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ABSTRACT 

This study investigates the possibility of custom fitting a widely accepted 

approximate yield surface equation (Ziemian, 2000) to the theoretical yield surfaces of 

five different structural shapes, which include wide-flange, solid and hollow rectangular, 

and solid and hollow circular shapes. To achieve this goal, a theoretically “exact” but 

overly complex representation of the cross section’s yield surface was initially obtained 

by using fundamental principles of solid mechanics. A weighted regression analysis was 

performed with the “exact” yield surface data to obtain the specific coefficients of three 

terms in the approximate yield surface equation. These coefficients were calculated to 

determine the “best” yield surface equation for a given cross section geometry. Given that 

the exact yield surface shall have zero percentage of concavity, this investigation 

evaluated the resulting coefficient of determination ( ) and the percentage of concavity 

of the customized yield surface in comparison to those of the widely accepted yield 

surface. 

Based on the results obtained, only the customized yield surface equations for 

wide-flange sections fit the corresponding theoretical yield surfaces better than the 

widely accepted yield surface equation. For other sections, the  was either very small, 

negative, or zero for both the customized yield surface equation and the widely-accepted 

yield surface equation.  By using the concavity test developed in this study, the 

theoretical yield surface was found to have a small percent of concavity, which can be 

attributed to the high sensitivity of the convexity test to rounding off errors. In these 
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cases, a negligible degree of concavity was consistently observed at these points. 

Therefore, the percentage of concavity of the exact yield surface was subsequently used 

as an offset for assessing the concavity of both the widely accepted yield surface and the 

customized yield surface equations. With this approach, both the widely accepted and 

customized yield surfaces were shown to be completely convex for all sections except for 

hollow circular sections. With regard to both improving  values and maintaining the 

continuous and convex characteristics of a yield surface, only the widely accepted yield 

surface equation could be customized to fit the theoretical yield surfaces for wide-flange 

sections.  
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INTRODUCTION 

1.1 OBJECTIVE 

 Most of today’s structural design is based on an analysis that does not account for 

the possibility of the material failing, either by excessive yielding or fracture.  To assure 

that these failure modes will not govern, the capacity of members are significantly 

increased when they are designed.  Such an approach has proven to be safe and reliable, 

but in many cases it can be very conservative and subsequently, less economical.  Over 

the past twenty years, research has continued in developing more advanced structural 

analysis methods that can account for material yielding and thereby allow forces within 

the structure to redistribute away from members that are yielding and on towards 

members with reserve capacity.  Such analysis approaches provide for improved 

economy and a better representation of the actual structural performance.  With this in 

mind, the American Institute of Steel Construction (AISC), which is the governing body 

for the design of hot-rolled steel buildings in the U.S., recently released an updated 

specification (AISC, 2010) that contains new rules (Appendix 1 – Design by Inelastic 

Analysis) that allows engineers to take advantage of the actual material nonlinear 

behavior (termed inelasticity) that will occur as a structure reaches its limit state of 

strength.  Unfortunately, very few of today’s commercially available analysis software 

packages provide such functionality.  One of the difficulties in developing such software 
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is providing an analysis that is accurate and can be completed within a reasonable or even 

acceptable amount of time (i.e., within minutes, not hours or days). 

A key component of such an analysis is the device that is used to determine when 

full yielding will occur.  This device, commonly referred to as a yield surface, is in theory 

a function of each member’s cross sectional shape. As a result, it is unique to each type of 

member used.  To maintain an efficient analysis, software developers have been using a 

single yield surface equation to represent all cross sections (e.g., I-beams, box sections, 

pipes, etc.).  Unfortunately, this approach can in many cases provide unconservative 

results and most engineers agree that a scheme for efficiently incorporating custom fit 

yield surfaces within structural analysis software is needed before design by inelastic 

analysis will become more common. In this regard, this research explores the possibility 

of custom fitting a single general form yield surface to the characteristics and dimensions 

of individual structural shapes. 

1.2 SCOPE 

 The scope of this project consists of custom fitting a widely accepted yield 

surface equation to all wide-flange, solid and hollow rectangular, and solid and hollow 

round shapes.  For example, the coefficients (3.5, 3.0, and 4.5) used in the general 

expression for a single all-purpose yield surface, shown below as: 

p2  +  mx
2  + my

4  +  3.5p2mx
2  + 3.0p6my

2  +  4.5mx
4my

2  =  1.0  Eq. (1) 
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could be individually tailored to best match the unique theoretical yield surface for a 

given cross section. The expected outcome from this study will be a computational 

algorithm, based on regression analysis, that determines the best numerical coefficients to 

be used in the above yield surface equation for any given shape (e.g. I-beam) and its 

corresponding dimensions (such as height, width, and wall thicknesses). The optimum 

numerical coefficients will be determined based on the respective 𝑅2 and concavity of the 

yield surface. Note that only one quadrant of the yield surface needs to be studied 

because each quadrant is assumed for isotropic material to be identical to the others.  

2 BACKGROUND 

2.1 THEORY 

2.1.1 YIELD SURFACE  

The yield surface is a “hypersurface” of the combined effects defining a yield 

criterion. This can be viewed as combinations of multidirectional stress in a structural 

member that result in stresses equal to the yield stress of the material [5]. Theoretically, a 

yield surface is a six-dimensional surface, corresponding to the six generalized stress 

components. In the plastic-hinge analysis of ductile frames, the specified yield surface is 

a stress resultant yield surface that only needs be three-dimensional [1].  The surface is a 

non-dimensional function of axial force and bending moments about two axes, all of 

which produce normal stress in the direction of the length axis of the member.  The 

surface is represented by the function: 
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𝜙(𝑚𝑥,𝑚𝑦,𝑝) 

where: 

 𝑝 = 𝑃/𝑃𝑦, the ratio of the axial force to the squash (axial yield) load, 

𝑚𝑥= 𝑀𝑥/𝑀𝑝𝑥, the ratio of the major-axis bending moment to the corresponding 

plastic moment, and 

𝑚𝑦 = 𝑀𝑦/𝑀𝑝𝑦, the ratio of the minor-axis bending moment to the corresponding 

plastic moment.  

The squash load 𝑃𝑦 is the product of the cross-sectional area, 𝐴, and the material 

yield stress, 𝐹𝑦. The plastic moment, 𝑀𝑝, about a principle axis is the product between the 

plastic section modulus, Z, about the corresponding axis and the material yield stress, 𝐹𝑦. 

Figure 1.a shows an example of a plastic-hinge at a wide-flange section that is subjected 

to combined axial force and bending moments about two principal axes and Figure 1.b 

shows the traces of a typical yield surface.   

The reasoning and justification for adopting a three-dimensional yield surface 

instead of a six-dimensional surface are presented in Section 2.2.1. The theoretically 

exact representation of a yield surface is a multi-faced surface (composed of multiple 

equations) as shown in Fig. 1.c. Single-equation yield surfaces, however, are needed 

because such forms satisfy the computational requirement of “being a continuous 

function” while multi-faced surfaces do not [4].  
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 (a)                                  (b)  

 

(c) [Reference 4] 

Figure 1. (a) Wide-flange section under combined axial and bending loads (b) 

sketch of a wide-flange yield surface (c) Chen and Atsuta’s multi-faced wide-

flange yield surface.   
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The theoretical yield surface can be calculated for a given shape, dimensions, and 

material of a cross section based on cross-sectional equilibrium [1].  

