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ABSTRACT 

 

The effect of wall proximity on the mechanism of flow-induced vibration of a 

circular cylinder mounted in a wind tunnel and free to vibrate with two degrees-of-freedom 

near a rigid plane boundary were examined at a Reynolds number of 1.86 x 105. Hot-wire 

anemometry and cylinder-mounted accelerometers were used to characterize the flow-

induced vibration of the cylinder. 

In the near wall region (gap ratios, G/D< 0.4) the system was found to exhibit 

symptoms of movement-induced vibration resulting from the push-and-draw effect of the 

cylinder pushing into and out of the fluid immediately upstream and downstream of the 

cylinder. The variation of the width of the separated wake region with the cylinder motion 

produces a force in phase with the cylinder velocity, resulting in excitation of the cylinder 

motion. 

For G/D > 1.0, the alternate shedding of vortices (the Kármán vortex street) 

produces a fluctuating lift on the body. The lift force also has an associated drag fluctuation 

at twice the vortex shedding frequency 

For 0.4 > G/D> 1.0, the excitation appears to be due to the combined effects of the 

movement-induced vibration found in the near wall region with the vortex shedding from 

the cylinder found for the free cylinder when it is far from the wall.. 

The system exhibited mechanical coupling of the two degrees-of-freedom, so 

additional tests will be needed to conclusively confirm the findings presented in this thesis.  

 



Chapter 1 Introduction 

The topic of this thesis, the effect of wall proximity on the flow-induced vibration 

of a circular cylinder, is a moderately complicated topic. To understand the effect of wall 

proximity, basic mechanisms of flow-induced vibration will be reviewed. The interaction 

between fluid flow past a structure and the dynamics of the structure may result in fluid-

structure interaction, in which the fluid flow fluctuations induce forces that result in body 

motion and the body motion reinforces the unsteady flow processes. It is important to 

distinguish different types of vibration, that is, which mechanism drives the structural 

vibration, and which parameters affect the natural selection of dominant mechanism of 

vibration. 

A commonly used name for such fluid structure interaction is flow-induced 

vibration. Flow-induced vibrations (FIV) occur in a wide variety of systems and flow 

geometries. An extensive, almost overwhelming, catalog of individual occurrences could 

be compiled; however, a more productive approach is to examine the underlying 

mechanisms of such flow-induced vibration. Such a systematic approach was formulated 

in the classification scheme introduced by Naudascher & Rockwell (1994).  

In their scheme, Naudascher & Rockwell consider body oscillators, fluid 

oscillators, and sources of excitation. The body oscillator is an elastic system or 

component that can undergo linear or rotational displacements. A fluid oscillator is a 

fluid mass that can undergo oscillations due to effects of compressibility or gravity. 

Sources of excitation are identified as extraneously-induced excitation (EIE), instability-

induced excitation (IIE), and movement-induced excitation (MIE). 
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Extraneously-induced excitation (EIE) includes effect from ambient noise and 

vibrations, such as that due to machinery and components, water waves, wind gusts, 

background turbulence and earthquakes. Instability-induced excitation (IIE) includes 

those vibrations due to all forms of fluid instability producing inherent flow fluctuations 

that serve as the source of excitation. Examples include impinging shear layers, vortex 

shedding, interfacial flows, bi-stable flows, and swirling flows. Movement-induced 

excitation (MIE), perhaps the largest class of FIV problems, occurs when structural 

motion produces a flow perturbation that subsequently amplifies the original structural 

motion. MIE can couple with flow pulsations and may involve structural mode coupling 

or multiple-body coupling. 

The mechanism of vortex-induced vibration (VIV), one example of instability-

induced-excitation, results from the agglomeration of oppositely signed vorticity on the 

two sides of the cylinder which periodically shed from alternate sides of the body. The 

shed vortices produce a fluctuating transverse force (lift) at the frequency of vortex 

shedding and a smaller in-line force (drag) at twice the frequency of vortex shedding. 

These vortices are generated by the action of viscosity as the fluid passes over the body 

and occur independent of any structural motion. If the structure is elastic or spring-

mounted, the shed vortices may induce structural vibration; when the structural frequency 

is sufficiently close to the vortex shedding frequency, the vibrations enhance the strength 

of the shed vortices and can shift slightly the vortex shedding frequency in a process 

called lock-in. The structural frequency is said to “capture” the vortex shedding 

frequency. Figure 1 shows the frequency and amplitude characteristics associated with  
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Figure 1 Amplitude and frequency characteristics for the lock-in region for a 

circular cylinder (from Naudascher & Rockwell, 1994) 

 

the lock-in region. The system damping exerts a strong influence on the extent of the 

lock-in region. 

In addition to flow past a single circular cylinder, many arrangements of flow past 

multiple cylinders have been studied, for example, flow past multiple smokestacks, flow 

over closely spaced electrical conductors and pipelines, and flow past heat exchanger 

tubes.  

The geometrical description of adding a second cylinder to the flow is frequently 

in terms of the angle (α) between the freestream flow and the line connecting the centers 

fo/fN 

(St ≈0.20) 
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of the cylinders, and the center-to-center spacing ratio (P/D). The tandem arrangement 

occurs when the cylinders are aligned with the flow (α = 0º). When 0º < α < 90º the 

cylinders are said to be in a staggered arrangement; and, when α = 90º, the cylinders are 

in a side-by-side arrangement. 

When two cylinders are in the tandem configuration, the upstream cylinder 

shields the downstream cylinder from oncoming flow, resulting in different drag forces 

acting on the upstream and downstream cylinder. The difference in drag coefficient 

between the downstream cylinder and the upstream cylinder was designated as the 

“interference drag coefficient” by Zdravkovich (1977). When the gap ratio between the 

cylinders is zero, the interference drag is negative; as the gap ratio increases, the 

interference drag coefficient increases until the drag coefficient on the upstream cylinder 

reaches its minimum value. This generates what Zdravkovich called a ‘kink’ in the drag 

coefficient graph, with the kink being highly dependent on the Reynolds number. Sumner 

(2010) explained that the fluid behavior is not only a function of the Reynolds number, 

but also of the gap ratio. At small gap ratios, Kármán shedding is suppressed; at 

intermediate gap ratios, more complex flow behavior takes place in between the 

cylinders; at larger gap ratios, the ‘kink’ appears. In an attempt to physically explain the 

‘kink,’ Alam (2014) considered the aerodynamics of tandem cylinders using surface oil-

flow visualization to study the reattachment and boundary layer separation of cylinders in 

tandem and staggered arrangement in a low speed closed circuit wind tunnel. According 

to Alam, the ‘kink’ in the drag coefficient distribution at 3.2 x 104 < Re < 6.5 x 104 is 

related to whether the upstream shear layer reattaches to same side surface of the 
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downstream cylinder as it approaches or reattaches to the front surface of the downstream 

cylinder and sweeping across to the other side. 

Bokaian & Geoola (1984) found that a flexible circular cylinder in close 

proximity to other bodies behaves differently from an isolated flexible circular cylinder. 

The mean position of the cylinder, as well as the amplitude and frequency of vibration 

changes with flow velocity, behaving in a more complex way than is observed for an 

isolated circular cylinder. When the gap between two cylinders is decreased, the 

amplitude and frequency tend to increase with increasing flow velocity increases. This 

phenomenon was called interference galloping and results from movement-induced 

excitation, in the classification scheme of Naudascher & Rockwell. Interference galloping 

can be related to the shear layer from the upstream cylinder switching back and forth 

across the gap, a phenomenon called “jet switching” by Naudascher & Rockwell (1994). 

With greater separation between the two cylinders, a different form of galloping, 

called wake galloping occurs. Zdravkovich (1977) provides an explanation for wake 

galloping which relies on the velocity gradient in the wake to provide a restoring force if 

the downstream cylinder is elastically displaced, either inward or outward. 

Adding more cylinder to the flow field generates an array of cylinders that might 

comprise a tube bank. The flow-induced vibration of tube banks is of great concern for 

the power generation industry due to the reliance on heat exchangers in many power 

schemes. The fluid-elastic (movement-induced) vibrations of tube banks have been 

investigated by Weaver (1988), Paidoussis (1999), Blevins (1990) and many others. The 

displacement of a single tube in a tube bank creates an asymmetric flow producing fluid 
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loading on the neighboring tubes, which in turn begin to move, resulting in multi-body 

coupled movement-induced vibration. 

Another type of movement-induced vibration occurs when vibration modes 

couple to produce a self-excited movement-induced vibration. One well-known example 

is the galloping of the Tacoma Narrows Bridge. Above a critical wind velocity, torsional 

motion of the bridge deck resulted in negative damping, supplying energy to the 

structural motion. The resulting instability was called a single-degree of freedom 

instability by Scanlan & Sabzevari (1967, 1969) and Scanlan & Tomko (1971). More 

recent and more sophisticated analyses (see Arioli & Gazzola, 2015 and references cited 

therein) suggest that the Tacoma Narrows failure may have been a movement-induced 

coupled-mode instability. 

Large hydraulic gates have also been shown to have a susceptibility to coupled-

mode movement-induced instabilities. Billeter & Staubli (2000) showed that flat-

bottomed gates with two degrees-of-freedom are susceptible to multiple instabilities 

depending upon the reduced velocity and the ratio of the modal frequencies. Ishii et al. 

(2018) compiled data showing long-span gates with two degrees-of-freedom and inclined 

upstream weir plates can undergo coupled-mode vibration. Under the “right” conditions 

the underflow produces a force on the inclined plate, a portion of which produces a 

vertical gate displacement. The vertical gate displacement produces a discharge 

fluctuation that produces a streamwise motion. The trajectory of the gate is an elliptical 

orbit in which the gate moves upstream and upward followed by a downstream and 

downward motion (Figure 2). 
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Figure 2 Characteristic elliptical trajectory of long-span gate with inclined 

upstream weir plate undergoing coupled-mode two degrees-of-freedom vibration, with 

upstream direction defined as positive (from Ishii et al.,2018) 

 

Similar elliptical trajectories were found for the two degrees-of-freedom vibration 

of long-span gates with simultaneous over- and underflow. This mechanism is classified 

as a coupled-mode, movement-induced vibration (Ishii et al., 2018). 

With the failure of the massive Folsom Dam Tainter gate in 1995, the analysis of 

the self-excited coupled-mode vibration for long-span gates was extended to provide a 

plausible explanation of the Tainter-gate failure (see Anami, et al. 2014, 2015 and Ishii et 

al.,2018). The application of theoretical analyses to the Folsom Dam gate, under the 

conditions at the time of failure suggest that the gate also underwent elliptical coupled-

mode trajectories in the short time needed for failure. Subsequent measurements on full-

scale gates revealed similar characteristic elliptical trajectories. 

Flow past a circular cylinder near a plane boundary may behave quite differently 

from an isolated cylinder. These differences occur due to interactions between the wall 
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boundary layer and the freestream flow past the cylinder, as well as flow rate fluctuations 

through the cylinder-wall gap. 

A circular cylinder with two degrees-of-freedom in close proximity to a wall 

exhibits elliptical trajectories, qualitatively similar to those shown for press-shut devices 

such as flat-bottomed gates with two degrees-of-freedom, long-span two degrees-of-

freedom gates with inclined upstream weir plate in underflow, long-span two degrees-of-

freedom with simultaneous over- and underflow, and massive Tainter gates undergoing 

self-excited coupled-mode vibration. 

When a bluff body undergoes vibration in the streamwise direction, the wake 

region between the shear layers separated from this bluff body will alternately expand 

and contract. Naudascher & Rockwell (1994) denote this phenomenon as wake breathing 

due to the movement-induced displacements of the separating shear layers that make the 

near wake appear to “breathe”, as depicted in Figure 3.  

In this movement-induced excitation, the body motion in the upstream direction 

reduces the fluid forces, and downstream body motion increases of fluid forces. The 

streamwise fluid force can become an exciting force via two possible scenarios: a 

decrease in the drag coefficient with increasing relative velocity and a decrease in drag 

with decreasing relative velocity; or by means of a movement-induced flow fluctuation, 

part of which is in phase with the body fluid velocity (Naudascher & Rockwell, 1994).  

This first type of wake breathing is associated with negative fluid damping: As 

the body accelerates downstream, the displaced fluid widens the wake resulting in 

increased drag with corresponding changes in the instantaneous flow patterns. During the 
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Figure 3 Generation of negative damping due to flow for a circular cylinder vibrating 

freely in the streamwise direction. (a) Instantaneous streamlines of accelerated cylinder, 

(b) Accompanying acceleration of free shear layers, (c) Streamlines at different instants 

during a cycle of cylinder vibration in the range of 1.5 < V/(fD) < 2.0 (Naudascher & 

Rockwell, 1994) 

 

upstream portion of vibration, the reverse happens: the wake narrows resulting in a 

decrease in drag, but again yielding a force fluctuation in phase with the body velocity. 

