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ABSTRACT

Currently, the Specification for Aluminum Structures (Aluminum Association,
2010) shows thin-walled aluminum plate sections with radii greater than eight inches
have a lower compressive strength capacity than a flat plate with the same width and
thickness. This inconsistency with intuition, which suggests any degree of folding a plate
should increase its elastic buckling strength, inspired this study. A wide range of
curvatures are studied—from a nearly flat plate to semi-circular. To quantify the
curvature, a single non-dimensional parameter is used to represent all combinations of
width, thickness and radius. Using the finite strip method (CU-FSM), elastic local
buckling stresses are investigated. Using the ratio of stress values of curved plates
compared to flat plates of the same size, equivalent plate-buckling coefficients are
calculated. Using this data, nonlinear regression analyses are performed to develop
closed form equations for five different edge support conditions. These equations can be
used to calculate the elastic critical buckling stress for any curved aluminum section
when the geometric properties (width, thickness, and radius) and the material properties
(elastic modulus and Poisson’s ratio) are known. This procedure is illustrated in
examples, each showing the applicability of the derived equations to geometries other
than those investigated in this study and also providing comparisons with theoretically

exact numerical analysis results.



1. INTRODUCTION

1.1 Objective

In structural engineering, local buckling is an important failure mode to be
considered in the design of a structural member subject to compression. Local buckling
is identified by a portion of a structural shape (typically a web or flange) deflecting over a
short region. The effects of local buckling are more severe with larger width-to-thickness
ratios (b/t). Figure 1 illustrates local buckling and the scale of its effects along a structural
member. In this case, the flange of an I-shape buckled after being subject to a

compressive force.

Loaded to failure
by local buckling

Figure 1. Local buckling of a column flange (Kissell, 1995)



Curved elements in extruded aluminum shapes are significantly more common
than curved elements in steel due to the ease of fabrication. Curved aluminum sections
can be seen in applications such as mullions and facade suspension systems (Figure 2).
Therefore, it is important to understand the local buckling behavior of curved elements

subjected to uniform compressive loads.

Figure 2. Extruded aluminum shapes used as connectors (Extrusion, 2007).

The current aluminum specification predicts that sections with a radius greater
than eight inches will have a lower strength capacity than a flat plate, which is
inconsistent with intuition (Aluminum Association, 2010). In addition to investigating
this inconsistency, this study serves to find a simple equation for the elastic critical
buckling stress of an aluminum thin plate with a defined width, thickness and radius

when subject to uniform compression over a range of edge-support conditions.

1.2 Scope

This study aims to develop an expression for a equivalent plate buckling
coefficient kZ that can be used in the determination of the elastic plate buckling stress o2

in curved cross-sections. To do this, multiple degrees of curvature will be evaluated at



five different edge-support conditions (Figure 3). These edge-support conditions are pin-

pin (also labeled as simply-supported), fixed-fixed, fixed-free, pin-free and pin-fixed.

Description of
edge support

Both edges simply supported

One edge simply supported,
the other fixed

Both edges fixed

One edge simply supported,
the other free

One edge fixed, the other free

k b b

L y

400 C:‘.,____. *. ,;'0
(2
Y t

542 74 =5
t
2 ¥

697 4 =
*I
0425 O—~—=—— = }
t

A i |
1277 4 =
Section A-A

Figure 3. Plate buckling coefficients k”'*¢ for each of the five edge-support conditions
considered (Ziemian, 2010)

To normalize the results for different width-to-thickness ratios and radii, the

degrees of curvature will be defined by the non-dimensional parameter Z (defined in Eq.

1), which is used in LeTran and Davaine’s study of the compressive strength of steel

curved plates (2011). This Z factor takes into account the width, thickness and radius of

an element as illustrated in Figure 4.

(Eq. 1)



Figure 4. Geometric properties of curved plate sections used to calculate the curvature
parameter Z

2. BACKGROUND

2.1 Theory

Local buckling of an element can occur at a lower stress than that at which a
compression member experiences flexural and/or torsional buckling. Due to the low
moment of inertia and low initial resistance to out-of-plane deformations, thin-walled
plate sections, like those often found in extruded aluminum shapes, are particularly
susceptible to local buckling (White, Gergely, and Sexsmith 1974). Figure 5 shows

examples of curved elements within structural shapes.



Figure 5. Sample of aluminum curved shapes as they appear within structural shapes
(Kissell, 1995)

The elastic critical stress o, of a flat plate is dependent on the width-to-thickness

ratio, b/t, and longitudinal edge-support conditions according to

T2E
o = k—TE (Eq. 2
12(1—v2)(?)

where k is the plate buckling coefficient (Figure 3), E is the elastic modulus of the

material, and v is Poisson’s ratio.



Compressive
,;;/ force

=

A

4
Transverse edge

Figure 6. Plate element subject to uniform compression (Kissell, 1995)

2.2 History

2.2.1 Literature Survey

LeTran and Davaine explore local buckling of curved steel plates in their paper,
“Stability of curved panels under uniform axial compression” (2011). This study focuses
on large scale applications, like steel bridges. The literature survey presented in LeTran
and Davaine’s paper is comprehensive and current. Only published one year prior,
LeTran and Davaine’s present information gathered historically and currently on curved
plate behavior in steel bridges. It also indicates that there are not many studies on the
buckling theory of curved panels, especially compared to those on flat plate buckling or
cylindrical shell buckling.

Research into the behavior of curved aluminum plates has not been extensively

explored. Although the Specification for Aluminum Structures indicates an



inconsistency between flat and curved plates, no work was found to indicate further
investigation into aluminum curved plate behavior. This study aims to apply the
knowledge from LeTran and Davaine’s paper on curved plate behavior in steel to similar

behavior in aluminum.

