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ABSTRACT 

 Currently, the Specification for Aluminum Structures (Aluminum Association, 

2010) shows thin-walled aluminum plate sections with radii greater than eight inches 

have a lower compressive strength capacity than a flat plate with the same width and 

thickness.  This inconsistency with intuition, which suggests any degree of folding a plate 

should increase its elastic buckling strength, inspired this study. A wide range of 

curvatures are studied—from a nearly flat plate to semi-circular.  To quantify the 

curvature, a single non-dimensional parameter is used to represent all combinations of 

width, thickness and radius. Using the finite strip method (CU-FSM), elastic local 

buckling stresses are investigated. Using the ratio of stress values of curved plates 

compared to flat plates of the same size, equivalent plate-buckling coefficients are 

calculated.  Using this data, nonlinear regression analyses are performed to develop 

closed form equations for five different edge support conditions. These equations can be 

used to calculate the elastic critical buckling stress for any curved aluminum section 

when the geometric properties (width, thickness, and radius) and the material properties 

(elastic modulus and Poisson’s ratio) are known. This procedure is illustrated in 

examples, each showing the applicability of the derived equations to geometries other 

than those investigated in this study and also providing comparisons with theoretically 

exact numerical analysis results.  
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inconsistency between flat and curved plates, no work was found to indicate further 

investigation into aluminum curved plate behavior. This study aims to apply the 

knowledge from LeTran and Davaine’s paper on curved plate behavior in steel to similar 

behavior in aluminum.   

 

2.2.2 Prior Work 

In “Stability of curved panels under uniform axial compression,” LeTran and 

Davaine (2011) investigated curved steel plates using extensive finite element studies that 

employ shell elements. The local buckling behavior did indeed depend on curvature, 

width-to-thickness ratio, and initial imperfections.  However, only simple supports 

applied on four edges were considered.   

Four primary equations (seen in Table 1) are studied by LeTran and Davaine and 

document the evolution of the understanding of curved plate behavior to include edge-

support conditions and developments in finite element modeling software (2011).  These 

four equations calculate a buckling coefficient ݇௖௓ that includes curvature effects.  The 

critical elastic buckling stress with curvature considered ߪ௖௥௓  would then take the form 

௖௥௓ߪ ൌ ݇௖௓ߪா                                                              (Eq. 3) 

where σE   is the elastic critical stress as defined above in Eq. 2 with k = 1.  

Buckling coefficients for the simply supported edge-support condition as proposed by 

Redshaw, Timoshenko, Stowell, and Domb and Leigh are investigated.  Redshaw and 

Stowell use similar forms to their equations, whereas Timoshenko makes an assumption 

on the form of the displacements and Domb & Leigh’s equation is calibrated using a 



8 
 

curve fitting method (LeTran & Davaine, 2011).  Stowell’s is the only equation to 

account for different edge-support conditions.   

 
Table 1. Buckling coefficient formulas for curved panels (LeTran & Davaine, 2011) 

Author (Year) Expression for buckling coefficient, ࢆࢉ࢑ 

Redshaw (1933) 2ቌ1 ൅ ඨ1 ൅
12ሺ1 െ ଶሻߥ

ସߨ
ܼଶቍ 

Timoshenko (1961) 

4 ൅
3ሺ1 െ ଶሻߥ

ସߨ
ܼଶ ݂݅ ܼ ൑

ସߨ2

ඥ3ሺ1 െ ଶሻߥ

4√3
ଶߨ

ܼଶ ݂݅
ସߨ2

ඥ3ሺ1 െ ଶሻߥ
൑ ܼ

 

Stowell (1943) 
݇௖
௣௟௔௧௘

2
ቌ1 ൅ ඨ1 ൅

48ሺ1 െ ଶሻߥ

ସ൫݇௖ߨ
௣௟௔௧௘൯

ଶ ܼ
ଶቍ 

Domb and Leigh 
(2001) 

10෍ܿ௜ሺ݈ܼ݃݋௕ሻ௜
ଷ

௜ୀ଴

1 ൑ ܼ ൏ 23.15

ܿሺܼሻௗ 23.15 ൑ ܼ ൑ 200

 

 
Where ܼ௕ ൌ ܼሺ1 െ ଶሻ, ܿ଴ߥ ൌ 0.6021, ܿଵ ൌ 0.005377, ܿଶ ൌ

0.192495, ܿଷ ൌ 0.00267, ܿ ൌ .4323, and  ݀ ൌ .9748 
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3. DISCUSSION 

3.1 Software 

The elastic buckling behavior of thin-walled members can be modeled and 

analyzed through the use of CU-FSM (Schafer, 2006).  CU-FSM employs the finite strip 

method—a specialized form of the finite element method—to find the buckling curve 

