
Bucknell University
Bucknell Digital Commons

Honors Theses Student Theses

2013

Hoisting C Structures Into Clay In Device Drivers
Lianne Lairmore
Bucknell University, lel011@bucknell.edu

Follow this and additional works at: https://digitalcommons.bucknell.edu/honors_theses

This Honors Thesis is brought to you for free and open access by the Student Theses at Bucknell Digital Commons. It has been accepted for inclusion in
Honors Theses by an authorized administrator of Bucknell Digital Commons. For more information, please contact dcadmin@bucknell.edu.

Recommended Citation
Lairmore, Lianne, "Hoisting C Structures Into Clay In Device Drivers" (2013). Honors Theses. 146.
https://digitalcommons.bucknell.edu/honors_theses/146

https://digitalcommons.bucknell.edu?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/honors_theses?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/student_theses?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/honors_theses?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/honors_theses/146?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@bucknell.edu

HOISTING C STRUCTURES INTO CLAY IN DEVICE

DRIVERS

by

Lianne E. Lairmore

A Thesis

Presented to the Faculty of

Bucknell University

in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science with Honors in Computer Science

April 26, 2013

Approved:
Lea Wittie
Thesis Advisor

Steven Guattery
Chair, Department of Computer Science

i

Contents

Abstract iv

1 Introduction and Background 1

1.1 The C Programming Language . 2

1.2 Device Drivers . 3

1.3 The Clay Programming Language . 4

1.4 Clay vs. C in Device Drivers . 5

1.5 The Hoist Project . 6

1.6 Thesis Statement . 7

Compiler 9

1.7 Overview . 9

1.8 Tokenizer . 9

1.9 Parser . 10

1.10 Tree . 10

1.11 Symbol Table . 10

1.12 Static Error Checking . 11

1.13 Tree Manipulation . 11

CONTENTS ii

1.14 Code Output . 12

Control Structures 13

1.15 Assignments . 13

1.15.1 Declarations and Declaration Assignments 14

1.15.2 Assignment Expressions . 16

1.16 Functions . 18

1.17 Selection . 18

1.17.1 If and If-Else . 19

1.17.2 Switch . 25

1.18 Loops . 29

1.18.1 For-Loop . 29

1.18.2 While and Do While Loops 33

1.19 Goto . 36

Problems 37

Conclusion 38

Future Work 40

Related Work 41

Appendix 44

1.20 Flex . 44

1.21 C Grammar . 48

iv

Abstract

This project addresses the unreliability of operating system code, in particular in
device drivers. Device driver software is the interface between the operating system
and the device’s hardware. Device drivers are written in low level code, making them
difficult to understand. Almost all device drivers are written in the programming
language C which allows for direct manipulation of memory. Due to the complexity
of manual movement of data, most mistakes in operating systems occur in device
driver code [1].

The programming language Clay can be used to check device driver code at
compile-time. Clay does most of its error checking statically to minimize the over-
head of run-time checks in order to stay competitive with C’s performance time. The
Clay compiler can detect a lot more types of errors than the C compiler like buffer
overflows, kernel stack overflows, NULL pointer uses, freed memory uses, and aliasing
errors [8]. Clay code that successfully compiles is guaranteed to run without failing on
errors that Clay can detect. Even though C is unsafe, currently most device drivers
are written in it.

Not only are device drivers the part of the operating system most likely to fail,
they also are the largest part of the operating system[2]. As rewriting every existing
device driver in Clay by hand would be impractical, this thesis is part of a project to
automate translation of existing drivers from C to Clay. Although C and Clay both
allow low level manipulation of data and fill the same niche for developing low level
code, they have different syntax, type systems, and paradigms. This paper explores
how C can be translated into Clay. It identifies what part of C device drivers cannot
be translated into Clay and what information drivers in Clay will require that C
cannot provide. It also explains how these translations will occur by explaining how
each C structure is represented in the compiler and how these structures are changed
to represent a Clay structure.

1

Chapter 1

Introduction and Background

CHAPTER 1. INTRODUCTION AND BACKGROUND 2

1.1 The C Programming Language

The C programming language was developed in 1972 and has remained popular since
it creation[5]. Although it was developed to be a general purpose language, it is most
commonly used in systems like operating systems and compilers. It is considered a
low level language since all built in operations can be implemented in hardware [6].
The primitive types in C are char, int, float and pointers. The only difference between
pointers and integers are their type labels and in earlier versions of C they could be
used interchangeably without a cast and still not produce warnings or errors[6]. A
cast is the way a programmer signals to the computer to treat a variable as a different
type than it is declared. In GCC, a commonly used C compiler, a cast is only required
when converting from a type stored in a larger space into a type stored in a smaller
space. If the types are the same size or the type being converted was smaller than
the type it was converted to, the compiler would only produce a warning.

C requires manual memory management. There are two types of memory in a
program, stack and heap. Variables on the stack have to be of the type of integer,
float, character, pointer, struct, array, or union. These variables do not need manual
memory allocated to store values or the use of memory addresses to look up their
values. The other type of memory is heap memory. Heap memory can only be used
after it has been allocated. To allocate memory a program requests a certain amount
of memory from the operating system and the operating system returns the memory
address where the block begins. The memory address is stored in a pointer. Using
heap memory can produce errors that stack memory does not have. If heap memory
is not allocated but used, either a bad value is read from a random memory address or
the requested memory address is outside the program’s memory and a segmentation
fault occurs, halting the program. Another problem that can occur with heap memory
is trying to access freed memory. This usually results in a segmentation fault too.

Although flexible, C allows problematic code to be written and run. The compiler
does not restrict programmers from using pointer arithmetic. This allows flexibility
of code but can easily become wrong code that will only cause errors during run-time.
This is a common instance of C allowing implicit conversion of types. Errors occur
when doing pointer arithmetic when a memory address being accessed is not allocated
or has been freed.

CHAPTER 1. INTRODUCTION AND BACKGROUND 3

1.2 Device Drivers

The operating system on a computer acts as an interface between software and hard-
ware. Operating systems are made up of different modules which have different
tasks, ones which manage memory usage, schedule software to run on the processor,
communicate with input and output devices such as the keyboard, mouse, speakers
and monitor, and communicate with hardware such as graphics cards, network in-
terfaces, USB ports and memory. Part of an operating system are modules called
device drivers. Device drivers implement the protocols that let the operating system
communicate with peripherals and hardware.

Since operating systems control the functioning of all hardware and software it is
important that they work well. Unfortunately, this usually is not the case. Operating
systems are currently unsafe. This is due to the low level programming that goes into
developing an operating system. There have been many studies looking into what
areas of the operating system are producing the most bugs. These studies have shown
that device drivers make up to 70% of the code in an operating system and contain
up to seven times the amount of errors compared to other parts of the kernel[2][3].
One cause for these errors are confusing protocols between the driver and the devices
and operating system[4].

Device drivers are written in C because C allows direct manipulation of memory
and access to hardware. The language C is weakly typed meaning it puts few con-
straints on how values are manipulated. This has led to many errors in C code. C,
due to its weak typing, does not have automated checks for NULL pointers and freed
memory. These checks are purposely left out to minimize the run-time. The lan-
guage does not initialize allocated memory as another way to save time. This leaves
”garbage” in memory being used which can result in unpredictable code. Overall C is
good for flexible memory access but compiles successfully on code with the potential
to have many errors.

Device drivers are written in C but do not take full advantage of the language.
Instead device drivers use a subset of the C language. Common device drivers take
advantage of int, char, struct, union, array, and pointer types. They also use
selection, loop, goto, and function control structures. They commonly use both stack
and heap memory. One part of C that device drivers do not use is float and double
types.

CHAPTER 1. INTRODUCTION AND BACKGROUND 4

1.3 The Clay Programming Language

The Clay[9, 7, 8, 10, 11] is a low level programming language for writing operat-
ing system code. The Clay compiler does mostly static error checking and adds in
necessary run-time checks to ensure safety in the resulting code. Unlike C, Clay is
type-safe. A type-safe language has strict definitions of types and enforces their use.
This means that the operations that can only be used for the types for which they
were designated to be used on. For example, Clay would not allow a char typed
variable to be divided or added. Clay is able to verify code statically by tracking the
values of local and heap memory. It is also able to track logical values unavailable
at compile-time. Run-time checks are necessary if user or hardware input cannot be
verified to be safe. The Clay compiler uses proofs to verify that all memory and types
are used safely, ensuring that Clay code that has compiled successfully is guaranteed
to run without encountering many errors found in C code.

