
Bucknell University
Bucknell Digital Commons

Honors Theses Student Theses

Spring 2012

On a Problem of Burnside
Matthew Mizuhara
Bucknell University

Follow this and additional works at: https://digitalcommons.bucknell.edu/honors_theses

Part of the Mathematics Commons

This Honors Thesis is brought to you for free and open access by the Student Theses at Bucknell Digital Commons. It has been accepted for inclusion in
Honors Theses by an authorized administrator of Bucknell Digital Commons. For more information, please contact dcadmin@bucknell.edu.

Recommended Citation
Mizuhara, Matthew, "On a Problem of Burnside" (2012). Honors Theses. 120.
https://digitalcommons.bucknell.edu/honors_theses/120

https://digitalcommons.bucknell.edu?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/honors_theses?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/student_theses?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/honors_theses?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/honors_theses/120?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@bucknell.edu


ON A PROBLEM OF BURNSIDE

by

Matthew Mizuhara

A Thesis

Presented to the Faculty of

Bucknell University

in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science with Honors in Mathematics

May 10, 2012

Approved:
Peter Brooksbank
Thesis Advisor

Karl Voss
Chair, Department of Mathematics



ii

Acknowledgments

I would like to thank my family and friends for their constant support and en-
couragement throughout the research and writing process. I also would like to thank
my defense committee for their dedication and helpful feedback. Finally, I extend my
deepest gratitude to my adviser, Professor Peter Brooksbank. His guidance, patience,
and invaluable insight made this project possible.



iii

Contents

1 Introduction 1

2 Preliminaries 3

2.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Structure of Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Nilpotent Groups and p-Groups . . . . . . . . . . . . . . . . . . . . . 7

2.4 Automorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Burnside’s Problem 10

4 Computational Methods 12

4.1 The Small Group Library . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 p-Group Generation 18



CONTENTS iv

5.1 Generating p-Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 Polycyclic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3 Power-conjugate Presentations . . . . . . . . . . . . . . . . . . . . . . 19

5.4 The p-Covering Group . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 A New Family of NI-Groups 23

6.1 A Family of Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2 Constructing the 2-Covering Group . . . . . . . . . . . . . . . . . . . 25

6.3 A Distinguished Descendant . . . . . . . . . . . . . . . . . . . . . . . 26

6.4 Consistency of the Immediate Descendant . . . . . . . . . . . . . . . 27

6.5 Constructing a Nearly-Inner Automorphism . . . . . . . . . . . . . . 29

6.6 Proof Of Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Conclusion 34



v

List of Tables

4.1 The NI-groups of order ≤ 1000(∗) . . . . . . . . . . . . . . . . . . . . 17



vi

List of Figures

2.1 Reflectional symmetries of the square . . . . . . . . . . . . . . . . . . 4

4.1 Commutative diagram of permutation representation . . . . . . . . . 14



1

Chapter 1

Introduction

Groups are fundamental objects in mathematics and the natural sciences; they cap-
ture the essential properties of symmetry. In some instances, general properties intrin-
sic to a physical object or system can be understood in terms of the group structure
underlying it. Groups themselves also possess symmetries in the form of automor-
phisms, which are bijective maps from a group to itself which preserve the group
structure. Automorphisms arise “internally” in the sense that to each element of the
group we can associate an inner automorphism. Most groups also possess “external”
symmetries, namely automorphisms that are not inner.

In 1911, Burnside posed the question as to whether or not there exist groups
having an external automorphism that behaves in a certain, specific way like an inner
automorphism: we shall define such automorphisms to be nearly-inner. Two years
later he answered his own question by exhibiting a family of such groups, which in
general we shall call NI-groups. Burnside’s problem has been revisited by several
researchers since that time. New families of NI-groups have been found [8, 11, 17],
negative results have been proved about important families of groups [5, 13, 14, 15,
16], and connections have been made between NI-groups and other fields of study
[13, 14, 15, 16, 7].

The general feeling that one develops from reading the literature is that NI-groups
are fairly rare. With the aid of the computer algebra system Magma - in particular
with the aid of its small group database - we set out to test this hypothesis.

As a consequence of the study, all NI-groups of size n for almost all n 6 1000
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are now known (see Table 4.1). The obvious immediate conclusion we draw from our
findings is that the NI-property is much more common that one might have thought.
For instance, over 60% of the 56,092 pairwise non-isomorphic groups of order 256 are
NI-groups.

Beyond mere curiosity, one key motivation of our exploration was to discover new
infinite families of NI-groups. To this end we have also been successful (see Main
Theorem in Chapter 6). The family that we build consists of certain finite groups,
called p-groups, whose cardinality is a prime power. Our approach is based on a
fairly modern technique for constructing p-groups. Related to that technique is an
ambitious project to classify p-groups in terms of an invariant called coclass. The
project was initiated in the 1980s by Leedham-Green and Newman [10] and has led
to significant advances in our understanding of p-groups. One key result in this area
asserts that the set of all p-groups of a fixed coclass contains a finite number of certain
(infinite) families of groups, called “mainline families”. Our main result shows that
there is at least one such mainline family of 2-groups of coclass 4 all of whose members
are NI-groups.

The thesis is organized into the following chapters.

In Chapter 2 we summarize the group theoretic preliminaries we need to state our
main results.

In Chapter 3 we introduce Burnside’s problem and briefly discuss its history.

Chapter 4 describes the algorithms that we used to process the small group database,
searching for NI-groups. The results of our exhaustive search are also tabulated in
this chapter.

In Chapter 5 we give a description of the technique mentioned above for constructing
p-groups. We tailor this “p-group generation algorithm” to our specific needs.

In Chapter 6 we present our new family of groups and prove that each member is
indeed an NI-group.

Finally, in Chapter 7 we provide some concluding remarks and observations, and we
indicate some avenues for further investigation.
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Chapter 2

Preliminaries

2.1 Groups

Symmetry plays a crucial role in mathematics as well as the physical sciences. Chemists,
for example, study the self-similarity of crystal structures and physicists justify con-
servation laws using observations of symmetry in space-time. A symmetry of a
geometric object is a distance-preserving transformation which leaves the shape visu-
ally unchanged.

As an example, consider a unit square centered about the origin (see Figure 2.1).
The symmetries of the square are described as follows:

1. Clockwise rotation about the origin by 0◦; the identity transformation.

2. Clockwise rotation about the origin by 90◦.

3. Clockwise rotation about the origin by 180◦.

4. Clockwise rotation about the origin by 270◦.

5. Reflection about the line x = 0.

6. Reflection about the line y = 0.

7. Reflection about the line y = x.
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8. Reflection about the line y = −x.

Figure 2.1: Reflectional symmetries of the square

It is not hard to see, in fact, that any geometric object has an associated set
of symmetries which satisfy several basic properties: every object has the trivial
symmetry, every symmetry has an “inverse” symmetry which reverses the effect of
the first symmetry, and the composition of any two symmetries is again a symmetry.
Thus, composition defines an associative, binary operation on the symmetries of an
object. This motivates the following definition.

Definition. A group is a nonempty set G along with a binary operation, ∗, that
satisfies the following properties.

1. Identity: There exists an element 1 in G such that a ∗ 1 = 1 ∗ a = a.

2. Inverses: For each a in G there exists a−1 in G such that a ∗ a−1 = a−1 ∗ a = 1.

3. Associativity: If a, b, and c are in G then (a ∗ b) ∗ c = a ∗ (b ∗ c).

A group is formally an ordered pair (G, ∗), but if the operation is clear, we simply
denote the group by G. Similarly, when combining elements of a group, one typically
suppresses the operation so that a ∗ b is written ab.