(buckling stress versus wave-length) of a particular cross section. Degrees of freedom are 

defined at each node, enabling the user to model different edge-support conditions by 

changing the restraint condition at the edge end nodes.  The minima of the buckling 

curves provide the half-wavelength and load factor for a given buckling mode.  Since 

local buckling is the focus of this study, the buckling mode at the shortest half-

wavelength is identified and used in subsequent analyses.  The stress distribution is an 

input parameter in CU-FSM and, when multiplied by the resulting load factor at the 

minimum of interest, the buckling stress can be determined.  The methodology within 

CU-FSM mirrors that of standard matrix methods of structural analysis. Through the 

deflected shape images and the buckling curves produced, CU-FSM aids in the 

understanding of cross-sectional stability of structural members (Schafer, 2006).  

 

3.2 Inputs and Assumptions 

To create the input geometries for CU-FSM, a constant width-to-thickness ratio, 

b/t, is maintained while the radius, R, is varied. Each of the thirty-two elements used to 
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3.3 Methodology 

CU-FSM is used to analyze curved plate sections for a series of twenty curvature 

parameter (Z) values for each of five edge-support conditions (pin-pin, fixed-free, fixed-

fixed, pin-fixed and pin-free).  To find the critical elastic buckling stress of interest, the 

entire buckling stress curve is reviewed in order to target the correct minimum, as more 

than one may exist (as in Figure 8).  The input wavelength range (“Lengths” seen in 

Figure 7) can be tailored to include the minimum of interest with a narrower range and 

smaller increment to obtain more accurate wavelengths and load factors.  The critical 

buckling stress is calculated by multiplying the applied stress by the load factor.  In this 

study, the load factor is equal to the critical buckling stress given that the applied stress is 

1 ksi.  Nearly flat plate behavior is modeled by sections with a curvature parameter of 

Z=0.01.  Calculating the critical stress ratio ߪ௖௥௓ ௖௥ߪ
௣௟௔௧௘⁄  (Eq. 4) eliminates the need to 

compute the elastic buckling stress when determining the equivalent curved plate 

buckling coefficient from CU-FSM results. 

݇௖௓ ൌ ݇௖
௣௟௔௧௘ ఙ೎ೝೋ

ఙ೎ೝ
೛೗ೌ೟೐    (Eq. 4) 

Eliminating the elastic buckling stress removes the dependency of the width-to-thickness 

ratio when generating general equations, thereby allowing for the use of the Z parameter 

instead. 
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Table 2. Geometries used to test different b/t ratios in CU-FSM 

Width-to-
thickness ratio, b/t

Width, b 
(inches) 

Thickness, t 
(inches) 

100 10 0.1 
60 6 0.1 
20 10 0.5 

 

Figure 9. Critical stress ratios for fixed-free edge-support condition analyzed with three 
b/t ratios 

To test the sensitivity of CU-FSM results to the orientation of the plate, multiple 

cases were then run with the plate in a horizontal plane (b along the x-axis in the flat plate 

condition) and compared to the results when the plate was oriented vertically (b along the 

z-axis in the flat plate condition).  There was no difference between the results from the 

two cases with fixed-free edge-support conditions, so only one orientation (parallel to the 

horizontal plane) is analyzed in this study. 

The range of curvature parameters tested was from a flat plate condition (Z=0.01) 

to a semi-circular section (Z=314) as indicated in Figure 10. 
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Figure 11. Previously considered equations (Table 1) for buckling coefficients verses 
CU-FSM results for the pin-pin edge-support condition 

 
 

 
Figure 12. Previously considered equations (Table 1) for buckling coefficients verses 

CU-FSM results for the fixed-fixed edge-support condition 

 

1

10

100

1 10 100

B
u
ck
lin

g 
co
e
ff
ic
ie
n
t,
 K
c

Curvature Parameter, Z

Redshaw
Timoshenko
Stowell
Domb & Leight
CuFSM data

1

10

100

1 10 100

B
u
ck
lin

g 
C
o
e
ff
iv
ie
n
t,
 K
c

Curvature Parameter, Z

Redshaw

Timoshenko

Stowell

Domb & Leight

CuFSM data



16 
 

Based on the form of Stowell’s and Redshaw’s equations and the corresponding 

shape of the CU-FSM results, an equation of the form 

݇௖௓ ൌ ൫1ܣ ൅ √1 ൅  ଶ൯                                  (Eq. 5)ܼܤ

is fit to the numerical data using  a  nonlinear regression analysis, in which A and B are 

the unknown coefficients. 