2.2.2 Prior Work

In “Stability of curved panels under uniform axial compression,” LeTran and
Davaine (2011) investigated curved steel plates using extensive finite element studies that
employ shell elements. The local buckling behavior did indeed depend on curvature,
width-to-thickness ratio, and initial imperfections. However, only simple supports
applied on four edges were considered.

Four primary equations (seen in Table 1) are studied by LeTran and Davaine and
document the evolution of the understanding of curved plate behavior to include edge-
support conditions and developments in finite element modeling software (2011). These
four equations calculate a buckling coefficient kZ that includes curvature effects. The
critical elastic buckling stress with curvature considered g would then take the form

cZ = kiog (Eq. 3)

where o¢ is the elastic critical stress as defined above in Eg. 2 with k = 1.
Buckling coefficients for the simply supported edge-support condition as proposed by
Redshaw, Timoshenko, Stowell, and Domb and Leigh are investigated. Redshaw and
Stowell use similar forms to their equations, whereas Timoshenko makes an assumption

on the form of the displacements and Domb & Leigh’s equation is calibrated using a



curve fitting method (LeTran & Davaine, 2011). Stowell’s is the only equation to

account for different edge-support conditions.

Table 1. Buckling coefficient formulas for curved panels (LeTran & Davaine, 2011)

Author (Year) Expression for buckling coefficient, kZ
12(1 —v?
Redshaw (1933) 2( 1+ J 1+ 20— 0,
A
4120 if 7< 2n’
— l ———
m /301 =2
Timoshenko (1961) (1=v%
w3, =,
— l —_—
m? J3(1 —v2)
jPlate 48(1 — v?)
Stowell (1943) 5 1+ (1+ TZZ
mt (k™)

3
102 ¢i(logZ,)!  1<Z <2315

Domb and Leigh =0 ;
(2001) c(Z) 23.15 < Z <200

Where Z, = Z(1 —v2), ¢y = 0.6021, ¢; = 0.005377, ¢, =
0.192495, c; = 0.00267, c = .4323,and d = .9748




3. DISCUSSION

3.1 Software

The elastic buckling behavior of thin-walled members can be modeled and
analyzed through the use of CU-FSM (Schafer, 2006). CU-FSM employs the finite strip
method—a specialized form of the finite element method—to find the buckling curve
(buckling stress versus wave-length) of a particular cross section. Degrees of freedom are
defined at each node, enabling the user to model different edge-support conditions by
changing the restraint condition at the edge end nodes. The minima of the buckling
curves provide the half-wavelength and load factor for a given buckling mode. Since
local buckling is the focus of this study, the buckling mode at the shortest half-
wavelength is identified and used in subsequent analyses. The stress distribution is an
input parameter in CU-FSM and, when multiplied by the resulting load factor at the
minimum of interest, the buckling stress can be determined. The methodology within
CU-FSM mirrors that of standard matrix methods of structural analysis. Through the
deflected shape images and the buckling curves produced, CU-FSM aids in the

understanding of cross-sectional stability of structural members (Schafer, 2006).

3.2 Inputs and Assumptions

To create the input geometries for CU-FSM, a constant width-to-thickness ratio,

b/t, is maintained while the radius, R, is varied. Each of the thirty-two elements used to
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model the cross-section geometry is subject to a uniform compressive stress of 1 ksi,
resulting in an applied load ratio equivalent to the elastic critical buckling stress (in ksi).
In this analysis, initial imperfections are ignored. Inputs variables include material
properties, such as elastic modulus (E=10,100 ksi), Poisson’s ratio (v=0.33) and shear
modulus (G=3,797 ksi), as well as the coordinates of each node and properties of the
elements, including thickness and node connectivity (Figure 7). Degrees of freedom are
specified at each node, with the conditions at the end nodes (in this case, 1 and 33)
representing the edge-support conditions of the plate. A longitudinal restraint is denoted
as a zero in the xdof, ydof, or zdof columns where x-, y-, and z- axes are labeled above in

Figure 4. A rotational restraint is denoted as a zero in the gdof column.

- 7 - — E
B CUFSM v3.12 — Finite Sirip Pre-Processor — General input (0 . . oo
Load | Save gt | Propartes | Ansiyze | Post | :!R| Print | Copy | Resst | 7 x|
| ] ]
iaterial Properties 7
et | Ex | Ey | ve | vy | Gy (a) Sl
100 10100 00 10100.00 0.33 0.33 3757 00 :‘
- Flot Options:
= 7 g
Nodes i |
noded | x | 2 | ot | 2daf | ydof | gdof | stres (b) — I~ cmis
E— =
2524902311111.00 2] | et
262790301111100
273100.3611111.00 [ stress mag
263400.4411111.00 :
2937005211111 [ stress dist
3040006111111.00
3143007111111.00 I coontnates
3245908211111.00 _ :
334£804311111.00 ' constrants
[ speings
= T
Slements 7  origh
e | nocied | node | trickness | mate C
|
2525 26.0.100000 100 B CIZ Template
26 26 27 0.100000 100 r
27 27 260100000 100 Doutle Eiem
26 26 29 0.100000 100 e
292930 0.100000 100 Dbvide Eiem
30 30 31 0.100000 100
31 31 320100000 100 Delete Biom
32 32 33.0.100000 100 —
- Trans. Node
—engths 7 | [.002003.004.005006.007.006.009.0010.0011.0012.00 13,00 14.00 1£.00 20,00 30,00 40,00 50.00 60.0070.00 100.00 200,00 300.00 700,60 800,00 900,00 1000.00 |
Springs 7 General Constraints Master.Siave | 7 cFSM Basis for cF S =
nodef | DOF(x=1 222 y=3 thetoed) | kspring | kflag nodede | DOFe | coetf. | nodefk | DOFK " Matursl modks
. ] it & Axalmodss  [fully crthogonal O modes -
Hi = [~ Global p
I Dist P
I Local 7]
| =] I~ Cther ]