Some common examples of groups are provided below.
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1. The integers, Z, is a group under standard addition.

2. The integers modulo n, Zn, is a group under addition modulo n.

3. The non-zero rational numbers, Q∗, is a group under standard multiplication.

4. A permutation of a set Ω is a bijective function ρ : Ω → Ω. Let Sym(Ω)
be the set of all permutations of Ω. Then Sym(Ω) is a group under function
composition and we call Sym(Ω) the symmetric group on Ω.

5. Generalizing our square example, the dihedral group, D2n, is the group con-
sisting of all symmetries of a regular n-gon under function composition. So, D8

is the group of symmetries of the square.

Observe that the group operation in examples 1, 2, and 3 is commutative whereas
in examples 4 and 5 it is not. In D8, for example, a 90◦ rotation followed by the
reflection about the x-axis is not equal to the reflection about the x-axis followed by
the 90◦ rotation. Those groups whose operation is commutative are special and are
referred to as abelian groups.

If the underlying set of a group is finite, then its cardinality is called the order
of the group, denoted |G|. If a finite group has order pn, where p is prime, then it
is called a p-group. As there are 23 = 8 symmetries of the square, D8 is a 2-group.
The remainder of this paper assumes all groups are finite.

If we focus only on the rotational symmetries of the square, we note that the
composition of two rotational symmetries is necessarily another rotational symmetry.
The set of rotations of the square (including the identity symmetry) inherits the same
function composition operation from the parent group and one can check that this
subset is again a group. In general we say that a subset H of a group (G, ∗) is a
subgroup, which we denote H ≤ G, if (H, ∗) is a group. A subgroup H of G is
proper if H 6= 1 and H 6= G. The center of a group G, denoted Z(G), is the set
of elements which commute with all other elements, namely Z(G) = {z ∈ G : zg =
gz for all g ∈ G}. It is easy to verify that Z(G) ≤ G.

In D8, let r be the clockwise rotation by 90◦ and d the reflection over the x-axis.
We see that every element of D8 may be obtained as a sequence of compositions of
r and d. For example, rotation about the y-axis can be obtained by the sequence
rrd = r2d. In general a set S ⊆ G generates a group G if each element of G can be
written as a product of elements (and their inverses) from S. We denote the group
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generated by a set S by 〈S〉. For finite groups we often drop the set notation so
that, for example, D8 = 〈r, d〉. Groups which are generated minimally by d elements
are called d-generator groups, and 1-generator groups are specially named cyclic
groups.

2.2 Structure of Groups

It is possible to consider D8 as a group of permutations. Let (j k ` . . . m) be the
permutation which maps j 7→ k 7→ ` 7→ · · · 7→ m 7→ j. If we associate a letter to
each corner of the square, then it is clear that each symmetry is simply a permuta-
tion of the set {A, B, C, D}. In particular, the rotational symmetry r is identified
with (AB C D) and the reflectional symmetry with (AC)(BD). Then the group
〈(AB C D), (AC)(BD)〉 is a subgroup of Sym({A, B, C, D}) which is structurally
equivalent to the group D8.

A homomorphism between groups (G, ∗) and (H, ·) is a function φ that is
structure-preserving in the sense that for all g, g′ ∈ G, φ(g ∗ g′) = φ(g) · φ(g′). A
surjective homomorphism is called an epimorphism and a bijective homomorphism
is called an isomorphism. If an isomorphism exists between groups G and H, we
say G and H are isomorphic and denote it G ∼= H.

Although group structures can in general be quite complicated, we can gain insight
by chopping them into basic pieces. This requires a special sort of subgroup called a
normal subgroup. If H is any subgroup of a group G and g ∈ G, then the left coset
of H containing g is

gH = {gh : h ∈ H}.

Each left coset has size equal to |H|. Given a group G, the index of a subgroup
H ≤ G is the number of cosets of H in G, denoted [G : H]. A famous result of
Lagrange states that |G| = |H| · [G : H].

One can similarly define right cosets, Hg. In general it is not true that left and
right cosets coincide for an arbitrary subgroup H of G; subgroups that have this
property are special and are crucial to understanding the structure of groups. We say
that N is a normal subgroup of G if gN = Ng for all g ∈ G. Building upon the
notation of subgroups, we write N EG when N is a normal subgroup of G. Given a
normal subgroup N of a group G, we can define the quotient group G/N , whose
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elements are left cosets of N with group operation

(aN) · (bN) = (ab)N.

Normality of N ensures that this operation is well-defined.

Thus, if N is a proper normal subgroup of G, we can hope to study G by con-
sidering N and G/N . Groups having no proper normal subgroups are the atoms of
group theory: they are called simple groups. A simple abelian group is cyclic of
prime order.

Given a group G, a normal subgroup N EG is maximal normal if N 6= G and
whenever a normal subgroup K satisfies N EK E G then either N = K or K = G.
Choosing N1 E G to be a maximal normal subgroup, then G/N1 is simple. Next,
choose N2 E N1 to again be a maximal normal subgroup. Iterating this process we
get a chain of subgroups called a composition series for G:

G = N1 DN2 D · · ·DNk = 1.

By a fundamental theorem of Jordan and Hölder, the set of simple quotients {Ni/Ni+1}
is unique up to isomorphism. They are called the composition factors of G. Thus
one can view G as being “built” from these basic building blocks; of course, there are
many ways to glue these blocks together, which is to say that a group is not uniquely
determined by its composition factors.

2.3 Nilpotent Groups and p-Groups

The groups with which we will be concerned are ones whose composition factors are
all abelian, and hence cyclic of prime order.

Given g, h ∈ G, the commutator of g and h is [g, h] := g−1h−1gh. Evidently,
two elements commute precisely when [g, h] = 1. The commutator subgroup of
subgroups K ≤ G and H ≤ G is

[K, H] := 〈[k, h] : k ∈ K,h ∈ H〉.

Note that this is the group generated by the commutators and not simply the set
of them. As [h, k]−1 = [k, h], it is clear that [H,K] = [K,H]. Further, [K, H] = 1
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precisely when all elements of K commute with all elements of H. So, [G, G] = 1 if
and only if when G is abelian.

The lower central series of a group G is a series

G = γ1(G) ≥ γ2(G) ≥ · · · ≥ γn(G) ≥ · · · ,

where γ1(G) = G and, recursively, γi(G) = [G, γi−1(G)] for i ≥ 2, is a normal
subgroup of γi−1(G). If γn = {1} for some n, we say that G is nilpotent. If G is
nilpotent, the nilpotency class is c(G) := min{i : γi+1(G) = 1}. Evidently, groups
of nilpotency class 1 are abelian, and those of nilpotency class 2 may be thought of
as being “close to abelian.”

An important class of nilpotent groups is the class of p-groups, introduced earlier.
Consider, for example, D8. Starting withD8 = γ1(D8) = 〈r, d〉, we calculate γ2(D8) =
[D8, D8] = 〈r2〉. It is then clear that γ3(D8) = [D8, 〈r2〉] = 1, so D8 has nilpotency
class 2.

A related invariant is the coclass of a p-group; a group of order pn and nilpotency
class c is said to have coclass n − c.

When computing with p-groups later on, it will be convenient to work with a
refinement of the lower central series, called the lower exponent-p central series.
It is defined by the following sequence of subgroups

G = P0(G) ≥ · · · ≥ Pi−1(G) ≥ Pi(G) ≥ . . .

with Pi(G) = [Pi−1(G), G]Pi−1(G)p for each i ≥ 1, where Hp = {hp : h ∈ H}. As
before, G has exponent-p class c, or more simply class c, if c = min{i : Pi(G) = 1}.