The in-phase component can be approximated by a linear relationship between the drag 

coefficient and the exciting force, but the “breathing-type” excitation is of a more 

complex nature due to its similarities with instability-induced vortex formation. 
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In an analysis of movement-induced excitation of a cylinder in proximity to a 

planar wall, Bokaian (1994) presented a quasi-steady linearized mathematical analysis of 

the behavior of a circular cylinder near a plane boundary, based on previous studies of 

multiple cylinders in a staggered arrangement. This theory shows that a galloping 

instability (resulting from movement-induced excitation) occurs for small gap ratios 

(G/D) and that the onset velocity for galloping increases with cylinder mass and 

structural damping.  

The study of flow past a cylinder near a plane boundary is of special importance 

in understanding the mechanism of vibration of ocean pipelines. Such pipelines are often 

buried, but due to the uneven nature of the seabed and the process of scouring, free spans 

of pipeline of up to 100 times the diameter of the pipe may be exposed with the gap 

between the pipeline and the seabed ranging from zero to more than 3 diameters (Sumer 

et al.,2006.) 

Barbosa et al. (2017) classified experiments on the effects of wall proximity in 

three distinct groups: (1) Experiments using a cylinder in a fixed position with 

measurements of forces acting on the cylinder; (2) Experiments using forced vibration of 

the cylinder at specified frequency and amplitude, with measurements of the resulting 

fluid forces; and, (3) Experiments with free vibration studies, with a cylinder vibrating 

freely, with measurements of amplitude, frequency and phase characteristics of the 

motion. 
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Group (1) Force measurements on stationary cylinder 

Bearman & Zdravkovich (1978) were among the first to study this system with a 

fixed cylinder, considering the flow past it analogous to the flow about two cylinders in 

tandem arrangement. Their study varied the gap ratio (G/D) from zero (cylinder touching 

the plane boundary) to 3.5. The thickness of the boundary layer at the cylinder position 

was 0.8 times the diameter, with Re equals to 2.5 x 104 and 4.8 x 104. The authors 

confirmed the assumption that for gap ratios of G/D < 0.5 the flow past the cylinder is 

analogous to that one of two cylinders in tandem arrangement.  

Later, Zdravkovich (1985) studied the fluid forces related to this arrangement, 

measuring the lift and drag forces on a fixed circular cylinder with 0 < G/D< 2, and 

4.8x104 < Re < 3x105. Zdravkovich found that the lift coefficient is governed by G/D, 

while the drag coefficient was governed by the ratio of the gap distance between the 

cylinder and the wall to boundary layer thickness G/δ. 

The effects of a wall on oscillatory flow past a fixed circular cylinder (1) was 

analyzed by Sumer et al. (1990), with 0 < G/D < 2, in a work complementary to that of 

Bearman & Zdravkovich, extending the study from steady flow to oscillatory flow. This 

study indicated that the vortex flow regimes undergo considerable changes as the gap 

ratio decreases. The vortex shedding is suppressed for small gap ratios, and the value in 

which the shed vortices are suppressed increase with the Keulegan-Carpenter number 

(KC). When the cylinder is placed near the wall, the lift experiences short-duration peaks 

associated with vortex shedding from the wall side, in the direction opposed to the wall. 
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Buresti & Lanciotti (1992) investigated the mean and fluctuating forces on a fixed 

cylinder near a wall, with boundary layer thickness over diameter ratio (δ/D) ranging 

from 0.1 to 1.1, Reynolds numbers 0.86 x 105 < Re < 2.77 x 105, and varying G/D. This 

study showed that the mean forces are significantly affected by the gap ratio, presenting a 

higher lift and smaller drag ratio as the gap ratio decreased. 

Lei et al. (1998) studied the effects of the boundary layer thickness, proximity to 

the wall, and the velocity gradient on the pressure distribution on a fixed cylinder near a 

wall. In agreement with previous studies, both lift and drag were found to strongly 

depend on the gap ratio and the boundary layer thickness. The drag is greater in thinner 

boundary layers and is almost unaffected when the cylinder is out of the boundary layer. 

The authors also proposed a method to calculate the point where vortex shedding is 

suppressed, with good results. 

The flow around past a fixed circular cylinder near a plane boundary behaves 

similar to the flow past cylinders in tandem arrangement, with drag and lift forces being 

function of gap ratio (G/D) and boundary layer thickness. 

 Rao et al. (2013) generated a CFD analysis of a cylinder translating past a plane 

boundary, with varying gap ratio, 0.005 < G/D < ∞, at Re = 200. Their model seemed to 

accurately predict the behavior of the cylinder at all gap ratios, agreeing with current 

literature. Their analysis presented a figure showing the computed lift coefficient versus 

the computed drag coefficient. The plots of lift coefficient versus drag coefficient, as 

shown in Figure 4, yielded figure eight trajectories for the cylinder with large gap ratios, 

as expected for vortex-induced vibration, and elliptical trajectories for small gap ratios, as  
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Figure 4 Computed lift coefficient as a function of drag coefficient for a cylinder 

translating above a fixed surface showing changing force coefficient trajectories with 

varied gap ratio G/D (from Rao et al., 2013) 

 

has been observed in physical experiments. For intermediate gap ratios the force 

coefficient exhibited a combination of elliptical and figure eight trajectories. 

Group (2) Forced vibrations of cylinders in wall proximity 

Few studies have been made on forced vibration of cylinders near a plane 

boundary, Hover et al. (1998) studied forced vibration of rigid cylinders compared to free 

vibration. The lift and drag coefficients seemed to agree for forced and free vibrations for 

uniform and tapered cylinders. 

Gopalkrishnan (1993), examined vortex-induced vibration on oscillating bluff 

bodies, studying the interaction between circular cylinders and hydrofoils in close 

proximity to each other. 
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Group (3) Measurement of elastic or spring-mounted cylinder in wall proximity 

Sumer et al. (1994) studied the flow around a cylinder freely vibrating (2) in the 

cross-flow direction at close proximity to a plane boundary. The lift and drag forces 

increased by more than 100% due to vibrations. The effects on the lift were significantly 

larger when the cylinder was closer to the wall.  

Hover et al. (1998) conducted research comparing group (2) and (3), concluding 

that the lift and drag coefficient agreed for both cases.  

Barbosa et al. (2017) conducted research on groups (1) and (3), his studies on free 

to vibrate cylinders observed that inside the lock-in region, the amplitude of vibration is 

not affected by the wall, for gap ratios of G/D > 2. The amplitude of vibration seemed to 

remain symmetric, but decreased as the cylinder approached the wall, from 0.75 < G/D< 

2, and for smaller gap ratios, the amplitudes of oscillation were not symmetric any 

longer. 

Effects of the gap ratio and boundary layer 

The proximity to a plane boundary affects the flow around the cylinder by shifting 

the front stagnation point and by varying the base pressure. Alternate vortex shedding 

weakens with decreasing gap ratios. For gap ratios above 2.0, the effects of the wall are 

negligible (Lei et al., 1998). Oner et al. (2008) showed that the gap ratio (G/D) is the 

major parameter affecting the flow structure around a fixed circular cylinder near a plane 

boundary. According to Oner et al., increasing the gap G/D values greater than 1.0 

eliminates any wall effects. 
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Shed vortices become more irregular as the gap ratio decreases, and the width of 

lock-in range increases with decreasing gap ratio (Yang et al., 2005). The work of 

Barbosa et al. (2017) supported the results found by Lei et al. (1998) which showed that 

for gap ratios above 2.0, the wall boundary layer does not affect the circular cylinder. For 

0.75 < G/D < 2.0, the amplitude of vibration decreases, but the vibration remains 

symmetric. For gaps below 0.75 diameters, the cylinder can impact the boundary, 

generating a non-symmetrical movement. This study also agrees with Yang et al. (2005) 

showing that the lock-in range widens as the gap ratio decreases, increasing the frequency 

and amplitude of vibration.  

For gaps of G/D < 0.3 strong regular vortex shedding was suppressed. All the 

G/D ratios where vortex shedding was suppressed were accompanied by separation 

bubbles on the plate upstream and downstream of the cylinder. For G/D= 0 the bubbles 

attached to the cylinder. Flow around a cylinder near a wall considered analogous to the 

side-by-side arrangement of two cylinders, the two geometries exhibit behavior similar at 

G/D > 0.5. The flow about two side-by-side cylinders becomes bi-stable at G/D < 0.5 

while at that gap ratio, a cylinder near a wall does not show these bi-stable states 

(Bearman & Zdravkovich, 1978).  

Vortex flow regimes identified by Williamson (1985) undergo changes with 

proximity to a wall when G/D < O(1). Transverse vortex sheet was observed for an 

isolated cylinder for 0.077 < St < 7, but it disappears when G/D < 1.7. Vortex shedding is 

suppressed for small G/D, and the G/D below which vortex shedding is suppressed 

decreases with Strouhal number. For low Strouhal numbers in the range 0.05 to 0.1, 
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shedding persists for G/D = 0.1; vortex shedding frequency is a function of G/D, and it 

increases when gap ratio increases (Sumer et al., 1990). 

Critical gap ratio  

As shown in Figure 5, the vortex suppression can be seen in the behavior of the 

RMS lift coefficient, or the power spectra of the fluctuating lift at gap ratios of about 0.2 

or 0.3 (Lei et al., 1998). Bearman & Zdravkovich (1978) observed the suppression of 

vortices at G/D= 0.3 at Re = 4.5 x 104; similar results were obtained by Grass et al. 

(1984). 

Strouhal number 

Both the gap ratio and velocity gradient influence the Strouhal number (Lei et 

al.,1998). Sub-critical regimes present Strouhal number of 0.2 for cylinders near a plane 

boundary (Yang et al., 2009). Regular vortex shedding persists at the same Strouhal 

number for all gaps down to G/D= 0.3 (Bearman & Zdravkovich, 1978). 

Grass et al. (1984) observed an increase of Strouhal number due to a combination 

of proximity to the plane boundary and velocity gradients of a maximum of 25 percent, as 

shown in Figure 6. 

Hydrodynamic forces 

There are a number of practical tools to predict hydrodynamic forces acting on bluff 

bodies, a more current approach for prediction in-line forces induced by waves and 

currents were proposed by Aristodemo et al. (2011) as an alternative to the more 

widespread Morrison equation (Morrison et al., 1950) and wake models. Aristodemo et 
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al. propose a new wake II model as a numerical approach for the evaluation of the 

hydrodynamic forces acting on a submerged pipeline. 

 

  
Figure 5 Power spectra of fluctuating lift near the critical gap ratio in a thin boundary 

layer (a) G/D= 0.3, Re = 13900, and (b) G/D= 0.2, Re = 13100 (from Lei et al., 1998) 
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Figure 6 Normalized Strouhal number dependence on (a) gap ratio, and (b) velocity 

gradient parameter (from Grass et al., 1984) 

 

Lift 

For the case of a fixed cylinder (1), the lift coefficient is dominated by the gap 

ratio (Lei et al.,1998). The lift coefficient depended strongly on G/D with complex 

variation depending on type of boundary layer (Zdravkovich, 1985). Symmetry in both 

formation and motion of vortices observed for isolated cylinder for Strouhal number > 

0.20-0.25 disappears with close proximity to a wall, which creates a periodic lift force on 

the cylinder. When cylinder is very close to the wall, the lift forces exhibit distinct, short 

duration peaks, directed away from the wall, and associated with vortex shedding from 

the wall side of the cylinder (Sumer et al., 1990). Vibrations may increase drag and lift 

forces up to 100% in pipelines, especially when cylinder is near a wall (Sumer et al., 

1994). 

Drag 

The drag coefficient is dominated by the gap ratio (Lei et al.,1998). The drag 

coefficient was almost unaffected by G/D until the gap value was about the same as the 
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thickness of the wall boundary layer (Zdravkovich, 1985). The drag coefficient did not 

show any clear trends as a function of G/D, but showed a dependence on the boundary 

layer thickness that may have been caused by reduced dynamic pressure or increased 

turbulence intensity (Buresti & Lanciotti, 1992). 

Barbosa et al. (2017) observed that the drag forces are amplified in the lock-in 

region, and the forces can increase up to three times the value for the corresponding 

stationary force. Barbosa et al. also observed two oscillating components of the drag 

force, one characterized by the same frequency as the vertical oscillation of the cylinder, 

and another at twice that frequency. 

Effects of a moving wall 

In addition to a stationary cylinder, studies were made with a translating wall, a 

translating cylinder, or a rotating cylinder were examined. Nishino et al. (2007) studied 

the flow around a fixed cylinder near a moving wall at upper-subcritical Reynolds 

numbers, with and without end-plates. Rao et al. (2013) examined a translating cylinder 

near a wall, while Hourigan et al. (2013) considered a translating and rotating cylinder 

near a wall.  