Figure 7. Input screen in CU-FSM with a sample section with Z=20 with (a) Material
Properties, (b) Node information, (c) Element information and nodes 1 and 33 labeled.
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3.3 Methodology

CU-FSM is used to analyze curved plate sections for a series of twenty curvature
parameter (Z) values for each of five edge-support conditions (pin-pin, fixed-free, fixed-
fixed, pin-fixed and pin-free). To find the critical elastic buckling stress of interest, the
entire buckling stress curve is reviewed in order to target the correct minimum, as more
than one may exist (as in Figure 8). The input wavelength range (“Lengths” seen in
Figure 7) can be tailored to include the minimum of interest with a narrower range and
smaller increment to obtain more accurate wavelengths and load factors. The critical
buckling stress is calculated by multiplying the applied stress by the load factor. In this
study, the load factor is equal to the critical buckling stress given that the applied stress is

1 ksi. Nearly flat plate behavior is modeled by sections with a curvature parameter of

Z=0.01. Calculating the critical stress ratio afr/afrl“te (Eq. 4) eliminates the need to

compute the elastic buckling stress when determining the equivalent curved plate

buckling coefficient from CU-FSM results.

Z
ka — ki)late Ocr (Eq 4)

plate
Ocr

Eliminating the elastic buckling stress removes the dependency of the width-to-thickness
ratio when generating general equations, thereby allowing for the use of the Z parameter

instead.



[B) CUFSM v3.12 - Finite Strp Post-Proces:

Load | Save [ Ingat Properties Anatyze Post [|F] Print | Copry | Rezet |?|I]

Plat Shope

seperste window _[;n-plane mode =]
20 30 [ Unded Scale 1
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> 7
1
file . =
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1 » CUFSM results

Mi
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o) k) T T T
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supplemertal participabion plot | mny 0 halt-wavelangth e [~ 000

Figure 8. Screenshot of the CU-FSM results including buckled shape, half-wavelength
and load factors

Before proceeding with the evaluation of different edge-support conditions, the

fixed-free support condition was used to ensure the ratio of curved plate critical stress to

flat plate critical stress (oZ. /gl

) remained constant over a range of b/t and
corresponding Z-values. Analyses at each of the b/t ratios listed in Table 2 were
investigated, the results of which are seen in Figure 9. This plot shows the ratio of
critical stresses as determined from CU-FSM, remaining constant with different b/t ratios.

Therefore, only one b/t ratio and a range of radii need be analyzed at each of the

subsequent edge-support conditions.
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Table 2. Geometries used to test different b/t ratios in CU-FSM

Width-to- Width, b | Thickness, t
thickness ratio, b/t | (inches) (inches)
100 10 0.1
60 6 0.1
20 10 0.5
16 -
14 -
12 -
2
S 10
£
(%]
3
£ 6 - ) e b /t=100
© e === b/t=20
4 1 /
/ b/t=60
24/
/
0 T T T T 1
0 50 100 150 200 250

Curvature Parameter, Z

Figure 9. Critical stress ratios for fixed-free edge-support condition analyzed with three
b/t ratios

To test the sensitivity of CU-FSM results to the orientation of the plate, multiple
cases were then run with the plate in a horizontal plane (b along the x-axis in the flat plate
condition) and compared to the results when the plate was oriented vertically (b along the
z-axis in the flat plate condition). There was no difference between the results from the
two cases with fixed-free edge-support conditions, so only one orientation (parallel to the
horizontal plane) is analyzed in this study.

The range of curvature parameters tested was from a flat plate condition (Z=0.01)

to a semi-circular section (Z=314) as indicated in Figure 10.
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Figure 10. Range of curvature parameters tested

CU-FSM data points at each edge-support condition case are plotted against the
four equations listed in Table 1. The numerical results aligned best with Redshaw’s
equation for the buckling coefficient in the pin-pin edge-support condition case (Figure
11), but this equation does not account for different edge-support conditions. As shown
in Figure 12 for the fixed-fixed edge-support condition, the analysis results from CU-
FSM align best with Stowell’s curve for low Z-values, but at higher curvature parameters,

however, the analysis results trend towards Redshaw’s curve.
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Figure 11.
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Curvature Paran?eter, Y4

Figure 12. Previously considered equations (Table 1) for buckling coefficients verses
CU-FSM results for the fixed-fixed edge-support condition
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Based on the form of Stowell’s and Redshaw’s equations and the corresponding
shape of the CU-FSM results, an equation of the form
kZ = A(1+ 1+ BZ?) (Eq. 5)
is fit to the numerical data using a nonlinear regression analysis, in which A and B are
the unknown coefficients.
At low curvature parameters (Z approximately equal to 0.0), the plate in

consideration will behave like a flat plate and therefore, the coefficient A becomes

kplate

A=k (Eq. 6)

2

where kP' is the flat plate buckling coefficient for the given edge-support condition
(see Figure 3). Using the collection of Z and corresponding kZ data, the parameter B is
determined through the nlinfit function in MATLAB for each of the five edge-support
conditions. The nlinfit function produces a vector of parameters and the residuals when
provided the independent and dependent variable arrays (Z, kZ). In other words, the
function returns the fitted responses and an initial guess of the parameters. See Appendix
A for the function files used in conjunction with the nlinfit function for each edge-support
condition.