Clay uses singleton types to track variables. A singleton type is an immutable type
which only represents one value. For example, Int[5] is a singleton type whose type
is the set of all integers whose value is five. Integers are not the only type that have
singletons in Clay. Pointers are treated like singletons too. A pointer’s type tracks
its location in memory. Since the pointers’ addresses are unknown before run-time,
Clay uses logical values instead of exact values to track pointers. When a variable’s
value changes, the variable is redeclared with its new singleton type.

Singleton types are then used with arithmetic constraints to track values when
the exact value is unknown but is constrained such as Int[N] where N < 5. In Clay,
operations, like addition and subtraction, can be applied to types, so as variables are
being modified their types are too. The compiler is able to track a variable’s value by
tracking its type through the program. Its types are not restricted to a certain value
or all integers, instead the compiler has a way to represent a variables value as a type
that is the combination of types of other variables. A variable x can be defined as
let x = y + z which would give it the type Int[Y + Z] instead of just the set of
all integers whose value is five or all integers. Arithmetic constraints restrict the type
of a variable but not to the extent that singleton types restrict them. Arithmetic
constraints also allow the programmer to track and constrain function inputs and
outputs. For example, a function sum takes x andy and returns x+y. The type of x

and y are Int[X] and Int[Y], respectively. The return type of the sum function is
then Int[X+Y]. A more complicated function might return a range of values which
can be specified in its return type as a number between one and ten.

CHAPTER 1. INTRODUCTION AND BACKGROUND 5

Clay uses linear types on pointers to prevent aliasing errors. Linear types are
tracked through the program like all other types. If a linear is dereferenced, the old
value is invalidated and can no longer be accessed. The linear must then be written to
become valid again. This ensures that only one variable can access head memory at
any point in the program. Clay supports concurrency and uses locks to allow shared
memory access.

The Clay language uses its advanced typing to track variable values during com-
pilation. The types are then constrained on function calls to prevent bad input or
output to the function. For example, a function that calculates a factorial should not
have negative numbers. If a negative number was passed to a factorial function in
Clay then there would be a compilation error. This functionality is especially impor-
tant in device drivers where input and output functions are not always clear. Clay
can prevent errors by limiting the parameters and return types, and therefore values.

1.4 Clay vs. C in Device Drivers

The operating system is the most important program running on a computer because
it underlies and supports all of the other programs running on the system. It is almost
always written in the programming languages C and C++ which allow low-level
memory access. Operating systems without sufficient checks on memory access are
very likely to have errors. Using a safer language is one solution to reduce errors. The
programming language Clay fits this purpose. It allows the same low level memory
access as C but checks types and memory access statically. The benefit of using Clay
over C in device drivers is Clay’s error checking capabilities.

Laddie[12, 13] is an extension to Clay. It is a language to write documentation
for device driver input/output protocol that is both comprehensible to humans and
computers. The documentation written in Laddie can be compiled into Clay functions
with the appropriate restrictions on parameters and returns. With Laddie, a Clay
program can identify if the input or output to a device is incorrect. Currently C has
no such extension and if it did would not be able to identify at compile time if the
parameter being passed was incorrect. C would only be able to check at run-time
and these checks would be optional. Run-time checks that could prevent input and
output errors are left out commonly both because they are optional and to make the
code run faster.

CHAPTER 1. INTRODUCTION AND BACKGROUND 6

The Clay programming language has more extensive static-time error checks than
the C programming language which makes Clay code safer to run. With the use of
singleton types, arithmetic constraints and linear types, Clay is able to track variables’
values statically and verify the code will not fail on errors it is capable of tracking.
Translating from C to Clay is difficult because of the information Clay requires to
compile. Since C is weakly typed and Clay is strongly typed, the C code does not
have all the information needed for Clay to compile. Clay’s type system allows it to
report more bugs than C but also makes it hard to write in or translate from C.

1.5 The Hoist Project

Hoist is the name of the project to semi-automatically translate existing device C code
to Clay in order to detect errors statically. Clay is able to detect many errors not
caught by C and then translate the drivers back to C where they can continue working
with the operating system. Device drivers verified safe by Clay are significantly
more reliable than device drivers written only in C. My thesis focuses on part of
this translation. The Hoist project is broken into several parts, one of which is the
translation of control structures. This thesis describes how C control structures can
be translated into control structures found in Clay.

The Hoist project builds on previous work which produced the type-safe language
Clay. Clay is a C like language where additional information is carried in the type
system. This information is used to statically check that code in Clay has a large
set of safety properties. The static checking allows us to find errors before the driver
is used on an operating system. C is unable to check these properties statically so
they are checked while the driver is running or not at all. Clay’s built in support for
static error checking and the large range of errors it can detect make it a useful tool
in device driver improvement. One reason device drivers tend to have errors is the
programmer misunderstanding the protocols for the device. A previous portion of
the Hoist project, Laddie, is a documentation tool for writing device driver input and
output protocols. Normally documentation is written in book format for programmers
to read. Laddie provides a format that is similar to the standard format found in
documentation but is written in such a way that the computer understands it. Laddie
compiler can use it to auto generate Clay functions with appropriate constraints.
Laddie is another step to ensure that input and output between the driver and the
device are correct.

CHAPTER 1. INTRODUCTION AND BACKGROUND 7

The Hoist project takes advantage of the Clay and Laddie languages and already
written device drivers. The project’s goal is to use current device drivers in C and
reuse the code in Clay. The input/output protocols for the device can then be written
in Laddie. The Clay produced from the Hoist compiler and from the Laddie docu-
mentation then works together to ensure a reliable device driver. Manual translation
from C to Clay is slow and can result in misunderstanding of situation leading to
translation errors. By trying to automate the translation from C to Clay we can
avoid translation errors without reverting to recreating device drivers from scratch.

1.6 Thesis Statement

My thesis explores which control structures found in device drivers written in C can
automatically be translated to Clay. The scope of this project only includes primitive
types on the stack used in device drivers which are ints and chars. Complex types
like structs, unions, and arrays will be covered in a future project along with heap
memory. The control structures I am working with can be split into the following
categories; assignments, selections, loops, function calls, and goto. Assignments are
the storage of values into variables. All of the variable values used in device drivers are
variants of type int. This project focuses on stack memory whose types in C are just
characters, floats, and integers. Device drivers do not use floats or characters in their
code so there is no reason for translating them. Assignments can be directly and safely
translated from C to Clay without the assistance of a programmer. Selections branch
through different parts of the program. An if statement and switch statement are both
examples of selections. Selections should be able to be translated automatically from
C to Clay in most cases. Loops are used to run through parts of a program multiple
times. The loops in C are for, while and do while. Basic loops which do not update
variables in their body can be automatically translated. More complicated loops will
be covered in a future project. Functions are another way programmers use control
the flow of their programs. A function is usually code that will be used multiple
times in a program but with different values. By moving code into a function, code
can be reused without being rewritten. Functions can be automatically translated.
The last control structure I looked at was goto. The goto keyword interrupts normal
execution and moves the program counter to a label in code. The goto keyword
cannot be translated to Clay automatically because the label can be any place in
code and does not obey standard control flow rules. The usage of goto does not allow
value tracking and thus there is no equivalent control structure in Clay. All code with
gotos can be written in other ways which do not require goto but such translations

CHAPTER 1. INTRODUCTION AND BACKGROUND 8

are beyond the scope of this project.

9

Compiler

1.7 Overview

A compiler is a program used to translate one language to another. Common com-
pilers translate languages like C into byte code (or machine language). Compilers are
complex systems which are broken down into parts. First a program is tokenized to
label all tokens in code. The ordered tokens are then passed through the parser. The
parser then orders the tokens into a hierarchy which allows a parse or syntax tree
to be built easily. Translation then occurs by reading and modifying the tree. The
new code is produced by walking the tree and printing the necessary parts in the new
syntax.

1.8 Tokenizer

The tokenizer recognizes groups of characters and labels them, organizing them into
labeled strings. The computer uses these labels to understand each string. I used
a program called Flex [Flex] to create a tokenizer from a special Java file. The
program Flex uses regular expressions to recognize keywords, variables, strings, num-
bers, and white spaces. My tokenizer identifies all tokens found in the C language. I
used a Flex file for ANSI C available at http://www.quut.com/c/ANSI-C-grammar-
l-1998.html#check-type [16]. This file was downloaded and modified since ANSI C
and GNU GCC recognized C are different. The regular expressions and tokens used
can be found in the appendix.