2.1.2 ROLE OF A YIELD SURFACE IN INELASTIC ANALYSIS 

The yield surface is a device that can indicate when plastic hinging occurs. 

Yielding is typically defined as a loss of stiffness at a location within a cross section 

where any additional stress is redistributed to the neighboring unyielded parts that still 

have stiffness. Initial yielding occurs at the beginning of the stress redistribution; 

complete yielding or a plastic hinge is the limit at which a cross-section can resist any 

additional applied loading. Therefore, plastic hinging serves as an important component 

of an inelastic analysis, in which the main goal can be considered as designing members 

to use of all their reserved capacity just before the strength limit of the system is reached. 

Practically, the yield surface is a benchmark for the design that attempts to maximize the 

economy of structural members without exceeding the design strengths. The combined 

axial and bending moments that are resisted by a member (after being normalized by the 

member’s squash load and plastic moments) is compared with the yield surface of the 

member’s cross-section to assess whether or not a plastic hinge has formed. For inelastic 

analysis software to perform efficiently it is ideal to employ a yield surface that formatted 

into an appropriate single continuous equation.  
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2.2 HISTORY 

2.2.1 THE DEVELOPMENT OF YIELD SURFACES 

In principle, a stress-resultant yield surface is a six-dimensional surface, which 

includes all possible degrees of freedom at a typical member end. Possible member or 

element types include the beams, columns, and braces found in a typical structure.  These 

six degrees of freedom account for the effects of axial force, two directions of shear 

force, two directions of bending moment, and torsion. An example of a wide-flange 

cross-section of such an element is shown in Fig. 2 [5].  

For a stress resultant yield surface, only normal stresses are typically considered. 

Normal stresses are the result of axial force and bending moments about two principle 

axes, which define the three attributes of the yield surfaces explored in this study. As a 

result, this means that the effects of shear force in two directions and torsion are 

neglected. By doing so, the following two assumptions must be made: 

(a) Material is elastic-perfectly plastic, and  

(b) Plane sections remain plane before and after load s are applied.  

Elastic-perfectly plastic behavior means that there are no transitions between 

elastic and plastic states. Figure 3 is the stress-strain diagram for typical carbon steel. The 

stress-strain diagram for an elastic-perfectly plastic material differs from that of the 

typical carbon steel in that the transition between elastic and plastic range and strain 

hardening are not included. Figure 4 is the normal stress diagram over the depth of a 
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cross section. For an elastic-perfectly plastic material, the transitional state of stress 

occurs between initial yielding and full plastic hinge are ignored. Thus, the cross-section 

is either fully elastic or completely plastic.    

 

Figure 2 (adopted from reference [5]) 

 

Figure 3 (adopted reference [4]) 
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Figure 4 (adopted reference [4]) 

2.2.2 CHEN AND ATSUTA’S YIELD SURFACES 

 Using equilibrium on the cross-section geometry, Chen and Atsuta successfully 

derived each exact expression of the interaction equation (yield surface) relating axial 

force and biaxial bending moments acting on rectangular or circular sections under the 

fully yielding condition. Based on the concept of superposition, Chen and Atsuta 

provided methods of analysis to calculate the exact expression of the interaction equation 

for other double web and doubly symmetrical cross sections, including wide-flange and 

hollow rectangular shapes. This was achieved by treating entire cross-sections as 

assemblages of rectangles. Unfortunately, their interaction equations always contain non-

integer exponents, which produce slope discontinuities on their respective yield surfaces. 

These discontinuities in slope can provide computational errors in inelastic analysis due 

to the potential for numerical instability [4].  

2.2.3 ORBISON’S YIELD SURFACE 

 Based on the work of Chen and Atsuta, Orbison developed a single-equation yield 

surface to represent the behavior of W12x31, which can also be used to approximate the 
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behavior of light-to-medium-weight American shapes. Orbison’s equation (Eq. 2) was 

developed through a process of trial and error curve fitting and is given by the criterion 

 

1.15p2  + mx
2  +  my

4  +  3.67p2mx
2  +  3.0p6my

2  +  4.65mx
4my

2  =  1.0       Eq. (2) 

where 𝑝, 𝑚𝑥, and 𝑚𝑦 are defined as above. This objective of this equation is to “a) 

conform closely to a realistic, physically derived surface, b) be continuous and convex, 

and c) be amenable to efficient computer implementation.” [4].  

2.2.4 MASTAN2’S YIELD SURFACE 

MASTAN2 is structural engineering software developed by Ziemian and 

McGuire (MASTAN2, 2011). MASTAN2 intended for educational use and can account 

for both linear and nonlinear structural behavior.  Available analysis options include 

“first- or second-order elastic or inelastic analyses of two- or three-dimensional frames 

and trusses subjected to static loads” (MASTAN2, 2011). Similar to other available 

structural analysis software, the yield surface in MASTAN2 was modeled by a general 

single continuous equation. The yield surface equation used in MASTAN2 is Eq. 1 

shown above. The equation was based on Orbison’s yield surface equation with the 1.15 

modified to 1.0 so that the full axial yield load of a truss element could be achieved.  

This study uses the yield surface equation of MASTAN2 to custom fit to the real 

yield surfaces of selected shapes by modifying the coefficients of the cross-terms 

p2mx
2, p6my

2, and mx
4my

2.  
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3 DISCUSSION 

3.1 METHEDOLOGY 

The process of custom fitting the MASTAN2 yield surface equation to a given 

shape defined in terms of its geometric dimensions of height, width, and wall thicknesses 

can be divided into the following four main stages, which are also illustrated in Fig. 5.  

(1) Using principles of solid mechanics, a theoretically “exact” but overly complex 

representation of the cross section’s yield surface, (𝑚𝑥,𝑚𝑦,𝑝), is initially obtained. 

(2) Data weighting factors for use in the latter regression analysis are developed from this 

representation. 

(3) With both the weighting factors and theoretical yield surface data, the approximate 

yield surfaces using the form of Eq. 1 are subsequently obtained.  Essentially these 

“exact” data points are utilized within a weighted regression analysis to obtain the three 

aforementioned coefficients and to determine the “best” yield surface equation of the 

form given in Eq. 1.  

(4) For the convexity requirement of a yield surface, each yield surface obtained through 

regression analysis is tested for concavity and compared to the MASTAN2 yield surface.  

It should be noted that all of the work completed in this research is based on 

MATLAB, which is computational software that was readily available to the author and 

permits routines to be written in module form for any required analysis processes.  
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Figure 5. General analysis flow chart.  

3.2 GENERATING THEORETICAL YIELD SURFACE  (𝒎𝒙,𝒎𝒚,𝒑) 

Consider the wide-flange section that is under combined axial force and bending 

moment and its plastic hinge diagram shown in Fig. 6.  The plastic hinge stress block 

diagram is modeled the same way for all types of cross sections, where the yield stress of 

material is reached throughout the depth of the cross section. The defined neutral axis 
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(N.A.) divides the cross-section into compression (-) and tension (+) regions. The Section 

Assemblage Concept defines that the plastic hinge stress block diagram can be 

represented by the combination of a moment stress block diagram (above and below the 

neutral axis) and axial stress block diagram (neighboring the neutral axis). With N.B. 

defined as the reflection line of N.A. about the center of the cross-section, the position of 

N.A. is that of N.B. if the moment changes direction.  