Nishino et al. (2007) studied the effects of a moving wall on a fixed cylinder in its 

close proximity at upper critical Re. The wall moved at the same velocity as the 

freestream in order to avoid confusing the effects of the wall boundary layer and the 

effect of the ground on the cylinder. Nishino et al. observed that at G/D< 0.35 the 

Kármán-type vortices ceased to be generated in the wake of the cylinder, and instead, a 

dead fluid zone was created, but contrary to what is observed for a fixed wall, the drag 
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coefficient remained almost constant. A possible explanation of this occurrence 

according to the authors is that the wall restricts the propagation of disturbances, 

preventing resonance between the traveling instabilities and the near wake region, similar 

to what is observed in a cylinder with a backward splitter plate. Bimbato et al. (2011) 

presented a method to mathematically model the effects of a moving wall on a cylinder. 

Scope of thesis 

The behavior of the flow around a cylinder near a plane boundary is quite 

complicated. To unravel some of these intricacies, the work contained in this thesis 

considered the effects of the most important parameters: the gap ratio, the hydrodynamic 

accelerations (proportional to the hydrodynamic forces) and the fluctuating velocity.  

A distinct change in the cylinder trajectory occurs as the gap between the cylinder 

and the wall decreases below a certain value. The symmetric vortex shedding becomes 

increasingly asymmetric, the mean lift can become negative (acting towards the wall), the 

fluctuating lift increases, the fluctuating drag increases. All these aspects are reflected in 

elliptic trajectories for the cylinder displacement. Such trajectories are also seen in the 

movement-induced vibration of closely spaced cylinder arrays. In addition, large 

hydraulic gates with two degrees-of-freedom also exhibit similar elliptical trajectories, 

both with underflow and simultaneous over- and underflow. Ishii et al. (2017) develop a 

theoretical model relying on potential flow analysis with small empirical corrections to 

predict the vibration of such large gates. One of the driving forces in their model is the 

pressure loading on the gate due to discharge fluctuation in the underflow. They classify 

such vibration as movement-induced vibration. 
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A potential flow study by Valentine & Madhi (2012) provides evidence that a 

fluctuating singularity in proximity to a cylindrical surface induces a pressure loading on 

the cylinder. Placing the singularity beneath the cylinder to simulate fluctuating discharge 

in the gap region reveals a fluctuating lift force resulting from a fluctuating strength 

source or doublet, or both fluctuating lift and drag for a fluctuating strength point vortex. 

To determine the loading due to this singularity between the cylinder and the wall will 

require additional calculations to include an image system symmetrical about the wall 

upper surface. The study of Valentine & Madhi (2012) provides additional evidence that 

fluctuating discharge due to a small variation in the gap opening can supply a pressure 

loading on the cylinder that can potentially excite larger amplitude vibration. 

The commonality of elliptical trajectories and fluctuating flow through small gaps 

near the body surface permits the posing of the question of whether the movement of the 

cylinder is due to the shed vortices only, or does the movement of the cylinder augment 

the shedding of vortices in a way that drives the cylinder vibration? In other words, is the 

mechanism of vibration acting on the cylinder-wall system, vortex-induced as has been 

observed for isolated cylinders, or is it movement-induced by the cylinder motion in close 

proximity to the solid boundary, as has been observed for other systems with fluctuating 

flow through small gaps near the cylinder surface? The hypothesis put forward in this 

study is that the wall-region vibration results from movement-induced excitation while 

the isolated cylinder VIV results from instability-induced excitation. The extent of these 

two regions depend upon the momentum available to drive flow fluctuations in the gap 

region, requiring consideration of the oncoming boundary layer momentum thickness, 
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wall roughness, the gap dimension, and the cylinder diameter. From the above cited 

studies (Bearman & Zdravkovich, 1978; Sumer et al., 1990; Sumer et al., 1994) there is 

strong evidence that the two excitation mechanisms can be concurrently active in an 

overlap region, as the strength of the flow rate fluctuation pressure decreases with 

increased gap ratio. 

The intent of this thesis is to delineate the region over which the movement-

induced excitation is active from the region over which the instability-induced excitation 

related to VIV is active. Initially the intent was to test a two degrees-of-freedom spring 

mounted cylinder at varied G/D ratios in a wind tunnel. Constraints imposed by the wind 

tunnel geometry resulted in a system that has some coupling between the two degrees -of-

freedom, as will be discussed in detail in Chapter 2 

Chapter 2 of this thesis presents the apparatus and procedures used in this study, 

introducing the laboratory facility, as well as the design of the cylinder and wall. 

Instrumentation and data acquisition are described and a list of tests and procedures 

undertaken is presented. 

Chapter 3 contains important results from the experiments. A more extensive 

catalog of experimental results is included in Appendix B – Data. 

Chapter 4 provides a discussion in which the results from the present study are 

compared with available literature.  

In Chapter 5, the conclusions of this thesis and suggestions for further work are 

presented.  
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Appendix A -Wind Tunnel Characteristics presents the method used to calibrate 

the wind tunnel. In addition, the detailed procedure used to obtain the velocity profile of 

the wind tunnel is also presented.  

The measurement of the added wall boundary layer profile is also contained in 

this appendix. The measured wall boundary layer profile data are listed in a table. 

Appendix B- Data contains a full list of the data for each cylinder-wall location, 

corresponding spectra. 

Appendix C – MATLAB code for data reduction contains a printout of the 

MATLAB code used to generate time history plots and spectral analysis of the data. 
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Chapter 2 Apparatus and Procedures 

This chapter presents the laboratory facility, the design of the cylinder support, 

and details of the added wall. Experimental procedures including instrumentation, 

calibration and data acquisition are also presented. 

Wind Tunnel Facility 

All experimental work reported in this thesis was carried out in a subsonic, open 

loop wind tunnel in the Mechanical Engineering Laboratory at Bucknell University.  

In Figures 7 and 8 provide a schematic of the wind tunnel and a photograph of 

wind tunnel, respectively. The cross section of the wind tunnel test section is 17.5 inches 

wide by 36 inches high with a 9.2:1 contraction ratio nozzle upstream of the test section. 

The contraction section contains aluminum honey comb with 1/8” cells and five screens 

at its inlet to provide relatively uniform, low turbulence flow into the test section. The 

test section is 68.5 inches long, followed by a diffuser and the axial flow fan that draws 

air through the wind tunnel.  

 

 

Figure 7 Schematic of the open loop wind tunnel 
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Figure 8 The subsonic open loop wind tunnel in the Mechanical Engineering Laboratory 

at Bucknell University 

 

The test section is compliant, allowing a maximum blockage of 33% of the tunnel 

section. Studies by Ralston (1997), indicate the flow in the test section is uniform to 

within 1% at the entrance of the test section, and within 2.5% at the axial midpoint of the 

test section, excluding the boundary layers on the front and back walls of the test section. 

The wind tunnel has been disassembled and moved twice since Ralston’s study. Initial re-

measurement of the velocity distributions determined a need for maintenance on the seals 

between sections of the wind tunnel and then subsequent re-measurement of the velocity 

distributions in the test section. 
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A computer controlled traverse system in the test section allows for placement 

and movement of instruments such as Pitot tubes and constant temperature anemometers. 

Details regarding the wind tunnel structure and the traverse system are specified in the 

work of Ralston (1997), the controller of the traverse system was replaced with a 

Raspberry Pi and a SlushEngine, Model X LT Stepper Motor. 

 A Pitot tube was used to re-calibrate the wind tunnel after the needed repairs. The 

Pitot tube was inserted in the geometric center of the test section. The pressure difference 

across the Pitot tube permitted the calculation of the velocity using Bernoulli’s equation 

(
𝑝

𝜌
+

1

2
𝑉2 + 𝑔𝑧 = constant) for isentropic incompressible flow. The stagnation pressure 

measured using the Pitot tube is the sum of the static pressure and the dynamic pressure, 

as follows:   

 𝑝𝑡  =  𝑝𝑠 +
𝜌𝑉2

2
  (1) 

where 𝑝𝑡 is the stagnation pressure, 𝑝𝑠 is the static pressure, 𝜌 is the fluid density, and V 

is the flow velocity. Solving Equation (2) for the velocity yields: 

 𝑉𝑃𝑖𝑡𝑜𝑡 = (
2(𝑝𝑡−𝑝𝑠)

𝜌
)

1

2
= (

2∆𝑝𝑃𝑖𝑡𝑜𝑡

𝜌
)

1

2
 (2) 

where Δp Pitot is the Pitot tube pressure difference, 𝑝𝑡 − 𝑝𝑠. 

The dry air density can be found from the measured atmospheric pressure and the 

ambient temperature using the following form of the ideal gas law (Equation 3):  

 𝜌𝑑𝑟𝑦 = (
𝑃𝑎𝑡𝑚

𝑅𝑑𝑇
)  (3) 
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where 𝜌𝑑𝑟𝑦 is the density of dry air at the given pressure and temperature, 𝑝𝑎𝑡𝑚 is the 

measured ambient air pressure, 𝑅𝑑 is the gas constant for dry air, and T is the absolute 

room temperature. 

To find the moist air density, the measured relative humidity, η, was used 

Equation 4: 

 𝜌 =
𝜌𝑑𝑟𝑦(1+𝜂)

1+𝜂
𝑅𝑑

𝑅𝑤𝑣

 (4) 

where 𝑅𝑤𝑣 is the ideal gas constant for water vapor. 

This process is repeated for several wind tunnel motor speeds, in terms of 

percentage of full speed. Simultaneously, pressure transducers, mounted in the wall at the 

entrance and exit of the contraction section, were used to measure the pressure drop 

across the wind tunnel contraction. 

Equation 2 was used to calculate the velocity using the wind tunnel pressure drop 

measurements, and the result was compared to those from the Pitot tube. Bearing in mind 

that the values measured by the Pitot tube are the actual velocity of the wind tunnel, and 

the results obtained by the wind tunnel pressure transducer are proportional to the actual 

velocity of the flow, a relationship between the velocities measured by the Pitot tube and 

the wind tunnel pressure transducers can be formulated: 

 𝐶1 ∗  𝑉𝑤𝑡 = 𝑉𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑉𝑝𝑖𝑡𝑜𝑡 (5) 

Plots of the velocities versus the motor speed are given in Figure 9 below: 
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Figure 9 Velocities measured using the (a) Pitot tube, and (b) wind tunnel pressure drop 

as functions of percentage motor power 
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As shown in Figure 9, both velocities measured were directly proportional to the 

wind tunnel speed, but the proportionality constants are still a function of air humidity 

and pressure. To arrive at a single plot that can be used for any relative humidity and 

pressure, a standard velocity was arbitrarily selected as 

 𝑉𝑆𝑇𝐷 = (
2∆𝑃𝑝

𝜌𝑆𝑇𝐷
)

1

2
 (6) 

where 𝜌𝑆𝑇𝐷 is defined as the density of dry air at 1 atmosphere and 293.15 K. The plot of 

velocity using standard conditions, as shown in Figure 10, is independent of the ambient 

conditions during data collection. 

 

Figure 10 Standard velocity of the wind tunnel as a function of percentage motor power 
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tunnel pressure difference and moist density. These relationships are shown by Equations 

7 and 8 below, respectively: 

𝑉𝐴𝑐𝑡𝑢𝑎𝑙 =  𝑉𝑆𝑇𝐷  (
𝜌𝑆𝑇𝐷

𝜌𝑚
)

1

2
    (7) 

and 

∆𝑃𝑤𝑡

𝜌𝑚
 =  

1

2
 (𝑉𝑆𝑇𝐷)2  

𝜌𝑆𝑇𝐷

𝜌𝑚
 𝐶2     (8) 

where C2 is a constant calculated via the plots of velocities versus %N. 

Equations 7 and 8 allow for the actual velocity of the flow to be found with only 

measurements of relative air humidity and wind tunnel pressure difference, which is 

summarized by Equation 9: 

𝑉𝑎𝑐𝑡𝑢𝑎𝑙 = (
2∆𝑃𝑝

𝜌𝑆𝑇𝐷
)

1

2
 (

𝜌𝑆𝑇𝐷

𝜌𝑚
)

1

2
,     (9) 

  Equation 9 is the calibration equation of the wind tunnel, (
2∆𝑃𝑝

𝜌𝑆𝑇𝐷
)

1

2
 is the standard 

velocity, drawn from Figure 3, and (
𝜌𝑆𝑇𝐷

𝜌𝑚
)

1

2
, can be found by calculating the moist density 

with Equation 4 and measuring the pressure difference with the wind tunnel pressure 

transducer. 

Model 

To create a test model with two-degrees of freedom, a spring system, intended to 

allow the cylinder to vibrate freely in the streamwise and cross-stream direction without 

mechanical coupling, was needed. 

A 3.5″ diameter and 36″ length aluminum cylinder was used with a 0.25″ rod 
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attached by end plates to the centerline of the cylinder. Springs connect the rod to two 

solid frames, top and bottom, placed in the test section. The mass of the cylinder was 0.48 

kg (1.06 lbm), with a mass ratio defined as the mass of the cylinder over the mass of 

displaced air varying from 44 to 72, depending on the flow density at the time of the 

experiment. 