COMPILER 10

1.9 Parser

The parser uses the tokens generated by the tokenizer and structures the code using
a grammar. A grammar defines the structures of the language by recognizing certain
sequences in the tokens and defining these subgroupings of tokens as different struc-
tures. The parser uses the definitions of the structures from the grammar to create
a tree. The program YACC [?] generates a parser from a grammar. I used YACC
to create my parser using a C grammar[16]. Like the Flex file, the C grammar was
originally for ANSI C. I modified the grammar to recognize GNU GCC C which can
be found in the appendix.

1.10 Tree

In computer science, a tree is a common data structure. A tree has a root element
which has branches and leaves. Each branch also can have branches and leaves. This
data structure works well to store code in a way that is easy to modify. The trees
in compilers can either be a syntax tree or a parse tree. A parse tree represents all
of the structures found in the grammar. The root node for the tree is the program
with branches for variable and function declarations and so on and so forth. This
method can produce a very large tree due to the grammar’s structure which uses the
grammar’s hierarchy to enforce order of operations. Another way to store a program
to be modified is a syntax tree. A syntax tree is an abbreviated parse tree which does
not store intermediate structures. A syntax tree is therefore easier to understand and
work with and will be how I represent control structures in this paper. The compiler
I have created uses a hybrid tree. It has not been reduced completely to a syntax
tree but does not contain all the structures of the grammar.

1.11 Symbol Table

The symbol table is either built with the tree or while walking the tree. It stores
information about variables and functions that can be looked up at any time. Symbol
tables store the name, type and scope of all the variables and functions in a program.
They can also store information like whether or not a variable has been declared or
initiated at a point in the code. The compiler I have created has an extensive symbol

COMPILER 11

table. It stores not just the name and type but also whether or not a variable has
been assigned a value yet or has been declared. This was necessary to track when the
variable was declared in C and when it was assigned a variable. The variable should
not be used before it was declared and assigned. The symbol table in this compiler
uses a hash table to store the variables by using the variable name as the key.

1.12 Static Error Checking

As code goes through the tokenizer and the parser, some errors in the code can
be recognized. The tokenizer recognizes lexical errors. These errors are recognized
when the tokenizer finds a string of characters that do not match any of the regular
expressions. This could occur, for example, if a character not recognized by the
language is in an input file. The parser recognizes syntactic errors. A syntactic
error occurs when a group of tokens is in an order not recognized by the grammar.
Syntactic errors occur when the code’s structure is incorrect. A good example of this
is a missing semicolon at the end of a line. Most compilers also include semantic
checking. Semantic checking verifies that the code makes sense. I did not include
semantic error checking in this compiler. This is because translations occur after a
programmer already has a working C device driver. Therefore any checking of the C
code is unnecessary.

1.13 Tree Manipulation

When code is stored in a tree it is optimal to modify it. In most compilers tree
manipulation is done to optimize the output code. In this compiler, I am using tree
manipulation to translate C code into Clay code by transforming the C tree into a Clay
tree. This paper shows the syntax trees from the C structure and their translations
to syntax trees in Clay structure. I wrote code that recognizes and modifies different
cases of translations. Since a lot of these control structures are nested into other
control structures it makes more sense to do a little translation at a time. Some
compilers, like C, are single pass compilers that will only go through the tree once
before producing the output code. My compiler is like other compilers that go through
the tree multiple times, modifying or gathering data a little at a time. Each pass on
the tree translates more of it until it is finally all translated.

COMPILER 12

1.14 Code Output

The result of a compiler is code in a different language, often machine code or assem-
bly. In the case of this compiler, the output language is Clay. The output is written to
a file called out.clay. The code is produced by walking the tree and writing Clay code
to represent the appropriate keywords and tokens using the control flow expressed by
the tree. This translation is semi-automatic due to missing information in C and will
not produce compile ready code most of the time. Future work will translate heap
memory usages and complex data types allowing the compiler to translate more C to
Clay on its own.

13

Control Structures

A computer goes through a program sequentially. Control structures interrupt the
sequence and cause the code to skip code sections, run portions of the code repeatedly,
decide between different sections of code to run and so it can be run from multiple
points in the program without having to write the same code in multiple places.
Most languages have similar control structures but the syntax differs. This section
will introduce control structures found in C and how they can be translated to Clay.

1.15 Assignments

An assignment is when a variable is given a value to represent. It consists of the
variable being assigned and an expression that will evaluate to its new value. In C
there are two places that an assignment can happen. First, a variable can be assigned
when it is declared. The other case is in an assignment expression. Clay combines
them so all assignments in Clay are also declarations.

The difference between a C assignment and a Clay assignment is that Clay uses
the keyword “let” which declares the variable and implicitly figures out its Singleton
type when making the assignment. In this paper, Clay assignments will be referred
to as let assignments. Only stack variable assignments and integer types are in the
scope of this project. Heap variables and complex types will be included in the next
stage of the Hoist project. Additionally, Clay only supports integer types so only the
C types int, long, and short are translated.

There is one more case that must be dealt with when translating assignments.
Clay uses Singleton types to track values of variables as they pass through control
structures. To allow the Clay compiler to track values through function calls, the

CONTROL STRUCTURES 14

C Clay
int x;

int x = 0; let x = 0;

int x = 0,y; let x = 0;

int x = 0, y = x; let x = 0;

let y = x;

int x = y = z; let y = z;

let x = y;

int x = foo() + bar(); let temp1 = foo();

let temp2 = bar();

let x = temp1 + temp2;

int x = foo(bar()); let temp1 = bar();

let x = foo(temp1);

Figure 1.1: Declaration Translations from C to Clay

calls must be alone in an expression. Assignments in C which have function calls
within function calls or arithmetic with the return of a function must be broken
up into separate let assignments and temporary variables can be used to hold the
intermediate results.

1.15.1 Declarations and Declaration Assignments

In the C programming language, variables are declared with their type before they
can be used. A declaration can also include an initial value for that variable but it
is not required. When a C declaration has no assignment it is not used in Clay and
is removed from the syntax tree. All variables declared in C with an initial value
need to be translated into let assignments where the type of declaration is implicit.
A chart of declaration translations from C to Clay can be found in figure 1.1.

Figure 1.2 shows the syntax tree for an example declaration in C. A declaration
consists of a type and a list of declarators. Each declarator may or may not have
an initializer, the expression the variable is to be assigned. During translation the
declaration is removed and let assignments are made from any declarator with an
initializer. The syntax tree for a let declaration can be seen in figure 1.3.

CONTROL STRUCTURES 15

Figure 1.2: The syntax tree for the C declaration int x=0,y;.

Figure 1.3: The syntax tree for the Clay let declaration let x = 0;.

CONTROL STRUCTURES 16

C Clay
x = 0; let x = 0;

x = foo(); let x = foo();

x += 4; let x = x + 4;

x = y = z; let y = z;

let x = y;

x = foo() + bar(); let temp1 = foo();

let temp2 = bar();

let x = temp1 + temp2;

x = foo(bar()); let temp1 = bar();

let x = foo(temp1);

Figure 1.4: Assignment Translations from C to Clay

1.15.2 Assignment Expressions

In C, a variable is assigned a value in an assignment expression. Translating a C
assignment to a Clay let assignment simply involves changing the assignment to a
“let” when the assignment operator is ‘=’ and the right side of the assignment is one
simple expression. The C language supports many other assignment operators like
‘+=’, ‘-=’, ‘*=’, and ‘/=’. The Clay language only supports the ‘=’ assignment operator.
In the case that these other assignment operators are used, the statement needs to be
translated to equivalent C using the ‘=’ operator before it can be translated to Clay.
Assignments with complex expressions on the right side need to be split into separate
parts using temporary variables before they are translated to Clay. Examples of
assignment expression translations from C to Clay can be found in figure 1.4.

Figures 1.5 and 1.6 show the syntax tree for an example assignment expression
and the syntax tree for the Clay let expression it was translated to, respectively. The
syntax trees show the translation of an assignment using the ‘+=’ operator. These
translations show that stack memory integer-type variable assignments can safely be
translated from C to Clay without supplemental information.

CONTROL STRUCTURES 17

Figure 1.5: The syntax tree for the C assignment x += 4;.

Figure 1.6: The syntax tree for the Clay let assignment expression let x = x + 4;.

CONTROL STRUCTURES 18

1.16 Functions

A function in computer science is a type of control structure. A function in C is
defined with a return type, a list of parameters each with a specific type, and a body.
Parameters are the variables being passed into the function and used to produce a
new value or to change values of global variables. The return type of a function is
the type of the variable being returned. Code in a function’s body can be called
repeatedly and applied to different parameters which can help produce more readable
and less repetitive code.