2.4 Automorphisms

An automorphism of a group G is an isomorphism from a group G to itself. The
set of all automorphisms of G is denoted Aut(G), which is itself a group under the
operation of function composition. For θ ∈ Aut(G) and x ∈ G, we write xθ to
denote the image of x under θ. There is a rich source of automorphisms coming from
within each group. Particularly, to each g ∈ G we associate a map θg : G→ G called
conjugation by g, sending x 7→ g−1xg for each x ∈ G. For simplicity we write xg to
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represent xθg. We call such automorphisms inner automorphisms and denote the
set of all of them by Inn(G). It is not hard to see that Inn(G) is isomorphic to the
quotient G/Z(G). Also by their very construction it is evident that Inn(G)EAut(G).
We call the quotient,

Out(G) := Aut(G)/Inn(G),

the outer automorphism group of G.
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Chapter 3

Burnside’s Problem

The question we address in this thesis - one first posed by Burnside - is concerned
with the existence of groups that possess an automorphism which is not inner, yet
behaves in a certain way like an inner automorphism. To introduce the main question
we introduce a few more group theoretic concepts.

We say that x and y are conjugates if there exists some g ∈ G such that xg = y.
Conjugacy is an equivalence relation, and the equivalence classes under this relation
are called conjugacy classes. For x ∈ G, let the conjugacy class represented by x
be denoted by [x]; that is, [x] = {xg : g ∈ G}. Let Ω be the set of conjugacy classes of
G. Since (g−1xg)θ = (gθ)−1(xθ)(gθ) for all x, g ∈ G and all θ ∈ Aut(G), we see that
each θ ∈ Aut(G) induces a permutation πθ of Ω, namely [x]πθ = [xθ] for all [x] ∈ Ω.
Thus, one may define a homomorphism π : Aut(G)→ Sym(Ω) sending θ 7→ πθ.

If θ is an inner automorphism, then θ only moves elements of a conjugacy class
within the class, so πθ = 1. In particular, Inn(G) is in the kernel of π. We say that
θ ∈ Aut(G) is nearly-inner if πθ = 1 (i.e. if θ preserves conjugacy classes), so the
kernel of π is the set of all nearly-inner automorphisms of G, often denoted Autc(G).
As Autc(G) is the kernel of a homomorphism, we conclude that Autc(G) is a normal
subgroup of Aut(G).

Burnside’s question is the following: does there exist a groupG such that Autc(G) 6=
Inn(G).
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As Inn(G) is a normal subgroup of Autc(G), we can construct

Outc(G) := Autc(G)/Inn(G).

Clearly then, Autc(G) 6= Inn(G) precisely when Outc(G) 6= 1. We shall henceforth
refer to such groups as NI-groups.

Burnside first posed his question in 1911 [1]. In 1913, Burnside himself constructed
an infinite family of p-groups which all are NI-groups [2], namely the groups of order
p6 consisting of all 3× 3 matrices

M =

 1 0 0
x 1 0
z y 1


with x, y, z in the field Fp2 of p2 elements, where p is an odd prime.

Since then, several other mathematicians have constructed new examples using
a variety of tools. In 1947, Wall constructed a new family of NI-groups which con-
tained an infinite family of 2-groups [17]. Other notable contributions include the
work of Heineken [8], who, in 1980, constructed p-groups G with the property that
Aut(G) = Autc(G), so that all automorphisms of G are nearly-inner. Malinowska
[11] constructed NI-groups of prime power order and nilpotency class r for all primes
larger than 5 and r > 2. In the negative direction, Feit and Seitz [5] proved in 1988
that no finite simple group is an NI-group.

Recently Ono and Wada proved that none of the following are NI-groups: free
groups; SLn(R) or GLn(R) where R is a Euclidean domain; Sn or An. Their
motivation arose from the “Hasse principle” for smooth curves on a number field
[13, 14, 15, 16]. The problem has connections with other areas of research. For
example, the isomorphism problem for integral group rings asks if an isomorphism
between integral group rings implies that the underlying groups are also isomorphic.
Mazur [7] showed a connection between this problem and the existence of nearly-inner
automorphisms in certain finite groups.
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Chapter 4

Computational Methods

We have determined all NI-groups whose order is at most 1,000 (except those of order
384, 512, 640, 768, and 896). In this section we describe the computational methods
we need to do this (and explain why some orders are missing from our catalog). To
do this we used the library of small groups available within the computer algebra
system Magma. The results are summarized in Table 4.1.

4.1 The Small Group Library

It is a non-trivial matter to construct all non-isomorphic groups of a given order.
However both theoretical and computational results have been developed to classify
groups of small order. The computer algebra system Magma has a small groups
library developed by Besche, Eick, and O’Brien. The database contains all groups of
order up to 2,000, excluding the groups of order 1,024 (due to the sheer number of
groups of this order).

For our computational approach to Burnside’s problem, we used the groups from
this library and computed their automorphism groups. This is a notoriously difficult
problem from the point of view of computational complexity. Nevertheless, for the
modestly sized groups that we are considering here, the available computational tools
are, for the most part, effective enough. One obstacle appears to be the construction
of Aut(G) for certain “soluble” groups G. The missing orders 384, 640, 768, 896
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consist entirely of such groups, and it seems infeasible to search through all of these
groups using the current software.

For groups of order 512 the problem is one of scale. There are 10,494,213 groups of
order 512: more than all of the remaining groups of order less than 1,000 put together.
Fortunately, there are very efficient techniques to compute automorphism groups of
p-groups. Thus, this task is at least a feasible one and is now almost complete.

4.2 Algorithms

Our problem is to construct, for a given groupG, the group Outc(G), and to determine
when this group is nontrivial. To this end, we recall that each automorphism θ of
G induces a permutation πθ of the conjugacy classes, where [x] 7→ [xθ]. Thus, θ is
nearly-inner if and only if πθ is the identity permutation. If Ω = {[x1], . . . , [xm]} is the
set of conjugacy classes of G, then the following algorithm computes the permutation
induced by θ on Ω.

PermutationOfClasses(G, Ω, θ)

Input: A group G, the set Ω = {[x1], . . . , [xm]} of conjugacy classes of G, and
θ ∈ Aut(G).
Output: The permutation, πθ, induced by θ on Ω.

1 I := [] /*Empty list*/
2 for i in {1, . . . , m} do
3 Set yi := xiθ
4 Find j ∈ {1, . . . , m} such that yi ∈ [xj]
5 Set I[i] := j
6 end for
7 return πθ, the permutation of {1, . . . , m} such that iπθ = I[i]

So PermutationOfClasses returns the identity permutation precisely when θ
is nearly-inner. We recall the homomorphism π : Aut(G) → Sym(Ω) which sends
θ 7→ πθ. As is standard in computational group theory, we construct the image of π
by computing πθ for each θ in some generating set of Aut(G).

Each element θ ∈ Aut(G) clearly induces a permutation of the set G, namely
the permutation γθ : G → G, sending g 7→ gθ. Let γ : Aut(G) → Sym(G) be the
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homomorphism sending θ 7→ γθ. Let X = Aut(G)γ denote the isomorphic image of
Aut(G) in Sym(G), and Y = Aut(G)π the image of Aut(G) in Sym(Ω). Then there
is a unique homomorphism π : X → Y such that the following diagram commutes.

Figure 4.1: Commutative diagram of permutation representation

Aut(G)
π

- Y

X

γ

?

π

-

The reason for converting from Aut(G) to the permutation representation, X, is
merely to utilize the permutation group machinery of Magma.