Springs were dimensioned based on the weight of the cylinder, and the expected 

frequency of vibration. The expected Strouhal number for a circular cylinder is around St 

= 0.2 for most of the Reynolds number range, as shown in Figure 11. 

 

Figure 11 Strouhal number for a stationary circular cylinder as a function of Reynolds 

number (Blevins, 1990) 

 

Assuming an expected St = 0.2, with a constant diameter for the cylinder, and the 

measured weight for the system, a frequency and velocity can be selected to 

determine an appropriate spring constant for the system, using Equations 10 and 11. 

𝑆𝑡 =
𝑓𝐿

𝑈
     (10) 
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and 

𝑓 =
1

2𝜋
√

𝑘

𝑚
     (11) 

The calculation lead to the use of four precision extension springs with hook ends, 

with a spring constant of 10.7 lbf/in as shown in Figure 12. 

 

Figure 12 Precision extension spring with a spring constant of k = 10.7 lbf/in 

 

Modified shaft collars, connected with steel guitar strings, were used to connect a 4 ft 

long 1/4″–20 threaded aluminum rod, shown in Figure 13, to the spring system. 

 

Figure 13 Threaded aluminum rod used to connect the springs to the aluminum cylinder 

 

The threaded aluminum rod was placed inside the 3.5″ diameter cylinder 

supported on the axis of the cylinder using of four 3D printed inserts that connected the 
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outside of the threaded rod to the inside of the aluminum cylinder. Subsequently, 3D 

printed endplates were added on the top and bottom of the cylinder to reduce the end 

effects. 

 A false wall was added inside the wind tunnel, reducing the cross-stream cross 

section from 17.5 to 15 inches. Figure 14 shows the system with the support bars, the 

springs, the threaded rod, the cylinder and added wall. 

Figure 14 Mounted system with base, threaded rod, cylinder and springs 
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Figure 15 System mounted inside the wind tunnel test section 

 

Two steel support bars were designed, manufactured and mounted to the top and 

bottom of the wind tunnel, connected to each of these bars a structure composed by 

T-slotted framing aluminum was mounted. The T-slot frame was chosen as it allowed 

for easy translation of the cylinder in the lift direction without changing its relative 

position in the stream wise direction. 

Connected to the T-slotted frames were the four springs on the top structure and 

four springs on the bottom structure, as shown in Figure 16. 
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Figure 16 System schematic (a) top view (b) side view 

 

Data Acquisition 

 To understand better the mechanism of vibration of the cylinder at various gap 

ratios, an understanding of the relationship between cylinder motion and vortex shedding 

is required. The vortices are shed into the near wake of the cylinder with a regular 

frequency; they roll up and move downstream at fixed at certain spatial and temporal 

intervals for a given gap ratio and Reynolds number. To correlate the vortex shedding 

with the motion of the cylinder, a hot-wire anemometer was mounted at a fixed position 

(a) 

(b) 
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downstream of the cylinder (2.5 diameters). Beginning inside the shear layer, the hot-

wire probe was traversed outward to a point where the velocity fluctuation measured 

using the hot-wire probe became a relatively clean fluctuating sinusoidal wave. The hot-

wire probe was fixed in that cross-stream position (1.0 diameter) on the far side from the 

added false wall. The position of the probe relative to the cylinder was maintained for all 

G/D. 

 Tri-axial accelerometers were mounted on the top and bottom of the cylinder end 

plates to measure the dynamic response of the cylinder in the streamwise and cross-

stream directions. 

 By analyzing the phase angle between the measured velocity fluctuations relative 

to the fluctuating fluid accelerations, the changing effects of vortex shedding from the 

outer side of the cylinder can be linked with changes in the lift and drag behavior with 

G/D. 

Constant Temperature Anemometer  

 A DANTEC hot-wire constant temperature anemometer (CTA) was used in order 

to measure the velocity at which vortices were shed from the cylinder. A CTA is one of 

two types of thermal anemometer, the other being a constant current anemometer. A 

thermal anemometer is an instrument that uses an electrically heated sensor to measure 

fluid velocities by sensing small changes in heat transfer.  

A hot-wire of tungsten filament was used to measure the changes in velocity around 

the cylinder, the tip of the hot-wire was positioned 2 diameters downstream of the 
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cylinder, and at 0.5 diameters up in the direction of the lift fluctuations, as shown in 

Figure 17. 

 

 

 
Figure 17 Location of the hot-wire anemometer relative to the cylinder (top view), 2 

diameters downstream, and 1.0 diameters in the cross-stream direction 

 

As the cylinder was moved closer to the added wall, the traverse system was moved to 

maintain that same position relative to the cylinder. The hot-wire output was calibrated 

using the velocity determined from the correlation between pressure and humidity as a 

function of the percent power of the wind tunnel motor, as detailed in the wind tunnel 

facility section of this chapter. The hot-wire was mounted in the free-stream, the 

velocities were measured and compared to Vactual, as calculated using Equation 9. The 

DANTEC software, STREAMWIRE, presents a calibration table, which after filled with 

measured values of voltage, and expected values for velocity, generates a calibration 

curve. The input voltage data measured by the DANTEC STREAMWIRE software was 

Added Wall 
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connected to a NI-DAQ system and read by LabView. The MATLAB code used for the 

spectral analysis is presented in Appendix C. 

 

Accelerometers 

The PCB Piezotronics accelerometers mounted on the end-plates of the cylinder were 

connected to that same NI-DAQ system, and the voltage output read by the same 

LabView code. After being recorded, a calibration had to be applied to the acceleration 

data in all three directions; the calibration was provided by the accelerometer 

manufacturer and was applied for each data point. 

 

Figure 18 Top accelerometer positioned on the cylinder end plate 
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The LabView program allowed the simultaneous recording of fluctuating 

acceleration and velocity fluctuation data at a desired sampling frequency and size. 

Signal Processing 

Before any data acquisition and signal analysis could be undertaken, a careful study 

of the data acquisition techniques was made. All the equations for data acquisition were 

taken from the works of Bendat & Piersol (2011). It was decided that a frequency of 

resolution of 0.04 Hz would be satisfactory. For a given frequency resolution, the total 

signal length can be determined using Equation 12: 

𝑇 = 1
∆𝑓⁄       (12) 

where T is the sampling time, and ∆𝑓 is the frequency resolution desired. 

From Equation 12 the signal length was determined to be 25 seconds. Analyzing the 

natural frequency of the model, and considering the literature, it was assumed that all 

dominant frequencies would be below 100 Hz, a Nyquist cutoff of 100 Hz was used. It is 

extremely important that there are no dominant fluctuation peaks above the Nyquist 

cutoff to avoid aliasing. Aliasing is when a frequency exists above the Nyquist cutoff and 

is reflected as a mirror image frequency peak about the Nyquist cutoff. Therefore, the 

frequency will be incorrectly recorded. 

The sampling frequency must be at least twice the Nyquist Cutoff, in this case 200 

Hz. 
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The data sample must be converted from the time domain to the frequency domain 

using a Fourier Transform to examine the spectral densities of the signal as shown by 

Equation 13. 

𝑋(𝑓) =  ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑡∞

−∞
𝑑𝑡    (13) 

To satisfy Equation 13 for a finite time length, the Fast Fourier Transform (FFT) is 

used to estimate the Fourier Transform. The FFT can be calculated by equation 14. 

 𝑋(𝑓, 𝑇) =  ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑡𝑇

0
𝑑𝑡    (14) 

All data analysis requiring FFT calculations used MATLAB’s FFT algorithm. 

Once the FFT has been applied to the data, the power spectrum can be calculated by 

finding the RMS of the FFT. For better estimation of the spectra, a windowing function is 

used to taper the beginning and the end of the time history data. This reduces the leakage 

error in the estimation of the Fourier Transform due to the discontinuities at the 

beginning and end of the time series. The us this thesis was the Tukey window, also 

known as the tapered cosine window, shown by Figure 19. 

 

Figure 19 Tukey windowing function 
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Before the measurement of cylinder interaction began, the turbulence intensity of the 

freestream was estimated. With the calibrated hot-wire probe positioned in the wind 

tunnel, the mean and root mean square (rms) velocity fluctuations were measured. The 

turbulence intensity was estimated by dividing the rms velocity by the mean velocity, as 

indicated in Equation 15. 

 𝑇𝑢 =
𝑉′𝑟𝑚𝑠

𝑉̅
 (15) 

where 𝑉′𝑟𝑚𝑠 is the root mean square of the velocity fluctuations, and 𝑉̅ is the mean 

velocity. The average turbulence intensity for the wind tunnel is reported in Appendix A.  

Before each test was conducted, the Baratron 10 Torr and 100 Torr pressure 

transducers were zeroed. The atmospheric pressure, ambient temperature and humidity 

were measured before and after each experiment, as well as during the time each sample 

was collected. 

Experimental Procedure 

 For each data sample, 4096 data points were collected at 200 Hz. Thirty data 

samples were collected at each cylinder location. For each sensor, the data was calibrated, 

and converted from the time domain to the frequency domain using FFT with the Tukey 

window function. 

 The spectra from the 30 data samples at each location were averaged, and three 

different sets of data for each position were obtained. Eight data records were recorded 

for each sample: (1) time, (2) streamwise, (3) cross-stream, and (4) transverse 

accelerations from the accelerometer on the top of the cylinder, (5) streamwise, (6) cross-
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stream, and(7) transverse accelerations from the accelerometer on the bottom of the 

cylinder, and (8) the output from the hot-wire anemometer 

Wind Tunnel Velocity Profiles 

 Wind tunnel velocity characteristics were determined by using the hot-wire 

anemometer to measure the mean velocity profile along the vertical, horizontal, and axial 

centerline as a function of percent wind tunnel speed and density including humidity 

effects. The one-dimensional RMS of the velocity profiles in empty section were also 

recorded vertically, horizontally and axially along the centerline. 

 Appendix B contains the detailed study of the wind tunnel velocity profiles, as 

well as a study of the turbulence intensity in the wind tunnel. 

Dynamic Characteristics of the Cylinder 

 The cross-stream and streamwise natural frequencies of the cylinder were 

determined by striking the system in the streamwise direction and measuring the 

acceleration responses in the streamwise and cross-stream direction, and then repeating 

the experiment striking the system in the cross-stream direction. 

Vortex Shedding Characteristics of Cylinder with Flow 

The cross-stream and streamwise acceleration peak frequency were measured at 

different gap ratios. The phase lag between cross-stream and streamwise spectral peaks 

was recorded from cross-spectral analysis. This procedure was repeated to determine the 

phase-lag between the cross-stream acceleration and the fluctuating hot-wire data at the 

fixed relative position in the wake. For small gap ratios the phase-lag between the 
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streamwise acceleration signal and the fluctuating hot-wire data from the fixed wake 

location. 

 The unsteady characteristics of the cylinder at multiple gap ratios with added false 

wall (G/D: 1.5, 1, 0.75, 0.5, 0.4, 0.3, 0.2, and 0.1) were calculated and plotted. The same 

procedure used for the freestream analysis was repeated at all G/D. 

 Chapter 3 reports on the impact response of the system as well of the dynamic 

characteristics of the cylinder. 
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Chapter 3 Results 

In this chapter sample results related to the motion of the cylinder and the vortex 

shedding are presented. A complete catalogue of results is provided in Appendix B. The 

results shown in this chapter will be discussed in Chapter 4. 

Impact Response Testing 

The fluctuating acceleration in the streamwise (drag) and cross-stream (lift) 

direction responses to a streamwise impact were measured to determine the natural 

frequencies of the system, as well as to explore whether there was any coupling between 

the streamwise and cross-stream directions. Subsequently, an analogous measurement 

was undertaken to measure the fluctuating drag and lift acceleration responses to impact 

in the lift direction. All results for impact response testing were done using the top 

accelerometer. All the accelerometer response was converted to m/s2, and the hot-wire 

data was reported in terms of voltage. 

Figure 20 depicts the streamwise and cross-stream responses in the time domain 

with impact in the streamwise direction. Figure 21 shows the streamwise and cross-

stream responses spectra with impact in the streamwise direction. 

 Figures 21 (a) and (b) shows a predominant peak at 9.33 Hz in the streamwise 

(drag) direction that is hypothesized to result in a smaller magnitude peak in lift response 

at that same frequency, as shown in Figures 21 (c) and (d). The second peak (one order of 

magnitude smaller than the first peak) in the drag direction response at 16.31 Hz in 

Figures 21 (a) and (b) and present in Figures 21(c) and (d) as well, is conjectured to  
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Figure 20 Time response due to streamwise impact as measured by (a) the accelerometer 

in streamwise direction at the top of the cylinder, (b) the accelerometer in streamwise 

direction at the bottom of the cylinder, (c) the accelerometer in cross-stream direction at 

the top of the cylinder, and (d) the accelerometer in cross-stream direction at the bottom 

of the cylinder 

 

correspond to the natural frequency in the lift direction. 