The Clay function can be very different from a C function. The return type
and the type of the parameters can be constrained and functions can return tuples
allowing multiple variables to be returned. That said, the basic form for a function in
Clay is the same for C as long as the types of the function are Clay stack memory and
are one of the integer types. The only translation needed for functions is to identify
the return type and parameter types. If these types are not either void or integers
(short, long, int) then the function is not translated and marked for a programmer
or for the next part of the project to translate. For the function to be completely
translate the code in each function needs to be translated using the other translation
in this chapter.

In order to use the tracking capabilities in Clay, the types for a function should
be updated by a programmer. In this project the compiler changes integer types
to singleton types with unknown values. In this way a return type int will become
Int[K], representing an integer with value K and the parameters would each have
their own unique type such as Int[M] and Int[N]. The necessary information to
further constrain a function’s parameters and return type cannot be found in C. The
compiler leaves a special comment for the programmer telling them to update the
function’s types if possible.

1.17 Selection

Selections are control structures that choose between different sections of code to run.
They decide on a branch depending on an expression known as the test. The selections
found in C are if, if-else and switch statements. C also has a conditional expression
which returns a value depending on its test and has the syntax test ? value1 :

CONTROL STRUCTURES 19

C Clay
if(x){} if(x != 0){}

if(x > 5){} if(x > 5){}
if((h = 5) > 4){} let h = 5;

if(h > 4){}
if(foo() > x){} let temp1 = foo();

if(temp1 > x){}
if(foo()){} let temp1 = foo();

if(temp1 != 0){}

Figure 1.7: If-Test Translations from C to Clay

value2;. This conditional expression will be covered in future work. Clay also has
an if-statement with an optional else statement but does not have a switch statement
or conditional expression.

1.17.1 If and If-Else

There are two parts of an if-statement. The first part is a test to determine if the
body of the if-statement will be executed. The second part is the body. The body
of an if-statement is the code that is executed if the test evaluates to true, or in the
case of C, not zero. An else-statement is used with conjunction of an if-statement.
An if-statement must come before an else-statement. The else-statement has no test
but does have a body. The code in the else-statement’s body will execute if the if-
statement’s test evaluates to false or zero. All if-statements do not need an else but
all else-statements must have an if-statement.

Test Translation

The first part of translating an if-statement is to translate the test. All tests need
to have a variable or number being compared to another variable or number. There
cannot be function calls or assignments in the test; these must be moved outside of
the test and stored in a temporary variable to be compared. Clay also requires a
relationship operator like > or ==. Any test in C without a relationship operator has
to be compared to 0. Examples of if-tests being translated can be found in ??. The
syntax tree for a C if-statement is generally the same as the syntax tree for a Clay

CONTROL STRUCTURES 20

Figure 1.8: The syntax tree for the C If-Statement if(x){}.

if-statement. The only difference is what will be in the test. A C if-statement can
have any expression in the test. A Clay if-statement must have a relational operator
expression and all expressions below this point must not contain function calls. Figure
1.8 shows a C if-statement with a test expression ”x” and an empty body. Since a
variable is not a relational operator expression it must be modified before translation.
The translation of this if-statement can be seen in figure 1.9. To make the expression
into a relational operator expression the variable must be compared to 0. This is the
case because C does not have a boolean type. Instead 0 means false in the test and
all other numbers are true. Therefore if x is not equal to 0 then the test is true.

This example does not show the translation if a sub expression of the operational
expression is a function call. In that case a let assignment, like the one shown in the
section above, assigns the function call to a temporary variable. The function call is
then replaced with the temporary variable in the test expression. The let statement
is then put before the if-statement. Since the test expression could have any number
of function calls the newly created let assignment might need to be translated to
multiple let assignments.

Body Translation

Translating the body of an if-statement is more complicated than the test translation
because of scope. Scope is the range of the program that a variable is relevant and
is in most cases defined by blocks of code or new structures. The whole program has
a global scope while each function then has its own scope. The selections, loops, and
functions all begin new scopes. Every variable belongs to a certain scope. A variable

CONTROL STRUCTURES 21

Figure 1.9: The syntax tree for the Clay If-Statement translated from C if(x != 0){}.

can be used in its own scope or a sub-scope. For example, if a variable is defined
in a function, it can then be used in the body of an if-statement in that function.
The if-statement would be defined in the function’s scope and therefore have access
to the variables defined in that function. Since a variable belongs to the scope it was
declared in some problems arise because Clay does not declare variables until they
are assigned values. Also every time a variable changes value in Clay, it is redeclared
to reflect the change in Singleton type. Therefore if a variable changes value inside
of an if-body its scope will only be in the body of the if-statement.

Since variables that change value inside of the if-body or else-body will not change
value outside of that scope the if-statement must be translated to a function. The
values being modified in the if-statement’s body can be returned and stored in the
variable in the appropriate scope. For this translation, first the compiler must recog-
nize that a variable which has already been declared, or would have been declared in
C, is being assigned a value. Multiple variables can be assigned in the if-statement
and the compiler must keep track of all of them and know their prior values, if they
have one. All of this information is stored in the symbol table of this compiler.

If a variable that has been declared outside of the if-body is being assigned then
a new function is generated with a unique name. This function will be placed before

CONTROL STRUCTURES 22

void main(){

int x = 5;

int y;

if(x!=0){

x = 3;

y = 2;

}

}

Figure 1.10: Example in C of an If Statement with multiple externally declared variables
being assigned

the current function. The parameter of this function will be the if-test and its return
type will be the type of the variable being updated. If more than one variable changes
value in the if-statement, more than one variable will need to be returned. In C this
would not be possible without defining a structure or an array but Clay has a tuple
type. A tuple can store any number of variables of different types and is perfect for
returning multiple variables in a function. If statements that are moved into new
functions need an else statement even if the original if-statement did not have one.
The function must return a value regardless of whether the test evaluates to true or
false. An else-statement that is added must return the original value of the variable.
If the variable has not been assigned a value yet it will be given the value zero and
a comment will be made in the code. This initializes a variable to a value that the
original programmer did not assign it but is required because all variables have values
in Clay. The Clay compiler will no longer be able to identify if this variable is being
used before it has properly been assigned.

Figure 1.10 is an example if-statement which assigns values to two externally
declared variables. The variable x has been previously initialized while y has not.
The translation of this if-statement can be seen in figure 1.11. This example shows
how a tuple can be used to return multiple variables from a function. Figure 1.12
shows the syntax tree for a slightly simpler if-statement where only one variable is
being assigned. The syntax tree for the function that the if-statement is moved to
can be seen in figure 1.13. Figure 1.14 shows the syntax tree for the let assignment
expression that replaces the if-statement in the original function.

CONTROL STRUCTURES 23

.[int, int]

/*~~ Return type inspecific. Should possibly be .[Int[4],Int[6]]

if we know the returns 4 and 6 or

exists [u32 J, u32 K; J > 4 && K < 6] .[Int[J],Int[K]]

if we only know some constraints on the return type or

.[int,int] if we have no idea. ~~*/

function1(int

/*~~ Return type inspecific. Should possibly be .[Int[4],Int[6]]

if we know the returns 4 and 6 or

exists [u32 J, u32 K; J > 4 && K < 6] .[Int[J],Int[K]]

if we only know some constraints on the return type or

.[int,int] if we have no idea. ~~*/

x){

if (x != 0){

return .(3,2);

}else{

return .(5,0);

}

}

void clayMain(){

let x = 5;

let

/*~~[] if this function returns an existential ~~*/

(x,y) = function1(x);

}

Figure 1.11: The translation to Clay of the If-Statement in 1.10.

CONTROL STRUCTURES 24

Figure 1.12: The syntax tree for a C If Statement assigning a new value to a variable that
has already been declared.

Figure 1.13: The syntax tree for the function translated from the If-Statement in figure
1.12.

CONTROL STRUCTURES 25

Figure 1.14: The syntax tree for the Clay function call replacing the If-Statement.

1.17.2 Switch

The switch statement is used to select between different values on a test variable. A
switch works by comparing the variable given in the switch test to the constant values
in each case. The case statements have blocks of code that will execute if the variable
being switched is equivalent to that case. If none of the previous case statements are
true then the default block is run. If a case block does not end in a break statement
then the execution ”falls through” to the next case’s code block.