 At low curvature parameters (Z approximately equal to 0.0), the plate in 

consideration will behave like a flat plate and therefore, the coefficient A becomes  

ܣ ൌ
௞೎
೛೗ೌ೟೐

ଶ
      (Eq. 6) 

where ݇௖
௣௟௔௧௘ is the flat plate buckling coefficient for the given edge-support condition 

(see Figure 3). Using the collection of Z and corresponding ݇௖௓ data, the parameter B is 

determined through the nlinfit function in MATLAB for each of the five edge-support 

conditions. The nlinfit function produces a vector of parameters and the residuals when 

provided the independent and dependent variable arrays (Z, ݇௖௓).  In other words, the 

function returns the fitted responses and an initial guess of the parameters. See Appendix 

A for the function files used in conjunction with the nlinfit function for each edge-support 

condition. 

 The coefficient of determination (R2) is calculated for each case to show how well 

the regression results matched the CU-FSM data.  These values are calculated according 

to 

ܴଶ ൌ 1 െ
∑ሺ௬೔ି௬തሻమ

∑ሺ௬೔ି௙೔ሻమ
ൌ 1 െ

∑ሺ௞೎,೔
ೋ,಴ೆషಷೄಾି௞ത೎

ೋ,಴ೆషಷೄಾሻమ

∑ሺ௞೎,೔
ೋ,಴ೆషಷೄಾି௞ത೎

ೋ,ಾಲ೅ಽಲಳሻమ
		   (Eq. 7) 
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where yi is the calculated ݇௖௓ from the CU-FSM data at a specific value of Z, ݕത is the 

average of CU-FSM buckling coefficients for all Z-values, and fi is the buckling 

coefficient as calculated from Eq. 5 for each of the corresponding Z-values. 

 Given the buckling coefficient values for each curvature parameter, the critical 

elastic buckling stress ratio can then be used to normalize the CU-FSM data for each 

edge-support condition.  The critical buckling stress ratio ߪ௖௥௓ ௖௥ߪ/
௣௟௔௧௘ can be calculated by  

ఙ೎ೝೋ

ఙ೎ೝ
೛೗ೌ೟೐ ൌ

௞೎ೝೋ

௞೎ೝ
೛೗ೌ೟೐          (Eq. 8) 

where the flat plate is approximated by the results from Z = 0.01.  Providing the data in 

terms of normalized ratios generates curves for both the nonlinear regression results and 

CU-FSM results with an intercept at one, allowing for a comparison across all edge-

support conditions. 

 

4. MODELS AND RESULTS 

4.1 Edge-support Conditions 

4.1.1 Pin-Pin 

The simply supported edge-support conditions are restrained in the x- and z-

directions at both end nodes.  Buckling stresses are found through CU-FSM analysis at 

each Z-value.  Using the critical buckling stress ratio and Eq. 4, the curved plate buckling 

coefficient, ݇௖௓, is calculated for each of the twenty selected curvature parameters.  When 

plotted against Z, the buckling coefficients behaved according to Eq. 9 
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݇௖௓ ൌ
௞೎
೛೗ೌ೟೐

ଶ
൫1 ൅ √1 ൅  ଶ൯         (Eq. 9)ܼܤ

with a ݇௖
௣௟௔௧௘ of 4.0 (Figure 3).  Based on this observation, the nlinfit function in 

MATLAB is used to determine the value of the parameter, B.  Providing the CU-FSM 

results for Z and ݇௖௓ as input and using an initial guess at B, the nonlinear regression 

analysis yielded a value of B=0.109. This value is similar to the equivalent parameters in 

Redshaw’s and Stowell’s equations, respectfully 

ோ௘ௗ௦௛௔௪ܤ ൌ
12ሺ1 െ ଶሻߥ

ସߨ
ൌ 0.1098 

ௌ௧௢௪௘௟௟ܤ ൌ
48ሺ1 െ ଶሻߥ

ସ൫݇௖ߨ
௣௟௔௧௘൯

ଶ ൌ 0.1097 

which is expected because these equations were originally developed for the pin-pin 

edge-support condition model (LeTran & Davaine, 2011). 

 Figure 13 shows the buckled shape of sections with three different curvature 

parameters.  A three-dimensional view is also given to aid in both the understanding of 

the behavior of the whole plate when subject to a uniform compressive stress and the 

visualization of other results shown. 
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 Table 3 includes the critical buckling stress and wavelength values obtained 

through CU-FSM analysis, the buckling coefficients as calculated from Eq. 4, and the 

values for the buckling coefficient from the nonlinear regression analysis performed 

using MATLAB.  The parameter, B, used in Eq. 9 is shown along with the coefficient of 

determination (R2) comparing the CU-FSM results to the generated equation.  