 

(a) Negative moment. 

 

(b) Positive moment. 

Figure 6. Plastic hinge stress block diagram. (Wide-flange section)  

Following this stress distribution, stresses contributed by axial forces and bending 

moments can be represented by axial area 𝐴𝑝 and bending moment area 𝐴𝑚. Therefore, 

the cross-sectional area A can be considered as the sum of the axial and bending moment 
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areas: 𝐴 = 𝐴𝑝 + 𝐴𝑚. Based on cross-section equilibrium, the ratio of the axial area to the 

cross-sectional area is  𝑝 = 𝑃/𝑃𝑦 = 𝐴𝑝𝐹𝑦/𝐴𝐹𝑦 = 𝐴𝑝/𝐴 and the ratio of the bending 

moment area to cross-sectional area is (1 − 𝑝) = 𝐴𝑚/𝐴. 

  If  𝑃, 𝑀𝑥, and 𝑀𝑦 are the given axial force, the major-axis bending moment ( x-

axis) and minor-axis bending moment (y-axis), respectively, and 𝑃𝑦, 𝑀𝑝𝑥, and 𝑀𝑝𝑦 are 

the squash load, major-axis plastic bending moment, and minor-axis plastic bending 

moment, respectively, then the ratios 𝑝 = 𝑃/𝑃𝑦, 𝑚𝑥 = 𝑀𝑥/𝑀𝑝𝑥, and 𝑚𝑦 = 𝑀𝑦/𝑀𝑝𝑦 are 

dimensionless components of the yield surface. 

Given that a cross-section can be subjected to both axial force and bending 

moments and such force and moments can be applied about various axes, there is an 

undefined number of different locations for the N.A. (Fig. 7).  In addition, a given 

location of the plastic neutral axis corresponds to a single point (𝑚𝑥,𝑚𝑦,𝑝) on the 

theoretical yield surface. The location of the N.A. needs to be varied widely so that a 

well-distributed cloud of sampling data points (𝑚𝑥,𝑚𝑦,𝑝) can be obtained that is 

intended to represent the theoretical yield surface. An adequate number of points, here, 

does not imply a specific number but rather a large enough number of data points that 

allows a reasonable calculation time and will not improve the results significantly when a 

larger number of data points is used. Generating a cloud of uniformly distributed data 

points can be a challenge. Weighting factors, however, can be used to ameliorate this 

distribution problem when performing the regression analysis. The determination of such 

weighting factors is presented in Section 3.3.   
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Figure 7. Different cases of neutral axis (N.A.) 

The value of 𝑝 at a given point (𝑚𝑥,𝑚𝑦,𝑝) and the location of the N.A., which 

can be represented by the angle made by N.A. and the horizontal x-axis 𝜃, can be used as 

controlling factors of the distribution of the data points.  This is because 𝑝 is the vertical 

component of each data point and the other two components (𝑚𝑥 𝑎𝑛𝑑 𝑚𝑦) are only 

functions of 𝜃. To allow variables 𝑝 and 𝜃 to be the controlling factors, the below 

strategy that is based on the Section Assemblage Concept defined above is used for all 

shapes and dimensions investigated in this research (refer to Fig.8): 

• Let the origin be at the center of the cross-section.  

• Let 𝜃 be the angle made by the neutral axis and the horizontal x-axis. 

• The cross-section can be divided into (1) an axial force segment, which is the 

region subjected to axial force and (2) a bending moment segment, which is the 

region subjected to the major- and minor-axis bending moments, by using the 

following process: 

1.) Draw a center line C.L. through the center of the cross-section and parallel to 

N.A.  
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2.) Draw N.B., the inflection line of N.A. about C.L. and make 𝑟 an equal 

distance from C.L. to N.A. and N.B.   

3.) Make the axial force segment be the region on the cross-section between N.A. 

and N.B. This region has an area 𝐴𝑝. 

4.) Make the two regions (shaded) on the other side of N.A. and N.B. be the 

bending moment segment. They are geometrically symmetric and each of an area 

𝐴𝑚/2.  

5.) The value of 𝑝 and 𝜃 then will dictate the shape of these three segments. 

 

 

(a) Solid rectangular section 
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(b) Hollow rectangular section 

 

(c) Solid circular section 
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(d) Hollow circular section 

 

(e) Wide-Flange section

Figure 8. Partitioning of different cross-section shapes: 

(1) Region subjected to Moments above N.A. of area Am/2.  

(2) Region subjected to Moments below N.A. of area Am/2. 

(3) Region subjected to Axial Forces of area Ap.

For a given 𝑝 and 𝜃, normalized moments 𝑚𝑥 and 𝑚𝑦 can then be calculated as follows. 
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Plastic bending moments 𝑀𝑝𝑥 and 𝑀𝑝𝑦 are previously defined as the products 

between their respective plastic section modulus 𝑍 and material yield stress, 𝐹𝑦, where  𝑍 

is a function of cross-section shape and dimensions:  

𝑀𝑝𝑥 = 𝑍𝑥𝐹𝑦,                                                 (Eq.3) 

   𝑀𝑝𝑦 = 𝑍𝑦𝐹𝑦. 

Bending moment about a particular axis is defined as the product between the areas of 

bending moment segment 𝐴𝑚 and the moment arm C about the axis of interest: 

              𝑀𝑥 = 𝐴𝑚 × 𝐶𝑥,                                             (Eq.4)             

                                                   𝑀𝑦 = 𝐴𝑚 × 𝐶𝑦,   

where 𝐴𝑚 can be calculated from the given value of 𝑝 as previously defined and moment 

arms 𝐶𝑥 and 𝐶𝑦 about the x-axis and y-axis can be determined from the coordinates of the 

vertices of the polygon defining the bending moment segment. The calculation of 

moment arms for different shapes of bending moment segment is presented in Section 

3.2.1.  

Coordinates of vertices of different shapes of the bending moment segment can be 

derived mathematically for different cross-section shapes (rectangular, circular, wide-

flange, etc.) and dimensions using geometry and an interpolating technique in MATLAB. 

Vertices and other information defining the bending moment segment are presented in 

Section 4 for each cross-section shape.  
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Figure 9. General steps of generating theoretical yield surface.  

Overall, the three routines---“Moment Arms”, “Weighting Factors” and “Regression 

Analysis”---are determined in the same way regardless of shapes and dimensions. The 

only routine whose method of determination is unique for different shapes is “Generating 

Theoretical Data Points (𝑚𝑥,𝑚𝑦,𝑝 )”. The general steps of generating data points 



26 

 

 

(𝑚𝑥,𝑚𝑦,𝑝 ) are presented in Fig.9 and the more detailed methods for different shapes are 

presented in Section 4. 