The coefficient of determination (R?) is calculated for each case to show how well
the regression results matched the CU-FSM data. These values are calculated according

to

Z,CU-FSM ZCU-FSM
E(kc_i _kC )2

Li=9)?
R*=1- S (vi—f )2 = 1= Z(kf’,iCU—FSM_ECZ,MATLAB)Z (Eq.7)
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where y; is the calculated kZ from the CU-FSM data at a specific value of Z, y is the
average of CU-FSM buckling coefficients for all Z-values, and f; is the buckling
coefficient as calculated from Eq. 5 for each of the corresponding Z-values.

Given the buckling coefficient values for each curvature parameter, the critical

elastic buckling stress ratio can then be used to normalize the CU-FSM data for each

edge-support condition. The critical buckling stress ratio o2 /a2'*® can be calculated by

Z

Z
Ocr — k&r (Eq 8)

plate kplate
cr cr

where the flat plate is approximated by the results from Z = 0.01. Providing the data in
terms of normalized ratios generates curves for both the nonlinear regression results and
CU-FSM results with an intercept at one, allowing for a comparison across all edge-

support conditions.

4. MODELS AND RESULTS

4.1 Edge-support Conditions

411 Pin-Pin

The simply supported edge-support conditions are restrained in the x- and z-
directions at both end nodes. Buckling stresses are found through CU-FSM analysis at
each Z-value. Using the critical buckling stress ratio and Eq. 4, the curved plate buckling
coefficient, kZ, is calculated for each of the twenty selected curvature parameters. When

plotted against Z, the buckling coefficients behaved according to Eq. 9
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plate

kZ ="—(1+V1+BZ?) (Eq. 9)

with a k?'**® of 4.0 (Figure 3). Based on this observation, the nlinfit function in
MATLAB is used to determine the value of the parameter, B. Providing the CU-FSM
results for Z and kZ as input and using an initial guess at B, the nonlinear regression
analysis yielded a value of B=0.109. This value is similar to the equivalent parameters in

Redshaw’s and Stowell’s equations, respectfully

12(1 —v?)
BRedShaW = T = 0.1098
B _48a-vh 0.1097
Stowell — n4(kflate)2 = V.

which is expected because these equations were originally developed for the pin-pin
edge-support condition model (LeTran & Davaine, 2011).

Figure 13 shows the buckled shape of sections with three different curvature
parameters. A three-dimensional view is also given to aid in both the understanding of
the behavior of the whole plate when subject to a uniform compressive stress and the

visualization of other results shown.
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Buckled shape for CUFSM results
half-wavelength =26 load factor = 31.5973 mode = 1

Buckled shape for CUFSM results

halfwavelength = 1.5 load factor = 93.2204 mode =1
c)
Z=314
R=3.181n

Buckled shape for CUFSM results
halfwavelength = 1 load factor = 196.4419 maode =1

d)
Z =150
R=6.67in
3D view

Buckled shape for CUFSM results
halfwavelength = 1.5 load factor = 93.2204 mode = 1

Figure 13. Buckled shapes for the pin-pin condition at a range of curvature parameters
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Table 3 includes the critical buckling stress and wavelength values obtained
through CU-FSM analysis, the buckling coefficients as calculated from Eq. 4, and the
values for the buckling coefficient from the nonlinear regression analysis performed
using MATLAB. The parameter, B, used in Eq. 9 is shown along with the coefficient of
determination (R%) comparing the CU-FSM results to the generated equation.

Table 3.CU-FSM results with output from the nonlinear regression for the pin-pin edge-
support condition case

Bpinpin=_ 0.109 R’= 0.9998
Curvature Critical Half Buckling Coefficient | Buckling Coefficient
Parameter, | Buckling Stress | Wavelength from CU-FSM, from MATLAB,

Z (Ksi), O, cu-Fsm (in) kZcu_rsm kZ marrap
0.01 3.7288 10 4.000 4.000
0.5 3.8106 9.8 4.088 4.027

1 3.7927 9.9 4.069 4.106

2 4.2167 8.9 4.523 4.397

5 5.1463 7.6 5.521 5.860
10 8.0892 55 8.677 8.899
20 13.562 4.1 14.55 15.36
30 19.473 3.3 20.89 21.91
34.9 22.5 3.1 24.14 25.13
35 22.5 3.1 24.14 25.20
50 31.5973 2.6 33.90 35.08
100 62.215 1.8 66.74 68.06
120 74.9218 1.6 80.37 81.26
135 83.9449 1.5 90.05 91.16
150 93.2204 15 100.0 101.1
157 97.6299 1.4 104.7 105.7
200 124.7926 1.3 133.9 134.1
250 156.3662 1.1 167.7 167.1
300 188.0642 1 201.7 200.1
314 196.4419 1 210.2 209.3

The coefficient of determination R? is close to unity indicating a strong correlation
between the CU-FSM data and the derived equation. For the pin-pin edge-support

condition case, this generated equation is
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kZ =2(1+0.10922) (Eq. 10)

c,pin—pin
and the goodness of fit can be observed in Figure 14. Note the intercept is at k=4, which

is the flat plate buckling coefficient for this edge-support condition.
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Curvature Parameter, Z
Figure 14. Plot of CU-FSM data points and the nonlinear regression model from

MATLAB for the pin-pin edge-support conditions with the inset showing the intercept at
the flat plate buckling coefficient.

Figure 15 shows a plot of the critical buckling stress ratio versus the curvature
parameter. It can be observed that in all cases as the curvature parameter increases, the

critical buckling stress ratio increases as well.
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Figure 15. Critical buckling stress ratio for the pin-pin condition with inset showing the
intercept at 1

4.1.2 Pin-Fixed

The pin-fixed edge-support conditions are restrained in the x- and z-directions
on both edges with a rotational restrained on one edge. Elastic buckling stresses are
found through CU-FSM analysis at each Z-value. Using the critical buckling stress ratio
and Eq. 4, the curved plate buckling coefficient kZ is calculated for each curvature
parameter. When plotted against Z, the buckling coefficients behaved according to Eq.

