.01 ± 0.20 5.00 ± 0.03 4.99 ± 0.03 7.60 

D 10.05 ± 0.06 6.99 ± 0.05 33.01 ± 0.26 5.00 ± 0.03 4.99 ± 0.03 7.61 

E 10.05 ± 0.06 12.01 ± 0.09 28.02 ± 0.22 5.00 ± 0.03 4.99 ± 0.03 7.62 

F 10.05 ± 0.06 5.02 ± 0.04 34.99 ± 0.28 5.00 ± 0.03 4.99 ± 0.03 7.64 

G 10.05 ± 0.06 9.01 ± 0.07 30.99 ± 0.25 5.00 ± 0.03 4.99 ± 0.03 7.61 

H 10.05 ± 0.06 14.02 ± 0.10 26.00 ± 0.21 5.00 ± 0.03 4.99 ± 0.03 7.60 

(1) Uncertainties from glassware/pipette tolerances; T = 25.0oC; Ionic strength held constant at I = 

0.110 M  (2) Buffered by 45.19 mM N-methylmorpholine; pH corrected for 10% v/v D2O content. 

 

Table 2. 19F NMR data for Zn(II)/Mg(II) competition. 

entry 

[Zn2(HXTA)]- [Mg2(HXTA)]- [ZnMg(HXTA)]- 4-fluorophenol 

δ (ppm) Integral δ (ppm) Integral δ 

(ppm) 

Integral δ (ppm) Integral 

A -120.14 0.394 -122.03 0.438 -121.18 0.976 -117.56 1 

B -120.63 1.040 -122.02 0.068 -121.18 0.622 -117.56 1 

C -120.63 0.784 -122.02 0.127 -121.18 0.741 -117.56 1 

D -120.64 0.176 -122.02 0.745 -121.18 0.851 -117.55 1 

E -120.64 0.536 -122.02 0.289 -121.18 0.927 -117.55 1 

F -120.64 0.084 -122.03 0.995 -121.19 0.690 -117.56 1 

G -120.64 0.293 -122.02 0.516 -121.18 0.928 -117.55 1 

H -120.64 0.757 -122.03 0.168 -121.18 0.851 -117.56 1 
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Table 3. Equilibrium concentrations for Zn(II)/Mg(II) competition. 

entry 
[Zn2(HXTA)]- 

(mM)1 

[Mg2(HXTA)]- 

(mM)1 

[ZnMg(HXTA)]- 

(mM)2 

[Zn(NTA)]- 

(mM)2 

[Mg(NTA)]- 

(mM)2 

A 1.97 ± 0.03 2.19 ± 0.10 4.87 ± 0.07 1.23 ± 0.12 3.77 ±0.32 

B 5.19 ± 0.08 0.34 ± 0.11 3.10 ± 0.05 3.50 ± 0.21 1.50 ± 0.29 

C 3.91 ±0.06 0.63 ± 0.10 3.70 ± 0.06 3.49 ± 0.17 1.51 ± 0.29 

D 0.88 ± 0.01 3.72 ± 0.09 4.25 ± 0.07 0.99 ± 0.09 4.01 ± 0.33 

E 2.67 ±0.04 1.44 ± 0.10 4.63 ± 0.07 2.03 ± 0.14 2.97 ± 0.31 

F 0.42 ± 0.01 4.96 ± 0.08 3.44 ± 0.05 0.73 ± 0.07 4.26 ± 0.33 

G 1.46 ± 0.02 2.57 ± 0.10 4.63 ± 0.07 1.45 ± 0.11 3.55 ± 0.32 

H 3.78 ± 0.06 0.84 ± 0.11 4.25 ± 0.07 2.22 ± 0.17 2.78 ± 0.30 

(1) Measured vs 4-FP; (2) Calculated from mass balance equations. 