Table 3.CU-FSM results with output from the nonlinear regression for the pin-pin edge-
support condition case 

 Bpin-pin= 0.109 
 

R2= 0.9998 

Curvature 
Parameter, 

Z 

Critical 
Buckling Stress 
(ksi), σcr, CU-FSM 

Half 
Wavelength 

(in) 

Buckling Coefficient 
from CU-FSM, 
ࡹࡿࡲିࢁ࡯,ࢉ࢑
ࢆ  

Buckling Coefficient 
from MATLAB, 

࡮࡭ࡸࢀ࡭ࡹ,ࢉ࢑
ࢆ  

0.01 3.7288 10 4.000 4.000 
0.5 3.8106 9.8 4.088 4.027 
1 3.7927 9.9 4.069 4.106 
2 4.2167 8.9 4.523 4.397 
5 5.1463 7.6 5.521 5.860 
10 8.0892 5.5 8.677 8.899 
20 13.562 4.1 14.55 15.36 
30 19.473 3.3 20.89 21.91 

34.9 22.5 3.1 24.14 25.13 
35 22.5 3.1 24.14 25.20 
50 31.5973 2.6 33.90 35.08 

100 62.215 1.8 66.74 68.06 
120 74.9218 1.6 80.37 81.26 
135 83.9449 1.5 90.05 91.16 
150 93.2204 1.5 100.0 101.1 
157 97.6299 1.4 104.7 105.7 
200 124.7926 1.3 133.9 134.1 
250 156.3662 1.1 167.7 167.1 
300 188.0642 1 201.7 200.1 
314 196.4419 1 210.2 209.3 

 

The coefficient of determination R2 is close to unity indicating a strong correlation 

between the CU-FSM data and the derived equation.  For the pin-pin edge-support 

condition case, this generated equation is 
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results for Z and ݇௖௭ and an initial guess at B, the nonlinear regression analysis yielded a 

value of B=0.0587.  This value is significantly different when compared to the equivalent 

parameters in Redshaw’s and Stowell’s equations of 

ோ௘ௗ௦௛௔௪ܤ ൌ
12ሺ1 െ ଶሻߥ

ସߨ
ൌ 0.1098 

ௌ௧௢௪௘௟௟ܤ ൌ
48ሺ1 െ ଶሻߥ

ସ൫݇௖ߨ
௣௟௔௧௘൯

ଶ ൌ 0.0149 

This indicates an alternative parameter is needed, thereby validating the purpose of this 

study and that by LeTran and Davaine (2011). 

Figure 16 shows the buckled shape of sections with three different curvature 

parameters and a three-dimensional view.  Table 4 includes the numerical results for this 

edge-support condition. 
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Table 4. CU-FSM results with output from the nonlinear regression for the pin-fixed 
edge-support condition case 

 Bpin-fixed= 0.0587 
 

R2= 0.9997 

Curvature 
Parameter, 

Z 

Critical 
Buckling Stress 
(ksi), σcr, CU-FSM 

Half 
Wavelength 

(in) 

Buckling Coefficient 
from CU-FSM, 
ࡹࡿࡲିࢁ࡯,ࢉ࢑
ࢆ  

Buckling Coefficient 
from MATLAB, 

࡮࡭ࡸࢀ࡭ࡹ,ࢉ࢑
ࢆ  

0.01 5.0432 8 5.410 5.420 
0.5 5.0727 7.9 5.442 5.440 
1 5.11 7.9 5.482 5.498 
2 5.2406 7.7 5.622 5.721 
5 6.1209 6.9 6.566 6.967 
10 8.3569 5.9 8.965 9.813 
20 13.8694 4.1 14.878 16.118 
30 19.5937 3.4 21.019 22.593 

34.9 22.5221 3.1 24.160 25.784 
35 22.6863 3.1 24.336 25.850 
50 31.6976 2.6 33.952 35.651 

100 62.3161 1.8 66.848 68.424 
120 74.7024 1.6 80.135 81.546 
135 84.4738 1.5 90.617 91.390 
150 93.2204 1.5 99.972 101.234 
157 97.7094 1.4 104.815 105.829 
200 124.6699 1.3 133.736 134.054 
250 156.2851 1.1 167.650 166.878 
300 187.2006 1.3 200.814 199.703 
314 196.4421 1 209.197 208.894 
 

