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Abstract 

 

 Aerosols are known to have important effects on climate, the atmosphere, and human 

health.  The extent of those effects is unknown and largely depend on the interaction of aerosols 

with water in the atmosphere.  Ambient aerosols are complex mixtures of both inorganic and 

organic compounds.  The cloud condensation nuclei (CCN) activities, hygroscopic behavior and 

particle morphology of a monocarboxylic amino acid (leucine) and a dicarboxylic amino acid 

(glutamic acid) were investigated.  Activation diameters at various supersaturation conditions 

were experimentally determined and compared with Köhler theoretical values.  The theory 

accounts for both surface tension and the limited solubility of organic compounds.  It was 

discovered that glutamic acid aerosols readily took on water both when relative humidity was 

less than 100% and when the supersaturation condition was reached, while leucine did not show 

any water activation at those conditions.  Moreover, the study also suggests that Köhler theory 

describes CCN activity of organic compounds well when only surface tension of the compound 

is taken into account and complete solubility is assumed.  Single parameter κ was also computed 

using both CCN data and hygroscopic growth factor (GF).  The results of κ range from 0.17 to 

0.53 using CCN data and 0.09 to 0.2 using GFs.  Finally, the study suggests that during the 

water-evaporation/particle-nucleation process, crystallization from solution droplets takes place 

at different locations: for glutamic acid at the particles’ center and leucine at the particles’ 

boundary. 
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Introduction 

 

Aerosols are a collection liquid or solid particles that are suspended in air. Atmospheric 

aerosol particles are originated from either natural sources or anthropogenic sources ranging 

from less than 1 µm in radius (fine particles) to 10 µm in radius (coarse particles) [Jacob, 1999]. 

Natural atmospheric aerosols are directly emitted from volcanic eruptions, mineral dust, sea salt 

and biological materials (plant fragments, microorganism, pollen, etc.) [Pöschl, 2005]. 

Anthropogenic aerosols, on the other hand, are emitted from sources such as biomass burning, 

incomplete combustion of fossil fuels, traffic-related suspension of road and other dusts [Pöschl, 

2005].  

Aerosols are known to have various effects on climate, atmosphere, and human health. In 

the troposphere, aerosols have both direct and indirect influence on the Earth’s climate. 

Reflecting or absorbing solar radiation, atmospheric aerosols directly cause the surrounding air 

to cool down or heat up. Indirectly, aerosols act as cloud condensation nuclei (CCN) which in 

turn become cloud droplets. Once formed, clouds can have a tremendous effect on the Earth’s 

radiation budget through their albedo [IPCC, 1995]. Overall, atmospheric aerosols are thought to 

have a cooling effect on the global climate as opposed to greenhouse gases [Seinfeld et al., 2006; 

Hartmann and Doelling, 1991]. In the future, when global warming predicts a warmer and 

moister climate, this effect of atmospheric aerosols will become more significant [Aalto and 

Kulmala, 2000]. Moreover, cardiovascular, respiratory, and allergenic diseases are known to be 

caused by atmospheric aerosols [Pöschl, 2005].  The effects of aerosols depend on the droplet 
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size distribution [Twomey, 1977], lifetime of clouds, and the distribution of water mass in 

different atmospheric layers [Hudson, 1992; Lohmann and Lesins, 2002].  

As stated above, the effects of aerosol particles on global climate and human health are 

undoubtedly critical, but to what extent are still unknown. This large uncertainty is mainly due to 

our limited knowledge of nucleation processes and the interactions between aerosols and water. 

Moreover, CCN activities are characterized by chemical composition and physical properties of 

the particles. Atmospheric aerosol composition includes both inorganic and organic species. 

Organic species can contribute 20-50% of the fine aerosol mass as in the form of complex 

mixtures [Masclet and Hoyau, 1995; Saxena and Hildemann, 1996; Andrews et al, 1997]. In a 

recent paper, organic particulate matter can represent up to 80% of total aerosol mass [Jacobson 

et al., 200]. Moreover, approximately 80% of the wet-season aerosol mass in the Amazon Basin 

was found to be organic aerosols [Artaxo and Hansson, 1995; Wouters et al., 1993]. Another 

field study indicates that 63% of the CCN number-concentration measured at a marine site was 

organic aerosols [Novakov and Penner, 1993]. However, recent studies show that the activation 

capability of organic aerosols is comparable to that of sulfate aerosols, which are known to be 

the most effective CCN [Matsumoto et al., 1997; Acker et al., 2002]. The behavior of inorganic 

species is well understood [Köhler, 1936; Pruppacher and Klett, 1980; Cruz and Pandis, 1997], 

but CCN activation of organic particles has not been well studied. The reason is that organic 

aerosols’ solubility in water is limited which makes them less CCN active. However, several 

studies have shown that organic species can still be good sources of CCN [Cruz and Pandis, 

1997; Corrigan and Novakov, 1999; Raymond and Pandis, 2002; Broekhuizen et al, 2004; Sun 
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and Ariya, 2006]. Therefore, organic species should not be neglected in studying CCN activities 

and the links between aerosols, clouds and climate. 