There is no switch statement in Clay but the switch statement in C can be trans-
lated into if-statements and else-statements. Translating switch statements into Clay
is a two step process. First the switch statement is translated to if-else statements in
C. The if-else statements then go through the translation to Clay. There are different
ways to translate C switch statements to C if-else statements. If each case ended in a
break then it could be translate into nested if-statements with the if-statement’s test
comparing the switch variable to the case constant. The first case would be the first if-
statement with the code in the first case block going into the body of the if-statement.
The next case would then be an if-statement in the first if-statement’s else-statement
with its case-body becoming the if-body. If there is a default case then its body
would go in the last if-statements accompanying else. Switch statements where not
all of the cases end in breaks are almost as simple to translate. These are easiest to
translate backwards. If a case, excluding the default case, does not end in a break
then the if-statement’s body of that case is its own body and the body of the case
below it. By doing this translation backwards then you do not have to check if the
case body being copied is also missing a break since if the case below does not have a
break then the appropriate case-body below that will already be copied. An example
of a translation from a C switch statement into C if-else-statements can be seen in

CONTROL STRUCTURES 26

switch(x){

case 1: printf("one"); break;

case 2: printf("two");

case 4: printf("three"); break;

default: printf("other"); break;

}

Figure 1.15: This is an example of a C switch statement.

if(x == 1){

printf("one");

}else if(x == 2){

printf("two");

printf("three");

}else if(x == 3){

printf("three");

}else{

printf("other");

}

Figure 1.16: Translation of the C switch statement in figure 1.15 to a C If-Statements.

figures 1.15 and 1.16.

Figure 1.17 shows the syntax tree for a simple switch statement with two cases,
where x is 1 and where x is 3, and a default case. The first case does not end in
a break while the second case does end in a break. In this example if x’s value is 1

then the program will print out ‘‘1" and ‘‘3". If x’s value is 3 then the program
will print out ‘‘3". Last if x is neither 1 or 3 the program will print out the “other”.
Figure 1.18 shows the syntax tree of C if-else statements which are translated from
the previous switch statement. Both syntax trees represent C code which will produce
the same results.

CONTROL STRUCTURES 27

Figure 1.17: The syntax tree for a C Switch Statement

CONTROL STRUCTURES 28

Figure 1.18: The syntax tree for a C If Statement translated from a Switch Statement

CONTROL STRUCTURES 29

1.18 Loops

Loops are used to repeat code until a certain condition is met. In C there are three
types of loops; for, while, and do while. The basic structure for all three is similar.
There is a body which is a block of code that is to be repeated. Then there is the
test which if it evaluates to true will cause the body to be executed again.

In Clay there is only one type of loop, the for-loop. First while and do-while
loops need to be translated into C for-loops which can then be translated into Clay
for-loops. The test and bodies of the loop structures are restricted the same way as
the selection bodies and tests. Tests need to be simple relation expressions with no
function calls or assignments. These need to be moved out of the test and into let
statements with a temporary variable and put both before the loop and inside the
body. Since the loop’s body is a different scope and, like the test’s body, it needs to
be checked for assignments of variables declared outside the scope of the loop. Loops
which bodies assign new values to variables previously declared need to be put in
functions with any assignments as the return value. The loop is then replaced with
an assignment and a function call.

1.18.1 For-Loop

C also has a for-loop structure. The C for-loop has two parts, the parenthesis and
the body. The parenthesis in the for-loop has three parts which, in a standard for-
loop, will all be present. First is the initialization which assigns an initial value to
the variable being looped through. The second part is the test of the loop which
acts the same as the while test. Last is the update which updates the loop variable.
The initialization will only happen once before the loop. The test will then occur
and if evaluated true the body will be executed and if evaluated false then the loop
body will be skipped. The test will then be evaluated again after each iteration of
the loop. The update is executed at the end of each loop iteration before the test.
Although initalizaion is usually an assignment, the test is usually a comparison and
the update is usually an increment or decrement, these standard expressions are not
required. Any expression can go in each of these three parts of the for-loop. No
matter what expression is in each position the expression will still execute depending
on their position in the for-parenthesis.

The Clay for-loop is similar to the C for-loop. It has a initialize expression, a

CONTROL STRUCTURES 30

for(int i = 0; i < 5; i++){

printf("%d\n", i);

}

Figure 1.19: Simple For Loop in C.

for [s32 I] (Int[I] i = 0; i < 5){

print_int(i);

continue(i+1);

}

Figure 1.20: Translation of the simple For Loop to Clay.

test expression and an update. The initialize expression and test expression, like in
the C loop, are in the parenthesis of the for-loop while the update goes at the end
of the for-loop body in a continue. The continue “calls” the for loop again with
an updated variable. In this way the for-loop in Clay is really a recursive call. The
continue’s syntax is the continue keyword, then open parenthesis, the value that the
loop variable is to be updated to, and then close parenthesis. Instead of updating
the for-loop variable, the new value for the loop variable is passed to the continue
expression. The only other difference between C’s for-loop and Clay’s for-loop is the
type declaration of the loop variable. Clay declares the type of the looped variable
with a singleton type which requires two type declarations.

The translation of a simple for-loop is straight forward. The singleton type is
added to the loop variable from the declaration. The type of the variable needs to
be generated since no two variables can have the same type in Clay. Figure 1.20
shows how the variable is declared with type Int[I]. The brackets with “s32 I”
are declaring that the variable type I is a signed 32 bit integer. It is this “I” type
that needs to be generated since the next for-loop (if one occurs) can not have a
loop variable with type I. The test can be directly copied from the C for-loop test
into the Clay for-loop test. If the update is an assignment then the right side of
the assignment can be used for the update in the continue. Notice that after i++ is
translated to Clay it is let i = i +1; and the update in the continue expression
in figure 1.20 is i + 1; If the update is not an assignment than it can be copied to
the last line of the for-loop body before the continue. The updated loop variable will
then be passed to the continue expression. The continue expression is necessary since
the loop variable’s value is only updated for the next iteration through the continue
expression. The rest of the body of the for-loop will be copied over to the body of the

CONTROL STRUCTURES 31

Figure 1.21: The syntax tree for a C For-Loop.

Clay for-loop. Figures 1.19 and 1.20 show the translation of a simple for-loop from C
to Clay.

Figures 1.21 and 1.22 show the syntax trees for a simple for-loop in C and its
translation to Clay. The differences in the two translation is the new singleton type
for the loop variable and the update moved into the continue. The previous translation
examples are basic for-loops but they do not take into account scope.

Like the if statement, the body of a for-loop is a new scope and runs into the
same problems. If a variable that has been defined outside of the for-loop is assigned
a new value then the loop is moved into a new function and returns the values of the
updated variable. The return of the function has to be placed in the loop because
the values are lost after the execution has left the for-loop. To do this correctly first
the update has to be moved out of the continue and back into an assignment at the
end of the loop body. After the update assignment an if statement is added. This if
body will just contain the return statement returning the proper variables that had
been updated. The if’s test will need to be the opposite of the loop test since the
return should happen after the loop would have stopped and the loop test is true
when the loop should continue. This can be done with the boolean not-operator (!).
That way when the loop test is not true the if body will be executed and the function

CONTROL STRUCTURES 32

Figure 1.22: The translation of the C For-Loop into Clay.

CONTROL STRUCTURES 33

void main(){

int x = 0;

for(int i = 0; i < 10; i++){

x = 3;

}

printf("%d\n", x);

}

Figure 1.23: C for-loop with assignment of externally declared variable.

will return the variables as they would be after the loop. The for-loop will then be
replaced with an assignement of the updated variables to the function just generated.
Figures 1.23 and 1.24 show an example of a for-loop being moved into a function so
that the variable can be updated.

Another complication with for-loops is that only the loop variable will be stored
through each iteration. This means that any variables assigned outside of the for-
loop will have their previous value at the beginning of every iteration. More complex
for-loops are left for the future work.

1.18.2 While and Do While Loops

Two common types of loops are the while and do while. The only difference between
a while and a do while is that a do while goes through the code in the body once
before executing the while test. If the while test evaluates to true then the code in
the while or do while’s body is executed again. This continues until the while test
evaluates false.

Clay does not have a while or do while loop. Like the switch statement, while
and do while statements are translated in two steps. First it is translated into a C
for-loop and then the C for-loop is translated into a Clay for-loop. The only difference
between a while and a do while is when the test is preformed. Since a do while is
easily translated into a while by copying the body of the loop before the loop and
changing it into a while I will only explain the translation of a while into a for-loop.

A while loop can be translated very easily into a for-loop. Since the initialization
and update expressions can be empty the easiest way to translate a while loop into

CONTROL STRUCTURES 34

int

/*~~ Return type inspecific. Should possibly be Int[5]

if we know the returns 5 or exists [u32 J; J > 4] Int[J]

if we only know some constraints

on the return type or int if we have no idea. ~~*/

function1 [u32 I] (Int[I] x){

for [s32 I] (Int[I] i = 0; i < 10){

let x = 3;

let i = i +1;

if(!(i < 10)){

return x;

}

continue(i);

}

return 0;

}

void clayMain(){

let x = 0;

let

/*~~[] if this function returns an existential ~~*/

x = function1(x);

print_int(x);

}

Figure 1.24: Clay for-loop with assignment of externally declared variable.