 

Table 4. Equilibrium constants for Zn(II)/Mg(II) competition.1  

entry 
K1 (βZnZn

2/ 

βMgMg
2) 

K2 (βZnMg/ 

βMgMg) 

K3 (βZnZn/ 

βZnMg) 

A 2.79･1011 1.24･106 2.25･105 

B 9.29･1010 7.15･105 1.30･105 

C 3.83･1010 4.59･105 8.33･104 

D 1.29･1011 8.43･105 1.53･105 

E 1.31･1011 8.51･105 1.53･105 

F 9.44･1010 7.33･105 1.29･105 

G 1.12･1011 8.00･105 1.40･105 

H 2.33･1011 1.15･106 2.02･105 

Avg. 1.39･1011 8.49･105 1.52･105 

St. Dev. 7.89･1010 2.48･105 4.42･104 

(1) Calculated from concentration data in Table 3
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Fe(II)/Mg(II) Competition Experiments 

Table 5. Initial conditions for Fe(II)/Mg(II) competition.1 

entry 
Na3H2(HXTA) 

(mM) 

Fe(ClO4) 2 

(mM) 

Mg(ClO4) 2 

(mM) 

Na2H(NTA) 

(mM) 

[4-FP] 

(mM) 

pH2 

A 10.34 ± 0.06 10.99 ± 0.09 29.01 ± 0.21 5.00 ± 0.03 4.99 ± 0.03 7.44 

B 10.03 ± 0.06 15.01 ± 0.12 25.01 ± 0.18 5.00 ± 0.03 4.99 ± 0.03 7.57 

C 10.03 ± 0.06 6.99 ± 0.05 33.01 ±0.24 5.00 ± 0.03 4.99 ± 0.03 7.55 

D 10.03 ± 0.06 12.01 ± 0.09 27.98 ± 0.21 5.00 ± 0.03 4.99 ± 0.03 7.55 

E 10.03 ± 0.06 9.03 ± 0.07 30.99 ± 0.23 5.00 ± 0.03 4.99 ± 0.03 7.38 

F 10.03 ± 0.06 4.99 ± 0.04 35.03 ± 0.26 5.00 ± 0.03 4.99 ± 0.03 7.38 

(1) Uncertainties from glassware/pipette tolerances; T = 25.0oC; Ionic strength held constant at I = 

0.1075 M  (2) Buffered by 41.84 mM N-methylmorpholine; pH corrected for 10% v/v D2O content. 

 

Table 6. 19F NMR data for Fe(II)/Mg(II) competition. 

entry 

[Fe2(HXTA)]- [Mg2(HXTA)]- [FeMg(HXTA)]- 4-fluorophenol 

δ (ppm) Integral δ (ppm) Integral δ 

(ppm) 

Integral δ (ppm) Integral 

A -69.05 0.486 -122.04 0.352 -94.45 0.846 -117.53 1 

B -69.71 0.897 -122.02 0.123 -94.77 0.676 -117.48 1 

C -69.71 0.200 -122.02 0.726 -94.78 0.786 -117.52 1 

D -69.71 0.564 -122.02 0.277 -94.78 0.805 -117.49 1 

E -69.71 0.345 -122.02 0.503 -94.78 0.840 -117.50 1 

F -69.71 0.103 -122.02 0.932 -94.78 0.627 -117.53 1 

 

Table 7. Equilibrium concentrations for Fe(II)/Mg(II) competition. 

entry 
[Fe2(HXTA)]- 

(mM)1 

[Mg2(HXTA)]- 

(mM)1 

[FeMg(HXTA)]- 

(mM)2 

[Fe(NTA)]- 

(mM)2 

[Mg(NTA)]- 

(mM)2 

A 2.42 ± 0.09 1.76 ± 0.03 4.22 ± 0.06 1.92 ± 0.22 3.08 ± 0.23 

B 4.48 ± 0.08 0.61 ± 0.01 3.37 ± 0.05 2.67 ± 0.21 2.33 ± 0.19 

C 1.00 ± 0.10 3.62 ± 0.06 3.92 ± 0.06 1.07 ± 0.22 3.93 ± 0.27 

D 2.81 ± 0.09 1.38 ±0.02 4.02 ± 0.06 2.37 ± 0.21 2.63 ± 0.22 

E 1.72 ± 0.10 2.51 ± 0.04 4.19 ± 0.06 1.40 ± 0.22 3.60 ± 0.25 

F 0.51 ± 0.11 4.65 ± 0.07 3.13 ± 0.05 0.83 ± 0.22 4.17 ± 0.30 

(1) Measured vs 4-FP; (2) Calculated from mass balance equations. 
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Table 8. Equilibrium constants for Fe(II)/Mg(II) competition.1  

entry 
K1 (βFeFe

2/ 

βMgMg
2) 