The most well-known theory that predicts the activation of CCN of inorganic species is 

Köhler theory [1936]. The theory is based on the thermodynamic balance of the Raoult and 

Kelvin effects on the vapor pressure of water over a solution droplet. The Raoult effect is the 

decrease in vapor pressure due to the change in water activity because of the solute. The Kelvin 

effect is the increase in vapor pressure due to the curvature of the droplet surface. Köhler theory 

assumes that the chemical substance is completely soluble in water, does not have a considerable 

vapor pressure and has a constant mass during droplet growth. The assumptions make Köhler 

theory work well for inorganic species but not so much for organic species [Raymond and 

Pandis, 2002]. Various studies have proposed modified Köhler equations that take into account 

solubility, contact angle and surface tension [Shulman et al., 1996; Gorbunov and Hamilton, 

1997; Laaksonen et al., 1998; Raymond and Pandis, 2002; Hori et al., 2003; Kumar et al., 2003]. 

While there are many theories that were developed to describe the CCN activation of organic 

species, there are very little experimental work that has been done to verify their results. The 

focus of this study is to expand the knowledge of CCN activation of pure organic compounds, 

particularly amino acids, and to compare the experimental results with the results of Köhler 

theory. 

Two amino acids were chosen for this study: a monocarboxylic acid, leucine (C6H13NO2), 

and a dicarboxylic acid, glutamic acid (C5H9NO4) (Figure 1 and 2 respectively).  
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Figure 1. Molecular structure of leucine 

 

 

Figure 2. Molecular structure of glutamic acid 

Recent studies suggest that 20-80% of total nitrogen is bound in organic compounds [Zhang et 

al., 2002; Mace et al., 2003; Ge et al., 2010]. In fact, amino acids (AA) contribute the most to the 

atmospheric organic compounds [Ge et al., 2010; Castro et al., 2001; Dennis et al., 2007; Milne 

et al., 1993]. AA aerosols contribute in forming secondary organic aerosols and potentially affect 

the radiation balance [Chan et al., 2005; de Haan et al., 2009]. Three types of AA are dissolved 

combined AA (DCAA, e.g. protein and peptides), dissolved free AA (DFAA, e.g. hydrolysis of 

DCAA), and particulate AA (PAA, e.g. µm sized solid microorganism and debris particles) 

[Kristensson et al., 2009]. Those AA aerosols are classified into marine and continental particles. 

Marine particles are emitted from bursting bubbles on surface layers of oceans [Wedyan et al., 

2008; Mopper et al., 1987; Kuznetsova et al., 2005]. Continental particles are thought to come 

from the suspension of bacteria, yeast, fungi, algae, pollen, spores [Tong and Lighthart, 2000; 

http://www.google.com/imgres?um=1&hl=en&sa=N&biw=1366&bih=673&tbm=isch&tbnid=iac60ic7hSIQbM:&imgrefurl=http://chemistry.about.com/od/imagesclipartstructures/ig/Amino-Acid-Structures/Leucine.htm&docid=RP2qnJc32heiQM&imgurl=http://0.tqn.com/d/chemistry/1/0/V/K/1/leucine.jpg&w=400&h=220&ei=rxxZUfyUAsXb0wGtkIDYBg&zoom=1&ved=1t:3588,r:42,s:0,i:222&iact=rc&dur=1043&page=2&tbnh=166&tbnw=303&start=20&ndsp=26&tx=198&ty=103
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=UdXAnJsu5w3saM&tbnid=ZP0EVe-WKomktM:&ved=0CAUQjRw&url=http://www.sigmaaldrich.com/catalog/product/sigma/g5398?lang=en&region=US&ei=3B1ZUeiGFPPO0QGFtoC4CQ&bvm=bv.44442042,d.dmQ&psig=AFQjCNF1lfBK-Mi0kwJTqMb6KiY-gQjYiQ&ust=1364881093801531
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Scheller, 2001; Sattler et al., 2001; Yu et al., 2002] and biomass burning [Mace et al., 2003; 

Laskin et al., 2009]. Leucine and glutamic acid are found to have both the marine and continental 

characters [Kristensson et al., 2009]. Concentration of marine character aerosols is 130-2000 

pmol of total organic mass of DFAA + DCAA + PAA m-3 [Wedyan and Preston, 2008]. Another 

study gives the concentration of DFAA from a mixed of marine and continental sources to be 

1.5-220 pmol N m-3 [Mace et al., 2003; Matsumoto and Uematsu, 2005].  For aerosols that have 

continental character, their concentration is from 20-1120 pmol DFAA n m-3 [Mace et al. 2003]. 

 

Background Information 

 

1. Köhler theory: 

The CCN activity of an aerosol particle is most commonly described by Köhler theory. 

As introduced above, Köhler theory takes into account Kelvin and Raoult effects on the water 

vapor pressure over a solution droplet. The equation [Seinfeld and Pandis, 1998; Raymond and 

Pandis, 2002] can be written as: 

𝑆 = 𝛾𝑤
𝑛𝑤

𝑛𝑤+
𝜋𝜈𝜀𝑑𝑠

3𝜌𝑠
6𝑀𝑠

 exp [
4𝑀𝑤𝜎𝑠𝑜𝑙

𝑅𝑇𝐷𝑝𝜌𝑠𝑜𝑙
]     (1) 

with   

𝑛𝑤 =
𝜋(𝐷𝑝

3−𝑑𝑠
3)𝜌𝑤

6𝑀𝑤
   (2) 

where  
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 S    = vapor saturation of water relative to a flat surface of pure water required for                        

droplet equilibrium 

𝛾𝑤  = water activity coefficient which is assumed to be 1 because the solution is 

mostly water 

𝑛𝑤  = number of moles of water in the droplet 

ν    = van’t Hoff factor, average number of ions that the solute molecule dissociates, 

assumed to be 1 

ds    = dry solute particle diameter 

ρs    = density of solute 

Ms   = molecular weight of solute 

Mw = molecular weight of water 

σsol   = surface tension between air and the solution 

R   = gas constant 

T     = temperature 

Dp  = droplet diameter  

ρsol = density of solution and describe in equation (4) 