CONTROL STRUCTURES 35

Figure 1.25: The syntax tree for a C While Statement

a C for-loop is to copy the body into the for-loop and copy the test into the second
expression in the for-loop’s parenthesis. The variable in the test should already be
initialized and the update will already be in the loop body since these are necessary for
the while to work. While loops can be translated other ways where the initialization
and update are placed in the for-loop’s parenthesis but these are more complicated
especially in non-standard while loops.

Figure 1.25 shows the syntax tree for a basic while-loop and figure 1.26 shows this
while loop translated into a for-loop. In this example the update of the loop variable
could have easily been moved to the update expression in the for-loop structure but
if the update of the variable had come before the print statement then moving the
update to the for-loop’s update would have changed the code. If the update of the
loop variable happens anywhere but the end of the loop body, translating to a for-
loop while moving the update becomes a lot more complicated. It is easier to keep
the update inside of the loop variable and not to use the for’s update.

CONTROL STRUCTURES 36

Figure 1.26: The syntax tree for a For-Loop translated from the While Statement in figure
1.25.

1.19 Goto

The goto keyword is used to move the point of execution from one place in code to
another. There is no standard flow and no restrictions about where a goto can lead.
It is able to do this with labels in a program. It is generally accepted to be unsafe
because it is hard to track and leads to spaghetti-code. Spaghetti-code is code that
acts like a noodle in a pile of spaghetti, it is hard to follow and weaved in with a lot of
irrelevant code. There is no translation to Clay because it does not have a structure
in Clay that is equivalent. Clay would not support any structure like a goto because
it would lose its ability to track variable’s values through a goto call.

Without the programmers understanding of where the goto leads to and why it
was necessary the goto can not be translated to a safe control structure like the ones
described above. All goto statements need to be translated by a programmer. It
cannot be automated.

37

Problems

Throughout this project there have been problems that have slowed down my progress.
The first problem that I ran into was trying to run my compiler on actual device
drivers. The GNU GCC compiler allows user to define MACROs which will be substi-
tuted with the appropriate code during preprocessing. My compiler does not contain
a preprocessor so the code needs to be first compiled using the GNU GCC compiler
and then use the C code produced in my own compiler. This would only work in the
correct libraries are linked with the GNU GCC compiler so that the compiler could
look up the MACROs in the appropriate header files. Since operating systems use
kernel headers along with normal C header files, I was unable to ever successfully get
rid of all the MACROs defined in the device drivers which caused syntax errors in
my own compiler. After working on this for a month my advisor and I decided that
compiling device drivers in C would be part of another project.

Another problem that arose during my research is transforming the ANSI C gram-
mar I found into a grammar that recognizes GNU GCC. The GNU GCC extends the
ANSI C grammar. I had to add tokens to the original Flex file for such keywords like
inline, asm, typeof, and more. These keywords then had to be added to the gram-
mar in the appropriate places. Most keywords were simple to add but the asm and
attribute keywords have none standard parameters. It is important to have these
keywords since they are common in device drivers. I eventually had to write a regular
expression for their parameters and was able to use this new regular expression to
correctly identify the asm and attribute uses in the C code.

38

Conclusion

The purpose of this project is to create reliable device drivers to produce reliable
operating systems. Due to its extensive error checking, Clay is a better language for
device drivers than C, the language they are written in now. Clay can guarantee that
common C errors are not in the code produced from a successful Clay compilation.
There are a multitude of device drivers that run on an operating system. Each of
these drivers is already written in the C programming language. It is much more
practical to translate these existing device drivers than to write write new drivers
from scratch. Translation can be time consuming and therefore expensive especially
with the number of device drivers already in use. Automatic translation of C code to
Clay takes less time and will not have the problem of a wrong translation because of
wrong interpretations in either language. The system used to translate a programming
language into a new language is a compiler. Compilers are complex systems with many
steps. Do to this complexity the automatic translation of C to Clay has been broken
into two parts, translating stack memory and control structures and translating heap
memory.

This paper describes how stack memory and control structures can be automati-
cally translated to Clay. Since the Clay programming language guarantees type safety
and C is so loosely typed, direction translations are not always possible. Any struc-
ture that cannot be safely translate either in whole or partially will be labeled for a
programmer to fix after compilation. Most likely, due to the fact that most device
drivers do have errors, even code that has been completely translated automatically
will not compile successfully in Clay and a programmer will need to fix the code.

While translating control structures from C to Clay I have found that most struc-
tures can be translated automatically if they only use stack memory. The only ex-
ception to this is the goto structure which is incapable of being translated into Clay.
Assignments and functions can be translated automatically and safely if they only use

CONCLUSION 39

stack memory variables. While loops and selections can in some cases be translated
safely but in cases where variables values are being updated not all structures can be
updated.

40

Future Work

This thesis is just the beginning of the Hoist project. The end result for the Hoist
project is a compiler which can translate C code to Clay code almost completely.
The next step is to finish translating for-loops which are more complex than the ones
described above.

Another part of the project that needs to be completed is the translations of
complex types. These would include struct, union, and array. Pointers will also
need to be translated. Pointers are the way of manipulating heap memory in C. Heap
access will need to be translated from C to Clay.

41

Related Work

The reliability of device drivers has been seen as a problem recently. There are many
projects working to improve new device drivers and to debug older drivers. One
project being led by Microsoft is the SLAM[SLAM] project. The SLAM project helps
developers ensure that the interfaces are being properly used between the software
of the device driver and the driver hardware. It is used for developing new drivers
which work well. Similarly the Devil [Devil]project is developing a language to write
device interfaces. Devil fulfills the same role that Laddie does, to describe in detail
the interface between the hardware and software of a device. Another language like
Clay called NDL[20] was developed to write device drivers in also. This language
would be used to develop new drivers which preform better. Research is also being
done to debug current drivers like the SymDrive [SymDrive] project being worked on
at University of Wisconsin-Madison. This project simulates the hardware so drivers
can be tested without an actual device. The Hoist project combines the benefits of
a new language which allows specific interfaces and static error checking with the
ability to fix older drivers.

42

References

[1] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler,
An Empirical Study of Operating Systems Errors, ACM, (2001).

[2] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, Gernot Heiser, Au-
tomatic Device Driver Synthesis with Termite, ACM, (October, 2009).

[3] Michael M. Swift, Mathukaruppan Annamalai, Brian N. Bershad, and Henry M.
Levy, Recovering Device Drivers, ACM, (November, 2006).

[4] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot Heiser, Dingo: Taming
Device Drivers, ACM, (April, 2009).

[5] Yashavant P. Kanetkar, Let Us C, (2008).

[6] Brian W. Kernighan, Deinnis M. Ritchie, The C Programming Language, (1988).

[7] Lea Wittie, Type-Safe Operating System Abstractions Dartmouth Technical Re-
port TR2004-526, (June 2004).

[8] Lea Wittie, Clay: A Type-Safe Systems Programming Language Bucknell Com-
puter Science Technical Report #08-1, (2008).

[9] Chris Hawblitzel, Edward Wei, Heng Huang, Eric Krupski, and Lea Wittie, Low-
Level Linear Memory Management, (2004).

[10] Chris Hawblitzel, Heng Huang, and Lea Wittie, Composing a Well-Typed Region,
(2004).

[11] Heng Huang, Lea Wittie, and Chris Hawblitzel, Formal Properties of Linear
Memory Types Dartmouth Technical Report TR2003-468, (August 2003).

[12] Lea Wittie, Laddie: The Language for Automated Device Drivers Bucknell Com-
puter Science Technical Report #08-2, (2008).

REFERENCES 43

[13] Lea Wittie, Chris Hawblitzel, and Derrin Pierret, Generating a Statically-
Checkable Device Driver I/O Interface, (2007).

[Flex] jflex.de.

[BYACCJ] byaccj.sourceforge.net.

[16] Jeff Lee, http://www.quut.com/c/ANSI-C-grammar-l-1998.html#check-type,
(1985).

[17] Chris Bassett, Bucknell Student Project, (2009).

[SLAM] SLAM, Microsoft Research, http://research.microsoft.com/en-
us/projects/slam/.

[Devil] Devil, INRIA Research Group, http://phoenix.inria.fr/software/past-
projects/devil.

[20] Christopher L. Conway and Stephen A. Edwards, NDL: A Domain-Specific Lan-
guage for Device Drivers, (2004).

[SymDrive] Matthew J. Renzelmann, Asim Kadav, and Michael M. Swift, SymDrive:
Testing Drivers Without Devices, (2012).