K2 (βFeMg/ 

βMgMg) 

K3 (βFeFe/ 

βFeMg) 

A 2.45･107 1.01･104 2.42･103 

B 3.83･107 1.26･104 3.04･103 

C 2.57･107 1.05･104 2.46･103 

D 1.74･107 8.51･103 2.05･103 

E 3.17･107 1.14･104 2.79･103 

F 1.93･107 8.90･103 2.17･103 

Avg. 2.62･107 1.03･104 2.49･103 

St. Dev. 7.78･106 1.52･103 3.73･102 

(1) Calculated from concentration data in Table 7
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Zn(II)/Fe(II) Competition Experiments 

Table 9. Initial conditions for Zn(II)/Fe(II) competition.1 

entry 
Na3H2(HXTA) 

(mM) 

Zn(ClO4) 2 

(mM) 

Fe(ClO4) 2 

(mM) 

Na2H(NTA) 

(mM) 

[4-FP] 

(mM) 

pH2 

A 3.00  ± 0.04 4.50  ± 0.03 7.50  ± 0.06 3.01 ±0.02 1.50 ± 0.01 7.02 

B 3.00  ± 0.04 6.00  ± 0.04 6.01  ± 0.05 3.01 ±0.02 1.50 ± 0.01 7.01 

C 3.00  ± 0.04 5.49  ± 0.04 6.52  ± 0.05 3.01 ±0.02 1.50 ± 0.01 7.14 

D 3.00  ± 0.04 3.99  ± 0.03 8.01  ± 0.06 3.01 ±0.02 1.50 ± 0.01 7.04 

E 3.00  ± 0.04 5.02  ± 0.04  6.99  ± 0.05 3.01 ±0.02 1.50 ± 0.01 7.01 

F 3.00  ± 0.04 6.52  ± 0.05 5.50  ± 0.04 3.01 ±0.02 1.50 ± 0.01 6.97 

G 3.00  ± 0.04 3.48  ± 0.03 8.52  ± 0.07 3.01 ±0.02 1.50 ± 0.01 6.97 

H 3.00  ± 0.04 3.00  ± 0.02 8.99  ± 0.07 3.01 ±0.02 1.50 ± 0.01 7.01 

(1) Uncertainties from glassware/pipette tolerances; T = 25.0oC; Ionic strength held constant at I = 

0.0330 M  (2) Buffered by 12.55 mM N-methylmorpholine; pH corrected for 10% v/v D2O content. 

 

Table 10. 19F NMR data for Zn(II)/Fe(II) competition. 

entry 

[Zn2(HXTA)]- [Fe2(HXTA)]- [ZnFe(HXTA)]- 4-fluorophenol 

δ (ppm) Integral δ 

(ppm) 

Integral δ 

(ppm) 

Integral δ (ppm) Integral 

A -120.62 0.375 -69.72 0.441 -93.91 0.912 -117.54 1 

B -120.63 0.668 -69.73 0.222 -93.91 0.794 -117.54 1 

C -120.63 0.590 -69.72 0.268 -93.90 0.803 -117.54 1 

D -120.63 0.282 -69.73 0.577 -93.91 0.856 -117.53 1 

E -120.63 0.469 -69.72 0.361 -93.91 0.886 -117.54 1 

F -120.63 0.859 -69.72 0.130 -93.90 0.737 -117.54 1 

G -120.61 0.216 -69.72 0.733 -93.90 0.824 -117.54 1 

H -120.62 0.152 -69.72 0.718 -93.90 0.789 -117.54 1 

 