ρw  = density of water 

ε    = dissolved mass fraction of the solute particle and can be calculated as below 

 

ε =
Csat(𝐷𝑝

3−𝑑𝑠
3)𝜌𝑤

ds
3 ρs

      (3) 

where  
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Csat  = solubility of the solute in water (mass per volume) 

 

Assuming additive behavior, the density of the solution is calculated as: 

ρsol =
εds

3ρs+(𝐷𝑝
3−𝑑𝑠

3)𝜌𝑤

𝐷𝑝
3−(1−ε)𝑑𝑠

3       (4) 

 

The modified Köhler equation after substituting and simplifying is: 

𝑆 =
𝛾𝑤(𝐷𝑝

3−𝑑𝑠
3)𝑀𝑠𝜌𝑤

𝐷𝑝
3𝑀𝑠𝜌𝑤+𝑑𝑠

3(εν𝑀𝑤𝜌𝑠−𝑀𝑠𝜌𝑤)
 exp [

4𝑀𝑤𝜎𝑠𝑜𝑙

𝑅𝑇𝐷𝑝𝜌𝑠𝑜𝑙
]     (5) 

 

When ε is equal to unity, the equation can be simplified to: 

𝑆 =
𝛾𝑤𝑀𝑠

𝑀𝑠+νCsat𝑀𝑤
 exp [

4𝑀𝑤𝜎𝑠𝑜𝑙

𝑅𝑇𝐷𝑝𝜌𝑠𝑜𝑙
]      (6) 

 

These modified Köhler equations take into account the solubility and surface tension of 

the solute while the classical Köhler equation does not. Those factors are important when 

analyzing the CCN activity of less soluble compounds. Their limited solubility causes gradual 

dissolution in the growing droplet and also lowering the droplet surface tension [Shulman et al., 

1996]. 

Cruz and Pandis (1997) developed another version of the Köhler equation by performing 

Taylor series expansion on the exponential. The equation results in an equilibrium curve for a 

given mass of the solute. The most important point in this curve is the maximum point where a 

transition state from a stable to an unstable region occurs. The corresponding supersaturation and 
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droplet radius of this maximum point are called the critical supersaturation (Sc) and the critical 

radius (rc) respectively. At a condition where the supersaturation and the droplet radii are less 

than Sc and rc, the solution is in equilibrium with the environment. On the other hand, if the 

environment condition passes this critical point, then the solution droplets are activated and grow 

into cloud droplets limited only by the amount of water vapor above the solution. The critical 

values can be calculated as: 

𝑆𝑐 = √
4𝐴3

27𝐵
       (7) 

 

𝑟𝑐 = √
3𝐵

𝐴
       (8) 

 

where  

𝐴 =
4𝜎𝑠𝑜𝑙𝑀𝑤

𝑅𝑇𝜌𝑤
 and 𝐵 =

3𝜈𝑚𝑠𝑀𝑤

4𝜋𝑀𝑠 𝜌𝑤
     (9) and (10) 

 

From equation (9), given a supersaturation, one can calculate the minimum solute mass 

necessary for the nucleus to activate into a droplet. The activation or dry particle diameter can 

then be determined based on this solute mass and compared to experimental values. 
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2. Hygroscopicity: 

 

As stated above, atmospheric aerosols affect the climate both directly and indirectly. 

Directly, atmospheric aerosols interact with the sun radiation and indirectly, they act as CCN 

which affects cloud properties. The magnitude of these effects, in fact, strongly depends on their 

interaction with water. Even when the relative humidity (RH) is less than 100%, aerosols still 

take on water and grow into droplets. Hygroscopicity describes the ability of particles to absorb 

water at a given RH with a given initial dry diameter. Hygroscopic properties of aerosols depend 

on two factors: the ability of the solution droplet to lower the water activity, and their influence 

on surface tension (Ruehl et al., 2010). A common technique that is used to measure the 

hygroscopicity of a specific compound is hygroscopic tandem differential mobility analyzer 

(HTDMA). Through this technique, hygroscopic growth factor (GF) is measured along with the 

changes in particles size and phases. The GF can be expressed as: 

 

𝐺𝐹 =
𝐷𝑝(𝑅𝐻)

𝑑𝑠(𝑅𝐻)
       (11) 

 

In the above equation, Dp(RH) is the wet particle diameter at a given higher RH 

compared to ds(RH) which is the dry particle diameter at a set lower RH so that a GF=1 implies 

no water uptake.  At a phase transition RH, called deliquescence RH (DRH), the solid particle 

abruptly deliquesces and forms a saturated solution droplet (Gysel et al., 2002). In other words, 

the particles remain the same phase until this DRH is reached. Recent studies show that 
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hygroscopic properties are particle size dependent (Biskos et al., 2006; Park et al., 2009; Russel 

et al., 2002) and ambient RH dependent (Hu et al., 2010). For example, when RH is below the 

DRH, GFs of salt aerosols decrease while dry particle diameter increases (Hu et al., 2010). When 

RH reaches the DRH, GFs increase with dry particle diameter (Hu et al., 2010). Large particles 

are easier to uptake water than smaller particles, but only when there is enough water vapor. Hu 

et al. (2010) also concludes that there are two regimes of effects: RH dominant regime (below 

DRH) where GFs increase with RH and particle size dominant (above DRH) where GFs are 

more sensitive to particle size. 