44

Appendix

1.20 Flex

D = [0-9]

L = [a-zA-Z_]

H = [a-fA-F0-9]

E = [Ee][+-]?{D}+

P = [Pp][+-]?{D}+

FS = (f|F|l|L)

IS = ((u|U)|(u|U)?(l|L|ll|LL)|(l|L|ll|LL)(u|U))

StringLiteral = L?\"(\\.|[^\\\"])*\"

LineTerminator = \r|\n|\r\n

InputCharacter = [^\r\n]

Preprocess = "#" {InputCharacter}*{LineTerminator}

Asm = "asm" | "__asm" | "__asm__"

Volatile = "volatile" | "__volatile__"

Comment = {TraditionalComment} | {EndOfLineComment} | {DocumentationComment}

TraditionalComment = "/*" [^*] ~"*/" | "/*" "*"+ "/"

EndOfLineComment = "//" {InputCharacter}* {LineTerminator}

DocumentationComment = "/**" {CommentContent} "*"+ "/"

CommentContent = ([^*] | *+ [^/*])*

APPENDIX 45

{Comment} /* do nothing */

{Preprocess} /*do nothing*/

"printk" PRINTK

{Asm} ({CommentContent}); ASM

"__extension__" EXTENSION

"__attribute__" ATTRIBUTE

"__alignof__" ALIGNOF

"typeof" TYPEOF

"auto" AUTO

"_Bool" BOOL

"break" BREAK

"case" CASE

"char" CHAR

"_Complex" COMPLEX

"const" CONST

"continue" CONTINUE

"default" DEFAULT

"do" DO

"double" DOUBLE

"else" ELSE

"enum" ENUM

"extern" EXTERN

"float" FLOAT

"for" FOR

"goto" GOTO

"if" IF

"_Imaginary" IMAGINARY

"inline" | "__inline" | "__inline__" INLINE

"int" INT

"long" LONG

"register" REGISTER

"restrict" RESTRICT

"return" RETURN

"short" SHORT

APPENDIX 46

"signed" | "__signed__" SIGNED

"sizeof" SIZEOF

"static" STATIC

"struct" STRUCT

"switch" SWITCH

"typedef" TYPEDEF

"union" UNION

"unsigned" UNSIGNED

"void" VOID

"__volatile__" | "volatile" VOLATILE

"while" WHILE

{L}({L}|{D})* IDENTIFIER

0[xX]{H}+{IS}? CONSTANT

0[xX]{H}+{IS}? CONSTANT

0{D}+{IS}? CONSTANT

{D}+{IS}? CONSTANT

L?’(\\.|[^\\’\n])+’ CONSTANT

{D}+{E}{FS}? CONSTANT

{D}*"."{D}+({E})?{FS}? CONSTANT

{D}+"."{D}*({E})?{FS}? CONSTANT

0[xX]{H}+{P}{FS}? CONSTANT

0[xX]{H}*"."{H}+({P})?{FS}? CONSTANT

0[xX]{H}+"."{H}*({P})?{FS}? CONSTANT

{StringLiteral} STRING_LITERAL

"..." ELLIPSIS

">>=" RIGHT_ASSIGN

"<<=" LEFT_ASSIGN

"+=" ADD_ASSIGN

"-=" SUB_ASSIGN

"*=" MUL_ASSIGN

"/=" DIV_ASSIGN

"%=" MOD_ASSIGN

"&=" AND_ASSIGN

APPENDIX 47

"^=" XOR_ASSIGN

"|=" OR_ASSIGN

">>" RIGHT_OP

"<<" LEFT_OP

"++" INC_OP

"--" DEC_OP

"->" PTR_OP

"&&" AND_OP

"||" OR_OP

"<=" LE_OP

">=" GE_OP

"==" EQ_OP

"!=" NE_OP

("{"|"<%") ’{’

("}"|"%>") ’}’

("["|"<:") ’[’

("]"|":>") ’]’

"," ’,’

":" ’:’

"=" ’=’

"(" ’(’

")" ’)’

";" ’;’

"." ’.’

"&" ’&’

"!" ’!’

"~" ’~’

"-" ’-’

"+" ’+’

"*" ’*’

"/" ’/’

"%" ’%’

"<" ’<’

">" ’>’

"^" ’^’

"|" ’|’

"?" ’?’

APPENDIX 48

1.21 C Grammar

token PRINTK ASM ATTRIBUTE ALIGNOF TYPEOF PREPROCESS EXTENSION

token IDENTIFIER CONSTANT STRING_LITERAL SIZEOF

token PTR_OP INC_OP DEC_OP LEFT_OP RIGHT_OP LE_OP GE_OP EQ_OP NE_OP

token AND_OP OR_OP MUL_ASSIGN DIV_ASSIGN MOD_ASSIGN ADD_ASSIGN

token SUB_ASSIGN LEFT_ASSIGN RIGHT_ASSIGN AND_ASSIGN

token XOR_ASSIGN OR_ASSIGN TYPE_NAME

token TYPEDEF EXTERN STATIC AUTO REGISTER INLINE RESTRICT

token CHAR SHORT INT LONG SIGNED UNSIGNED FLOAT DOUBLE CONST VOLATILE VOID

token BOOL COMPLEX IMAGINARY

token STRUCT UNION ENUM ELLIPSIS

token CASE DEFAULT IF ELSE SWITCH WHILE DO FOR GOTO CONTINUE BREAK RETURN

primary_expression

: IDENTIFIER

| CONSTANT {

| STRING_LITERAL

| ’(’ expression ’)’

;

postfix_expression

: primary_expression

| postfix_expression ’[’ assignment_expression ’]’

| postfix_expression ’(’ ’)’

| postfix_expression ’(’ argument_expression_list ’)’

| postfix_expression ’.’ IDENTIFIER

| postfix_expression PTR_OP IDENTIFIER

| postfix_expression INC_OP

| postfix_expression DEC_OP

| ’(’ type_name ’)’ ’{’ initializer_list ’}’

| ’(’ type_name ’)’ ’{’ initializer_list ’,’ ’}’

;

printk_arguement_list

: assignment_expression

| assignment_expression’,’ printk_arguement_list

| assignment_expression printk_arguement_list

;

APPENDIX 49

argument_expression_list

: assignment_expression

| argument_expression_list ’,’ assignment_expression

;

unary_expression

: postfix_expression

| INC_OP unary_expression

| DEC_OP unary_expression

| unary_operator cast_expression

| SIZEOF unary_expression

| SIZEOF ’(’ type_name ’)’

| ALIGNOF ’(’ type_name ’)’

;

unary_operator

: ’&’

| ’*’

| ’+’

| ’-’

| ’~’

| ’!’

;

cast_expression

: ’(’ type_name ’)’ cast_expression

| ’(’ IDENTIFIER ’*’ ’)’ cast_expression

| ’(’ IDENTIFIER ’)’ cast_expression

| unary_expression

;

multiplicative_expression

: cast_expression

| multiplicative_expression ’*’ cast_expression

| multiplicative_expression ’*’ init_declarator

| multiplicative_expression ’/’ cast_expression

| multiplicative_expression ’%’ cast_expression

;

APPENDIX 50

additive_expression

: multiplicative_expression

| additive_expression ’+’ multiplicative_expression

| additive_expression ’-’ multiplicative_expression

;

shift_expression

: additive_expression

| shift_expression LEFT_OP additive_expression

| shift_expression RIGHT_OP additive_expression

;

relational_expression

: shift_expression

| relational_expression ’<’ shift_expression

| relational_expression ’>’ shift_expression

| relational_expression LE_OP shift_expression

| relational_expression GE_OP shift_expression

;

equality_expression

: relational_expression

| equality_expression EQ_OP relational_expression

| equality_expression NE_OP relational_expression

;

and_expression

: equality_expression

| and_expression ’&’ equality_expression

;

exclusive_or_expression

: and_expression

| exclusive_or_expression ’^’ and_expression

;

inclusive_or_expression

: exclusive_or_expression

| inclusive_or_expression ’|’ exclusive_or_expression

APPENDIX 51

;

logical_and_expression

: inclusive_or_expression

| logical_and_expression AND_OP inclusive_or_expression

;

logical_or_expression

: logical_and_expression

| logical_or_expression OR_OP logical_and_expression

;

conditional_expression

: logical_or_expression

| logical_or_expression ’?’ expression ’:’ conditional_expression

;

assignment_expression

: conditional_expression

| unary_expression assignment_operator assignment_expression

;

assignment_operator

: ’=’

| MUL_ASSIGN

| DIV_ASSIGN

| MOD_ASSIGN

| ADD_ASSIGN

| SUB_ASSIGN

| LEFT_ASSIGN

| RIGHT_ASSIGN

| AND_ASSIGN

| XOR_ASSIGN

| OR_ASSIGN

;

expression

: assignment_expression

| expression ’,’ assignment_expression

;