Figure 22 depicts the streamwise and cross-stream responses in the time domain 

with impact in the cross-stream direction. Figure 23 shows the streamwise and cross-

stream responses spectra with impact in the streamwise direction. 

Figures 23(a) and (b) exhibit amplitude peaks for the fluctuating streamwise 

acceleration at 8.79 Hz and 9.38 Hz, peaks close to the hypothesized natural frequency of 

the system in the streamwise direction, and another peak at 16.36 Hz, consistent with the 

cross-stream natural frequency found in Figures 21 (c) and (d). 

The data in Figures 20 through 23 indicate coupling of the fluctuating acceleration 

responses. When struck in the one direction, the fluctuating acceleration responses are 

found in the direction of impact as well as in the orthogonal direction. This coupling must  

(a) 

(b) 

(c) 

(d) 
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Figure 21 Acceleration logarithmic amplitude spectral response to streamwise impact  

(a) the accelerometer in streamwise direction at the top of the cylinder, (b) the 

accelerometer in streamwise direction at the bottom of the cylinder, (c) the accelerometer 

in cross-stream direction at the top of the cylinder, and (d) the accelerometer in cross-

stream direction at the bottom of the cylinder 

 

be considered when looking at the dynamic response of the cylinder when exposed to 

fluid forces. The time domain responses of the bottom accelerometer showed signs of 

modulation, likely due to a grounding or mounting problem, that lead to a bigger reliance 

on the top accelerometer data (Figures 20 and 21). A logarithmic decrement analysis 

revealed a 3% damping ratio of the system. 

Wall Boundary Layer Measurement 

With the vertical false wall installed, flow visualization of its leading edge region 

was undertaken. Flow visualization using oil streaks revealed the presence of a small 

separation region at the leading edge, approximately 1.0″ in streamwise extent, as  

(a) 

(b) 

(c) 

(d) 



47 

 

 

Figure 22 Time response due to cross-stream impact as measured by (a) the 

accelerometer in streamwise direction at the top of the cylinder, (b) the accelerometer in 

streamwise direction at the bottom of the cylinder, (c) the accelerometer in cross-stream 

direction at the top of the cylinder, and (d) the accelerometer in cross-stream direction at 

the bottom of the cylinder 

 

Figure 23 Acceleration logarithmic amplitude spectral response to cross-stream impact 

(a) in the streamwise direction at the top of the cylinder, (b) in the streamwise direction at 

the bottom of the cylinder, (c) in the cross-stream direction at the top of the cylinder, (d) 

in the cross-stream direction at the bottom of the cylinder 

 

(a) 

(b) 

(c) 

(d) 

(a) 

(b) 

(c) 

(d) 
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depicted in Figure 24. Attempts to reduce the separation region using a downstream flap 

failed to eliminate the separation region. The limited extent of the separation and the 

ineffectiveness of the downstream flap due to the open region above the wall in the 

 

Figure 24 Flow visualization on the added wall using oil streaks showing a small leading 

edge separation region 

Leading 

Edge 

3.0″ 

Estimated 

Location of 

Reattachment 
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tolerant test section, resulted in a reluctant acceptance of this separation region. 

Subsequently, hot wire measurements of the boundary layer on the wall 15 inches 

downstream of its leading edge were made.  

Figure 25 shows the measured wall boundary layer with no cylinder in the flow 

along with a Blasius laminar boundary layer profile.  

 

Figure 25 Hot wire anemometer boundary layer velocity profile measured at a streamwise 

distance 15 inches from the leading edge of the wall compared with a Blasius laminar 

boundary layer profile. Measured boundary layer thickness δ = 0.443 inches; 

displacement thickness δ* = 0.0689 inches; momentum thickness θ =0.0561 inches; 

shape factor H = 1.22. 
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The near wall region approximates the Blasius profile. The outer portion of the measured 

boundary layer extends further into the freestream than does the Blasius profile. The 

boundary layer thickness, δ, was found to be approximately 0.443 inches, with a 

displacement thickness, δ*, of 0.0689 inches and a momentum thickness, θ, of 0.0561 

inches, yielding a shape factor H = δ*/θ = 1.22. The low value of the shape factor 

suggests the boundary layer is transitional or turbulent at the location where cylinder 

testing was undertaken. 

Cylinder Response with Flow 

The fluctuating velocity was measured using a hot wire anemometer (DANTEC 

Type 55R11) at a fixed point downstream of the cylinder center position and outside of 

the wake of the cylinder, as shown in Figure 17. Subsequently, the fluctuating velocity 

spectra were computed from the fluctuating time domain signal (with the mean value 

subtracted). 

The acceleration responses from two tri-axial accelerometers (PCB, Piezotronics 

T356A32) provided acceleration signals from which fluctuating streamwise and cross-

stream acceleration spectra were computed and plotted. In addition, cross-spectral 

amplitude and phase relations between fluctuating cross-stream (lift) acceleration and the 

fluctuating velocity, as well as between fluctuating cross-stream (lift) and streamwise 

accelerations, were computed. Figure 26 depicts the time domain response of the 

fluctuating acceleration components as well as the velocity fluctuation. Figures 27 

through 31 show the streamwise and cross-stream acceleration spectra, and the two cross-

spectra with the cylinder positioned at G/D = 1.64.  



51 

 

 

 
Figure 26 Time histories with G/D = 1.64 of (a) cylinder vibration in the streamwise 

direction, (b) cylinder vibration in the cross-stream direction, and (c) velocity fluctuations 

in the wake at xv/D = 2.5, yv/D = 1.0 

 
 

Figure 27 Streamwise (drag) acceleration amplitude spectra for gap ratio G/D = 1.64 

from acceleration at (a) top of cylinder, and (b) bottom of cylinder 

 

(a) 

(b) 

(c) 

(a) 

(b) 
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Figure 28 Cross-stream (lift) acceleration amplitude spectra for gap ratio G/D = 1.64 

from acceleration at (a) top of cylinder, and (b) bottom of cylinder 

 

For G/D =1.64 the cross-stream (lift) vibration seems to dominate the cylinder 

dynamics, with the fluctuating lift acceleration displaying a peak amplitude at a 

frequency of 16.41 Hz (Figures 27 and 28), corresponding to the cross-stream (lift) 

natural frequency, and a second, smaller peak close to the streamwise (drag) natural 

frequency, due to the previously discussed coupling resulting from system design.  

From measurements made by many researchers, as discussed in Chapter 1, vortex 

shedding from an isolated circular cylinder is known to produce fluctuating lift at the 

frequency of vortex shedding and close to the natural frequency of the cylinder and a 

fluctuating drag at twice the lift fluctuation frequency. In the spectra shown in Figure 27 

the small peak at 32.82 Hz in the fluctuating drag acceleration amplitude spectra, 

corresponds to the expected small vortex shedding drag fluctuation at twice the frequency 

(a) 

(b) 
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of the lift fluctuation. The fluctuating drag acceleration amplitude spectra also exhibit 

peaks at the lift and drag natural frequencies. 

The velocity amplitude spectrum has its peak at the cross-stream natural 

frequency (Figure 29), corresponding to a Strouhal number of St = fvD//U = 0.4, 

suggesting that vortex shedding drives the lift fluctuation. The vortex-induced lift 

dominates the vibration under these conditions, permitting the classification of this case 

as an IIE vibration. 

 

Figure 29 Fluctuating velocity spectrum with G/D = 1.64 

The cross spectral analysis between the cross-stream acceleration and the 

fluctuating velocity is shown in Figure 30. The cross spectral amplitude peaks in Figure 

30(a) represent frequencies that are common to both signals. The phase plot in Figure 

30(b) indicates that at this particular hot wire location the velocity fluctuation lags the lift 
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Figure 30 Cross spectral analysis of cross-stream acceleration with fluctuating velocity 

with G/D = 1.64, showing (a) logarithmic amplitude plot and (b) phase plot 

 

fluctuation by about 36º. This phase angle has no particular interpretation, since the 

location of the hot wire is arbitrary, but by keeping the hot wire fixed relative to the 

cylinder position, it can be used to present the changing phase between velocity and lift 

as a function of G/D. 

Figure 31 shows the cross spectral analysis of the cross-stream (lift) acceleration 

with the streamwise acceleration (drag). The dominant cross spectral peak in Figure 31(a) 

is at the vortex shedding frequency. Figure 31(b) shows a phase relation at this frequency 

of approximately 180º, suggesting that the trajectory of vibration should be elliptical with 

the lift acceleration at a maximum while the drag acceleration is at a minimum and vice  

 

(a) 

(b) 
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Figure 31 Cross spectral analysis of cross-stream (lift) acceleration with streamwise 

(drag) acceleration with G/D = 1.64, showing (a) logarithmic amplitude plot, and (b) 

phase plot 

 

versa. Also note that at the peak near the streamwise natural frequency, the lift and drag 

accelerations are approximately 90º out of phase. 

At decreasing G/D, the nature of the vibration is expected to remain the same 

until the cylinder is close enough to the wall that the symmetry of vortex shedding is 

disrupted. For G/D = 1.0, the cylinder seems to display similar frequency and phase 

characteristics to the ones observed for G/D = 1.64, as shown in Figures 32 through 37. 

 

(a) 

(b) 
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Figure 32 Time histories with G/D = 1.0 of (a) cylinder vibration in the streamwise 

direction, (b) cylinder vibration in the cross-stream direction, and (c) velocity fluctuations 

in the wake at xv/D = 2.5, yv/D = 1.0 

 

 
 

Figure 33 Streamwise (drag) acceleration amplitude spectra for gap ratio G/D = 1.00 

from acceleration at (a) top of cylinder, and (b) bottom of cylinder 

(a) 

(b) 

(c) 

(a) 

(b) 
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Figure 34 Cross-stream (lift) acceleration amplitude spectra for gap ratio G/D = 1.00  

 

Figure 35 Fluctuating velocity spectrum with G/D = 1.00 

(a) 

(b) 
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Figure 36 Cross spectral analysis of cross-stream acceleration with fluctuating velocity 

with G/D = 1.00, showing (a) logarithmic amplitude plot and (b) phase plot 

 

 
Figure 37 Cross spectral analysis of cross-stream (lift) acceleration with streamwise 

(drag) acceleration with G/D = 1.00, showing (a) logarithmic amplitude plot, and (b) 

phase plot 
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Figure 38 Time histories with G/D = 0.4 of (a) cylinder vibration in the streamwise 

direction, (b) cylinder vibration in the cross-stream direction, and (c) velocity fluctuations 

in the wake at xv/D = 2.5, yv/D = 1.0 

 

For G/D = 0.4, following the same procedure as for the previous two cases, the 

amplitude spectra of fluctuating cross-stream (lift) and streamwise (drag) accelerations, 

and velocity at the same relative location were calculated and plotted (see Figures 39 to 

41, respectively). In addition, the cross spectral amplitude and phase plots of cross-stream 

(lift) acceleration with velocity, and of cross-stream (lift) and streamwise (drag) 

accelerations were generated and are shown as Figures 42 and 43, respectively. 

 

(a) 

(b) 

(c) 
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Figure 39 Streamwise (drag) acceleration amplitude spectra for gap ratio G/D = 0.4 from 

acceleration at (a) top of cylinder, and (b) bottom of cylinder 

 

Figure 40 Cross-stream (lift) acceleration amplitude spectra for gap ratio G/D = 0.4 from 

acceleration at (a) top of cylinder, and (b) bottom of cylinder 

(a) 

(b) 
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Figure 41 Fluctuating velocity spectrum with G/D = 0.4 

 

Figure 42 Cross spectral analysis of cross-stream acceleration with fluctuating velocity 

with G/D = 0.4, showing (a) logarithmic amplitude plot and (b) phase plot 
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Figure 43 Cross spectral analysis of cross-stream (lift) acceleration with streamwise 

(drag) acceleration with G/D = 0.4, showing (a) logarithmic amplitude plot, and (b) phase 

plot 

 

In Figure 40, the cross-stream acceleration spectra, the peak amplitude is near 15 

Hz, showing a slight decrease from that shown in Figures 28 and 34. Similarly, the 

smaller peak near the hypothesized natural frequency of vibration in the streamwise 

direction occurs close to, but at a slightly lower frequency, due to the wake breathing 

causing a slight increase in added mass caused by the movement of the cylinder near the 

plane boundary. The streamwise acceleration (Figure 39) exhibits peaks at similar 

(a) 

(b) 
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frequencies to those of the cross-stream spectra, but the peaks are not quite as sharp and 

distinct as those in the cross-stream spectra.  

The peak value in the cross-spectral amplitude (Figure 42(a)) between lift 

acceleration and velocity as well as that for the fluctuating lift and drag accelerations 

Figure 43(a), also shift to slightly lower frequency of 15 Hz that matches the apparent 

vortex shedding frequency, from the velocity spectrum in Figure 41. The corresponding 

Strouhal number is St = 0.37. The phase plot in Figure 42(b) indicates that at this 

particular hot wire location the velocity fluctuation leads the lift fluctuation by about 5º.  