11

kglate

kE=-— (1+vV1+BZ?) (Eq. 11)

with kP'**¢=5.42 (Figure 3). Based on this observation, the nlinfit function in MATLAB

Is used to determine the value of the parameter, B. With input including the CU-FSM
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results for Z and kZ and an initial guess at B, the nonlinear regression analysis yielded a
value of B=0.0587. This value is significantly different when compared to the equivalent

parameters in Redshaw’s and Stowell’s equations of

12(1 —v?)
Bredashaw = Tt = 0.1098
B _ 480V 60149
Stowell — 7T4(k?late)2 = V.

This indicates an alternative parameter is needed, thereby validating the purpose of this
study and that by LeTran and Davaine (2011).

Figure 16 shows the buckled shape of sections with three different curvature
parameters and a three-dimensional view. Table 4 includes the numerical results for this

edge-support condition.



24

Buckled shape for pinfixedS0. mat
half-wavelength = 26 load factor = 31,6976 mode = 1

Buckled shape for pinfixed150.mat

half-wavelength = 1.5 load factor = 93.2204 mode =1
c)
Z=314
R=3.18in

Buckled shape for CUFSM results
half-wavelength = 1 load factor = 196.4421 mode =1

d)
Z =150
R=6.67in
3D view

Buckled shape for pinfixed150.mat
half-wavelength = 1.5 load factor = 93.2204 mode = 1

Figure 16. Buckled shapes for the pin-fixed condition at a range of curvature parameters
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Table 4. CU-FSM results with output from the nonlinear regression for the pin-fixed
edge-support condition case

Bpin-fixes= 0.0587 R’= 0.9997
Curvature Critical Half Buckling Coefficient | Buckling Coefficient
Parameter, | Buckling Stress | Wavelength from CU-FSM, from MATLAB,

Z (ksi), Ger, cu-rsm (in) ke cy_psm kZ marrap
0.01 5.0432 8 5.410 5.420
0.5 5.0727 7.9 5.442 5.440

1 5.11 7.9 5.482 5.498

2 5.2406 7.7 5.622 5.721

5 6.1209 6.9 6.566 6.967
10 8.3569 5.9 8.965 9.813
20 13.8694 4.1 14.878 16.118
30 19.5937 3.4 21.019 22.593
34.9 22.5221 3.1 24.160 25.784
35 22.6863 3.1 24.336 25.850
50 31.6976 2.6 33.952 35.651
100 62.3161 1.8 66.848 68.424
120 74.7024 1.6 80.135 81.546
135 84.4738 15 90.617 91.390
150 93.2204 15 99.972 101.234
157 97.7094 14 104.815 105.829
200 124.6699 1.3 133.736 134.054
250 156.2851 1.1 167.650 166.878
300 187.2006 1.3 200.814 199.703
314 196.4421 1 209.197 208.894

Once again, the coefficient of determination is close to unity indicating a strong
correlation between the CU-FSM data and the derived equation. For the fixed-pin edge-

support condition case, this generated equation is

kZ rixed—pin = S'Zﬁ(l ++/0.058722) (Eq. 12)
and the goodness of fit can be observed in Figure 17. Note the intercept is at k,=5.42,
which is the flat plate buckling coefficient for this edge-support condition. As shown in

Figure 18, an increase in the curvature parameter results in an increase in the critical

buckling stress ratio.
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Figure 17. Plot of CU-FSM data points and the nonlinear regression model from
MATLAB for the fixed-pin edge-support conditions with the inset showing the intercept
at the flat plate buckling coefficient
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Figure 18. Critical buckling stress ratio for the fixed-pin condition with inset showing the
intercept at 1
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4.1.3 Fixed-Fixed

The fixed-fixed edge-support conditions are restrained longitudinally in the x-
and z-directions and rotationally on both edges. Using the same approach as described
above, the equation derived for computing the curved plate buckling coefficient for the

fixed-fixed case is
6.97
ka,fixed—fixed = > (1 + V0.034922) (Eq 13)

with 6.97 equaling the flat plate coefficient k?'**® (Figure 3). The factor 0.0349 is again

different from that obtained by Redshaw’s and Stowell’s equations

12(1 —v?)
BRedShaW = T = 0.1098
B _ 40— _ 0.00904
Stowell — n4(k?late)2 = VU.

Figure 19 shows the buckling modes for three Z-values and Table 5 provides
critical buckling stresses, wavelengths, and the values for the buckling coefficient from

the nonlinear regression analysis performed using MATLAB.
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Buckled shape for CUFSM results
halfwavelength = 26 load factor = 31.8309 mode = 1

b)
Z =150
R=6.67in

Buckled shape for CUFSM results

half-wavelength = 1.5 load factor = 93.2205 mode = 1
c)
Z=314
R=3.18in
Buckled shape for CUFSM results
halfwavelength = 1 load factor = 196.4423 mode = 1
d)

Z =150

R=6.67in

3D view

Buckled shape for fixedfixed150. mat
half-wavelength = 1.5 load factor = 932205 mode =1

Figure 19. Buckled shapes for the fixed-fixed condition at a range of curvature
parameters
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Table 5. CU-FSM results with output from the nonlinear regression for the fixed-fixed
edge-support condition case

2_

Bfixed_fixed: 0.0349 R°= 0.9995
Curvature Critical Half Buckling Coefficient | Buckling Coefficient
Parameter, | Buckling Stress | Wavelength from CU-FSM, from MATLAB,

Z (ksi), Ger, cu-rsm (in) ke cy_psm kZ marrap
0.01 6.4984 6.6 6.970 6.970
0.5 6.5256 6.6 6.999 6.985