APPENDIX 52

constant_expression

: conditional_expression

;

declaration

: EXTENSION declaration

|declaration_specifiers ’;’

| declaration_specifiers init_declarator_list ’;’

| ASM

;

declaration_specifiers

: storage_class_specifier

| storage_class_specifier declaration_specifiers

| function_specifier

| type_qualifier

| type_qualifier declaration_specifiers

| type_specifier

| type_modifiers_list

| type_modifiers_list defined_type_specifier

| typeof_function

;

typeof_function

: TYPEOF ’(’ parameter_declaration ’)’

| TYPEOF ’(’ expression ’)’

;

specifier_qualifier_list

: type_specifier

| type_modifiers_list

| type_modifiers_list defined_type_specifier

| type_qualifier specifier_qualifier_list

| type_qualifier

;

type_modifiers_list

APPENDIX 53

: type_modifier

| type_modifier type_modifiers_list

| type_modifier type_qualifier

| type_modifier function_specifier

| type_modifier storage_class_specifier

;

type_modifier

: SHORT

| LONG

| SIGNED

| UNSIGNED

;

type_specifier

: VOID

| CHAR

| SHORT

| INT

| LONG

| FLOAT

| DOUBLE

| SIGNED

| UNSIGNED

| BOOL

| COMPLEX

| IMAGINARY

| struct_or_union_specifier

| enum_specifier

| IDENTIFIER

| type_specifier function_specifier

;

defined_type_specifier

: VOID

| CHAR

| SHORT

| INT

| LONG

APPENDIX 54

| FLOAT

| DOUBLE

| SIGNED

| UNSIGNED

| BOOL

| COMPLEX

;

init_declarator_list

: init_declarator

| init_declarator_list ’,’ init_declarator

;

init_declarator

: declarator

| declarator ’=’ initializer

;

storage_class_specifier

: TYPEDEF

| EXTERN

| STATIC

| AUTO

| REGISTER

;

struct_or_union_specifier

: struct_or_union_declaration

| struct_or_union_specifier attribute_function

;

struct_or_union_declaration

: struct_or_union IDENTIFIER ’{’ struct_declaration_list ’}’

| struct_or_union ’{’ struct_declaration_list ’}’

| struct_or_union ’{’ ’}’

| struct_or_union IDENTIFIER

| struct_or_union IDENTIFIER ’{’ ’}’

;

APPENDIX 55

struct_or_union

: STRUCT

| UNION

;

struct_declaration_list

: struct_declaration

| struct_declaration_list struct_declaration

;

struct_declaration

: specifier_qualifier_list struct_declarator_list ’;’

| specifier_qualifier_list ’;’

;

struct_declarator_list

: struct_declarator

| struct_declarator_list ’,’ struct_declarator

;

struct_declarator

: declarator

| ’:’ constant_expression

| declarator ’:’ constant_expression

;

enum_specifier

: ENUM ’{’ enumerator_list ’}’

| ENUM IDENTIFIER ’{’ enumerator_list ’}’

| ENUM ’{’ enumerator_list ’,’ ’}’ {

| ENUM IDENTIFIER ’{’ enumerator_list ’,’ ’}’

| ENUM IDENTIFIER

;

enumerator_list

: enumerator

| enumerator_list ’,’ enumerator

;

APPENDIX 56

enumerator

: IDENTIFIER

| IDENTIFIER ’=’ constant_expression

;

type_qualifier

: CONST

| RESTRICT

| VOLATILE

;

function_specifier

: INLINE

| attribute_function

;

declarator

: pointer direct_declarator

| direct_declarator

;

attribute_function

: ATTRIBUTE ’(’ expression ’)’

| ATTRIBUTE ’(’ ’)’

;

direct_declarator

: IDENTIFIER

| ’(’ declarator ’)’

| direct_declarator ’[’ type_qualifier_list assignment_expression ’]’

| direct_declarator ’[’ type_qualifier_list ’]’

| direct_declarator ’[’ assignment_expression ’]’

| direct_declarator ’[’ STATIC type_qualifier_list assignment_expression ’]’

| direct_declarator ’[’ type_qualifier_list STATIC assignment_expression ’]’

| direct_declarator ’[’ type_qualifier_list ’*’ ’]’

| direct_declarator ’[’ ’*’ ’]’

| direct_declarator ’[’ ’]’

| direct_declarator ’(’ parameter_type_list ’)’

APPENDIX 57

| direct_declarator ’(’ identifier_list ’)’

| direct_declarator ’(’ ’)’

;

pointer

: ’*’

| ’*’ type_qualifier_list

| ’*’ pointer

| ’*’ type_qualifier_list pointer

;

type_qualifier_list

: type_qualifier

| type_qualifier_list type_qualifier

;

parameter_type_list

: parameter_list

| parameter_list ’,’ ELLIPSIS

;

parameter_list

: parameter_declaration

| ’(’ parameter_list ’)’

| parameter_list ’,’ parameter_declaration

;

parameter_declaration

: declaration_specifiers declarator

| declaration_specifiers abstract_declarator

| declaration_specifiers

;

identifier_list

: IDENTIFIER

| identifier_list ’,’ IDENTIFIER

;

APPENDIX 58

type_name

: specifier_qualifier_list

| specifier_qualifier_list abstract_declarator

;

abstract_declarator

: pointer

| direct_abstract_declarator

| pointer direct_abstract_declarator

;

direct_abstract_declarator

: ’(’ abstract_declarator ’)’

| ’[’ ’]’

| ’[’ assignment_expression ’]’

| direct_abstract_declarator ’[’ ’]’

| direct_abstract_declarator ’[’ assignment_expression ’]’

| ’[’ ’*’ ’]’

| direct_abstract_declarator ’[’ ’*’ ’]’

| ’(’ ’)’

| ’(’ parameter_type_list ’)’

| direct_abstract_declarator ’(’ ’)’

| direct_abstract_declarator ’(’ parameter_type_list ’)’

;

initializer

: assignment_expression

| IDENTIFIER ’:’ assignment_expression

| ’{’ initializer_list ’}’

| ’{’ initializer_list ’,’ ’}’

| ’{’ ’}’

| ’(’ initializer ’)’

;

initializer_list

: initializer

| designation initializer

| initializer_list ’,’ initializer

| initializer_list ’,’ designation initializer

APPENDIX 59

;

designation

: designator_list ’=’

;

designator_list

: designator

| designator_list designator

;

designator

: ’[’ constant_expression ’]’

| ’.’ IDENTIFIER

;

statement

: labeled_statement

| compound_statement

| expression_statement

| selection_statement

| iteration_statement

| jump_statement

;

labeled_statement

: IDENTIFIER ’:’ statement

| CASE constant_expression ’:’ statement

| DEFAULT ’:’ statement

;

compound_statement

: ’{’ ’}’

| ’{’ block_item_list ’}’

;

block_item_list

: block_item

| block_item_list block_item

APPENDIX 60

;

block_item

: declaration

| statement

;

expression_statement

: ’;’

| expression ’;’

;

selection_statement

: IF ’(’ expression ’)’ statement

| IF ’(’ expression ’)’ statement ELSE statement

| SWITCH ’(’ expression ’)’ statement

;

iteration_statement

: WHILE ’(’ expression ’)’ statement

| DO statement WHILE ’(’ expression ’)’ ’;’

| FOR ’(’ expression_statement expression_statement ’)’ statement

| FOR ’(’ expression_statement expression_statement expression ’)’ statement

| FOR ’(’ declaration expression_statement ’)’ statement

| FOR ’(’ declaration expression_statement expression ’)’ statement

;

jump_statement

: GOTO IDENTIFIER ’;’

| CONTINUE ’;’

| BREAK ’;’

| RETURN ’;’

| RETURN expression ’;’

;

program

: translation_unit

translation_unit

APPENDIX 61

: external_declaration

| external_declaration translation_unit

;

external_declaration

: function_definition

| declaration

;

function_definition

: declaration_specifiers declarator declaration_list compound_statement

| declaration_specifiers declarator compound_statement

;

declaration_list

: declaration

| declaration_list declaration

;

	Bucknell University
	Bucknell Digital Commons
	2013

	Hoisting C Structures Into Clay In Device Drivers
	Lianne Lairmore
	Recommended Citation

	tmp.1397147046.pdf.YyO5D