With G/D = 0.2, as shown in Figures 45 to 49, the mechanism of vibration has 

different characteristics, as anticipated. The cross-stream (lift) acceleration no longer 

dominates the system. The peak amplitudes for streamwise (drag) acceleration (Figure 

45) as well as that for velocity (Figure 47) shift to a frequency of about 12 Hz, while the 

peak lift amplitude remains near the lift natural frequency (Figure 46). Note that the 

velocity fluctuation spectra (Figure 47) is substantially noisier than when the cylinder 

was at larger G/D ratios, as the relative position of the hot-wire was maintained. 

In Figure 48, the phase angle between the lift and velocity at both the vortex 

shedding frequency and at the peak lift frequency show a 90º phase difference, that is, the 

velocity fluctuation leads (-90º phase angle) or lags (+90º phase angle), respectively, the 

cross-stream acceleration. 
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Figure 44 Time histories with G/D = 0.2 of (a) cylinder vibration in the streamwise 

direction, (b) cylinder vibration in the cross-stream direction, and (c) velocity fluctuations 

in the wake at xv/D = 2.5, yv/D = 1.0 

 

Figure 45 Streamwise (drag) acceleration amplitude spectra for gap ratio G/D = 0.2 from 

acceleration at (a) top of cylinder, and (b) bottom of cylinder 

(b) 

(a) 

(a) 

(b) 

(c) 
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Figure 46 Cross-stream (lift) acceleration amplitude spectra for gap ratio G/D = 0.2 from 

acceleration at (a) top of cylinder, and (b) bottom of cylinder 

 

Figure 47 Fluctuating velocity spectrum with G/D = 0.2 

(b) 

(a) 
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Figure 48 Cross spectral analysis of cross-stream acceleration with fluctuating velocity 

with G/D = 0.2, showing (a) logarithmic amplitude plot and (b) phase plot 

 

Figure 49 Cross spectral analysis of cross-stream (lift) acceleration with streamwise 

(drag) acceleration with G/D = 0.2, showing (a) logarithmic amplitude plot, and (b) phase 

plot 
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Figure 50 Cross spectral analysis of streamwise acceleration with fluctuating velocity 

with G/D = 0.2, showing (a) logarithmic amplitude plot and (b) phase plot 

 

The cross-stream and the streamwise accelerations in Figure 49 are shown to be in 

phase at the vortex shedding frequency, due to a hydrodynamic coupling, while the two 

accelerations are 180º out of phase at the frequency closest to the natural frequency in the 

cross-stream direction. 

In Figure 50, the cross spectral characteristics between the streamwise 

acceleration and the velocity fluctuation is presented. The peak, as expected is at the 

vortex shedding frequency and the phase angle between the streamwise acceleration and 

the fluctuating velocity is 92º. 

A comprehensive compilation of all data sets for all G/D values tested (1.64, 1.5, 

1, 0.75, 0.5, 0.4, 0.3, 0.2 and 0.1) can be found in Appendix B. 
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Summary of Dynamic Characteristics with Gap Ratio 

To better understand how the dynamic characteristics change with the gap ratio, 

several of the factors are plotted as functions of G/D. Figure 51 shows a constant value of 

St for values of G/D > 0.4, and then decreasing with further reduction in gap ratio. 

 
Figure 51 Strouhal number, St = fD/U, as a function of gap ratio 

 

Figure 52 shows the frequency of the predominant cross-stream acceleration 

fluctuation, f0, with gap ratio normalized with its value at G/D =1.64, denoted as f∞. A 

comparison between Figures 51 and 52 shows that the cross-acceleration fluctuation 

changed linearly with St for large ratios up to G/D = 0.2, where the parameters behave 

differently, possibly due to MIE becoming the main mechanism of vibration near the 

wall. 

Figure 53 shows the amplitude of cross-stream acceleration fluctuation at the 

predominant frequency f0 and at twice the predominant frequency, denoted as f1 = 2f0. In 

addition, the amplitude of the streamwise (drag) acceleration fluctuations at both f0 and f1 
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are shown. The changes in behavior of these amplitudes summarize the hypothesized 

change in the nature of the forcing function from being lift dominated at larger gap ratios 

and drag dominated at small gap ratios. 

The phase angles between cross-stream acceleration and velocity fluctuations and 

between cross-stream and streamwise accelerations at the frequencies f0 and f1 are shown 

in Figure 54. The velocity fluctuation phase angle relative of the cross-stream 

acceleration appears to be highly dependent on G/D, getting close to 0 for small gap 

ratios (G/D < 0.4), similar to what is observed for that of cross-stream acceleration 

relative to streamwise acceleration. The phase relative to lift at f0 seems to decrease as 

G/D decreases for both the velocity fluctuation and fluctuating drag acceleration, while at 

f1 the phase in relation to lift for both the velocity fluctuations and fluctuating drag 

acceleration seem to behave similarly far from the wall, until about G/D = 0.75, where 

 
Figure 52 Predominant frequency of cross-stream acceleration fluctuation f0 /f∞ as a 

function of gap ratio 
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Figure 53: Fluctuating cross-stream acceleration and streamwise acceleration amplitudes 

at f0 and at f1 = 2f0 as a function of gap ratio 

 

Figure 54: Phase lags of drag relative to lift and of velocity relative to lift at f0 and f1 = 2f0 

as a function of gap ratio 

 

the rate in which their phase lag decrease change at different ratios, with the velocity 
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slowly decreases with gap ratio until G/D = 0.3, when it sharply decreases.  

0.001

0.01

0.1

1

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

A
m

p
lit

u
d

e 
o

f 
fl

u
ct

u
at

in
g 

ac
ce

le
ra

ti
o

n
 (

m
/s

2
)

Non-dimensional distance from wall (G/D)

-200

-150

-100

-50

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

P
h

as
e 

la
g 

re
la

ti
ve

 t
o

 li
ft

Non-dimensional distance from wall (G/D)

Fluctuating drag(f_0)

Velocity fluctuation(f_0)

Fluctuating drag(2*f_0)

Velocity fuctuation(2*f_0)



71 

 

 

Chapter 4 Discussion 

 An analysis of the results shown in Chapter 3 is presented in this section. 

Differences between the results obtained for the cylinder close to and far from the wall 

are discussed, highlighting possible explanation for these differences as well as 

presenting a comparison of the results with current literature. 

Strouhal number 

 Far from the wall, the Strouhal number is larger than what is expected for vortex 

induced vibration of circular cylinders. Blockage might be one of the reasons. Awbi 

(1983) studied the effect of blockage on the Strouhal number of circular cylinders. He 

concluded that the blockage of the test section may lead to changes in Strouhal number. 

The Strouhal number was calculated using the freestream velocity with zero 

blockage and no added wall, however, the freestream velocity is expected to increase 

with blockage ratio, and after the addition of the false wall, due to the area reduction. 

Consider the decrease in the cross-section of the test section from 17.5″ to 15″ due to the 

addition of the false wall, as well as the 23.3% blockage due to the cylinder. Assuming an 

increase of the freestream velocity inversely proportional to the area reduction, a 

corrected Strouhal number as a function of G/D was calculated and shown in Figure 55. 
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Figure 55 Strouhal number as a function of gap ratio corrected for area reduction 
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= 0.1, the lift coefficient is fairly constant far from the wall, and it plummets as it 

approaches the wall more closely, similar to the behavior shown in Figure 53. 

 

Figure 56 Rms lift coefficient at various gap ratios and Reynolds numbers for a boundary 

layer of δ/D = 0.1 

 

Boundary Layer 

 Studying the boundary layer in conjunction with the effects of the wall on the 

vibration of a nearby bluff body is of great importance, as the boundary layer could have 

an effect on the drag (Buresti & Lanciotti, 1992) and lift (Zdravkovich, 1985) 

coefficients, as discussed in Chapter 1. The behavior of the boundary layer close to the 

wall resembles a laminar flat plate boundary layer, however, at y/D > 0.7 it behaves 

differently from the Blasius boundary layer, while not showing signs of being fully 

turbulent, the shape factor H=1.22 indicates that the boundary layer is transitional or 

turbulent (Schlichting, 1979). Buresti & Lanciotti (1992) found that for boundary layers 
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of δ/D = 0.1, the critical gap ratio was G/D = 0.4, in agreement with the current study. 

Buresti & Lanciotti also observed a high sensitivity of transitional regimes to even small 

perturbations. 

Stationary cylinder response 

 The presence of two natural frequencies, 9.3 Hz (in the streamwise direction) and 

16.3 Hz (in the cross-stream direction), can be understood by considering the cylinder to 

be a point mass suspended on two orthogonal tensioned wires or cables. A stretched wire 

has a fundamental vibrational mode such that the wavelength is twice the length of the 

spring (Equation 16). 

 

 𝐿 =
𝜆

2
 (16) 

where 𝜆 is the wavelength of the vibration, and L is the length of the wire. The wave 

velocity, v, can be expressed as: 

 𝑣 = √
𝑇

𝑚 𝐿⁄
 (17) 

 Where T is the wire tension, and m, the wire mass,(here assumed to be the point 

mass of the cylinder). Knowing that the frequency of vibration is the ratio between the 

wave velocity and wave length, the fundamental frequency can be found as: 

 𝑓𝑠𝑡𝑟𝑖𝑛𝑔 =
√

𝑇

𝑚 𝐿⁄

2𝐿
    (18) 

 Considering the values of L1 = 10″, and L2 = 3.75″ as the length of the wires, as 

from Figure 17 in Chapter 2, and assuming mass and tension for both wires are the same, 

the ratio between the streamwise and cross-stream vibration frequencies is 0.61, which 
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could explain the frequency ratio of 0.57 found between the streamwise (9.4 Hz) and the 

cross-stream (16.4 Hz) natural responses. 

Cylinder response with flow 

Far from the wall (G/D > 1.0), the fluctuating lift acceleration seems to be the 

dominating parameter in the vibration of the cylinder, with amplitude peak at the same 

frequency as that of the velocity fluctuations. Close to the wall (G/D < 0.4), however, the 

velocity fluctuation is no longer being dominated by the lift, rather it drives the drag 

vibration, causing the cylinder to move downstream and upstream. 

When the vibration cycle moves the cylinder downstream, the wake on the side 

opposite to the wall expands, the base pressure on the top side of the cylinder decreases, 

and the stagnation point moves up, this change in the dynamics of the flow creates a 

negative damping effect on the upstream top side of the cylinder. When the cycle moves 

the cylinder upstream, the negative damping is in phase with the movement, which 

pushes the cylinder upstream and up. 

Analogously, when the cylinder moves in the upstream direction and up, the 

reverse happens, stagnation point moves downward which shifts the dynamics of flow 

separation on the bottom side of the cylinder, when it moves up, the pressure on the 

region between the cylinder and the wall decreases, and as it moves up, the wake 

downstream of the cylinder contracts, reducing the drag effect on the cylinder and 

finishing the wake breathing cycle. This change on the drag coefficient is in phase with 

the movement of the cylinder, driving the vibration of the cylinder near the wall. 
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This wake breathing process seems to be in phase with the movement of the 

cylinder. This process is corroborated by the results of this study that showed that near 

the wall, the drag component fluctuation happens at the same frequency as the velocity 

fluctuation. This process would also explain the tendency of a cylinder near wall to move 

in an elliptical trajectory, moving downstream and down, and upstream and up. It is 

important to note that this excitation is initiated only by the movement of the cylinder, 

rather than the vortices shed from the far side of the cylinder. 

For intermediate gap ratios (0.4 < G/D < 1.0), both mechanisms of vibration seem 

to take place on the cylinder, until the point of vortex suppression, when the movement-

induced excitation drives the vibration. 

Figure 57 depicts a computational model of instantaneous streamlines around a  

 

Figure 57 Streamline contours at various Reynolds numbers, with (a) G/D = 0, (b) G/D = 

0.2, and (c) G/D = 0.3 (from Jamalabadi & Oveisi, 2016) 

(a) 

(b) 

(c) 
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cylinder near a plane boundary (Jamalabadi & Oveisi, 2016), the difference in the 

stagnation points can be observed. 

Comparing Figure 53 and Figure 58, the fluctuating lift response close to the wall 

appears to behave in a similar manner to that which was measured in the work of Rao et 

al. (2013), which seems to validate the close to the wall response of the system. 