1 6.5445 6.6 7.019 7.030

2 6.6192 6.5 7.100 7.205

5 7.2624 6.1 7.789 8.254
10 9.0214 5.3 9.676 10.870
20 14.2523 4.1 15.287 16.964
30 19.8264 3.4 21.265 23.325
34.9 22.7002 3.1 24.348 26.472
35 22.883 3.1 24.544 26.537
50 31.8309 2.6 34.040 36.224
100 62.3228 1.8 66.846 68.683
120 74.7301 1.6 80.153 81.689
135 84.512 15 90.645 91.446
150 93.2205 15 99.963 101.205
157 97.7152 1.4 104.807 105.760
200 124.6852 1.3 133.734 133.742
250 156.3013 1.1 167.644 166.285
300 187.2535 1.3 200.843 198.832
314 196.4423 1 209.198 207.945

Figure 20 illustrates the goodness of fit of the derived equation and as observed in

Figure 21 an increase in the curvature parameter once again results in an increase in the

critical buckling stress ratio.
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Figure 20. Plot of CU-FSM data points and the nonlinear regression model from
MATLAB for the fixed-fixed edge-support conditions with the inset showing the
intercept at the flat plate buckling coefficient
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Figure 21. Critical buckling stress ratio for the fixed-fixed condition with inset showing
the intercept at 1




31

414 Fixed-Free

The fixed-free edge-support conditions are restrained longitudinally in the x-
and z-directions and rotationally on one edge and completely unrestrained along the other

edge. For this case, the plate buckling coefficient may be estimated from
1.277
kZ fixeafree =~ (1 +v0.0201Z2) (Eq. 14)

with the parameter B = 0.0201 being significantly different than Redshaw’s 0.1098 and
Stowell’s 0.2693. Using a similar format to the cases presented above the key results are

provided in Figures 22, 23, and 24 and Table 6.
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Buckled shape for fixedfreeS50. mat

half-wavelength = 14.8 load factor = 5.8174 mode = 1
b)
Z =150
R=6.67in

Buckled shape for CUFSM results
halfwavelength = 22.2 load factor = 13.1899 mode = 1

Buckled shape for CUFSM results
half-wavelength = 30.8 load factor = 26.2607 mode = 1

d)
Z =150
R=6.67in
3D view

Buckled shape for CUFSM results
half-wavelength = 22.2 load factor = 13.1899 mode = 1
Figure 22. Buckled shapes for the fixed-free condition at a range of curvature parameters
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Table 6. CU-FSM results with output from the nonlinear regression for the fixed-free
edge-support condition case

Bfixed-free=  0.0201 R’= 0.9952
Curvature Critical Half Buckling Coefficient | Buckling Coefficient
Parameter, | Buckling Stress | Wavelength from CU-FSM, from MATLAB,

Z (ksi), Ger, cu-rsm (in) ke cy_psm kZ marrap
0.01 1.165 16.4 1.277 1.277
0.5 1.1688 16.4 1.281 1.279

1 1.1738 16.5 1.287 1.283

2 1.1901 16.6 1.305 1.302

5 1.337 17.6 1.466 1.421
10 1.7616 20.7 1.931 1.746
20 2.9144 28.7 3.195 2.558
30 4.0771 35.1 4.469 3.428
34.9 4.6416 37.8 5.088 3.862
35 4.6601 14 5.108 3.871
50 5.8174 14.8 6.361 5.209
100 9.5329 18.9 10.449 9.713
120 10.8655 20 11.910 11.520
135 11.9208 21 13.067 12.876
150 13.1899 22.2 14.458 14.232
157 13.6911 22.6 15.007 14.865
200 16.8934 25.1 18.517 18.754
250 20.8061 27.5 22.806 23.278
300 24.9831 30.1 27.385 27.803
314 26.2607 30.8 28.785 29.070
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Figure 23. Plot of CU-FSM data points and the nonlinear regression model from
MATLAB for the fixed-free edge-support conditions with the inset showing the intercept
at the flat plate buckling coefficient
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4.1.5 Pin-Free
The pin-free edge-support conditions are restrained longitudinally in the x- and z-
directions on one edge and completely unrestrained on the other edge. With a consistent
procedure to the previous edge-support conditions, the derived plate buckling coefficient
equation is

kZ pin-free = 2 (1 + 0173722) (Eq. 15)

where the value B=0.1737 is different than the values calculated through Redshaw’s
(B=0.1098) and Stowell’s (B=2.431) equations. Following a similar format to the edge-
support conditions presented above, the results for the fin-free condition are found in

Figures 25, 26, and 26 and Table 7.
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Buckled shape for CUFSM results

half-wavelength = 16.9 load factor = 5.3421 mode =1
b)
Z =150
R =6.67in

Buckled shape for CUFSM results

half-wavelength = 27.1 load factor = 12.3737 mode = 1
c)
Z=314
R=3.18in
Buckled shape for CUFSM results
halfwavelength = 39.6 load factor = 24.7356 mode = 1
d)
Z =150
R=6.67in
3D view

Buckled shape for CUFSM results
half-wavelength = 27 1 load factor = 12.3737 mode = 1

Figure 25. Buckled shapes for the pin-free condition at a range of curvature parameters
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Table 7. CU-FSM results with output from the nonlinear regression for the pin-free edge-
support condition case

2_

Bpin-free= 0.1737 R“= 0.9911
Curvature Critical Half Buckling Coefficient | Buckling Coefficient
Parameter, | Buckling Stress | Wavelength from CU-FSM, from MATLAB,

Z (ksi), Ocr, cu-Fsm (in) kZcu_rsm kZyarLas
0.01 0.38045 345 0.425 0.425
0.5 0.38001 535 0.425 0.430