We note that the order of Sym(G) is at most 1,000. Magma handles such permu-
tation groups very easily; it can compute efficiently with permutation groups whose
degrees are in the millions, so our upper bound ensures that these computations are
trivial for Magma.

When applied to a set of generators for Aut(G), the following algorithm constructs
the group Y in Figure 4.1.

ActionOnClasses(A, Ω)

Input: A list A = [θ1, . . . , θt] of automorphisms of a group G, and Ω, the set
of conjugacy classes of G.
Output: The group induced by 〈A〉 on Ω and a map π : 〈A〉 → Sym(Ω) .

1 S := [] /*empty list*/
2 for j in [1, . . . , t] do
3 πθj := PermutationOfClasses(G, θj)
4 Add πθj to S
5 end for
6 Let π : 〈A〉 → Sym(Ω) sending θi 7→ πθi .
7 return 〈S〉 ≤ Sym(Ω), π

We can now present our algorithm to construct Outc(G).
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Outc(G)

Input: A group G.

Output: Outc(G).
1 Construct Aut(G) = 〈θ1, . . . , θt〉
2 Compute Ω
3 Construct γ : Aut(G)→ Sym(G), and put X := Aut(G)γ
4 Construct XI := Inn(G)γ
5 Construct Y, π := ActionOnClasses([θ1, . . . , θt], Ω)
6 for i in [1, . . . , t] do
7 Compute π : X → Y , sending θiγ 7→ θiπ
8 end for
9 Construct K := ker(π) /* so that XI ≤ K ≤ X */

10 Put K := K/XI , let φ : K → K denote the natural map, and choose a gener-
ating set U for K

11 Put U := {(uφ−1)γ−1 : u ∈ U} ≤ Aut(G)
12 return 〈U〉

Note that |Outc(G)| = |〈K〉| is computed in line 10, and G is an NI-group if and
only if |Outc(G)| 6= 1.

Using Outc(G) we can calculate Outc(G) for each group G with order less than
1,000. To ease the calculation, we note that Outc(G) = 1 if G is abelian, since
[g] = {g} for all g ∈ G. Thus, the only automorphism fixing every conjugacy class
fixes every element, which implies that the only class preserving automorphism is the
identity automorphism. Thus we first test if a given group G is abelian and, if it is,
we do not process it.

4.3 Computational Results

Below we list the results of our computations. The first column of the table lists
those orders for which there exists at least one NI-group. For each order, we give the
proportion of groups which are NI-groups out of the total number of groups of that
order as well as the set of possible values of |Outc(G)|.

In the table we let Tn be the number of groups of order n and Nn be the number
of NI-groups of order n. Then, clearly Pn = |Nn|/|Tn| is the proportion of groups of
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order n that are NI-groups. So, for any n not in this table, Nn = Pn = 0. Finally,
On = {|Outc(G)| : |G| = n} \ {1}.

We have observed several patterns from these data. One class of interesting groups
consists of those for which Autc(G) = Aut(G). From the data available, there are only
five groups for which all automorphisms are class-preserving. In particular, there is
one of order 128, one of order 468, and three of order 729. Other interesting patterns
arose around NI-groups of prime-power order. Using the p-group generation algorithm
(a concept introduced in the next chapter) and found that certain groups belong to
infinite families of NI-groups. In the next two chapters we introduce one such family
and prove that it consists entirely of NI-groups.
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Table 4.1: The NI-groups of order ≤ 1000(∗)

n Tn Nn Pn On

32 51 2 0.03922 { 2 }
64 267 40 0.14981 { 2, 4, 16 }
96 231 8 0.03463 { 2 }
128 2,328 767 0.32947 { 2, 4, 8, 16, 64 }
160 238 8 0.03361 { 2 }
192 1,543 233 0.15100 { 2, 4, 16 }
200 52 1 0.01923 { 2 }
224 197 8 0.04061 { 2 }
243 67 8 0.11940 { 3 }
256 56,092 34,112 0.60814 { 2, 4, 8, 16, 32, 64 }
288 1,045 28 0.02679 { 2 }
300 49 1 0.02041 { 2 }
320 1,640 243 0.14817 { 2, 4, 16 }
352 195 8 0.04103 { 2 }
400 221 5 0.02262 { 2 }
416 235 8 0.03404 { 2 }
448 1,396 231 0.16547 { 2, 4, 16 }
480 1,213 32 0.02638 { 2 }
486 261 12 0.04598 { 3 }
544 246 8 0.03252 { 2 }
576 8,681 932 0.10736 { 2, 4, 16 }
600 205 4 0.01951 { 2 }
608 195 8 0.04103 { 2 }
672 1,280 40 0.03125 { 2 }
704 1,387 231 0.16655 { 2, 4, 16 }
720 840 4 0.00476 { 2 }
729 504 133 0.26389 { 3, 9, 81 }
736 195 8 0.04103 { 2 }
800 1,211 48 0.03964 { 2 }
832 1,630 243 0.14908 { 2, 4, 16 }
864 4,725 108 0.02286 { 2 }
900 150 1 0.00667 { 2 }
928 235 8 0.03404 { 2 }
960 11,394 1,112 0.09760 { 2, 4, 16 }
972 900 46 0.05111 { 3 }
992 196 8 0.04082 { 2 }
1,000 199 1 0.00503 { 2 }

(∗) Except for orders 384, 512, 640, 768, and 896.
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Chapter 5

p-Group Generation

5.1 Generating p-Groups

Recall from Chapter 3 that several researchers have produced infinite families of p-
groups that are NI-groups. Our approach is rather different than those of earlier
constructions in that we use a modern - but now fairly standard - method for con-
structing families of p-groups. The method, first developed by Havas and Newman,
and later refined by O’Brien and others, is constructive, and is commonly known as
the p-group generation algorithm. In this chapter we given an abbreviated description
of this algorithm in order to provide the necessary theoretical platform for our main
result in the next chapter.

A word on a set S is a finite product of elements and inverses from S. The free
group on a finite set S, denoted FS, is the group consisting ofall words on S. If R is
a subset of F = FS then the smallest normal subgroup containing R is the normal
closure of R, denoted 〈R〉F .

A group G has a finite presentation S if there exists R ⊂ F such that

G ≡ 〈S | R〉 := F/〈R〉F .

Elements of S are called generators and elements of R are called relations.
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5.2 Polycyclic Groups

A group G is polycyclic if it has a series

G = G0 BG1 B · · ·BGn = 1,

where each Gi is a normal subgroup in Gi−1 and Gi/Gi+1 is a cyclic group for each
0 ≤ i ≤ n− 1.

For each i ∈ {1, . . . , n}, as Gi/Gi+1 is cyclic, there exists some xi ∈ G such that
〈xiGi+1〉 = Gi/Gi+1. The sequence [x1, . . . , xn] is called a polycyclic sequence
for G. One can show that for every g ∈ G, there exists a sequence of non-negative
integers [e1, . . . , en] such that g = xe11 · · · xenn . This representation of g is called the
normal form of g. Commutators similarly have normal forms, which, in conjunction
with the former forms, provide polycyclic presentations of polycyclic groups.

5.3 Power-conjugate Presentations

As our study focuses principally on p-groups, we focus on a specialized type of poly-
cyclic presentation called a power-conjugate presentation. Such presentations provide
a very efficient computational model for p-groups.

A power-conjugate presentation (or pc-presentation) of a finite p-group has
as a generating set a finite set {a1, . . . , an} with defining relations:

api =
n∏

k=i+1

a
β(i, k)
k (0 ≤ β(i, k) < p, 1 ≤ i ≤ n)

aaij = aj

n∏
k=j+1

a
β(i, j, k)
k (0 ≤ β(i, j, k) < p, 1 ≤ i < j ≤ n.)