 A prediction of the behavior a circular cylinder near a wall at Re  < 200 was made 

using a computational model as shown in Figure 58, using data from Rao et al. (2013) 

and iterating different phase angles between the lift and drag coefficients, to generate a  

 

Figure 58 Amplitude of the fluctuating fluid components at the cross-stream peak 

frequency of vibration and at twice that peak based on a model using data from Rao’s 

CFD computations 

 

0.001

0.01

0.1

1

0 0.5 1 1.5 2

A
m

p
lit

u
d

e 
o

f 
fl

u
ct

u
at

in
g 

fl
u

id
 f

o
rc

e 
co

m
p

o
n

en
ts

Non-dimensional distance from wall (G/D)

f_o drag coeff amplitude

2f_o drag coeff amplitude

f_o lift component

2f_o Lift amplitude



78 

 

 

perfect match for their computational results. The fitted parameters from computational 

model based on the results from Rao et al. was compared with the findings in the present 

work. 

Close to the wall (G/D < 0.4), the trends for the amplitude of fluctuating fluid 

components matches that of the present work, as it can be seem when compared to 

Figures 53 and 56. Both graphs present amplitude peaks close to the wall. Far from the 

wall, a substantially different behavior occurs while the lift component seems to remain 

constant for Rao’s study, it dips a little at G/D = 1.0, probably due to the many nuances 

unaccounted on a mathematical model or some unnoticed fault while collecting the data.  

Figure 53 agrees with the study of Barbosa et al. (2017), for intermediate gap 

ratios (0.75 < G/D < 2), the amplitude of vibration seems to decrease in amplitude. Both 

Figures 55 and 53 present peak fluctuating lift components at G/D = 0.5, and peak 

fluctuating drag components at f0 at G/D = 0.4, with a drastic decrease of both fluctuating 

fluid forces after these peaks, likely due to the change in the mechanism of vibration. 

The differences between the data of Rao et al. (2013) and the one in the study 

might be attributable to several slight differences. As was pointed out in previous 

chapters, there is a difference in Reynolds number of three orders of magnitude. Further, 

the 23.33% blockage of the wind tunnel might have some effect on the results. In 

addition, the mechanical coupling between the system response to the streamwise and 

cross-stream vibrations, may interfere with the frequency responses of the system. 
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Chapter 5 Conclusion 

The present work focused on the effect of wall proximity on the mechanism of 

flow-induced vibration of a circular cylinder with two degrees-of-freedom, near a plane 

boundary at a Reynolds number of 1.86 x 105. Through the use of hot-wire anemometry 

and cylinder-mounted accelerometers, the flow-induced vibration of the cylinder was 

characterized. 

Close to the wall (gap ratios, G/D < 0.4) the system exhibited characteristics of 

MIV as a result of the wake breathing mechanism, with the cylinder’s wake varying in 

width with the motion of the cylinder, producing a fluctuating force component in phase 

with the cylinder velocity, increasing the excitation of the system. 

For intermediate gap ratios (0.4 > G/D > 1.0), the excitation had characteristics of 

both VIV and MIV, due to the combined effects of vortex shedding and movement-

induced cylinder motion near the plane boundary. 

For large gap ratios (G/D > 1.0), shed vortices produced a fluctuation in the lift 

component at the vortex shedding frequency that showed a tendency to exhibit lock-in to 

the cylinder natural frequency, as is known to occur in vortex shedding excitation. An 

associated weak fluctuating drag component at twice the vortex shedding frequency was 

also observed. 

The change in the driving mechanism of vibration from the fluctuating lift 

component to the movement of the cylinder near the wall is a likely explanation of how 

the mechanism changes near the wall; however, it is not possible to reach a definitive 

conclusion before all uncertainties associated with the effects of mechanical coupling and 
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blockage have been addressed. Movement-induced vibration near the wall, due to wake 

breathing is the highly likely explanation for the change in the dynamics of the flow near 

the wall. The experiments conducted herein provide evidence to corroborate this 

hypothesis. 

As discussed in previous chapters, the cross-stream and streamwise vibrations are 

mechanically coupled far from the wall, which caused the phase relationship between the 

fluctuating fluid forces and velocity fluctuation to be unclear. Close to the wall, the 

results were consistent with a hydrodynamic mode coupling. 

If the mechanical coupling between the streamwise and cross-stream vibrations 

could be removed (changing the springs) or accounted for, the wake breathing effect 

would most likely be more evident. Other constraint issues were the blockage ratio, 

which affected the Strouhal number, and the transitional boundary layer. 

For future work, it would be necessary to undertake these experiments with a 

spring system that would allow for free vibration in both the streamwise and cross-stream 

direction, without mechanical coupling of the two degrees-of-freedom, possibly through 

the use of leaf springs. A smaller diameter cylinder with less blockage would be ideal, 

however, it is not a simple problem, as a smaller frequency would require more energy to 

be excited while at the same time requiring a lower velocity to match the Strouhal 

number requirements. Changes on the false wall in conjunction with the flap at its trailing 

edge to decrease or eliminate the separation could be made, as well as the addition of a 

trip wire upstream of the cylinder to trip the boundary layer into a o fully turbulent state. 

Future research in a water channel is encouraged, to study the effects of different mass 
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ratios on the dynamics of the cylinder in close proximity to a plane boundary, as well as 

generating sufficient fluid force for excitation at low velocities. 
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Appendix A: Wind Tunnel Characteristics  

 

From earlier work in the same wind tunnel (Ralston, 1997), the velocity profiles 

along the vertical and horizontal center lines were known to be uniform, except near the 

top and bottom as well as near the front and back walls of the test section.  

 A hot-wire anemometer was positioned in the test section of the wind tunnel, 

mean velocity on the centerline as a function of percent speed and density was collected 

and explained on Chapter 3. 

 The mean velocity profiles were then measured with data being collected in the 

vertical centerline, the horizontal centerline and in the axial centerline. 

 A one dimensional RMS profile of the centerline measurements was calculated. 

And used to solve for the turbulence intensity and the mean velocity profile was traced 

for all centerlines. 

 Figure A1 depicts the velocity and turbulence intensity profile for (a) the vertical 

centerline, (b) the horizontal centerline, and (c) the axial (streamwise) centerline of the 

wind tunnel. 
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Figure A1 Wind tunnel profile along (a) the vertical centerline, (b) the horizontal (cross-

stream) centerline, and (c) the axial (streamwise) centerline. 

 

The characteristics of the Boundary Layer are presented in Table A-1. 

 

(a) 

(b) 

(c) 
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Appendix B: Data 

 

Appendix B contains all plots extracted from this study. Table B-1 presents a 

complete summary of the results of spectra analysis at the peak lift component frequency 

and twice the peak lift component frequency. 

 

Table B-2 shows the Figure name depending on G/D and type of figure. 

 

Figures B1 through B45 show the spectral analysis results for different gap ratios. 

A table of contents is included on the following page for easier reference. 
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Spectral Analysis Results for Different Gap Ratios: 

 

G/D = 1.64 

 

 
Figure B1 Time histories with G/D = 1.64 of (a) cylinder vibration in the streamwise 

direction, (b) cylinder vibration in the cross-stream direction, and (c) velocity fluctuations 

in the wake at xv/D = 2.5, yv/D = 1.0 

 

(a) 

(b) 

(c) 
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Figure B2 Amplitude spectra of velocity fluctuations at G/D = 1.64 

 

Figure B3 Amplitude spectra of fluctuating drag acceleration at G/D = 1.64 (a) top 

accelerometer, (b) bottom accelerometer 

 

 

Figure B4 Amplitude spectra of fluctuating lift acceleration at G/D = 1.64 (a) top 

accelerometer, (b) bottom accelerometer 

 

 

(a) 

(b) 

(a) 

(b) 
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Figure B5 Cross-spectra (a) amplitude and (phase) of velocity fluctuation relative to the 

fluctuating lift acceleration at G/D = 1.64 

 

 

Figure B6 Cross-spectra (a) amplitude and (phase) of fluctuating drag acceleration 

relative to the fluctuating lift acceleration at G/D = 1.64 
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G/D = 1.5 

 

Figure B7 Time histories with G/D = 1.5 of (a) cylinder vibration in the streamwise 

direction, (b) cylinder vibration in the cross-stream direction, and (c) velocity fluctuations 

in the wake at xv/D = 2.5, yv/D = 1.0 

 

 

Figure B8 Amplitude spectra of velocity fluctuations at G/D = 1.5 

(a) 

(b) 

(c) 
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Figure B9 Amplitude spectra of fluctuating drag acceleration at G/D = 1.5 (a) top 

accelerometer, (b) bottom accelerometer 

 

 

Figure B10 Amplitude spectra of fluctuating lift acceleration at G/D = 1.5 (a) top 

accelerometer, (b) bottom accelerometer 

 

(a) 

(b) 

(a) 

(b) 
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Figure B11 Cross-spectra (a) amplitude and (phase) of velocity fluctuation relative to the 

fluctuating lift acceleration at G/D = 1.5 

 

Figure B12 Cross-spectra (a) amplitude and (phase) of fluctuating drag acceleration 

relative to the fluctuating lift acceleration at G/D = 1.5 
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G/D = 1 

 

 
Figure B11 Time histories with G/D = 1.0 of (a) cylinder vibration in the streamwise 

direction, (b) cylinder vibration in the cross-stream direction, and (c) velocity fluctuations 

in the wake at xv/D = 2.5, yv/D = 1.0 

 

 

Figure B14 Amplitude spectra of velocity fluctuations at G/D = 1 

(a) 

(b) 

(c) 
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Figure B15 Amplitude spectra of fluctuating drag acceleration at G/D = 1 (a) top 

accelerometer, (b) bottom accelerometer 

 

 

Figure B16 Amplitude spectra of fluctuating lift acceleration at G/D = 1 (a) top 

accelerometer, (b) bottom accelerometer 
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Figure B17 Cross-spectra (a) amplitude and (phase) of velocity fluctuation relative to the 

fluctuating lift acceleration at G/D = 1 

 

 

Figure B18 Cross-spectra (a) amplitude and (phase) of fluctuating drag acceleration 

relative to the fluctuating lift acceleration at G/D = 1 
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G/D = 0.75 

 

 
Figure B19 Time histories with G/D = 0.75 of (a) cylinder vibration in the streamwise 

direction, (b) cylinder vibration in the cross-stream direction, and (c) velocity fluctuations 

in the wake at xv/D = 2.5, yv/D = 1.0 

 

 

Figure B20 Amplitude spectra of velocity fluctuations at G/D = 0.75 

 

(a) 

(b) 

(c) 
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Figure B21 Amplitude spectra of fluctuating drag acceleration at G/D = 0.75 (a) top 

accelerometer, (b) bottom accelerometer 

 

 

 

Figure B22 Amplitude spectra of fluctuating lift acceleration at G/D = 0.75 (a) top 

accelerometer, (b) bottom accelerometer 
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(a) 

(b) 
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Figure B23 Cross-spectra (a) amplitude and (phase) of velocity fluctuation relative to the 

fluctuating lift acceleration at G/D = 0.75 

 

 

Figure B24 Cross-spectra (a) amplitude and (phase) of fluctuating drag acceleration 

relative to the fluctuating lift acceleration at G/D = 0.75 
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G/D = 0.5 

 

 
Figure B25 Time histories with G/D = 0.5 of (a) cylinder vibration in the streamwise 

direction, (b) cylinder vibration in the cross-stream direction, and (c) velocity fluctuations 

in the wake at xv/D = 2.5, yv/D = 1.0 

 

 

Figure 27 Amplitude spectra of velocity fluctuations at G/D = 0.5 

(a) 

(b) 

(c) 
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Figure B27 Amplitude spectra of fluctuating drag acceleration at G/D = 0.5 (a) top 

accelerometer, (b) bottom accelerometer 

 

 

Figure B28 Amplitude spectra of fluctuating lift acceleration at G/D = 0.5 (a) top 

accelerometer, (b) bottom accelerometer 
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Figure B29 Cross-spectra (a) amplitude and (phase) of velocity fluctuation relative to the 

fluctuating lift acceleration at G/D = 0.5 

 

Figure B30 Cross-spectra (a) amplitude and (phase) of fluctuating drag acceleration 

relative to the fluctuating lift acceleration at G/D = 0.5 
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G/D = 0.4 

 

 

Figure B31 Time histories with G/D = 0.4 of (a) cylinder vibration in the streamwise 

direction, (b) cylinder vibration in the cross-stream direction, and (c) velocity fluctuations 

in the wake at xv/D = 2.5, yv/D = 1.0 

 
 

Figure B32 Amplitude spectra of velocity fluctuations at G/D = 0.4 
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(c) 
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Figure B33 Amplitude spectra of fluctuating drag acceleration at G/D = 0.4 (a) top 

accelerometer, (b) bottom accelerometer 

 

 

 

Figure B34 Amplitude spectra of fluctuating lift acceleration at G/D = 0.4 (a) top 

accelerometer, (b) bottom accelerometer 
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Figure B35 Cross-spectra (a) amplitude and (phase) of velocity fluctuation relative to the 

fluctuating lift acceleration at G/D = 0.4 

 

 

Figure B36 Cross-spectra (a) amplitude and (phase) of fluctuating drag acceleration 

relative to the fluctuating lift acceleration at G/D = 0.4 
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G/D = 0.3 

 

 