1 0.37986 731 0.424 0.443

2 0.37989 690 0.424 0.489

5 0.3798 834 0.424 0.704
10 0.38076 1097 0.425 1.123
20 0.38234 1295 0.427 1.996
30 3.9918 15.2 4.459 2.878
34.9 4.2998 15.4 4.803 3.311
35 4.2933 15.2 4.796 3.320
50 5.3421 16.9 5.946 4.646
100 8.8551 22.5 9.892 9.071
120 10.1664 24.2 11.357 10.842
135 11.1874 25.5 12.497 12.171
150 12.3737 27.1 13.823 13.499
157 12.8493 27.6 14.354 14.119
200 15.9141 31 17.778 17.927
250 19.6685 34.8 21.972 22.355
300 23.5619 38.6 26.321 26.783
314 24.7396 39.6 27.444 28.023
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Figure 26. Plot of CU-FSM data points and the nonlinear regression model from
MATLAB for the pin-free edge-support conditions with the inset showing the intercept at
the flat plate buckling coefficient
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Figure 27. Critical buckling stress ratio for the fixed-fixed condition with inset showing
the intercept at 1
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4.2 Summary of Results

In each edge-support condition case presented above, it can be observed that the
critical buckling stress ratios increase with the curvature parameter. This indicates, for
sections with the same b/t ratio, the critical buckling stress will increase as the radius of
the section decreases. Table 8 shows the calculated parameter, B, used to fit the CU-FSM

data from each edge-support condition in the form

plate
— k¢

kZ (1+ 1+ BZ2) (Eq.16)

T2
as well as the coefficient of determination, R? for each case. Note that all of the R
values are close to unity, indicating the nonlinear regression analysis yielded an equation

that accurately represents the data points generated through CU-FSM analysis.

Table 8. Summary of results of nonlinear regression analysis

Edge-support | Plate Buckling Calculated Coefficient of
Condition Coefficient, klgl“te Parameter, B | Determination, R
Pin-Pin 4.0 0.1090 0.99983
Pin-Fixed 5.42 0.0587 0.99975
Fixed-Fixed 6.97 0.0349 0.99956
Fixed-Free 1.277 0.0201 0.99528
Pin-Free 0.425 0.1737 0.99118

Figure 28 shows the buckling coefficients obtained from regression analysis for
all five edge-support conditions over a wide range of curvature Z-parameters. It can be
seen that each curve intercepts the y-axis at the plate buckling coefficient value for that

edge-support condition.
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Figure 28. Buckling coefficients from nonlinear regression analysis versus curvature

critical buckling stress ratio, aZ./a.

parameter, Z for each edge-support condition considered in this study

Figure 29 shows the relationship between the curvature parameter, Z, and the

plate tor each of the five edge-support condition cases

considered. As expected, the shape of the curves is similar to that of the ratio of buckling

coefficients provided in Figure 28. This further confirms the assumption that the critical

buckling strength ratios can also be fit with the same curve as the buckling coefficients.
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5. EXAMPLES

Two examples are presented to show the similarities between the elastic critical
buckling stresses of a curved plate as determined by CU-FSM analysis and by the use of

the equation developed in this study

_ kg}late

kZ _7(1 +V1 + BZ?) (Eq. 17)

of = kiog (Eg. 18)
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5.1Example 1

Consider a section where the thickness is t = 0.09 inches, b= 3 inches, and R= 1.5
inches with (a) pin-pin edge-support conditions, (b) pin-free edge-support conditions and

(c) fixed-fixed edge-support conditions. Figure 30 shows the shape of this section.

Figure 30. Geometry of the section used in Example 1

To use Eq. 17 and Eqg. 18, the curvature Z-parameter and elastic buckling stress

with k = 1 must be first calculated.

= 3)° = 66.67
T 15%0.09
T%E B 72(10100)

" NS 3
12(1 — v2) (?) 12(1 —.332) (E)

> = 8.39 ksi

Both of these values will be the same for each edge-support condition. The critical

buckling stresses will, however, vary with the edge-support conditions.
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(a) Pin-Pin
The derived equation gives the following critical buckling coefficient and critical

buckling stress

4
kZ = E(l +/T+0.109  (66.67)%) = 46.07

oZ = kZoz = 46.07 * 8.39 = 386.53 ksi
It should be noted that this value is the elastic critical stress and nearly 10 times the yield
strength of aluminum. Employing a CU-FSM analysis, the elastic critical buckling stress
is computed as
oZ = 372.2584 ksi
The value calculated through the generated equation is within

386.53 — 372.2584
372.2584

= 3.83%

of the CU-FSM results, indicating a low margin of error.

(b) Pin-Free
Following the same procedure as in part (a), the critical buckling coefficient and

critical buckling stress were calculated.

0.425
kZ = T(1 +/T+.1737  (66.67)%) = 6.12

of = kZoy; = 6.12 x8.39 = 51.35 ksi
The calculated elastic critical stress is greater than the yield strength of aluminum.
Through CU-FSM analysis, the elastic critical buckling stress was calculated to be

oZ = 58.1929 ksi
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resulting in a relatively low margin of error (11.8%) considering the uncertainty in

determining a minimum along the buckling curve.

(c) Fixed-Fixed
As in the previous examples, the derived values for the critical buckling

coefficient and critical buckling stress are

6.97
kZ = T(1 +/1+.0349 « (66.67)%) = 47.03

of = kZoy; = 47.03 * 8.39 = 394.58 ksi
with a critical buckling stress nearly 10 times the yield strength of aluminum. CU-FSM
analysis yields an elastic critical buckling stress of
oZ = 372.3 ksi

indicating the derived value is within 5.98% error.
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5.2 Example 2

Now evaluate a section where the thickness is t = 0.4 inches, b= 12 inches, and R=
24 inches with (a) pin-pin edge-support conditions, (b) fixed-free edge-support conditions

and (c) pin-fixed edge-support conditions. Figure 31 shows the shape of this section.