A d-generator p-group is a p-group which is minimally generated by d elements.
Given a d-generator p-group, additional structure is imposed on the pc-presentation
so that for each ak ∈ {ad+1, . . . , an} there is at least one relation involving ak on
the right hand side. We manipuate exactly one of these to be the definition of ak
by isolating the ak term. If a power or commutator relation is omitted from the
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pc-presentation, then it is assumed to be trivial. That is, an omitted power relation
of ai implies that ai has order p, and an omitted commutator relation of aj and ai
implies that aj and ai commute.

A presentation is consistent if the associated normal form is unique for each
element. This implies that the order of the p-group is pn. Every group of order pn

has a consistent power-conjugate presentation on n generators.

To every power-conjugate presentation, G = 〈S | R〉, there exists a weight func-
tion on the generators defined as follows:

w(aj) = max{i ∈ {1, . . . , c}|aj ∈ Pi(G)},

where we recall that Pi(G) is the ith subgroup of the lower exponent-p central series
of G.

If a d-generator p-group has a consistent pc-presentation, then the following as-
signments determine the weights of generators:

1. w(ai) = 1 for i = 1, . . . , d.

2. If the definition of ak is api = ak, then w(ak) = w(ai) + 1.

3. If the definition of ak is [aj, ai] = ak, then w(ak) = w(aj) + w(ai).

An arbitrary word in the generators of a pc-group can be reduced to a normal
form using the group relations. As originally described by Hall [6], given a word
g = aiaj · · · aka`, if k > ` we then write g = aiaj · · · a`ak[ak, a`], where the commu-
tator [ak, a`] is equal to a product of generators with indices greater than k and `.
Continuing in this fashion, this process must terminate, leaving g in normal form.
This process is known as collection and is crucial to show the consistency of a pc-
presentation. The following result, although true in more generality, has been tailored
to suit our needs:

Consistency Lemma [9, p. 360]. A weighted power-conjugate presentation of a 2-
group with generators [a1, . . . , an] is consistent if the following words collect to the
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trivial word:

(akaj)ai = ak(ajai) 1 ≤ i < j < k ≤ m and i ≤ d,
w(ai) + w(aj) + w(ak) ≤ c.

(ajaj)ai = aj(ajai) 1 ≤ i < j ≤ m and i ≤ d, w(ai) + w(aj) < c.
(ajai)ai = aj(aiai) 1 ≤ i < j ≤ m, w(ai) + w(aj) < c.
(aiai)ai = ai(aiai) 1 ≤ i ≤ m, 2w(ai) < c.

where words in inner parentheses are collected first.

5.4 The p-Covering Group

Let G be a p-group with generating number d and class c. A group H is a descendant
of G if H has generating number d and the quotient H/Pc(H) is isomorphic to G. A
descendant is an immediate descendant of G if it has class c+ 1.

The construction of immediate descendants from G is completed by the compu-
tation of a group, G∗, called the p-covering group of G. The p-covering group has
the property that each immediate descendant of G is isomorphic to a quotient of G∗.

In order to write a pc-presentation of the p-covering group, a total of q := d+
(
n
2

)
new generators, an+1, . . . , an+q, are introduced together with relations which make
them central and of order p. We also must add definitions of each new generator.
The following algorithm is extracted from [9, p. 360]:

p-CoveringGroup(G)

Input: Consistent pc-presentation for a p-group G.
Output: Pc-presentation for its covering group G∗.

1 A∗ := A
2 R∗ := all relations from R which are definitions
3 Modify each non-defining relation api = wi or [aj, ai] = wi,j to be api = wiar or

[aj, ai] = wi,jar for r ∈ {n+1, . . . , n+q}, where different relations are modified
by different ar

4 Add each ar to A∗

5 Add apr = 1 to R∗ for r ∈ {n+ 1, . . . , n+ q}
6 Add [ar, ai] = 1 to R∗ for r ∈ {n+ 1, . . . , n+ q} and i ∈ {1, r − 1}
7 return G∗ := 〈A∗ | R∗〉



CHAPTER 5. P -GROUP GENERATION 22

Note that in general this presentation is not consistent.

If G and G∗ are defined as above, we let K be the kernel of the natural map
from G∗ → G; we call K the p-multiplicator of G, so that G ≡ G∗/R. We call
Pc(G

∗) ≤ K the nucleus of G. Then, G has immediate descendants if and only if
the nucleus is nontrivial, and each is obtained as G∗/M where M is a supplement to
the nucleus in R. If the nucleus is trivial then the group G is terminal; otherwise it
is capable.

We require the following lemma, which shows that automorphisms of H lift to
automorphisms of H∗ in a natural way.

Lifting Lemma. If θ ∈ Aut(G) maps αi 7→ wi(α1, . . . , αn) for i = 1, . . . , d, then
θ∗ defined by ai 7→ wi(a1, . . . , an) for i = 1, . . . , d is an automorphism of G∗.
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Chapter 6

A New Family of NI-Groups

In this chapter we prove our main result, which is to establish that a certain family of
finite presentations are in fact pc-presentations for a family of 2-groups which are all
NI-groups. The construction arose from experimentation with the p-group generation
algorithm described in the previous chapter, and the proof we give is by induction,
based on a detailed analysis of the application of the algorithm to the groups in our
family. The presentation of our proof is organized as follows.

In Section 6.1 we introduce our family of groups as a family of finite presentations
〈Sn | Rn〉, and state the main theorem. Sections 6.2 through 6.5 set up the inductive
step of our proof of the main theorem. We assume throughout those sections that, for
some n, H = Hn = 〈Sn | Rn〉 behaves as stated in the main theorem. In particular,
the defining presentation is a consistent pc-presentation for H.

In Section 6.2, we give a pc-presentation for H∗, the 2-covering group of H (as
described in Chapter 5). In Section 6.3 we identify a particular descendant of H as a
quotient of H∗, and show that it is isomorphic to the group Hn+1 = 〈Sn+1 | Rn+1〉 .

In order to prove that Hn+1 is an immediate descendant of Hn , we must show
that it has the right order, namely that |Hn+1| = 2|Hn|. This is done in Section 6.4
by proving that the presentations 〈Sn | Rn〉 are, in fact, consistent pc-presentations.

It remains to show that each group H = Hn in our infinite family is an NI-group.
To that end we exhibit a particular nearly-inner automorphism of H that is not inner.
This we do again by induction, first lifting the automorphism from H to H∗, and then
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inducing it on the distinguished quotient. The details are given in Section 6.5.

Finally, in Section 6.6, we give our proof of the main theorem, which follows easily
from the preceding sections.

6.1 A Family of Groups

Let n > 2 be an integer and consider Sn = {γ1, . . . , γ4, ζ, α1, . . . , αn}, a set of n + 5
generators. Our choice of notation reflects the fact that our groups are all 4-generated
by the elements γ1, . . . , γ4. Consider Rn, the following set of 3n+ 1 relations on Sn:

(P) α2
n−1 = αn, and, if n > 2, α2

i = αi+1αi+2, for i ∈ {1, . . . , n− 2}.

(D) [γ2, γ1] = ζ, [γ3, γ1] = α1 and [αi, γ1] = αi+1 for i ∈ {1, . . . , n− 1}.

(C) [γ3, γ2] = ζ, [γ4, γ1] = ζ and [αi, γ3] = αi+1 for i ∈ {1, . . . , n− 1}.