3.2.1 MOMENT ARMS 

POLYGONS 

The major- and minor-axis moment arms of a given polygon are the distances 

from the centroid of the polygon to the x-axis and y-axis, respectively (Fig.10). The 

position of the centroid of the polygon is given as the following: 

𝐶𝑥 = 1
6𝐴𝑝𝑜𝑙𝑦𝑔𝑜𝑛

∑ (𝑥𝑖 + 𝑥𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)𝑁−1
𝑖=0                          Eq. (5) 

                          𝐶𝑦 = 1
6𝐴𝑝𝑜𝑙𝑦𝑔𝑜𝑛

∑ (𝑦𝑖 + 𝑦𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)𝑁−1
𝑖=0      

 

Figure 10. Centroid of a polygon. 
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where, 𝐴𝑝𝑜𝑙𝑦𝑔𝑜𝑛 is the area of the polygon, which in the case of bending moment 

segment is 𝐴𝑚/2 , (𝑥𝑖,𝑦𝑖) are coordinates of a given vertex 𝑖, and N is the number of 

vertices as shown in Fig. 10.  

CIRCULAR SEGMENTS 

 For a circular segment shown in Fig. 11, its centroid can be determined according 

to Eq. 6: 

 

Figure 11. Centroid of a circular segment.  

• Horizontal component of the centroid: �̅� = 0    Eq. (6) 

• Vertical component of the centroid:   𝑦� =
4𝑅𝑠𝑖𝑛(𝛽2)3

3(𝛽−sin(𝛽)), 

where 𝑅 is the radius of the circle and 𝛽 is the radius angle of the circular segment. 
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3.3 WEIGHTING FACTORS 

This study explored two methods of defining weighting factors that can be used to 

help rectify a point distribution problem within the yield surface data points. Generally, a 

weighting factor is the value that is assigned to each point on the surface to reflect the 

amount of exact surface area to be represented by the point while performing regression 

analysis. 

The first method defined boundaries between approximated areas represented by 

all points and these areas are used as weighting factors. This type of weighting factor 

method is termed “area weighting factors.”  Note that, because the yield surface data 

points are not in the same plane in three-dimensional space, the calculated area 

represented by each point is the approximation of the area of the corresponding point on 

the exact yield surface. What matters here, however, is the relative size between areas 

represented by all points rather than the actual values of exact areas themselves.  For 

visualization purposes, one quadrant of the yield surface was flattened out onto a plane as 

shown in Fig. 12. Lines in black are traces of the yield surface, where each intersection 

between these lines defines a point on theoretical yield surface: 𝑂(𝑗,𝑘). Lines in red are 

traces of the boundaries between areas represented by points on yield surface.  Lines in 

green are diagonals of the three-dimensional quadrangle1

                                                 
1 A three-dimensional quadrangle here is defined as a quadrangle whose vertices are not on the same plane 

in three-dimensional space. 

. Lines in blue are traces of 

neighboring quadrants of the yield surface. 
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For the points whose k-coordinate is not 𝑛 or (𝑛 − 1), the area represented by a 

given point 𝑂(𝑗,𝑘) was calculated with the following strategy. For each point, eight 

immediate neighboring points are identified:𝐴(𝑗 − 1,𝑘), 𝐵(𝑗,𝑘 − 1), 𝐶(𝑗,𝑘 + 1), 

𝐷(𝑗 + 1,𝑘), 𝐸(𝑗 − 1,𝑘 − 1), 𝐹(𝑗 + 1,𝑘 − 1), 𝐺(𝑗 − 1,𝑘 + 1) and 𝐻(𝑗 + 1,𝑘 + 1) as 

shown in Fig. 13a. Because all these nine points are not on the same plane in three-

dimensional space, the area represented by a given point O is approximated as the 

summation of four triangles ROS, SOT, TOU, and UOR, where R, S, T, and U are 

defined as the “virtual intersection points” between the diagonals of three-dimensional 

quadrangle AGCO, CHDO, DFBO, and BEAO, respectively. A “virtual intersection 

point” is the mid-point of the shortest line drawn between two skew diagonals of a three-

dimensional quadrangle (Fig. 13b). 

(a) 
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(b) 

Figure 12. Area weighing factors. 

 For points whose k-coordinate is (𝑛 − 1), the same strategy that is used with 

points whose k-coordinate is not 𝑛 or (𝑛 − 1) applies except that R and S for 𝑘 = (𝑛 − 1) 

are defined differently from above (Fig. 14.c). The point 𝑅 for 𝑘 = (𝑛 − 1) is defined as 

the midpoint of the line connecting 𝐴𝑂 (𝑘=𝑛) and 𝑂(𝑘=𝑛−1)𝑂 (𝑘=𝑛) at their respective 

midpoints. Point 𝑆 for 𝑘 = (𝑛 − 1) is defined as the midpoint of the line connecting 

𝑂(𝑘=𝑛−1)𝑂 (𝑘=𝑛) and 𝐷𝑂 (𝑘=𝑛) at their respective midpoints. 

 For points whose k-coordinate is 𝑛, the interest area is the area of triangle 𝑅𝑆𝑂𝑘=𝑛 

where R and S belong to their corresponding 𝑂𝑘=(𝑛−1) point (Fig. 13c). Note that points 

along the edges of one quadrant of the yield surface are shared with one to three other 

quadrants. Therefore, the areas that the edge points are representing are beyond those in 
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only one quadrant of the yield surface. For this reason, there are eight cases of points 

whose calculations of area are distinguishable from each other’s as shown in Fig. 12.   

     

(a) (b) 

                   

(c)                                                                  (d) 

Figure 13. (a) A given point 𝑶 for  𝒌 ≠ 𝒏 − 𝟏,𝒏. (b) Defining a virtual intersection 

point. (c) A given point 𝑶 for 𝒌 = 𝒏 − 𝟏 and 𝑶 for 𝒌 = 𝒏. (d) Edge points and 

Symmetric points. 
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The rule of thumb for cases where the edge points of one quadrant of yield surface that 

can be shared by two or more quadrants is: the immediate neighboring points of an edge 

point of one quadrant are geometrically symmetric to those of the other quadrants, with 

which the edge point being shared, about the axis the edge of yield surface that contains 

the edge point lies on (Fig. 13d). The different cases of points are listed below.  

• Case #1, 𝑘 = 1 & 𝑗 ≠ 1,𝑚   

• Case #2, 𝑘 = 1 & 𝑗 = 1   

• Case #3, 𝑘 = 1 & 𝑗 = 𝑚   

• Case #4, 𝑘 ≠ 1,𝑛 − 1,𝑛 & 𝑗 = 1   

• Case #5, 𝑘 ≠ 1,𝑛 − 1,𝑛& 𝑗 = 𝑚  

• Case #6, 𝑘 ≠ 1,𝑛 − 1,𝑛 &  𝑗 ≠ 1,𝑚    

• Case #7, 𝑘 = 𝑛 − 1 

(a) 𝑘 = 𝑛 − 1 & 𝑗 ≠ 1,𝑚   

(b) 𝑘 = 𝑛 − 1 & 𝑗 = 1   

(c)  𝑘 = 𝑛 − 1& 𝑗 = 𝑚   

• Case #8, 𝑘 = 𝑛 

(a) 𝑘 = 𝑛 & 𝑗 = 1   

(b) 𝑘 = 𝑛 & 𝑗 = 𝑚   

(c) 𝑘 = 𝑛 & 𝑗 ≠ 1,𝑚   

As a second method for calculating weighting factors, the area represented by 

each point is calculated by means of determining the “crowdedness” of that point. 
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Crowdedness of a point is represented by the ratio of (i) the area of a circle whose radius 

is the average distance from the interest point to the eight immediate neighboring points 

to (ii) the sum of the areas of all circles (Fig.14). The same strategy used for neighboring 

points of an edge point of the area weighting factors is also used for computing 

crowdedness-weighting factors.   