Once again, the coefficient of determination is close to unity indicating a strong 

correlation between the CU-FSM data and the derived equation.  For the fixed-pin edge-

support condition case, this generated equation is 

݇௖,௙௜௫௘ௗି௣௜௡
௓ ൌ ହ.ସଶ

ଶ
൫1 ൅ √0.0587ܼଶ൯     (Eq. 12) 

and the goodness of fit can be observed in Figure 17.  Note the intercept is at kcr=5.42, 

which is the flat plate buckling coefficient for this edge-support condition. As shown in 

Figure 18, an increase in the curvature parameter results in an increase in the critical 

buckling stress ratio. 
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4.1.3 Fixed-Fixed 

The fixed-fixed edge-support conditions are restrained longitudinally in the x- 

and z-directions and rotationally on both edges.  Using the same approach as described 

above, the equation derived for computing the curved plate buckling coefficient for the 

fixed-fixed case is 

݇௖,௙௜௫௘ௗି௙௜௫௘ௗ
௓ ൌ ଺.ଽ଻

ଶ
൫1 ൅ √0.0349ܼଶ൯     (Eq. 13) 

with 6.97 equaling the flat plate coefficient ݇௖
௣௟௔௧௘ (Figure 3).  The factor 0.0349 is again 

different from that obtained by Redshaw’s and Stowell’s equations 

	

ோ௘ௗ௦௛௔௪ܤ ൌ
12ሺ1 െ ଶሻߥ

ସߨ
ൌ 0.1098 

ௌ௧௢௪௘௟௟ܤ ൌ
48ሺ1 െ ଶሻߥ

ସ൫݇௖ߨ
௣௟௔௧௘൯

ଶ ൌ 0.00904 

Figure 19 shows the buckling modes for three Z-values and Table 5 provides 

critical buckling stresses, wavelengths, and the values for the buckling coefficient from 

the nonlinear regression analysis performed using MATLAB.  
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Table 5. CU-FSM results with output from the nonlinear regression for the fixed-fixed 
edge-support condition case 

 Bfixed-fixed= 0.0349 
 

R2= 0.9995 

Curvature 
Parameter, 

Z 

Critical 
Buckling Stress 
(ksi), σcr, CU-FSM 

Half 
Wavelength 

(in) 

Buckling Coefficient 
from CU-FSM, 
ࡹࡿࡲିࢁ࡯,ࢉ࢑
ࢆ  

Buckling Coefficient 
from MATLAB, 

࡮࡭ࡸࢀ࡭ࡹ,ࢉ࢑
ࢆ  

0.01 6.4984 6.6 6.970 6.970 
0.5 6.5256 6.6 6.999 6.985 
1 6.5445 6.6 7.019 7.030 
2 6.6192 6.5 7.100 7.205 
5 7.2624 6.1 7.789 8.254 
10 9.0214 5.3 9.676 10.870 
20 14.2523 4.1 15.287 16.964 
30 19.8264 3.4 21.265 23.325 

34.9 22.7002 3.1 24.348 26.472 
35 22.883 3.1 24.544 26.537 
50 31.8309 2.6 34.040 36.224 

100 62.3228 1.8 66.846 68.683 
120 74.7301 1.6 80.153 81.689 
135 84.512 1.5 90.645 91.446 
150 93.2205 1.5 99.963 101.205 
157 97.7152 1.4 104.807 105.760 
200 124.6852 1.3 133.734 133.742 
250 156.3013 1.1 167.644 166.285 
300 187.2535 1.3 200.843 198.832 
314 196.4423 1 209.198 207.945 

 

Figure 20 illustrates the goodness of fit of the derived equation and as observed in 

Figure 21 an increase in the curvature parameter once again results in an increase in the 

critical buckling stress ratio. 
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4.1.4 Fixed-Free 

The fixed-free edge-support conditions are restrained longitudinally in the x- 

and z-directions and rotationally on one edge and completely unrestrained along the other 

edge.  For this case, the plate buckling coefficient may be estimated from 

݇௖,௙௜௫௘ௗି௙௥௘௘
௓ ൌ ଵ.ଶ଻଻

ଶ
൫1 ൅ √0.0201ܼଶ൯     (Eq. 14) 

with the parameter B = 0.0201 being significantly different than Redshaw’s 0.1098 and 

Stowell’s 0.2693.  Using a similar format to the cases presented above the key results are 

provided in Figures 22, 23, and 24 and Table 6. 
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Table 6. CU-FSM results with output from the nonlinear regression for the fixed-free 
edge-support condition case 

 Bfixed-free= 0.0201 
 

R2= 0.9952 

Curvature 
Parameter, 

Z 

Critical 
Buckling Stress 
(ksi), σcr, CU-FSM 

Half 
Wavelength 

(in) 