Relations of type (P) are called “power relations” (there are n−1 of them). Relations
of type (D) are called “definitions” (there are n + 1 of them). Relations of type (C)
are called “commutators” (there are n + 1 of them). We recall that these relations
will be part of a pc-presentation, so missing commutator relations are trivial. For
example, [γ4, γ2] = 1.

Our main theorem is the following.

Main Theorem. For each n > 2, the group H = Hn = 〈Sn | Rn〉 has order 2n+5

and class n+ 1. Furthermore, the following hold:

(a) 〈Sn | Rn〉 is a consistent pc-presentation for H.

(b) If Pi = Pi(H) denotes the ith term in the exponent-2-central series for H, then

(i) P0/P1 = 〈γ1P1, γ2P1, γ3P1, γ4P1〉 ∼= Z 4
2 ;

(ii) P1/P2 = 〈ζP2, α1P2〉 ∼= Z 2
2 ; and

(iii) Pi/Pi+1 = 〈αiPi+1〉 ∼= Z2 for each i = 2, . . . , n.



CHAPTER 6. A NEW FAMILY OF NI-GROUPS 25

(c) Z(H) = 〈ζ, αn〉 ∼= Z 2
2 .

(d) The map sending γ4 7→ γ4ζ and β 7→ β for β ∈ Sn \ {γ4} extends to θ = θn ∈
Aut(H). Furthermore, θ is nearly-inner but not inner, so H is an NI-group.

6.2 Constructing the 2-Covering Group

Let n > 2, and H = Hn = 〈Sn | Rn〉. Suppose that H behaves as stated in the main
theorem. In this section we build the 2-covering group of H, using the pCovering-
Group algorithm as discussed in Section 5.4. We denote the pc-generators for H∗

collectively as S∗ and individually as follows:

g1, . . . , g4, z, a1, . . . , an preimages of the generators for H
b, d1, d2, d3 generators for the nucleus of H
x1, . . . , x8 remaining generators of the 2-multiplicator of H
y1, . . . , yt generators that turn out to be trivial

The pc-relations, R∗, for H∗ are defined as follows:

1. [g2, g1] = z, [g3, g1] = a1 and [ai, g1] = ai+1 for i ∈ {1, . . . , n − 1}. Of course,
these relations are simply the definitions of the analogous elements in H.

2. Definitions of the new generators:

(i) [an, g1] = b, a2n−1 = and1, a2n = d2, [an, g3] = d3.

(ii) g2i = xi for i ∈ {1, . . . , 4}, [g3, g2] = zx5, [g4, g1] = zx6, [g4, g2] = x7,
[g4, g3] = x8.

(iii) One new generator for each remaining square, or commutator pair, [aj, gi].

3. Powers of, and commutators involving each new generator are omitted from the
pc-presentation, implying that each is central in H∗ of order at most 2.

The subgroup, R, of H∗ generated by the new generators is the 2-multiplicator of
H∗, namely the kernel of the map H∗ → H, sending gi 7→ γi (i = 1, 2, 3, 4).

Lemma A. The nucleus of H, namely the group Pn+1(H
∗), is generated by the single

generator b.
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Proof. Recall that Pn(H) = 〈αn〉, so Pn(H∗) = 〈an, R〉. Since R is elementary abelian
and central in H∗, it follows that {a2n, [an, gi] : i = 1, 2, 3, 4} is a generating set for
Pn+1(H

∗). We now use associativity in H∗ to deduce relations among those genera-
tors. Observe first that

an−1(an−1g2) = an−1g2an−1y2,n−1 = g2a
2
n−1(y2,n−1)

2 = g2and1,

while
(an−1an−1)g2 = and1g2 = ang2d1 = g2and1[ang2].

Hence [an, g2] = 1. Similarly, [an, g4] = 1, so we have Pn+1 = 〈b, d2, d3〉. Next, we
compute

an−1(g1g1) = an−1x1
(an−1g1)g1 = g1an−1ang1 = g1an−1g1anb = g21an−1a

2
nb = an−1bd2x1,

an−1(g3g3) = an−1x3
(an−1g3)g3 = (g3an−1an)g3[an−1, g3] = g3an−1g3and3[an−1, g3] = g23an−1a

2
nd3([an−1, g3])

2

= an−1d2d3x3,
and
an−2(g1g1) = an−2x1
(an−2g1)g1 = g1an−2an−1g1 = g1an−2g1an−1an = g21an−2a

2
n−1an = an−2a

2
nd1x1

= an−2d1d2x1,

from which we deduce that b = d1 = d2 = d3. Hence, the nucleus Pn+1(H
∗) = 〈b〉.

6.3 A Distinguished Descendant

In this section we continue to assume that H = Hn is as stated in the theorem. Let
H∗ denote the 2-covering group of H described in the previous section.

Lemma B. There is an epimorphism φ : H∗ → Hn+1, so Hn+1 is a descendant of H.

Proof. Let M be the subgroup of R generated by all those new generators that are
not equal to b. Thus M is a supplement to 〈b〉 in R, and as such is an allowable
subgroup of R. It follows that H∗/M is a descendant of H of order at most 25+n+1

(since [R : M ] 6 2).

An examination of the defining relations for H∗ reveals that, when we pass to the
quotient H∗/M , denoting gM by ḡ, the only relations that remain are the following:
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1. All of the analogues of the definitions from H.

2. (i) [ān, ḡ1] = b̄ = [ān, ḡ3] = ā2n and ā 2
n−1 = ānb̄.

(ii) [ḡ3, ḡ2] = z̄ and [ḡ4, ḡ1] = z̄.

(iii) [āi, ḡ3] = āi+1 for i ∈ {1, . . . , n− 1}.

It is now easy to see that the assignment

ḡi 7→ γi (i = 1, . . . , 4)
z̄ 7→ ζ
āj 7→ αj (j = 1, . . . , n)
b̄ 7→ αn+1

extends to an isomorphism from H∗/M to Hn+1 = 〈Sn+1 | Rn+1〉.

6.4 Consistency of the Immediate Descendant

In the previous two sections we assumed (inductively) that H = Hn is a group having
pc-presentation 〈Sn | Rn〉 and behaving as in the main theorem. We then showed that
H has a descendant isomorphic to a group Hn+1 with pc-presentation 〈Sn+1 | Rn+1〉.
To show that Hn+1 is an immediate descendant (i.e. has order 2n+5) we must show
that the presentations 〈Sn | Rn〉 are consistent.

Lemma C. The pc-presentation for Hn is consistent.

Proof. We use the Consistency Lemma stated in the previous chapter, manually car-
rying out the necessary collections.

Observe that any collection in which all three elements commute with each other
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is trivial, so these are all excluded. We first consider relations involving γ1.

(γ3γ2)γ1 = (γ2γ3z)γ1 = γ2γ3γ1z = γ2γ1γ3α1z = γ1γ2γ3α1z
2 = γ1γ2γ3α1.

γ3(γ2γ1) = γ3(γ1γ2z) = γ1γ3α1γ2z = γ1γ3γ2α1z = γ1γ2γ3α1z
2 = γ1γ2γ3α1.

(γ4γ2)γ1 = (γ2γ4)γ1 = γ2γ1γ4z = γ1γ2γ4z
2 = γ1γ2γ4

γ4(γ2γ1) = γ4(γ1γ2z) = γ1γ4γ2z
2 = γ1γ2γ4.

(αkγ2)γ1 = (γ2αk)γ1 = γ2γ1αkαk+1 = γ1γ2zαkαk+1

αk(γ2γ1) = αk(γ1γ2z) = γ1αkαk+1γ2z = γ1γ2zαkαk+1.