 

Figure 14. Crowdedness weighting factors. 

3.4 REGRESSION ANALYSIS 

After the exact representation of the yield surface is obtained, a regression 

analysis can be performed. There are two goals in this regression analysis. The first is to 

determine the “best fit” coefficients 𝑐1, 𝑐2, 𝑐3 in the general yield surface equation Eq. 7. 
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𝜙 = 𝑝2 + 𝑚𝑥
2 + 𝑚𝑦

4 + 𝑐1𝑝2𝑚𝑥
2 + 𝑐2𝑝6𝑚𝑦

2 + 𝑐3𝑚𝑥
4𝑚𝑦

2  Eq. (7) 

For a general yield surface point  𝑖,  Eq. (7) can be re-arranged as   

𝑦𝑖 = 𝑐1𝑧𝑖1 + 𝑐2𝑧𝑖2 + 𝑐3𝑧𝑖3                                       Eq.(8) 

where 

𝑦𝑖 = (Φ− 𝑝2 −𝑚𝑥
2 −𝑚𝑦

4)
𝑖
 

𝑧𝑖1 = (𝑝2𝑚𝑥
2)𝑖

𝑧𝑖2 = (𝑝6𝑚𝑦
2)𝑖

𝑧𝑖3 = (𝑚𝑥
4𝑚𝑦

2)𝑖
 

and 𝑦𝑖 is the general component of a column vector {𝑌} of length n, where n is the total 

number of yield surface points generated and {𝑌} is a defined property of the theoretical 

yield surface because it is only a function of theoretical yield surface data points 

(𝑚𝑥,𝑚𝑦,𝑝 ), and Φ theoretically equals 1.00. Variables 𝑧𝑖1, 𝑧𝑖2, and 𝑧𝑖3 are the general 

components of matrix [𝑍] of size 𝑛𝑥3, which is also a property of the theoretical yield 

surface. In least-squares regression, if the right-hand side expression 𝑐1𝑧𝑖1 + 𝑐2𝑧𝑖2 +

𝑐3𝑧𝑖3 is the linear model of the left hand side dependent variable 𝑦𝑖 , then the difference 

between 𝑦𝑖 and 𝑐1𝑧𝑖1 + 𝑐2𝑧𝑖2 + 𝑐3𝑧𝑖3 is the residual𝑒𝑖.   

𝑒𝑖 = 𝑦𝑖 − 𝑐1𝑧𝑖1 − 𝑐2𝑧𝑖2 − 𝑐3𝑧𝑖3                                         Eq.(9) 

The objective of a least-squares regression approach is to minimize the sum of the 

squares of the residuals 𝑆𝑟 between measured 𝑦 and calculated 𝑦 with the linear model.  
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𝑆𝑟 = ∑ 𝑒𝑖2𝑛
𝑖=1 = ∑ (𝑦𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑦𝑖,𝑚𝑜𝑑𝑒𝑙)2𝑛

𝑖=1                           Eq.(10)  

𝑆𝑟 = �(𝑦𝑖 − 𝑧𝑖1𝑐1 − 𝑧𝑖2𝑐2 − 𝑧𝑖3𝑐3)2
𝑛

𝑖=1

 

Differentiating with respect to each of the unknown coefficients, 

𝜕𝑆𝑟
𝜕𝑐1

= −2�(𝑦𝑖 − 𝑧𝑖1𝑐1 − 𝑧𝑖2𝑐2 − 𝑧𝑖3𝑐3)(𝑧𝑖1) = 0 

𝜕𝑆𝑟
𝜕𝑐2

= −2�(𝑦𝑖 − 𝑧𝑖1𝑐1 − 𝑧𝑖2𝑐2 − 𝑧𝑖3𝑐3)(𝑧𝑖2) = 0 

𝜕𝑆𝑟
𝜕𝑐3

= −2�(𝑦𝑖 − 𝑧𝑖1𝑐1 − 𝑧𝑖2𝑐2 − 𝑧𝑖3𝑥3)(𝑧𝑖3) = 0 

and performing algebra results in 

Σ𝑧𝑖1(𝑧𝑖1𝑐1 + 𝑧𝑖2𝑐2 + 𝑧𝑖3𝑐3) = Σ(𝑧𝑖1)(𝑦𝑖) 

Σ𝑧𝑖2(𝑧𝑖1𝑐1 + 𝑧𝑖2𝑐2 + 𝑧𝑖3𝑐3) = Σ(𝑧𝑖2)(𝑦𝑖) 

Σ𝑧𝑖3(𝑧𝑖1𝑐1 + 𝑧𝑖2𝑐2 + 𝑧𝑖3𝑐3) = Σ(𝑧𝑖3)(𝑦𝑖) 

These equations can be expressed in matrix form as 

�
Σ𝑧𝑖1𝑧𝑖1 Σ𝑧𝑖1𝑧𝑖2 Σ𝑧𝑖1𝑧𝑖3
Σ𝑧𝑖2𝑧𝑖1 Σ𝑧𝑖2𝑧𝑖2 Σ𝑧𝑖2𝑧𝑖3
Σ𝑧𝑖3𝑧𝑖1 Σ𝑧𝑖3𝑧𝑖2 Σ𝑧𝑖3𝑧𝑖3

� �
𝑐1
𝑐2
𝑐3
� = �

Σ(𝑧𝑖1)(𝑦𝑖)
Σ(𝑧𝑖2)(𝑦𝑖)
Σ(𝑧𝑖3)(𝑦𝑖)

� 

With 
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{𝑅𝐻𝑆} = �
𝑧11 𝑧21 𝑧31
𝑧12 𝑧22 𝑧32 
𝑧13 𝑧23 𝑧33

   
𝑧41 … 𝑧𝑛1
𝑧42 … 𝑧𝑛2
𝑧43 … 𝑧𝑛3

�
���������������������

[𝑍]𝑇

 

⎩
⎪
⎨

⎪
⎧
𝑦1
𝑦2
𝑦3
⋮
𝑦𝑛⎭
⎪
⎬

⎪
⎫

 

{𝐿𝐻𝑆} = �
𝑧11 𝑧21 𝑧31
𝑧12 𝑧22 𝑧32 
𝑧13 𝑧23 𝑧33

   
𝑧41 … 𝑧𝑛1
𝑧42 … 𝑧𝑛2
𝑧43 … 𝑧𝑛3

�
���������������������

[𝑍] ⎣
⎢
⎢
⎢
⎡
𝑧11 𝑧12 𝑧13
𝑧21 𝑧22 𝑧23 
𝑧31
⋮
𝑧𝑛1

𝑧32
⋮
𝑧𝑛2

𝑧33
⋮
𝑧𝑛3

  

⎦
⎥
⎥
⎥
⎤

�����������
[𝑍]

 

The resulting regression equation is 

[𝑍]𝑇[𝑍]{𝐶} = {[𝑍]𝑇{𝑌}} 

where {𝐶} is the coefficient vector of size 3x1 and whose components are 𝑐1, 𝑐2, 𝑐3.  By 

using Gaussian elimination, {𝐶} can be calculated as:  

{𝐶} = �[𝑍]𝑇[𝑍]�
−1

{[𝑍]𝑇{𝑌}})                                   Eq.(11) 

 The second goal of the regression analysis is to find the coefficient of 

determination 𝑅2 of MASTAN2 equation, 𝑅𝑀𝐴𝑆𝑇𝐴𝑁22 , and that of the regression equation, 

𝑅𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛2 . In general, the coefficient of determination can be calculated as 

𝑅2 = (𝑆𝑡 − 𝑆𝑟)/𝑆𝑡,                                             Eq.(12) 

where 𝑆𝑡 is the total sum of the squares around the mean for independent variable (𝑦𝑖) , 

which can be calculated as 

𝑆𝑡 = ∑ (𝑦𝑖 − 𝑦𝑎𝑣𝑒)2𝑛
𝑖=1 ,                                                Eq.(13) 
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in which 𝑦𝑎𝑣𝑒 is the mean of 𝑦𝑖 , defined as the arithmetic average of 𝑦𝑖.  