 
Figure B37 Time histories with G/D = 0.3 of (a) cylinder vibration in the streamwise 

direction, (b) cylinder vibration in the cross-stream direction, and (c) velocity fluctuations 

in the wake at xv/D = 2.5, yv/D = 1.0 

 

 

Figure B38 Amplitude spectra of velocity fluctuations at G/D = 0.3 

(a) 

(b) 

(c) 
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Figure B39 Amplitude spectra of fluctuating drag acceleration at G/D = 0.3 (a) top 

accelerometer, (b) bottom accelerometer 

 

 

Figure B40 Amplitude spectra of fluctuating lift acceleration at G/D = 0.3 (a) top 

accelerometer, (b) bottom accelerometer 
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Figure B41 Cross-spectra (a) amplitude and (phase) of velocity fluctuation relative to the 

fluctuating lift acceleration at G/D = 0.3 

 

Figure B42 Cross-spectra (a) amplitude and (phase) of fluctuating drag acceleration 

relative to the fluctuating lift acceleration at G/D = 0.3 
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G/D = 0.2 

 

Figure B43 Time histories with G/D = 0.2 of (a) cylinder vibration in the streamwise 

direction, (b) cylinder vibration in the cross-stream direction, and (c) velocity fluctuations 

in the wake at xv/D = 2.5, yv/D = 1.0 

 

Figure B44 Amplitude spectra of velocity fluctuations at G/D = 0.2 
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(c) 
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Figure B45 Amplitude spectra of fluctuating drag acceleration at G/D = 0.2 (a) top 

accelerometer, (b) bottom accelerometer 

 

 

Figure B46 Amplitude spectra of fluctuating lift acceleration at G/D = 0.2 (a) top 

accelerometer, (b) bottom accelerometer 
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Figure B47 Cross-spectra (a) amplitude and (phase) of velocity fluctuation relative to the 

fluctuating lift acceleration at G/D = 0.2 

 

 

Figure B48 Cross-spectra (a) amplitude and (phase) of fluctuating drag acceleration 

relative to the fluctuating lift acceleration at G/D = 0.2 
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G/D = 0.1 

 

 
Figure B49 Time histories with G/D = 0.1 of (a) cylinder vibration in the streamwise 

direction, (b) cylinder vibration in the cross-stream direction, and (c) velocity fluctuations 

in the wake at xv/D = 2.5, yv/D = 1.0 

 

 

Figure B50 Amplitude spectra of velocity fluctuations at G/D = 0.1 
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Figure B51 Amplitude spectra of fluctuating drag acceleration at G/D = 0.1 (a) top 

accelerometer, (b) bottom accelerometer 

 

Figure B52 Amplitude spectra of fluctuating lift acceleration at G/D = 0.1 (a) top 

accelerometer, (b) bottom accelerometer 
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Figure B53 Cross-spectra (a) amplitude and (phase) of velocity fluctuation relative to the 

fluctuating lift acceleration at G/D = 0.1 

 

Figure B54 Cross-spectra (a) amplitude and (phase) of fluctuating drag acceleration 

relative to the fluctuating lift acceleration at G/D = 0.1 
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Appendix C: MATLAB Code for Data Reduction 

Appendix C contains the MATLAB code used to analyze the data extracted from 

LabView, all the data was compiled into one file named “records”, composed by 30 data 

samples which with 4096 data points for time, velocity fluctuation (in Volts), and 

fluctuating drag and lift accelerations for the top and bottom accelerometers (in m/s2). 

The code was written by the author as a MATLAB R2018a script. 

 

close all 
%Data analysis 
%% 
%Variables: 
%time stamp 
%4096 data points per record, 30 records per sensor at each location 
t=records(:,1); 
%frequency  
fs=200/4095; 
f=zeros(4096,1); 
counter=0; 
for i=2:4096 
  f(i)=f(i-1)+fs; 
end 
for j=1:8:240 
counter=counter+1; 
%Extracting fluctuating lift acceleration from data 
liftt(:,counter)=records(:,j-1+3);%lift top 
liftb(:,counter)=records(:,j-1+6);%lift bot 
%Extracting fluctuating drag acceleration from data 
dragt(:,counter)=records(:,j-1+2);%drag top 
dragb(:,counter)=records(:,j-1+5);%drag bot 
%Extracting velocity fluctuation from data 
vel(:,counter)=records(:,j-1+8);%vel 
velavg(:,counter)=sum(vel(:,counter))/4096; 
vel(:,counter)=vel(:,counter)-velavg(:,counter); 
end 
%% 
%for each sensor: fft of each data record using a windowing function,  
%then average 30 ffts and find amplitude spectrum of averaged fft 
%FFT 
%windowing 
w=tukeywin(4096,0.05);%Tukey window 
for k=1:30 
%%lift top 
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lifttw(:,k)=liftt(:,k).*w;%Tukey window applied 
lifttfft(:,k)=fft(lifttw(:,k));%fft 
abslifttfft(:,k)=sqrt(lifttfft(:,k).* 

conj(lifttfft(:,k)))/4096;%(amplitude) 
%%drag top 
dragtw(:,k)=dragt(:,k).*w;%Tukey window applied 
dragtfft(:,k)=fft(dragtw(:,k));%fft 
absdragtfft(:,k)=sqrt(dragtfft(:,k).* 

conj(dragtfft(:,k)))/4096;%(amplitude) 
%%lift bot 
liftbw(:,k)=liftb(:,k).*w;%Tukey window applied 
liftbfft(:,k)=fft(liftbw(:,k));%fft 
absliftbfft(:,k)=sqrt(liftbfft(:,k).* 

conj(liftbfft(:,k)))/4096;%(amplitude) 
%%drag bot 
dragbw(:,k)=dragb(:,k).*w;%Tukey window applied 
dragbfft(:,k)=fft(dragbw(:,k));%fft 
absdragbfft(:,k)=sqrt(dragbfft(:,k).* 

conj(dragbfft(:,k)))/4096;%(amplitude) 
%%velocity 
velw(:,k)=vel(:,k).*w;%Tukey window applied 
velfft(:,k)=fft(velw(:,k));%fft 
absvelfft(:,k)=sqrt(velfft(:,k).* conj(velfft(:,k)))/4096;%(amplitude) 
end 
%% 
%average all 30 data records 
toplift=mean(abslifttfft,2); 
[rowtl, colu] = find(ismember(toplift, max(toplift(:)))); 
topdrag=mean(absdragtfft,2); 
[rowtd, colu] = find(ismember(topdrag, max(topdrag(:)))); 
botlift=mean(absliftbfft,2); 
[rowbl, colu] = find(ismember(botlift, max(botlift(:)))); 
botdrag=mean(absdragbfft,2); 
[rowbd, colu] = find(ismember(botdrag, max(botdrag(:)))); 
velocity=mean(absvelfft,2); 
[rowv, colu] = find(ismember(velocity, max(velocity(:)))); 
%peak frequency of lift fluctuations (f0) 
flposition=rowbl(1); 
fl=f(flposition); 
%% 
%find main frequency of vibration in the lift direction (Fl)  
%from the averaged lift spectra top and bottom, check spectral phase 

top and bottom 
%Cross-spectrum 
for m=1:30 
[PhaseLDb(:,m),F] = cpsd(liftb(:,m),dragb(:,m),w,200,200,200); 
[PhaseLDt(:,m),F] = cpsd(liftt(:,m),dragt(:,m),w,200,200,200); 
[PhaseLVb(:,m),F] = cpsd(liftb(:,m),vel(:,m),w,200,200,200); 
[PhaseLVt(:,m),F] = cpsd(liftt(:,m),vel(:,m),w,200,200,200); 
[PhaseDVb(:,m),F] = cpsd(dragb(:,m),vel(:,m),w,200,200,200); 
[PhaseDVt(:,m),F] = cpsd(dragt(:,m),vel(:,m),w,200,200,200); 
end 
%averaged cross-spectrum 
PLDb=mean(PhaseLDb,2); 
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PLDt=mean(PhaseLDt,2); 
PLVb=mean(PhaseLVb,2); 
PLVt=mean(PhaseLVt,2); 
PDVb=mean(PhaseDVb,2); 
PDVt=mean(PhaseDVt,2); 
%% 
%Plot cross-spectrum phase Lift and Drag top 
figure 
subplot(2,1,2) 
plot(F(1:51),-angle(PLDt(1:51))/pi,'k','linewidth',1.5); 
xlabel('Frequency (Hz)','fontsize',12) 
ylabel('Phase Lag (\times\pi rad)','fontsize',12) 
set(gca,'linewidth',2,'FontSize',12) 
set(gcf,'color','white') 
box off 
subplot(2,1,1) 
semilogy(F(1:51),abs(PLDt(1:51)),'k','linewidth',1.5); 
xlabel('Frequency (Hz)','fontsize',12) 
ylabel('Amplitude (m/s^2)','fontsize',12) 
set(gca,'linewidth',2,'FontSize',12) 
set(gcf,'color','white') 
box off 
axis([0 50 0.00001 0.1]) 
yticks([.00001 .001 0.1]) 
%Plot cross-spectrum phase Lift and Velocity Top 
figure 
subplot(2,1,2) 
plot(F(1:51),-angle(PLVt(1:51))/pi,'k','linewidth',1.5); 
xlabel('Frequency (Hz)','fontsize',12) 
ylabel('Phase Lag (\times\pi rad)','fontsize',12) 
set(gca,'linewidth',2,'FontSize',12) 
set(gcf,'color','white') 
box off 
subplot(2,1,1) 
semilogy(F(1:51),abs(PLVt(1:51)),'k','linewidth',1.5); 
xlabel('Frequency (Hz)','fontsize',12) 
ylabel('Amplitude (\surd((m/s^2)\times v)','fontsize',12) 
set(gca,'linewidth',2,'FontSize',12) 
set(gcf,'color','white') 
box off 
axis([0 50 0.00001 0.001]) 
yticks([0.00001 .0001 0.001]) 
%Power Spectrum amplitude 
figure 
subplot(2,1,1) 
semilogy(f(1:1024),toplift(1:1024),'k','linewidth',1.5); 
xlabel('Frequency (Hz)','fontsize',12) 
ylabel('Amplitude (m/s^2)','fontsize',12) 
set(gca,'linewidth',2,'FontSize',12) 
box off 
set(gcf,'color','white') 
axis([0 50 0.001 1]) 
yticks([0.001 0.01 .1 1]) 
subplot(2,1,2) 
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semilogy(f(1:1024),botlift(1:1024),'k','linewidth',1.5); 
xlabel('Frequency (Hz)','fontsize',12) 
ylabel('Amplitude (m/s^2)','fontsize',12) 
set(gca,'linewidth',2,'FontSize',12) 
box off 
set(gcf,'color','white') 
axis([0 50 0.001 1]) 
yticks([0.001 0.01 .1 1]) 
% 
figure 
subplot(2,1,1) 
semilogy(f(1:1024),topdrag(1:1024),'k','linewidth',1.5); 
xlabel('Frequency (Hz)','fontsize',12) 
ylabel('Amplitude (m/s^2)','fontsize',12) 
set(gca,'linewidth',2,'FontSize',12) 
set(gcf,'color','white') 
box off 
axis([0 50 0.001 0.1]) 
yticks([0.001 0.01 .1]) 
subplot(2,1,2) 
semilogy(f(1:1024),botdrag(1:1024),'k','linewidth',1.5); 
xlabel('Frequency (Hz)','fontsize',12,'color','k') 
ylabel('Amplitude (m/s^2)','fontsize',12,'color','k') 
set(gca,'linewidth',2,'FontSize',12) 
set(gcf,'color','white') 
box off 
axis([0 50 0.001 0.1]) 
yticks([0.001 0.01 .1]) 
% 
figure 
semilogy(f(1:1024),velocity(1:1024),'k','linewidth',1.5); 
xlabel('Frequency (Hz)','fontsize',12) 
ylabel('Amplitude (Volt^2)','fontsize',12) 
set(gca,'linewidth',2,'FontSize',12) 
set(gcf,'color','white') 
box off 
axis([0 50 0.001 0.01]) 
figure 
subplot(2,1,2) 
plot(F(1:51),-angle(PDVt(1:51))/pi,'k','linewidth',1.5); 
xlabel('Frequency (Hz)','fontsize',12) 
ylabel('Phase Lag (\times\pi rad)','fontsize',12) 
set(gca,'linewidth',2,'FontSize',12) 
set(gcf,'color','white') 
box off 
subplot(2,1,1) 
semilogy(F(1:51),abs(PDVt(1:51)),'k','linewidth',1.5); 
xlabel('Frequency (Hz)','fontsize',12) 
ylabel('Amplitude (\surd((m/s^2)\timesv)','fontsize',12) 
set(gca,'linewidth',2,'FontSize',12) 
set(gcf,'color','white') 
box off 
axis([0 50 0.00001 0.001]) 
yticks([0.00001 0.0001 0.001]) 
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