(γ4γ3)γ1 = (γ3γ4)γ1 = γ3γ1γ4z = γ1γ3α1γ4z = γ1γ3γ4zα1

γ4(γ3γ1) = γ4(γ1γ3α1) = γ1γ4zγ3α1 = γ1γ4γ3zα1 = γ1γ3γ4zα1.

(αkγ3)γ1 = (γ3αkαk+1)γ1 = γ3αkγ1αk+1αk+2 = γ3γ1αkα
2
k+1αk+2 = γ1γ3α1αkα

2
k+1αk+2

αk(γ3γ1) = αk(γ1γ3α1) = γ1αkαk+1γ3α1 = γ1αkγ3αk+1αk+2α1 = γ1γ3α1αkα
2
k+1αk+2.

(αkγ4)γ1 = (γ4αk)γ1 = γ4γ1αkαk+1 = γ1γ4zαkαk+1

αk(γ4γ1) = αk(γ1γ4z) = γ1αkαk+1γ4z = γ1γ4zαkαk+1.

(αkαj)γ1 = (αjαk)γ1 = αjγ1αkαk+1 = γ1αjαj+1αkαk+1

αk(αjγ1) = αk(γ1αjαj+1) = γ1αkαk+1αjαj+1 = γ1αjαj+1αkαk+1.

(αjαj)γ1 = αj+1αj+2γ1 = αj+1γ1αj+2αj+3 = γ1αj+1α
2
j+2αj+3

αj(αjγ1) = αj(γ1αjαj+1) = γ1αjαj+1αjαj+1 = γ1α
2
jα

2
j+1 = γ1αj+1α

2
j+2αj+3.

For the cases regarding γ3, we simply observe that the definitions and commutator
relations involving γ3 are the same as γ1, so all calculations follow similarly.

We now consider collections involving γ2.

(γ4γ3)γ2 = γ3γ4γ2 = γ3γ2γ4 = γ2γ3zγ4 = γ2γ3γ4z
γ4(γ3γ2) = γ4(γ2γ3z) = γ2γ4γ3z = γ2γ3γ4z.

(αkγ3)γ2 = (γ3αkαk+1)γ2 = γ3γ2αkαk+1 = γ2γ3zαkαk+1

αk(γ3γ2) = αk(γ2γ3z) = γ2αkγ3z = γ2γ3αkαk+1z = γ2γ3zαkαk+1.

The remaining cases are described completely as follows:

(i) (ζγj)γi = ζ(γjγi) and (αkζ)γi = αk(ζγi),
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(ii) (hh)g = h(hg),

(iii) (hg)g = h(gg), and

(iv) (gg)g = g(gg),

where j ∈ {1, . . . , 4}, k ∈ {1, . . . , n} and g, h ∈ {γ1, . . . , γ4, ζ}. These are easy to
verify, as ζ is central and each element in {γ1, . . . , γ4, ζ} has order 2.

6.5 Constructing a Nearly-Inner Automorphism

In this section we consider the automorphism θ described in the main theorem. We
first show, again by induction, that θn is an automorphism of Hn.

Once again, suppose that the given assignment on generators extends to an au-
tomorphism, θ, of H = Hn behaving as in part (e) of the main theorem. By the
Lifting Lemma, θ lifts to an automorphism of H∗ that sends gi 7→ gi (i = 1, 2, 3), and
g4 7→ g4z. We compute the image under θ∗ of the remaining pc-generators of H∗. We
first prove the following lemma.

Lemma D. The element z2, and all commutators [z, gi] and [ai, z], are trivial in
H∗.

Proof. First, we compute

g4(g3g2) = g4(g2g3zx5) = g2g4g3zx5x7 = g2g3g4zx5x7x8

(g4g3)g2 = (g3g4)g2x8 = g3g2g4x7x8 = g2g3zg4x5x7x8 = g2g3g4z[z, g4]x5x7x8.

It follows that [z, g4] = 1. Next,

(g4g4)g1 = x4g1 = g1x4

g4(g1g1) = g4(g1g4zx6) = g1g4zg4zx
2
6 = g1g4zg4z = g1g

2
4z[z, g4]z = g1z

2[z, g4]x4,

so that z2 = [z, g4] = 1. Also,

(g4g1)g1 = g1g4zg1x6 = g1g4g1z[z, g1]x6 = g11g4z
2[z, g1]x

2
6 = g4x1z

2[z, g1]

g4(g1g1) = g4x1,
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so [z, g1] = z2 = 1. Next,

g4(g2g1) = g4(g1g2z) = g1g4zx6g2z = g1g4g2z[z, g2]zx6 = g1g2g4z[z, g2]zx6x7

(g4g2)g1 = (g2g4x7)g1 = g2g1g4zx6x7 = g1g2zg4zx6x7 = g1g2g4z[z, g4]zx6x7,

so that [z, g2] = [z, g4] = 1. Next,

g3(g3g2) = g3(g2g3zx5) = g2g3zx5g3zx5 = g2g3g3z[z, g3]zx
2
5 = g2z[z, g3]zx3

(g3g3)g2 = x3g2 = g2x3,

so that [z, g3] = z2 = 1. Also,

(zg3)g1 = g3zg1[z, g3] = g3g1z[z, g1][z, g3] = g1g3a1z[z, g1][z, g3] = g1g3za1[a1, z][z, g1][z, g3]

z(g3g1) = zg1g3a1 = g1zg3a1[z, g1] = g1g3za1[z, g1][z, g3],

so [a1, z] = 1. Finally, for i ∈ {1, . . . , n−1}, let yi denote the generator of H∗ defined
by [ai, g3] = ai+1yi. Then,

ai(zg3) = aig3z[z, g3] = g3aiai+1z[z, g3]yi = g3zaiai+1[z, g3][ai, z]yi[ai+1, z]

(aiz)g3 = zai[ai, z]g3 = zg3aiai+1[ai, z]yi = g3zaiai+1[z, g3][ai, z]yi,

so [ai+1, z] = 1 for i = 1, . . . , n− 1.

Lemma E. The automorphism θ∗ fixes every generator of H∗ except for g4.

Proof. First, since the definitions of z, a1, . . . , an are precisely the same as those of
ζ, α1, . . . , αn in H, it is clear that θ∗ fixes each of these generators. Moreover, the
only new generators that are potentially not fixed are those whose definition involves
g4. Using Lemma D where appropriate,

x4θ
∗ = (g24)θ∗ = (g4θ

∗)2 = (g4z)2 = g24z[z, g4]z = x4z
2 = x4.

Next,

z(x6θ
∗) = (zθ∗)(x6)θ

∗ = (zx6)θ
∗ = [g4, g1]θ

∗

= [g4z, g1]
= [g4, g1]

z[z, g1] = (zx6)
z = zx6,

so that x6θ
∗ = x6. Similarly, θ∗ fixes each new generator defined as a commutator

with g4.
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From Lemma B, it follows that θ∗ induces an automorphism θ on H := H∗/M
which, as we have seen, is isomorphic to Hn+1. Furthermore it is clear that θ is
precisely the map θn+1 in the main theorem. Thus, if θm ∈ Aut(Hm) for some m > 2,
then θn ∈ Aut(Hn) for all n > m. It remains to show that the automorphism, θ = θn,
of Hn is nearly-inner but not inner.

Lemma F. θ ∈ Aut(Hn) is not inner.