Buckling Coefficient 
from CU-FSM, 
ࡹࡿࡲିࢁ࡯,ࢉ࢑
ࢆ  

Buckling Coefficient 
from MATLAB, 

࡮࡭ࡸࢀ࡭ࡹ,ࢉ࢑
ࢆ  

0.01 1.165 16.4 1.277 1.277 
0.5 1.1688 16.4 1.281 1.279 
1 1.1738 16.5 1.287 1.283 
2 1.1901 16.6 1.305 1.302 
5 1.337 17.6 1.466 1.421 
10 1.7616 20.7 1.931 1.746 
20 2.9144 28.7 3.195 2.558 
30 4.0771 35.1 4.469 3.428 

34.9 4.6416 37.8 5.088 3.862 
35 4.6601 14 5.108 3.871 
50 5.8174 14.8 6.361 5.209 

100 9.5329 18.9 10.449 9.713 
120 10.8655 20 11.910 11.520 
135 11.9208 21 13.067 12.876 
150 13.1899 22.2 14.458 14.232 
157 13.6911 22.6 15.007 14.865 
200 16.8934 25.1 18.517 18.754 
250 20.8061 27.5 22.806 23.278 
300 24.9831 30.1 27.385 27.803 
314 26.2607 30.8 28.785 29.070 
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4.1.5 Pin-Free 

The pin-free edge-support conditions are restrained longitudinally in the x- and z-

directions on one edge and completely unrestrained on the other edge.  With a consistent 

procedure to the previous edge-support conditions, the derived plate buckling coefficient 

equation is 

݇௖,௣௜௡ି௙௥௘௘
௓ ൌ ଴.ସଶହ

ଶ
൫1 ൅ √0.1737ܼଶ൯        (Eq. 15) 

where the value B=0.1737 is different than the values calculated through Redshaw’s 

(B=0.1098) and Stowell’s (B=2.431) equations. Following a similar format to the edge-

support conditions presented above, the results for the fin-free condition are found in 

Figures 25, 26, and 26 and Table 7. 
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Table 7. CU-FSM results with output from the nonlinear regression for the pin-free edge-
support condition case 

 

Bpin-free= 0.1737 R2= 0.9911 

Curvature 
Parameter, 

Z 

Critical 
Buckling Stress 
(ksi), σcr, CU-FSM 

Half 
Wavelength 

(in) 

Buckling Coefficient 
from CU-FSM, 
ࡹࡿࡲିࢁ࡯,ࢉ࢑
ࢆ  

Buckling Coefficient 
from MATLAB, 

࡮࡭ࡸࢀ࡭ࡹ,ࢉ࢑
ࢆ  

0.01 0.38045 345 0.425 0.425 
0.5 0.38001 535 0.425 0.430 
1 0.37986 731 0.424 0.443 
2 0.37989 690 0.424 0.489 
5 0.3798 834 0.424 0.704 
10 0.38076 1097 0.425 1.123 
20 0.38234 1295 0.427 1.996 
30 3.9918 15.2 4.459 2.878 

34.9 4.2998 15.4 4.803 3.311 
35 4.2933 15.2 4.796 3.320 
50 5.3421 16.9 5.946 4.646 

100 8.8551 22.5 9.892 9.071 
120 10.1664 24.2 11.357 10.842 
135 11.1874 25.5 12.497 12.171 
150 12.3737 27.1 13.823 13.499 
157 12.8493 27.6 14.354 14.119 
200 15.9141 31 17.778 17.927 
250 19.6685 34.8 21.972 22.355 
300 23.5619 38.6 26.321 26.783 
314 24.7396 39.6 27.444 28.023 
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4.2 Summary of Results 

In each edge-support condition case presented above, it can be observed that the 

critical buckling stress ratios increase with the curvature parameter.  This indicates, for 

sections with the same b/t ratio, the critical buckling stress will increase as the radius of 

the section decreases.  Table 8 shows the calculated parameter, B, used to fit the CU-FSM 

data from each edge-support condition in the form 

݇௖௓ ൌ
௞೎
೛೗ೌ೟೐

ଶ
൫1 ൅ √1 ൅  ଶ൯                                  (Eq.16)ܼܤ

as well as the coefficient of determination, R2, for each case.  Note that all of the R2 

values are close to unity, indicating the nonlinear regression analysis yielded an equation 

that accurately represents the data points generated through CU-FSM analysis. 