 

 

 



73 
 

 

Table 11. Equilibrium concentrations for Zn(II)/Fe(II) competition. 

entry 
[Zn2(HXTA)]- 

(mM)1 

[Fe2(HXTA)]- 

(mM)1 

[ZnFe(HXTA)]- 

(mM)2 

[Zn(NTA)]- 

(mM)2 

[Fe(NTA)]- 

(mM)2 

A 0.56  ± 0.01 0.69  ± 0.05 1.33  ± 0.02 2.05  ± 0.04 0.96  ± 0.11 

B 1.01  ± 0.02 0.33  ± 0.05 1.19  ± 0.02 2.80  ± 0.04 0.21  ± 0.11  

C 0.89 ± 0.01 0.40 ±0.05 1.21 ± 0.02 2.51 ± 0.05 0.50 ± 0.11 

D 0.42 ± 0.01 0.87 ± 0.05 1.29 ± 0.02 1.85 ± 0.04 1.16 ± 0.11 

E 0.71 ± 0.01 0.54 ± 0.05 1.33 ± 0.02 2.27 ± 0.05 0.74 ± 0.11 

F 1.29 ± 0.02 0.20 ± 0.05 1.11 ± 0.02 2.82 ± 0.06 0.19 ± 0.11 

G 0.33 ± 0.01 1.10 ± 0.05 1.24 ± 0.02 1.59 ± 0.03 1.42 ± 0.11 

H 0.23 ± 0.01 1.19 ± 0.04 1.08 ± 0.02 1.46 ± 0.03 1.54 ± 0.12 

(1) Measured vs 4-FP; (2) Calculated from mass balance equations. 

 

Table 12. Equilibrium constants for Zn(II)/Fe(II) competition.1  

entry 
K1 (βZnZn

2/ 

βFeFe
2) 

K2 (βZnFe/ βFeFe) 
K3 (βZnZn/ 

βZnFe) 

A 8.56･102 6.23･101 1.37･101 

B 8.07･101 1.85･101 4.36･100 

C 4.22･102 4.15･101 1.02･101 

D 9.10･102 6.40･101 1.42･101 

E 6.54･102 5.51･101 1.19･101 

F 1.36･102 2.57･101 5.29･100 

G 1.13･103 6.97･101 1.63･101 

H 1.03･103 6.64･101 1.54･101 

Avg. 6.52･102 5.04･101 1.14･101 

St. Dev. 4.01･102 1.96･101 4.51･100 

(1) Calculated from concentration data in Table 11 
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Appendix C: PRIMARY METAL EXCHANGE 19F-NMR SPECTRA 

 

ZnII and MgII Exchange Experiments 

 

 

Figure 1: Zn(II)/Mg(II) exchange for entry A in Table 2. 
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Figure 2: Zn(II)/Mg(II) exchange for entry B in Table 2. 

 

 

 
Figure 3: Zn(II)/Mg(II) exchange for entry C in Table 2 
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Figure 4: Zn(II)/Mg(II) exchange for entry D in Table 2 

 

 
Figure 5: Zn(II)/Mg(II) exchange for entry E in Table 2 
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Figure 6: Zn(II)/Mg(II) exchange for entry F in Table 2 

 

 

 

 

Figure 7: Zn(II)/Mg(II) exchange for entry G in Table 2
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Figure 8:Zn(II)/Mg(II) exchange for entry H in Table 2 
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ZnII and FeII Exchange Experiments 

 

 
Figure 9: Zn(II)/Fe(II) for entry A in Table 10. First spectrum including FeZnHXTA and Zn2HXTA 

integrations. 

 

 
Figure 10: Zn(II)/Fe(II) for entry A in Table 10. Second spectrum including Fe2HXTA and Zn2HXTA 

integrations. 
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Figure 11: Zn(II)/Fe(II) for entry B in Table 10. First spectrum including FeZnHXTA and Zn2HXTA 

integrations. 