Figure 31. Geometry of the section used in Example 2

Again, to use Eqg. 17 and Eq. 18, the curvature parameter and Euler buckling

stress with k=1 must be calculated.

_ (27
T 24%04
m2E m2(10100) ,
Op = 5 = == 10.36 ksi
b 12
12(1 — v2) (?) 12(1 —. 332) (ﬂ)

These values remain the same for each edge-support condition, whereas the critical

buckling stress will vary.

(a) Pin-Pin
From the derived equation, a critical buckling coefficient and critical buckling

stress (in this case, almost triple the yield stress of aluminum) can be calculated.
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4
kZ = E(l +/T+0.109 « (15)2) = 12.10

oZ = kZop = 12.10 * 10.36 = 125.36 ksi
Comparing this value to the results of CU-FSM analysis (67 = 118.1673 ksi) the

derived equation is within

125.36 — 118.1673
118.1673

= 6.09%

of the CU-FSM results, indicating a low margin of error.

(b) Fixed-Free
Using the procedure outlined previously, the critical buckling coefficient and

critical buckling stress are

1.277
kZ = T(1 +/T+0.0201+ (15)7) = 2.14

oZ = kZop = 2.14 % 10.36 = 22.17 ksi
This elastic critical buckling stress is below the yield strength of aluminum and when
compared against the CU-FSM analysis results
of = 25.8424 ksi
there is a 14.2% difference. Based upon the variation of the R? values, this is a relatively

low margin of error between methods.
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(c) Pin-Fixed
The derived equation gives the following critical buckling coefficient and elastic

critical buckling stress

42
kZ = 57(1 +/1+.0587 « (15)2) = 12.92

0% = kZop = 12.92 + 10.36 = 133.85 ksi
where this value is approximately triple the yield stress of aluminum. A CU-FSM
analysis yields an elastic critical buckling stress of
oZ = 122.1083 ksi
The elastic critical buckling stress calculated through the derived equation is within

9.62% of the CU-FSM results, indicating a low margin of error.

6. CONCLUSION

6.1 Summary

Through a series of CU-FSM finite strip analyses, elastic critical buckling stresses
of curved aluminum plates over a variety of curvatures are presented. Starting with the
concepts covered in LeTran and Davaine’s paper concerning curved plate buckling of
steel sections, a similar methodology is developed for the determination of an expression
for curved plate buckling coefficients and, ultimately, critical buckling stresses. This
equation is developed through nonlinear regression analyses employing the nlinfit

function in MATLAB. The coefficient of determination R? is calculated to evaluate the
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goodness of fit of the function representing the data points generated through CU-FSM
analysis.

The developed equation calculates the critical buckling stress based on the plate
buckling coefficient, geometric properties, such as the curvature parameter and width-to-
thickness ratio, as well as material properties, including the modulus of elasticity and
Poisson’s ratio. The equation requires a different parameter for each edge-support
condition (pin-pin, pin-fixed, fixed-fixed, fixed-free and pin-free) to increase its

applicability.

6.2 Conclusions

For aluminum thin plate sections with a defined width, thickness and radius, a
simple equation is presented for computing the elastic critical buckling stress resulting
from the application of uniform compression over a wide range of edge-support
conditions. The critical buckling stress of an element has been determined to be ¢4 =
kZog, where kZ can be determined from a simple equation based on edge-support
conditions and a curvature parameter Z = b?/Rt. Given the width-to-thickness ratio, og
can be calculated and used to find the critical buckling stress. These expressions are
tested using examples with different geometries, each suggesting reasonable margins of
error between the CU-FSM analysis results and the equations generated from the
nonlinear regression. This method allows for a single, simple calculation for kZ instead

of running analyses for both curved and flat plate sections to compare ratios. It is
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suggested that the next edition of Aluminum Specification consider basing critical
buckling stresses on the non-dimensional Z value to avoid the strict dependency on the b/t
ratio of the section in question.

It is important to note that this study did not consider the effects of initial
imperfections and focuses on elastic critical buckling stress, thereby neglecting post-
buckling behavior which may be responsible for an increased strength capacity of some

sections.

6.3 Future Work

The effects of initial imperfections are not considered in this study and hence, the
critical stress procedure presented herein should be considered an upper limit approach
with increased similarity between the actual shape and the geometry assumed (Young,
1989). With this in mind, the logical next step to take in this research is to determine the
effects of initial imperfections on the strength of the curved sections.

This study only investigates perfect edge-support conditions. The difference
between a fixed and a pin support in practice may be difficult to differentiate, and thus

partially restrained support conditions should also be considered.
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APPENDIX

MATLAB Inputs used for Nonlinear Regression
The following command was used for each edge-support condition to calculate
the parameter value Bhat and residuals r for each case:
[Bhat,r] = nlinfit(Z, K{boundary condition]» @mdl[boundary condition], B0)
where Z is a 20x1 vector of the twenty curvatures investigated, Kregge-support condition] 1S @
20x1 vector of the twenty corresponding buckling coefficients calculated through CU-
FSM at each [edge-support condition]. The input, @mdl[edge-support condition], calls
the function shown below and returns a vector of fitted response values and BO is an
initial guess at the parameter. The MATLAB script below is generalized for the purposes
of this example, but [edge-support condition] would be replaced by the label of the edge-
support condition case considered.
function [y]=mdl[edge-support condition](b,x)
S;ék/z*(1+sqrt(1+b*x-Az)));
end

In this example, y is the curved plate buckling coefficient, k is the plate buckling

coefficient, b is the parameter and x is the curvature parameter.
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