While there are many studies on the hygroscopicity of inorganic aerosols, there is very 

limited information on the water interaction of organic aerosols. Posfai et al. (1998) concluded 

that organic aerosols were responsible for water uptake of ammonium sulfate at low RH. 

Another study included that film coatings of several organic species delayed the hygroscopic 

growth of sulfuric acid aerosol in the first few seconds (Xiong et al., 1998). These two results are 

contradicting with each other, so more studies are needed to understand the hygroscopic growth 

of organic aerosols. 

 

3. Kappa Parameter: 

 

In literature, a common parameter, called Kappa (κ) is used to characterize the relative 

hygroscopicity and the CCN activity of aerosols. Kappa parameter (Petters and Kreidenweis, 

2007) is defined as: 
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1

𝑎𝑤
= 1 + 𝜅

𝑉𝑠

𝑉𝑤
      (12) 

 

The parameter relates the water activity (aw) to the ratio of the volume of solute (Vs) to 

volume of water (Vw). It can be combined with Kohler theory to describe the relationship 

between the particle dry diameter and their CCN activity (Petters and Kreidenweis, 2007). 

Secondly, it can be derived from hygroscopic growth factor data that are obtained from the 

HTDMA to describe the ability of particles uptake water when RH is less than 100%. Parameter 

κ ranges from zero to 1.4, but typical particles in the atmosphere have values ranging from 0.1 to 

0.9 (Petters and Kreidenweis, 2007). A high value of κ means that the particles are very soluble, 

highly CCN active and zero κ means that the particle is nonhygroscopic but wettable, this is 

when the Kohler equation is reduced to the Kelvin equation. Inorganic species such as NaCl have 

a high κ value ranging between 0.5 and 1.4 while organic species have a lower κ value ranging 

from 0.01 to 0.5.  

 

To characterize CCN activity of a selected chemical, its CCNC data, particularly critical 

supersaturation and dry diameter, are fitted against known κ lines (Figure 3) to determine its κ 

value. Those κ values are calculated based on κ- Köhler equation (Petters and Kreidenweis, 

2007): 

𝑆 =
𝐷𝑝

3−𝑑𝑠
3

𝐷𝑝
3−𝑑𝑠

3(1−𝜅)
exp [

4𝑀𝑤𝜎𝑠𝑜𝑙

𝑅𝑇𝐷𝑝𝜌𝑠𝑜𝑙
]     (13) 
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Figure 3. Constant κ values calculated for different supersaturation vs dry diameter 

 

 When obtaining κ values from the growth factors using the HTDMA method, the 

following equation (Petters and Kreidenweis, 2007) is used: 

 

𝑅𝐻

exp (
2𝐴

𝑑𝑠𝐺𝐹
)

=
𝐺𝐹3−1

𝐺𝐹3−(1−𝜅)
      (14) 

 

where  

RH is expressed as a fraction and A is defined as shown in equation (9).  

 

 The difference between equation (14) and the κ- Köhler equation is that the wet and dry 

volumes are valued in HTDMA as opposed to mass or moles of the solute which were calculated 
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using the molecular weight of density of the bulk solution (Petters and Kreidenweis, 2007). 

Petters and Kreidenweis paper also shows that the κ values derived from this method are within 

30% agreement with the ones obtained from the CCN activity. Note that Petters and Kreidenweis 

assumed the solubility of all solutes to be 0.072 J m-2 and κ values were calculated at 298.15 K in 

all cases. 

 

Experimental 

 

1. Solubility Tests: 

 

Leucine and glutamic acid were tested for their solubility at room temperature (22 °C) 

and standard atmospheric pressure.  Initially, the literature values which are 22.4 g/L and 8.64 

g/L for leucine and glutamic acid respectively were used [Mo et al., 2011; Raymond and Pandis, 

2002].  The solutions were placed on a shaker for couple days, but there was still a small amount 

of insoluble materials left in the beaker.  An additional 20 mL and 10 mL of DI water were 

added to the leucine and glutamic acid solutions respectively. An hour later, the solutions were 

clear indicating that all of the materials were completely dissolved.   

2. Pendant DropTechnique: 

 

Surface tension describes how strong the molecules of a liquid attract to each other at the 

surface. Liquids such as water have strong interactions between the surface molecules therefore 

have a high surface tension value and vice versa. In this study, surface tensions of leucine and 



15 

 

  

glutamic acid were measured by a KSV CAM 200 Optical Contact Angle Meter. The instrument 

uses a technique called the pendant drop technique to measure surface tension.  

Liquid drops from each solution (at their solubility limits) were drawn from a syringe and 

hung in the air. The instrument captured the images of these drops and relate the drop shape to 

surface tension through the equation (KSV CAM 200 Instruction Manual, 2001): 

 

𝜎 = ∆𝜌𝑔𝑅0
2/𝛽       (15) 

where   

σ   = surface tension (mN/m) 

 ∆𝜌  = difference in density between air and solution 

 g    = gravitational constant 

 R0  = radius of drop curvature at apex 

 β   = shape factor which is defined by Young-Laplace equation expressed in 3 

dimensionless equations (see the manual) and can be estimated using iteration. 