 To incorporate the weighting factors into the regression analysis, the same steps 

as shown above are employed with the weighting factor 𝑤𝑖 of each data point 

incorporated as follows 

𝑆𝑟 = ∑ 𝑤𝑖𝑒𝑖2𝑛
𝑖=1 = ∑ 𝑤𝑖(𝑦𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑦𝑖,𝑚𝑜𝑑𝑒𝑙)2𝑛

𝑖=1                        Eq.(14)  

 

𝑆𝑟 = �𝑤𝑖(𝑦𝑖 − 𝑧𝑖1𝑐1 − 𝑧𝑖2𝑐2 − 𝑧𝑖3𝑐3)2
𝑛

𝑖=1

 

Differentiating with respect to each of the unknown coefficients, 

𝜕𝑆𝑟
𝜕𝑐1

= −2�𝑤𝑖(𝑦𝑖 − 𝑧𝑖1𝑐1 − 𝑧𝑖2𝑐2 − 𝑧𝑖3𝑐3)(𝑧𝑖1) = 0 

𝜕𝑆𝑟
𝜕𝑐2

= −2�𝑤𝑖(𝑦𝑖 − 𝑧𝑖1𝑐1 − 𝑧𝑖2𝑐2 − 𝑧𝑖3𝑐3)(𝑧𝑖2) = 0 

𝜕𝑆𝑟
𝜕𝑐3

= −2�𝑤𝑖(𝑦𝑖 − 𝑧𝑖1𝑐1 − 𝑧𝑖2𝑐2 − 𝑧𝑖3𝑐3)(𝑧𝑖3) = 0 

which can be expressed as 

Σ𝑤𝑖𝑧𝑖1(𝑧𝑖1𝑐1 + 𝑧𝑖2𝑐2 + 𝑧𝑖3𝑐3) = Σ𝑤𝑖(𝑧𝑖1)(𝑦𝑖) 

Σ𝑤𝑖𝑧𝑖2(𝑧𝑖1𝑐1 + 𝑧𝑖2𝑐2 + 𝑧𝑖3𝑐3) = Σ𝑤𝑖(𝑧𝑖2)(𝑦𝑖) 

Σ𝑤𝑖𝑧𝑖3(𝑧𝑖1𝑐1 + 𝑧𝑖2𝑐2 + 𝑧𝑖3𝑐3) = Σ𝑤𝑖(𝑧𝑖3)(𝑦𝑖) 
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In matrix form is 

�
Σ𝑤𝑖𝑧𝑖1𝑧𝑖1 Σ𝑤𝑖𝑧𝑖1𝑧𝑖2 Σ𝑤𝑖𝑧𝑖1𝑧𝑖3
Σ𝑤𝑖𝑧𝑖2𝑧𝑖1 Σ𝑤𝑖𝑧𝑖2𝑧𝑖2 Σ𝑤𝑖𝑧𝑖2𝑧𝑖3
Σ𝑤𝑖𝑧𝑖3𝑧𝑖1 Σ𝑤𝑖𝑧𝑖3𝑧𝑖2 Σ𝑤𝑖𝑧𝑖3𝑧𝑖3

� �
𝑐1
𝑐2
𝑐3
� = �

Σ𝑤𝑖(𝑧𝑖1)(𝑦𝑖)
Σ𝑤𝑖(𝑧𝑖2)(𝑦𝑖)
Σ𝑤𝑖(𝑧𝑖3)(𝑦𝑖)

� 

With 

{𝑅𝐻𝑆} = �
𝑤1𝑧11 𝑤2𝑧21 𝑤3𝑧31
𝑤1𝑧12 𝑤2𝑧22 𝑤3𝑧32 
𝑤1𝑧13 𝑤2𝑧23 𝑤3𝑧33

   
𝑤4𝑧41 … 𝑤𝑛𝑧𝑛1
𝑤4𝑧42 … 𝑤𝑛𝑧𝑛2
𝑤4𝑧43 … 𝑤𝑛𝑧𝑛3

�  

⎩
⎪
⎨

⎪
⎧
𝑦1
𝑦2
𝑦3
⋮
𝑦𝑛⎭
⎪
⎬

⎪
⎫

 

{𝐿𝐻𝑆} = �
𝑤1𝑧11 𝑤2𝑧21 𝑤3𝑧31
𝑤1𝑧12 𝑤2𝑧22 𝑤3𝑧32 
𝑤1𝑧13 𝑤2𝑧23 𝑤3𝑧33

   
𝑤4𝑧41 … 𝑤𝑛𝑧𝑛1
𝑤4𝑧42 … 𝑤𝑛𝑧𝑛2
𝑤4𝑧43 … 𝑤𝑛𝑧𝑛3

�

⎣
⎢
⎢
⎢
⎡
𝑧11 𝑧12 𝑧13
𝑧21 𝑧22 𝑧23 
𝑧31
⋮
𝑧𝑛1

𝑧32
⋮
𝑧𝑛2

𝑧33
⋮
𝑧𝑛3

  

⎦
⎥
⎥
⎥
⎤

�����������
[𝑍]

 

and 

⎣
⎢
⎢
⎢
⎡
𝑤1 0   0   0 0
0 𝑤2   0   0 0
0
⋮
0

0
⋮
0

𝑤3  0 0
⋮ ⋱  ⋮

  0   0 𝑤𝑛⎦
⎥
⎥
⎥
⎤

�����������������
[𝑊] 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛
𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟

⎩
⎪
⎨

⎪
⎧
𝑦1
𝑦2
𝑦3
⋮
𝑦𝑛⎭
⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧
𝑤1𝑦1
𝑤1𝑦2
𝑤1𝑦3
⋮

𝑤1𝑦𝑛⎭
⎪
⎬

⎪
⎫

 

the resulting system of equations is 

[𝑍]𝑇[𝑊][𝑍]{𝐶} = [𝑍]𝑇[𝑊]{𝑌} 

And again by employing Gaussian elimination, the coefficients are computed from 
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{𝐶} = �[𝑍]𝑇[𝑊][𝑍]�
−1

{[𝑍]𝑇[𝑊]{𝑌}}                                   Eq.(15) 

3.5 CONCAVITY TEST 

A concavity test was derived in this study to check the required convex behavior 

of a yield surface. The results of a concavity test on a yield surface are defined by the 

percentage and degree of concavity of the yield surface. The percentage of concavity can 

be obtained as the percentage of number of concave points among the total data points. 