 

 
Figure 12: Zn(II)/Fe(II) for entry B in Table 10. Second spectrum including Fe2HXTA and Zn2HXTA 

integrations. 
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Figure 13: Zn(II)/Fe(II) for entry C in Table 10.  First spectrum including FeZnHXTA and Zn2HXTA 

integrations. 

 

 

 
Figure 14: Zn(II)/Fe(II) for entry C in Table 10. Second spectrum including Fe2HXTA and Zn2HXTA 

integrations. 
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Figure 15: Zn(II)/Fe(II) for entry D in Table 10. First spectrum including FeZnHXTA and Zn2HXTA 

integrations. 

 

 
Figure 16: Zn(II)/Fe(II) for entry D in Table 10. Second spectrum including Fe2HXTA and Zn2HXTA 

integrations. 



83 
 

 

 
Figure 17: Zn(II)/Fe(II) for entry E in Table 10. First spectrum including FeZnHXTA and Zn2HXTA 

integrations. 

 

 
Figure 18: Zn(II)/Fe(II) for entry E in Table 10. Second spectrum including Fe2HXTA and Zn2HXTA 

integrations. 
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Figure 19: Zn(II)/Fe(II) for entry F in Table 10. First spectrum including FeZnHXTA and Zn2HXTA 

integrations. 

 

 
Figure 20: Zn(II)/Fe(II) for entry F in Table 10. Second spectrum including Fe2HXTA and Zn2HXTA 

integrations. 
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Figure 21: Zn(II)/Fe(II) for entry G in Table 10. First spectrum including FeZnHXTA and Zn2HXTA 

integrations. 

 

 
Figure 22: Zn(II)/Fe(II) for entry G in Table 10. Second spectrum including Fe2HXTA and Zn2HXTA 

integrations. 
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Figure 23: Zn(II)/Fe(II) for entry H in Table 10. First spectrum including FeZnHXTA and Zn2HXTA 

integrations. 

 

 

 
Figure 24: Zn(II)/Fe(II) for entry H in Table 10. Second spectrum including Fe2HXTA and Zn2HXTA 

integrations. 
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MgII and FeII Exchange Experiments 

 

Figure 25: Mg(II)/Fe(II) for entry A in Table 6. First spectrum including FeMgHXTA and Mg2HXTA 

integrations. 

 

 

 
Figure 26: Mg(II)/Fe(II) for entry A in Table 6. Second spectrum including Fe2HXTA and Mg2HXTA 

integrations 
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Figure 27: Mg(II)/Fe(II) for entry B in Table 6. First spectrum including FeMgHXTA and Mg2HXTA 

integrations. 

 

 

 
Figure 28: Mg(II)/Fe(II) for entry B in Table 6. Second spectrum including Fe2HXTA and Mg2HXTA 

integrations. 
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Figure 29: Mg(II)/Fe(II) for entry C in Table 6. First spectrum including FeMgHXTA and Mg2HXTA 

integrations. 

 

 
Figure 30: Mg(II)/Fe(II) for entry C in Table 6. Second spectrum including Fe2HXTA and Mg2HXTA 

integrations. 
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Figure 31: Mg(II)/Fe(II) for entry D in Table 6. First spectrum including FeMgHXTA and Mg2HXTA 

integrations. 

 

 
Figure 32: Mg(II)/Fe(II) for entry D in Table 6. Second spectrum including Fe2HXTA and Mg2HXTA 

integrations. 
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Figure 33: Mg(II)/Fe(II) for entry E in Table 6. First spectrum including FeMgHXTA and Mg2HXTA 

integrations. 

 

 

 
Figure 34: Mg(II)/Fe(II) for entry E in Table 6. Second spectrum including Fe2HXTA and Mg2HXTA 

integrations. 
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Figure 35: Mg(II)/Fe(II) for entry F in Table 6First spectrum including FeMgHXTA and Mg2HXTA 

integrations. 

 

 
Figure 36: Mg(II)/Fe(II) for entry F in Table 6. Second spectrum including Fe2HXTA and Mg2HXTA 

integrations. 
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