 

Given the densities of air and the liquid solution, one can determine the surface tension using this 

technique. The instrument has an accuracy of ±0.1mN/m. 

3. Scanning Mobility CCN Activity: 

 

The experimental setup is shown in Figure 4. The apparatus includes an aerosol atomizer 

(Constant Output Atomizer 3076, Thermo Systems Inc. (TSI)), a diffusion dryer, a neutralizer 
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(Aerosol Neutralizer 3077, TSI), and a Scanning Mobility Particle Sizing system (SMPS) (SMPS 

3934, TSI) which consists of a differential mobility analyzer (DMA ) (3071A, TSI), a 

Condensation Particle Counter (CPC) (CPC 3010, TSI), and a Cloud Condensation Nucleus 

Counter (CCNC) (CCNC-100 Droplet Measurement Technologies). The SMPS system connects 

to a computer to control both the scanning and counting particles.  

 

Figure 4. Schematic of experimental setup for CCN measurements 

 The above setup allows the user to have control over the particles size, the chemical 

composition of the particles and the supersaturation in the CCNC. Moreover, this setup measures 

and reports to the control computer the particle size, the total number concentration and the CCN 

concentration instantaneously. Two computer software packages are used along with the setup: 
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the TSI Aerosol Instrument Manager (AIM) software and the Scanning Mobility CCN Analysis 

(SMCA). The AIM control software scans the voltage that is applied to the DMA and manages 

the data obtained from the CPC to provide distribution and size of the aerosols and the raw CN 

counted every 0.1 seconds. The SMCA software uses the data from the SMPS to measure CCN 

distributions and activated droplet size as a function of mobility size over the timescale of an 

SMPS scan [Moore et al., 2010]. 

 

a) Monodisperse aerosol generation system 

 

The experiment uses a collision atomizer that produces monodisperse particles of a 

known size of the investigated species (leucine and glutamic acid). Both solutions are made with 

the concentration of 1g of the investigated compound per liter of double deionized filtered water 

to ensure minimum impurities. The atomizer uses a high velocity air jet to provide a constant 

output. Filtered air is introduced into the stream to generate droplets. Then, the solution stream 

enters a silica gel diffusion dryer to evaporate the solvent. At this stage, the particles exit with a 

smaller size and are dry. This wide size of distribution of polydisperse particles then charged in a 

Kr-86 bipolar aerosol neutralizer. In this neutralizer, the particles achieve a nearly Boltzmann 

equilibrium distribution of charges [Wiedensohler, 1988]. From the neutralizer, the particles 

continue to travel into the DMA.  By adjusting the voltage of the center rod in the DMA, desired 

diameters are selected according to their electrical mobility [Liu and Pui, 1974; Knutson and 

Whitby, 1975]. Different mean sizes of the particles exiting the DMA have nearly monodisperse 

distributions.  
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b) Aerosol classifier and total number concentration counter 

 

The stream of monodisperse particles is split to enter the CPC and the CCNC.  This CPC 

displays the size distribution of the particles through the control computer. The CPC uses a 

buffer solution of n-butanol and a laser to count the particles. As stated above, the AIM software 

manages the data that are sent from the CPC every 0.1 seconds during each scan. 

 

c) CCNC 

 

Lastly, the particles stream enters the CCNC which is a thermal gradient diffusion cloud 

chamber.  The chamber allows flow between two vertical parallel walls. The aerosols flow along 

a thermal gradient, and the walls are kept wet to provide water vapor supersaturation conditions. 

The aerosols flow through the chamber at the top along with a stream of particle-free sheath air. 

When there is a difference in temperature along the walls, supersaturation condition is reached. 

The supersaturation inside the chamber can be adjusted from 0.1 to 2% with the maximum near 

the exit of the chamber by changing the temperature gradient.  Particles that have the ability to 

become CCN (right size and chemistry) are simultaneously counted by an optical particle 

counter laser.  
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d) Experimental procedure 

 

The setup was calibrated using NaCl and ammonium sulfate. There are two ways that this 

setup can be used: 

- Keep the particles diameter constant and change the supersaturation percent. 

- Keep the supersaturation constant and change the particles diameter. 

The second procedure was used for this work to measure CCN activation curves for leucine and 

glutamic acid. The supersaturation was changed from 0.2 to 0.4 to 0.6 to 0.8 to 1% throughout 

the experiments. Each experiment was run for at least three hours to obtain sufficient data. The 

ratio of the concentration of activated particles to the total particle concentration (CCN/CN) was 

calculated. 

 

4. Scanning Electron Microscope: 

 

To obtain two-dimensional images of both bulk crystals and micron-sized particles of 

leucine and glutamic acid, a scanning electron microscope (SEM) (JEOL, JSM-6390LV) was 

used. Those images provide information on particle morphology including particle’s shape and 

surface structure. The instrument uses an electron beam and accelerates it in a low acceleration 

voltage region to produce high resolution images of the particles [Todokoro et al., 1999].  

 

Samples of bulk crystals or micron-sized particles were collected on 12 mm steel disks 

which were covered with carbon tape. A coating of gold was also applied on the disks using a 
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gold sputter system (Denton, Vacuum Desk IV) and Argon air. The disks were then viewed 

under the SEM instrument to obtain particle images. 