The degree of concavity of a yield surface may be represented by the depth of depression 

at the concave point. The depth of depression can be related to the slopes falling from the 

neighboring points to the center of the depression, which is the location of the concave 

point. The steeper the slopes are, the higher the degree of concavity.  

A concavity test that is capable of differentiating the concave points from the total 

data points and approximating the slopes falling from the neighboring points to the 

concave point was developed based on a MATLAB function called “SURFNORM.” The 

syntax for SURFNORM function is 

[Nx,Ny,Nz] = SURFNORM(X,Y,Z). 

“This function returns the components of the three-dimensional normal vector for the 

surface defined by point arrays (X,Y,Z). The result is normalized to length 1” 

(MathWorks, 2012). The direction of SURFNORM surface normal at every point is the 
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same, that is they are all either pointing inward or outward. This direction, however, can 

be reversed by applying transpose to the inputs as shown below 

[Nx,Ny,Nz] = SURFNORM(X’,Y’,Z’) 

When applied to this study, the cloud of points (𝑚𝑥,𝑚𝑦,𝑝) that make up a yield surface, 

are included as follows 

 [𝑁𝑥,𝑁𝑦,𝑁𝑝] =  𝑆𝑈𝑅𝐹𝑁𝑅𝑂𝑀(𝑚𝑥,𝑚𝑦,𝑝) 

 

(a)                                                                  (b) 

Figure 15. SURFNORM surface normal N pointing in positive vertical direction (a) 

at a convex point. (b) at a concave point. 

The routine returns an array of the components of the three-dimensional yield surface 

normal at each yield surface point, which each has a length of 1 and its direction can be 

manipulated to either point inward or outward. If the surface normal at each is directed to 
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point in a known vertical direction the dot-products between the surface normal N and the 

vector v that originates at the interest point and ends at each neighboring point can 

indicate whether this given point is a concave or convex point on the surface. This 

statement is illustrated in Fig. 15.  

 For example, suppose that each surface normal 𝐍 is to point in the positive 

vertical direction. If N belongs to a convex point (Fig. 15a), the angle (𝛼) made by 𝐍 and 

the individual vectors 𝐯 must be obtuse. In other words, the dot-product between 𝐍 and 𝐯 

gives a negative value.  Instead, if N belongs to a concave point (Fig. 15b), 𝛼 must be 

acute and the dot-product between N and v gives a positive value. If N is to be reversed 

in direction, the above rules also need to be reversed.  

In summary, a point can be classified as a concave or convex point by only 

checking the signs of the dot-products between N and the v’s with  respect to the 

specified direction of N. The largest magnitude of dot-products is termed the “concavity 

coefficient.” The degree of concavity of a given point can be related to the concavity 

coefficient. The larger the negativity or positivity of the concavity coefficient of a point 

is, the greater the degree of concavity at that point.  

On the other hand, the percentage of concavity of the yield surface (%𝑐𝑜𝑛) can be 

obtained as the percentage of concave points out of the total data points of the yield 

surface. Weighting factors can also be incorporated into the calculation of the percentage 

of concavity.  
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%𝑐𝑜𝑛 = Σ𝑤𝑖,𝑐𝑜𝑛
Σ𝑤𝑖

× 100%                                        Eq.(16) 

where 𝑤𝑖,𝑐𝑜𝑛 is the weighting factor corresponding to the yield surface point 

(𝑚𝑖𝑥,𝑚𝑖𝑦,𝑝𝑖) that tested as concave. 

 The validity of the concavity test was verified by running this test with the 

theoretical yield surface data. The results show that the theoretical yield surface, which 

shall be entirely convex or have a zero percent of concavity, contains a certain percent of 

concavity. Because this should not be occurring, the appearance of a small percent of 

concavity in the theoretical yield surface was deemed due to the round-off error. This 

conclusion was made by three-dimensional plotting and observation of the degrees of 

concavity at the points on theoretical yield surface that tested concave. Due to the fact 

that some parts of the yield surface are almost flat or almost have zero degree of 

convexity, the differences between being convex and concave are almost negligible. 

Therefore, to test the customized yield surface, the concavity test are calibrated using the 

percentage of concavity that exists in the corresponding theoretically exact yield surface.  

3.6 ANALYSIS 

There are two options of analysis that were investigated in this study, including (1) with 

area weighting factors, and (2) with crowdedness weighting factors. Initially, these two 

different sets of analysis were done for selected dimensions from all cross section shapes. 

The results of these two sets of analysis were then compared to each other with respect to 

the 𝑅2 value and percentage of concavity. The weighting factors in the set of analysis that 
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on average provides better 𝑅2 and smaller percentage of concavity would be used within 

the regression analysis and concavity test for the remaining shapes and dimensions. 

 The general steps of analysis of both sets for all shapes and dimensions are the 

same. The only difference is the weighting factors that are used. Figure 16 shows the 

detail flowchart of custom fitting MASTAN2 equation to the theoretical yield surface of 

a wide-flange shape by using area weighting factors. First, the dimensions of the wide-

flange shapes are called from the database (“Wshape.mat”). Then, the algorithm that is 

required to calculate the theoretical yield surface and its corresponding weighting factors 

is called (“wshapeyld.m”). With this information, weighted regression analysis is 

performed to find the best coefficients. With the coefficients found, 𝑅2 of both regression 

and MASTAN2 equations are determined. Before the concavity test can be performed on 

either regression or MASTAN2 equation, the offset value must first be determined by 

performing concavity test on the theoretical data. Two separate but similar algorithms 

were created for testing percentage of concavity of theoretical yield surface and 

approximate yield surfaces. One algorithm takes an array of yield surface points as inputs 

(“yldsurf_data_concavetest.m”)and the other algorithm takes coefficients within the form 

of Eq. (1) as inputs (“yldsurf_eq_concavetest.m”). Finally, a summary of required results 

is made available for record. A similar flowchart, which is not shown here, is also used 

for the set that uses crowdedness weighting factors.  This analysis process is used for all 

shapes. Only the routine that is required to generate the theoretical yield surface that is 

unique to each shape.  
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Figure 16. Detail flowchart of analysis for wide-flange sections.  
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4 METHODS AND RESULTS 

In the following sections, the input dimensions of each cross-section shape are defined. 

By referring to the flowchart in Fig.9, the formulas required for calculating cross section 

properties and derivation of bending moment segments that contribute to the steps for 

generating theoretical yield surface for each cross-sectional shapes are provided in their 

respective sections. The results of the analysis and the discussion are also included.  

4.1 SOLID RECTANGULAR SECTION 

4.1.1 METHOD 

Inputs: cross-section dimensions: 

ℎ  = depth of the shape 

𝑏  = width of base 

𝐹𝑦  = yield strength of material 

Output: arrays of  𝑝, 𝑚𝑥, and 𝑚𝑦.  

STEP #1 CROSS SECTION PROPERTIES (𝑨,𝑴𝒑𝒙,𝑴𝒑𝒚) 
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Figure 17. Solid rectangular section 

For rectangular section:  

• Cross-sectional area, 𝐴 = 𝑏ℎ                                                                        Eq.(17) 

• Plastic Moment, 𝑀𝑝 = 𝐹𝑦
𝑏ℎ2

4
                                          

STEP #2 BENDING SEGMENT’S VERTICES AND CENTROID 

By studying the possible locations of N.A. on a solid rectangular section, there are 

three cases for which the N.A. can be located to give different cases when defining the 

bending moment segment (Fig.18). These three cases of the bending moment segment are 

distinguished by two different cases of critical angles 𝜃𝑐. These two critical angles need 

to be determined before the study of different cases of bending moment segment can be 

done.  
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Figure 18. Different cases of the shape of the bending moment segment for solid 

rectangular section. 