Table 8. Summary of results of nonlinear regression analysis 

Edge-support 
Condition 

Plate Buckling 
Coefficient, ࢉ࢑

ࢋ࢚ࢇ࢒࢖
Calculated 

Parameter, B
Coefficient of 

Determination, R2

Pin-Pin 4.0 0.1090 0.99983 
Pin-Fixed 5.42 0.0587 0.99975 

Fixed-Fixed 6.97 0.0349 0.99956 
Fixed-Free 1.277 0.0201 0.99528 
Pin-Free 0.425 0.1737 0.99118 

 

Figure 28 shows the buckling coefficients obtained from regression analysis for 

all five edge-support conditions over a wide range of curvature Z-parameters.  It can be 

seen that each curve intercepts the y-axis at the plate buckling coefficient value for that 

edge-support condition. 
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(a) Pin-Pin 

The derived equation gives the following critical buckling coefficient and critical 

buckling stress 

݇௖௓ ൌ
4
2
ቀ1 ൅ ඥ1 ൅ 0.109 ∗ ሺ66.67ሻଶቁ ൌ 46.07 

௖௓ߪ ൌ ݇௖௭ߪா ൌ 46.07 ∗ 8.39 ൌ  ݅ݏ݇	386.53

It should be noted that this value is the elastic critical stress and nearly 10 times the yield 

strength of aluminum.  Employing a CU-FSM analysis, the elastic critical buckling stress 

is computed as 

௖௓ߪ ൌ  ݅ݏ݇	372.2584

The value calculated through the generated equation is within  

386.53 െ 372.2584
372.2584

ൌ 3.83%	 

of the CU-FSM results, indicating a low margin of error. 

 

(b) Pin-Free 

Following the same procedure as in part (a), the critical buckling coefficient and 

critical buckling stress were calculated. 

݇௖௓ ൌ
0.425
2

ቀ1 ൅ ඥ1 ൅ .1737 ∗ ሺ66.67ሻଶቁ ൌ 6.12 

௖௓ߪ ൌ ݇௖௭ߪா ൌ 6.12 ∗ 8.39 ൌ  ݅ݏ݇	51.35

The calculated elastic critical stress is greater than the yield strength of aluminum. 

Through CU-FSM analysis, the elastic critical buckling stress was calculated to be 

௖௓ߪ ൌ  ݅ݏ݇	58.1929
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resulting in a relatively low margin of error (11.8%) considering the uncertainty in 

determining a minimum along the buckling curve. 

 

(c) Fixed-Fixed 

As in the previous examples, the derived values for the critical buckling 

coefficient and critical buckling stress are 

݇௖௓ ൌ
6.97
2

ቀ1 ൅ ඥ1 ൅ .0349 ∗ ሺ66.67ሻଶቁ ൌ 47.03 

௖௓ߪ ൌ ݇௖௭ߪா ൌ 47.03 ∗ 8.39 ൌ  ݅ݏ݇	394.58

with a critical buckling stress nearly 10 times the yield strength of aluminum.  CU-FSM 

analysis yields an elastic critical buckling stress of  

௖௓ߪ ൌ  ݅ݏ݇	372.3

indicating the derived value is within 5.98% error. 
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݇௖௓ ൌ
4
2
ቀ1 ൅ ඥ1 ൅ 0.109 ∗ ሺ15ሻଶቁ ൌ 12.10 

௖௓ߪ ൌ ݇௖௭ߪா ൌ 12.10 ∗ 10.36 ൌ  ݅ݏ݇	125.36

Comparing this value to the results of CU-FSM analysis (ߪ௖௓ ൌ  the (݅ݏ݇	118.1673

derived equation is within 

125.36 െ 118.1673
118.1673

ൌ 6.09%	 

of the CU-FSM results, indicating a low margin of error. 

 

(b) Fixed-Free 

Using the procedure outlined previously, the critical buckling coefficient and 

critical buckling stress are 

݇௖௓ ൌ
1.277
2

ቀ1 ൅ ඥ1 ൅ 0.0201 ∗ ሺ15ሻଶቁ ൌ 2.14 

௖௓ߪ ൌ ݇௖௭ߪா ൌ 2.14 ∗ 10.36 ൌ  ݅ݏ݇	22.17

This elastic critical buckling stress is below the yield strength of aluminum and when 

compared against the CU-FSM analysis results 

௖௓ߪ ൌ  ݅ݏ݇	25.8424

there is a 14.2% difference. Based upon the variation of the R2 values, this is a relatively 

low margin of error between methods. 
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(c) Pin-Fixed 

The derived equation gives the following critical buckling coefficient and elastic 

critical buckling stress 

݇௖௓ ൌ
5.42
2

ቀ1 ൅ ඥ1 ൅ .0587 ∗ ሺ15ሻଶቁ ൌ 12.92 

௖௓ߪ ൌ ݇௖௭ߪா ൌ 12.92 ∗ 10.36 ൌ  ݅ݏ݇	133.85

where this value is approximately triple the yield stress of aluminum. A CU-FSM 

analysis yields an elastic critical buckling stress of 

௖௓ߪ ൌ  ݅ݏ݇	122.1083

The elastic critical buckling stress calculated through the derived equation is within 

9.62% of the CU-FSM results, indicating a low margin of error. 