 

Results and Discussion 

 

The results and discussion are presented in five parts for leucine and glutamic acid.  The 

investigation of solubility and surface tension will be presented first, followed by an analysis of 

CCN activity, then the hygroscopicity analysis, Kappa parameters, and lastly SEM images of 

both compounds. 

 

1. Solubility and surface tension: 

 

The first portion of this study was to verify the water solubility and surface tension of 

leucine and glutamic acid that are reported in the literature.  Table 1 shows the water solubility 

results of this study as well as other studies’ values.  Glutamic acid has a solubility range from 

6.6 to 7.2 g/L which agrees with Raymond and Pandis values [2002].  However, two other 

studies show a higher solubility for glutamic acid [Jin and Chao, 1992 and Mo et al., 2011].  

Moreover, the result of solubility for leucine in this study is higher than what Raymond and 

Pandis reported [2002] but lower than the CAS database has.  This demonstrates that solubility 

of organic compounds can have a wide range of values.  Those that have optical isomers (D- vs 

L-) like glutamic acid and leucine possess different solubility values for each isomer.   
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Raymond and Pandis [2002] stated that leucine and glutamic acid have similar solubility 

where this study shows the opposite result.  Leucine has much higher water solubility than 

glutamic acid (Table 1).  Huff Hartz et al. [2006] also classified glutamic acid as complete 

solubility compound and leucine as limited solubility compound.  Additionally, glutamic acid 

dissolves faster in water compared to leucine. This result was not expected since glutamic acid is 

a bigger molecule (147.13 g/mol) than leucine (131.17 g/mol). Also, glutamic acid is a 

dicarboxylic acid while leucine only has one acid group.  Both the molecule size and the number 

of hydrophilic group predict that glutamic acid should have a higher solubility than leucine. The 

results indicate that the pH of the solutions as well as the crystal structures play an important part 

in obtaining the solubility of organic species. 

Table 1: Solubility of leucine and glutamic acid 

 Leucine [g/L] Glutamic Acid [g/L] 

This Study 17 - 18.7 6.6 - 7.2 

Jin and Chao , 1992 NA 8.6 

(l-isomer) 

Raymond and Pandis, 2002 8.8 – 9.7 6.6 – 7.3 

CAS DataBase 22.4 NA 

Mo et al., 2011 NA 8.56 

 

Surface tension was determined using the Pendant Drop method [Ambwani and Fort, 

1979].  The samples for this test were obtained from the solution of the solubility test.  

Measuring surface tension of a solution that is at it saturation is important since previous study 
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shows that only a fraction of the solute particle would dissolve at its critical activation diameter 

[Raymond and Pandis, 2002].  In the beginning of each test, the instrument was calibrated and 

water was used to test the precision of the instrument.  The result showed good agreement with 

the literature (72.30 mN/m).  Table 2 summarizes the surface tension of leucine and glutamic 

acid in water that was measured in this study as well as the reported literature values.  Using both 

Young/Laplace and Bashforth/Adams fitting, the surface tension results of both compounds are 

higher than other studies’ values.  However, the two methods’ results are in agreement with each 

other (less than ± 3 mN/m). Additionally, glutamic acid has a slightly higher surface tension than 

leucine (although it is the same within experimental error) which is expected since glutamic acid 

is slightly more hydrophilic than leucine (two acid groups vs one acid group). 

Table 2: Surface tension of leucine and glutamic acid measured by Pendant Drop Method 

Solution 
Literature 

[mN/m] 

Young/Laplace 

[mN/m] 

Bashforth/Adams 

[mN/m] 

Leucine 

(17 g/L) 
70a 80.2 ± 3.3 82.7 ± 4.7 

Glutamic Acid 

(6.6 g/L) 
71ab 83.8 ± 2.6 82.8 ± 5.4 

aRaymond and Pandis, 2002. 

bHuff Hartz et al., 2006. 

 

2. CCN Activity: 
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The activation diameters, Dp
50, at which 50% of the particles are activated, were 

measured for each supersaturation condition (from 0.2 to 1% SS) for glutamic acid.  Leucine was 

not observed to activate into cloud droplets under any conditions studied.  Figure 5 compares the 

glutamic acid experimental and theory results using Equation 7-10.  One theory’s result uses the 

assumptions that the solute is completely soluble and has the same surface tension as water.  The 

second theory’s result uses the surface tension measured by this study to calculate the activation 

diameters.  The solubility was not taken into account since all previous studies showed that the 

predicted activation diameters using limited solubility were far off from the experimental results 

(Table 3).   

 

All three results show that glutamic acid activates at a smaller diameter when the 

supersaturation is high.  The experimental and theoretical results are in good agreement with 

each other.  Köhler theory predicts slightly higher activation diameters than the experiment 

shows.  Moreover, the theoretical results from two assumptions also show good agreement.  The 

calculated diameters that used water properties assumption are closer to the measured values in 

experiment than the other one assumption.  This indicates that surface tension has a significant 

impact on the prediction of activation diameter. 
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Figure 5. Comparison of CCN activity of glutamic acid. The grey markers on the top graph 

are experimental data using the SMCA setup as described in the Background Information 

section. The blue and orange markers on the bottom graph are theoretical calculations 

using the properties measured in this study and assuming water properties respectively. 
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The measured activation diameter of glutamic acid at 1% supersaturation is in good 

agreement with the literature values, especially with Raymond and Pandis [2002] study (Table 

3).  Additionally, the diameter obtained from theoretical calculation is also close to the diameters 

that were reported from other studies.  Both Raymond and Pandis [2002] study and Huff Hartz et 

al. [2006] study used a lower surface tension and higher crystal density than this study.  Also, 

Huff Hartz et al. [2006] assumed that glutamic acid has a higher solubility than leucine. 