Proof. If θ is inner, then there exists δ ∈ H such that γ δ
4 = γ4ζ. Since the pc-

presentation for H is consistent, we can write δ uniquely as δ = γε1γ
ε2
2 . . . γεnn = γε1µ,

where µ := γε22 . . . γεnn must commute with γ4. As δ does not commute with γ4, we have
ε = 1, so γ4

δ = γ γ1µ
4 = (γ4ζ)µ = γ4ζ, as required. However, if we let ξ = γε44 · · · γεnn ,

then

γ3 = γ3
δ = γ

γ1γ
ε2
2 γ

ε3
3 ξ

3 = (γ3α1)
γ
ε2
2 γ

ε3
3 ξ = (γ3ζ

ε2α1)
γ
ε3
3 ξ = (γ3ζ

ε2α1α
ε3
2 )ξ.

As ξ commutes with ζ, α1, and α2, we can write γ δ
3 = γ3α1α, where α ∈ 〈ζ, α2, . . . , αn〉.

In particular, γ δ
3 6= γ3. It follows that θ is not inner.

To prove that θ is nearly-inner, we first prove the following lemma.

Lemma G. For all i = i, . . . , n− 1, it holds that α2
iαi+1 = 1 and α4

iα
2
i+1 = 1

Proof. Since α2
iαi+1 = (αi+1αi+2)αi+1 = α2

i+1αi+2, by induction α2
iαi+1 = α2

n−1αn =
αnαn = 1. Similarly, α4

iα
2
i+1 = (αi+1α

2
i+2)

2αi+2 = α4
i+1α

2
i+2, so by induction α4

iα
2
i+1 =

α4
n−1α

2
n = 1.

Lemma H. θ ∈ Aut(Hn) is nearly-inner.

Proof. We must show that, for all g ∈ H, there exists h = h(g) ∈ G such that
gθ = gh. Since each g ∈ H has a unique normal form, namely

g = γδ11 · · · γδ44 ζεαε11 αε22 · · ·αεnn ,

where δi, ε, εj ∈ {0, 1}. If δ4 = 0, then it is clear that gθ = g = g1. So, we only
consider the cases when δ4 = 1. In these cases, gθ = g · ζ, so we seek an h ∈ H



CHAPTER 6. A NEW FAMILY OF NI-GROUPS 32

satisfying gh = g · ζ.
Case 1: The parity of δ1 + δ3 is odd. Let h = γ2. If δ1 = 1 then δ3 = 0, so

g = γ1γ
δ2
2 γ4ζ

εαε11 · · ·αεnn .

Then,

gγ2 = γγ21 (γδ22 )γ2γγ24 (ζε)α2(αε11 )γ2 · · · (αεnn )α2

= (γ1ζ)(γδ22 )(γ4) · · · (αεnn ) = g · ζ.

In the other case δ1 = 0 and δ3 = 1, and the result holds similarly.

Before proving the second case, we establish the following claims:

Claim: For each x ∈ {γ2, ζ, α1, . . . , αn}, it holds that xγ1γ3 = x.

The claim is easy proved by considering the cases γ2, ζ, and αi separately. In partic-
ular, for αi it holds that

(αγ1i )γ3 = (αiαi+1)
γ3 = αγ3i α

γ3
i+1 = (αiαi+1)(αi+iαi+2)

= αiα
2
i+1αi+2 = αi,

where the last equality holds by Lemma G.

Claim: α1α2γ3α1α2 = γ3.

The claim is proved similarly, noting that

α1α2γ3α1α2 = α1(γ3α2α3)α1α2 = (γ3α1α2)α2α3α1α2 = γ3(α
2
1α

3
2α3)

= γ3((α2α3)α
3
2α3) = γ3(α

4
2α

2
3) = γ3,

where again, the last equality holds by Lemma G.

These two claims are sufficient to prove the second case of our lemma.

Case 2: The parity of δ1 + δ3 is even. Let h = γ1γ3. If δ1 = 0 then δ3 = 0, so

g = γδ22 γ4ζ
δ5 · · ·αεnn .

Thus,

gγ1γ3 = (γδ22 )γ1γ3(γ4)
γ1γ3(ζδ5)γ1γ3 · · · (αεnn )γ1γ3 = γδ22 (γ4ζ)(ζε5) · · · (αεnn ).
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If δ1 = δ3 = 1 then we still take h = γ1γ3, but note that γγ1γ31 = γ1α1α2, and
γγ1γ33 = γ1α1α2. As g = γ1γ

δ2
2 γ3γ4ζ

δ5 · · ·αεnn , we have

gγ1γ3 = (γγ1γ31 )(γδ22 )γ1γ3(γγ1γ33 )(γγ1γ34 )(ζδ5)γ1γ3 · · · (αεnn )γ1γ3

= (γ1α1α2)(γ
δ2
2 )(γ3α1α2)(γ4ζ)(ζδ5) · · ·αεnn .

Since α1 and α2 commute with γ2, we have

gγ1γ3 = γ1γ
δ2
2 (α1α2γ3α1α7)(γ4ζ)(ζδ5) · · ·αεnn = γ1γ

δ2
2 γ3γ4ζ

δ5 · · ·αεnn ζ.

6.6 Proof Of Main Theorem

As suggested by the structure of the foregoing sections, the proof is by induction on
n.

It is easy to verify on the computer that there are groups H2 (of order 27) and
H3 (of order 28) behaving exactly as in the theorem statement. The combined results
of Sections 6.2-6.5 show that if Hn (of order 2n+5) behaves as in the theorem state-
ment, then it has an immediate descendant (of order 2n+6) isomorphic to Hn+1, and
this group also behaves as in the theorem statement. The theorem now follows by
induction.

Remark. H2 and H3 are the groups identified as 〈27, 1918〉 and 〈28, 26740〉, respec-
tively, in the Magma small group library.

Remark. We proved that Hn has class n + 1; in fact, the lower central series and
2-central series coincide for Hn. Therefore, Hn has nilpotency class n + 1 and hence
coclass 4.
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Chapter 7

Conclusion

In this project we have successfully determined, for almost all n ≤ 1, 000, the NI-
groups of order n, and discovered a new infinite family of NI-groups, all linked by
a constant coclass. We reiterate that our data seems to suggest that NI-groups are
much more “common” than one might have expected. From the orders completed,
approximately 38% of all groups are NI-groups. Our main theorem introduces a new
infinite family of NI-groups.

Eick and duSautoy [3, 4] have completed work on coclass graphs to help understand
p-groups. Let G(p, r) be a directed graph whose vertices are all p-groups (up to
isomorphism) of coclass r. There is an edge from a group P to Q if and only if P/γ(P )
is isomorphic to Q, where γ(P ) is the last non-trivial term in the exponent-2 central
series of P . Evidently, an edge exists from P to Q precisely when Q is a descendant of
P . The structure of G(p, r) is, in general, not well understood. It is known, however,
that there are families of “infinitely capable” groups that lie on infinite chains in
G(p, r). Each such family corresponds to a unique infinite pro-p-group, and there are
finitely many of these. The families are called “mainline families,” and their members
are called “mainline groups”. Our main theorem describes a mainline family in the
coclass graph G(2, 4). In particular, each mainline group in this family is an NI-group.

The uniqueness of this family seems extremely unlikely, and we expect that a
thorough analysis of our data will lead to new infinite families of NI-groups. Indeed,
we have already identified three other possible sources of infinite families. These,
however, would also be examples of coclass 4; we would like to find families with
other coclass values.
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Of course, questions raised in Chapter 4 also lend themselves to future areas of
study. In particular, we wish to discover more groups for which Autc(G) = Aut(G).
Recall that we have only found 5 examples in the data collected thus far. Further, we
require improvements on the generation of automorphism groups in order to compute
Outc(G) for “larger” soluble groups G in order to complete Table 4.1.
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