 

6.  CONCLUSION 

6.1 Summary 

Through a series of CU-FSM finite strip analyses, elastic critical buckling stresses 

of curved aluminum plates over a variety of curvatures are presented. Starting with the 

concepts covered in LeTran and Davaine’s paper concerning curved plate buckling of 

steel sections, a similar methodology is developed for the determination of an expression 

for curved plate buckling coefficients and, ultimately, critical buckling stresses.  This 

equation is developed through nonlinear regression analyses employing the nlinfit 

function in MATLAB.  The coefficient of determination R2 is calculated to evaluate the 
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goodness of fit of the function representing the data points generated through CU-FSM 

analysis.   

The developed equation calculates the critical buckling stress based on the plate 

buckling coefficient, geometric properties, such as the curvature parameter and width-to-

thickness ratio, as well as material properties, including the modulus of elasticity and 

Poisson’s ratio. The equation requires a different parameter for each edge-support 

condition (pin-pin, pin-fixed, fixed-fixed, fixed-free and pin-free) to increase its 

applicability.  

 

6.2 Conclusions 

For aluminum thin plate sections with a defined width, thickness and radius, a 

simple equation is presented for computing the elastic critical buckling stress resulting 

from the application of uniform compression over a wide range of edge-support 

conditions. The critical buckling stress of an element has been determined to be ߪ௖௥௓ ൌ

݇௖௓ߪா, where ݇௖௓ can be determined from a simple equation based on edge-support 

conditions and a curvature parameter ܼ ൌ ܾଶ ⁄ݐܴ .  Given the width-to-thickness ratio, ߪா 

can be calculated and used to find the critical buckling stress. These expressions are 

tested using examples with different geometries, each suggesting reasonable margins of 

error between the CU-FSM analysis results and the equations generated from the 

nonlinear regression. This method allows for a single, simple calculation for ݇௖௓ instead 

of running analyses for both curved and flat plate sections to compare ratios.  It is 
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suggested that the next edition of Aluminum Specification consider basing critical 

buckling stresses on the non-dimensional Z value to avoid the strict dependency on the b/t 

ratio of the section in question. 

It is important to note that this study did not consider the effects of initial 

imperfections and focuses on elastic critical buckling stress, thereby neglecting post-

buckling behavior which may be responsible for an increased strength capacity of some 

sections. 

 

6.3 Future Work 

The effects of initial imperfections are not considered in this study and hence, the 

critical stress procedure presented herein should be considered an upper limit approach 

with increased similarity between the actual shape and the geometry assumed (Young, 

1989).  With this in mind, the logical next step to take in this research is to determine the 

effects of initial imperfections on the strength of the curved sections.  

This study only investigates perfect edge-support conditions.  The difference 

between a fixed and a pin support in practice may be difficult to differentiate, and thus 

partially restrained support conditions should also be considered.    
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APPENDIX 

MATLAB Inputs used for Nonlinear Regression 

The following command was used for each edge-support condition to calculate 

the parameter value Bhat and residuals r for each case: 

ሾݐ݄ܽܤ, ሿݎ ൌ ,ሺܼݐ݂݈݅݊݅݊ ,ሿ݊݋݅ݐ݅݀݊݋ܿ	ݕݎܽ݀݊ݑ݋௖௢௡ௗ௜௧௜௢௡ሿ,@݈݉݀ሾܾ	ሾ௕௢௨௡ௗ௔௥௬ܭ 	0ሻܤ

where Z is a 20x1 vector of the twenty curvatures investigated, K[edge-support condition]  is a 

20x1 vector of the twenty corresponding  buckling coefficients calculated through CU-

FSM at each [edge-support condition].  The input, @mdl[edge-support condition], calls 

the function shown below and returns a vector of fitted response values and B0 is an 

initial guess at the parameter. The MATLAB script below is generalized for the purposes 

of this example, but [edge-support condition] would be replaced by the label of the edge-

support condition case considered. 

 
function [y]=mdl[edge-support condition](b,x) 
k=4; 
y=(k/2*(1+sqrt(1+b*x.^2))); 
end 

 

In this example, y is the curved plate buckling coefficient, k is the plate buckling 

coefficient, b is the parameter and x is the curvature parameter.  
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