 

Table 3: Comparison of measured and calculated activation diameters at 1% supersaturation 

 
Experimental Dp

50 

[nm] 
Theoretical Dp

50 [nm] 

This study 38.47 ± 0.74 44.53 (complete solubility) 

Raymond and Pandis 

[2002] 
38 ± 6 

194 (limited solubility) 

42 (complete solubility) 

Huff Hartz et al. [2006] 
43 ± 7 (D) 

41 ± 7 (L) 

189 ± 28 (limited solubility) 

41 ± 6 (complete solubility) 

Kristensson et al. [2010] 40 (L) NA 

 

Leucine did not show any activation experimentally up to 200 nm at the highest 

supersaturation (1%).  Raymond and Pandis [2002] study also agrees with this result.  On the 

other hand, looking at the solubility property of leucine and glutamic acid, the opposite result 

was predicted.  Leucine has a higher solubility than glutamic acid which in theory leucine should 

be more CCN active than glutamic acid.  Again, this observation suggests further investigation of 

the two species. 
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3. Hygroscopicity: 

 

The growth by uptake of water vapor of both glutamic acid and leucine particles when 

RH is less than 100% was studied.  Figure 6 shows the hygroscopic behavior of D0 = 80 nm 

glutamic acid particles.  When RH < 83% the particles remain unchanged and no particle growth 

was observed.  At 83.3% RH, particles start taking up water and grow into bigger particles as 

%RH increases further.  The highest size recorded was 113.4 nm which is about 1.4 times the 

initial diameter.  This indicates that glutamic acid can activate when RH < 100% and the DRH 

occurs around 83.3% RH.  However, there is no literature value to validate this result.  

  

 

Figure 6. GF as a function of % relative humidity of glutamic acid (80nm) 
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The hygroscopic behavior of D0 = 80 nm leucine particles was also investigated.  In 

contrast with glutamic acid, leucine did not show activation when RH < 100% (Figure 7).  This 

result was expected since leucine was not CCN active at supersaturation condition as shown in 

previous section.  Again, there is no literature information to confirm this result.  Hu et al. [2010] 

suggests that large particles are easier to uptake water because they contain more solute than 

smaller ones.  This hypothesis could explain the difference between leucine and glutamic acid 

hygroscopic behaviors since as stated above, glutamic acid is a bigger molecule than leucine. 

 

 

Figure 7. GF as a function of % relative humidity of leucine (80nm) 

 

4. Kappa Parameter: 
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By plotting experimentally-determined critical SS as a function of dry particle diameters 

against known constant κ lines calculated from Petters and Kreidenweis’ equation, we can 

establish the range of κ values for glutamic acid.  As seen in Figure 8, glutamic acid κ ranges 

from 0.1 to 0.4 and the majority is between 0.2 and 0.3.  This result is in good agreement with 

Petters and Kreidenweis’ values which were calculated using Huff Hartz et al. [2006] and 

Raymond and Pandis [2003] data (Table 3).  Additionally, the κ values of glutamic acid are in 

the expected range for organic species (0.01 to 0.5).  These low values of κ indicate that glutamic 

acid is not as CCN active as some other inorganic species such as NaCl (κ =1.28) [Petters and 

Kreidenweis, 2007].  However, glutamic acid is still in the high range of CCN active for organic 

species. 

 

 

Figure 8. Constant Kappa’s from 0.1 to 1 calculated from Petters and Kreidenweis’ equation 

[2007]. The Markers are data derived from CCN activity of glutamic acid. 
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Values of κ were also calculated using Petters and Kreidenweis’ equation using both data 

from SMCA and hygroscopic GF (Table 4).  The results of κ derived from SMCA confirm the 

observation from Figure 8.  Moreover, κ values derived from SMCA (0.17 – 0.53) are higher 

than κ values derived from hygroscopic GF (0.09 – 0.2).  However, since κ values derived from 

SMCA have a wider range, κ values derived from GF are still within that range of values.  Using 

Huff Hartz et al. [2006] data, the GF derived κ has a similar value with our mean value (0.14 vs 

0.15).  It is also noted that as %RH increases, κ value also increases.  This trend was also 

observed in Ruehl et al. study [2010].  The result indicates that as more water introduces into the 

environment, κ value increases which mean the particles become more CCN active.  In other 

words, once the particle is activated, its growth is only limited by the amount of water in the 

environment. 

 

Table 4: κ values derived from CCN and hygroscopic GF of glutamic acid. 

 This Study 

Petters and 

Kreidenweis [2007] 

using Huff Hartz et al.’s 

Data [2006] 

Petters and 

Kreidenweis [2007] 

using Raymond and 

Pandis’s Data [2003] 

CCN Derived 

κ 

0.17 – 0.53 

0.35 (Mean) 

0.11 – 0.32 

0.18 (Mean) 

0.16 – 0.42 

0.25 (Mean) 

GF Derived κ 
0.09 – 0.20 

0.14 (Mean) 
0.15 N/A 

 

Figure 9 summarizes and compares the results of κ values derived from SMCA and 

hygroscopic GF from this study as well as κ values calculated using water properties.  Again, the 
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CCN derived κ values are close to κ values calculated using water properties.  This confirms the 

conclusion drawn from CCN activity analysis that surface tension does not have a significant 

impact on the prediction of CCN activity of compounds.  Additionally, those results are higher 

than κ values derived from hygroscopic GF (orange markers). 

 

 

Figure 9. Comparison of κ values derived from different techniques (CCN and GF) as well as 

values calculated using water assumption. Orange markers are GF derived κ values. 

5. SEM Images: 

 

A droplet generator was used to generate micron sized particles which were collected on 

a steel disk.  The particles were then viewed under a scanning electron microscope (SEM) to 

determine the size and morphology.  Images were captured and recorded for both leucine and 

glutamic acid (Figure 10 and 11 respectively).  As seen in the images, the particles are uniform  
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and have diameters of approximately 20 µm.  Moreover, both leucine and glutamic acid particles 

have a fairly sphere shape.  Glutamic acid particles have a spike or needle-like surface (Figure 

10) while leucine particles have a smooth surface (Figure 11).  

 

Figure 10. Glutamic acid particles prepared from water SEM images 

Glutamic acid morphology suggests that the nucleation happens in the center of particles.  

Due to the symmetry of the molecule and the fact that glutamic acid is fairly hydrophilic, it is 

well mixed with water.  When water evaporates, the solute concentrates more in the center of the 

particles leaving the water at the edge of the particles.  When more water evaporates, the 

particles crystallize around the center and leave the shape as seen in Figure 10. 

 

On the other hand, leucine morphology suggests that the nucleation process happens on 

the surface of particles.  As seen in Figure 11, leucine has a cap shaped particle and the particle 

is hollow.  Leucine is not as symmetrical and hydrophilic as glutamic acid (only one carboxylic 

acid group), it does not mix well with water and has a preference of alignment with water 
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molecules. The hydrophilic part of leucine molecule likes to be in the inside with water while the 

carbon side of the molecule likes to face the edge of the particle.  Therefore, even before water 

evaporates, the solute already concentrates more around the boundary of the particle.  The water 

is now trapped inside and the particle collapses in when the nucleation proceeds (Figure 11). 

 

Figure 11. Leucine particles prepared from water SEM images 

6. AFM images 

 

Both compounds were generated under a simple impactor to collect nano-size particles on 

a mica disc.  The samples were then viewed under the Atomic Force Microscopy (AFM) and the 

resulting images were analyzed using the Gwyddion software. Figure 12 shows the overview 

images of glutamic acid (to the left) and leucine (to the right). The images indicate that glutamic 

acid particles have a larger diameter (~0.6 μm) compared with leucine (~1/3 μm). It was 

suspected that the glutamic acid particles were still wet when they landed on the sample plate 
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and the leucine particles had been crystallized. Morover, leucine particles are as tall as 140 nm 

while glutamic acid particles heights are around 60 nm. 

 

Figure 12. AFM images of glutamic acid (left) and leucine (right) 

When taking a close look to glutamic acid particles, both the profile graph (Figure 13) 

and the 3D image (Figure 14) show that glutamic acid particles have a smooth and identical 

surface. On the other hand, leucine’s profile graph and 3D image confirm that it has an uneven 

surface (Figure 15 and 16 respectively). In fact, the AFM 3D images show that leucine particles 

have a cap shape similar to what the SEM images show. 
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Figure 13. Profile graphs of selected glutamic acid particles 

 

 

 

 

 

 

 

 

Figure 14. 3D image of glutamic acid particles 
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Figure 15. Profile graph of selected leucine particles 

 

 

 

 

 

 

 

 

Figure 16. 3D image of leucine particles 
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Conclusions 

 

 Two organic aerosol species, leucine and glutamic acid, were investigated for various 

aspects using different techniques including SMPS, CCNC, H-TDMA, SEM and AFM.  Various 

properties of those species include solubility, surface tension, water interactions and particles 

morphology.  Leucine has a higher solubility than glutamic acid (18.7 g/L and 7.2 g/L solubility 

respectively). However, glutamic acid has a slightly higher surface tension than leucine (83.8 

mN/m and 80.2 mN/m respectively).  Activation diameters were experimentally measured at 

various supersaturation conditions (0.2 to 1%).  Leucine did not show any CCN activity at the 

condition that we studied.  Dry particle diameters range from 37 nm to 113 nm for glutamic acid.  

Köhler theory with different assumptions was also applied to verify the experimental results.  

Overall, the theoretical results are in good agreement with the experimental results regardless of 

which surface tension was used.  Additionally, hygroscopic behavior of leucine and glutamic 

acid was also studied.  Again, leucine particles did not show activation at RH < 100%.  Glutamic 

acid particles activate at 83.3% RH and grow into droplets as big as 1.4 times the initial particle.  

Moreover, the κ values were also computed for glutamic acid using both CCN data and 

hygroscopic GFs.  Values of κ ranged from 0.17 to 0.53 and 0.09 to 0.2 using CCN data and GFs 

respectively.  Finally, the SEM and AFM images of glutamic acid suggest that the particles are 

smooth and crystallized from the center.  On the other hand, SEM and AFM images of leucine 

show that the nucleation process takes place on the boundary of the particles and the particles 

surface is uneven.  Various results of this study were contradicted with what was expected and 

cannot be explained by chemistry theory; therefore, further investigation will be necessary.  
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