FIND CRICTICAL ANGLES: 

• The first critical angle 𝜽𝒄𝟏 occurs when 𝐵 is over lapsed with 𝑀 (Fig.19).  

 

Figure 19.Critical angle, case #1 
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Observe: ∆𝐴𝐿𝑀 

 ∆𝐴𝐿𝑀= 1
2
𝑦4𝑏 = 1

2
𝑏2tan (𝜃) 

∆𝐴𝐿𝑀 is also equal to half of the area subjected to moment 𝑨𝒎.  

Thus, 

tan(𝜃) = 𝐴𝑚/𝑏2 

𝜽𝒄𝟏 = 𝒂𝒕𝒂𝒏(𝑨𝒎/𝒃𝟐)                                           Eq.(18) 

The second critical angle 𝜽𝒄𝟐 occurs when A is over lapsed with O (Fig. 20).  

Observe: ∆𝑶𝑳𝑩 

 ∆𝑂𝐿𝐵= 1
2
𝑥4ℎ = 1

2
ℎ2cot (𝜃) 

 

 

Figure 20. Critical angle, case #2 



49 

 

 

∆𝑶𝑳𝑩 is also equal to half of the area subjected to moment 𝑨𝒎.  

Thus, 

cot(𝜃) = 𝐴𝑚/ℎ2 

𝜽𝟐 = 𝒄𝒐𝒕(𝑨𝒎/𝒉𝟐)                                           Eq.(19) 

DIFFERENT CASES OF BENDING MOMENT SEGMENT: 

CASE#1,  𝜃 ≤ 𝜽𝟏 

The bending moment segment in this case is polygon 𝐴𝐿𝑀𝐵. Its vertices can be 

calculated as: 

 

Figure 21. Solid rectangular section, case #1 
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• 𝐿(𝑥𝐿 ,𝑦𝐿) = (−𝑏
2

, ℎ
2

) 

• 𝑀(𝑥𝑀,𝑦𝑀) = (𝑏
2

, ℎ
2

) 

• 𝐴(𝑥𝐴,𝑦𝐴) 

𝑥𝐴 = −
𝑏
2

 

𝑦𝐴 = 𝑂𝐷 + 𝐴𝐷 

𝑦𝐴 = 𝑦1 + 𝑦2 

But,  𝑦1 = 𝑟/cos (𝜃) 

Find R 

𝐴𝑟𝑒𝑎𝐴𝐵𝐶𝐷 = 𝐶𝐷 × 𝑟   

But, 

 𝐶𝐷 = 𝑏/cos (𝜃) 

And, 

 𝐴𝑟𝑒𝑎𝐴𝐵𝐶𝐷 = 𝐴𝑝/2 

Then,  

𝑟 =
𝐴𝑝cos (𝜃)

2𝑏
 

So, 

𝑦1 =
𝐴𝑝
2𝑏

 

𝑦2 = (ℎ − 𝑏𝑡𝑎𝑛(𝜃))/2 

Hence, 
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𝑦𝐴 =
𝐴𝑝
2

+ (ℎ − 𝑏𝑡𝑎𝑛(𝜃))/2 

• 𝐵(𝑥𝐵,𝑦𝐵) 

𝑥𝐵 = 𝑏/2 

𝑦𝐵 = 𝑦𝐴 + 𝐶𝐷 × sin (𝜃) 

𝑦𝐵 =
𝐴𝑝
2

+
ℎ − 𝑏𝑡𝑎𝑛(𝜃)

2
+ 𝑏sin (𝜃)/cos (𝜃) 

CASE#2:  𝜽𝟏 < 𝜃 < 𝜽𝟐  

The interest region in this case is the triangle 𝐴𝐿𝐵. Its vertices can be calculated as 

• 𝐿(𝑥𝐿 ,𝑦𝐿) = (−𝑏
2

, ℎ
2

) 

• 𝐴(𝑥𝐴,𝑦𝐴) 

𝑥𝐴 = −
𝑏
2

 

𝑦𝐴 = ℎ − 𝑦4 
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Figure 22. Solid rectangular section, case #2 

 

Find 𝑦4 

Observe   ∆𝐴𝐿𝐵: 

 ∆𝐴𝐿𝐵= 1
2
𝐴𝐿 × 𝐿𝐵 = 1

2
𝑦4𝑥4 

But,   

𝑥4 = 𝑦4/tan (𝜃) 

Then,  

∆𝐴𝐿𝐵=
1
2
𝑦42/tan (𝜃) 

Also,  
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∆𝐴𝐿𝐵= 𝐴𝑚/2 

Then,  

𝑦4 = tan (𝜃)�
𝐴𝑚

tan (𝜃)
 

Hence, 

 𝑦𝐴 = ℎ − tan(𝜃)� 𝐴𝑚
tan(𝜃) 

𝐵(𝑥𝐵,𝑦𝐵) 

𝑥𝐵 = 𝑥4 − 𝑏/2 

𝑥𝐵 = −
𝑏
2

+ �
𝐴𝑚

tan (𝜃)
 

𝑦𝐵 = ℎ/2 

CASE#3: θ > 𝜽𝟐 

The interest region in this case is the polygon 𝐴𝑂𝐿𝐵. Its area can be computed by 

knowing the coordinates of its vertices.  

• 𝑂(𝑥𝑂 + 𝑦𝑂) = (−𝑏
2

,−ℎ
2

) 

• 𝐿(𝑥𝐿 ,𝑦𝐿) = (−𝑏
2

, ℎ
2

) 

• 𝐴(𝑥𝐴,𝑦𝐴) 

𝑦𝐴 = −ℎ/2 

𝑥𝐴 = −
𝑏
2

+ 𝑥4 
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Figure 23. Solid rectangular section, case #3 

Find 𝑥4 

𝑥4 = 𝑏 − (𝑥1 + 𝑥2) 

𝑥1 = 𝑅/sin (𝜃) 

Observe: polygon 𝐴𝐵𝐶𝐷 

𝐴𝑟𝑒𝑎𝐴𝐵𝐶𝐷 = 𝑟 × 𝐶𝐷 

𝐶𝐷 = ℎ/sin (𝜃) 

However, 

𝐴𝑟𝑒𝑎𝐴𝐵𝐶𝐷 is also equal to half of area subjected to axial forces 𝐴𝑝/2. 

Then, 



55 

 

 

𝑟 =
𝐴𝑝sin (θ) 

2ℎ
 

So,  

𝑥1 =
𝐴𝑝
2ℎ

 

𝑥2 = (𝑏 + 𝑥3)/2 

But, 

𝑥3 = ℎ × 𝑐𝑜𝑡(𝜃) 

Then, 

𝑥2 = (𝑏 + ℎ × 𝑐𝑜𝑡(𝜃))/2 

So, 

𝑥4 = 𝑏 − (
𝐴𝑝
2ℎ

+
𝑏 + ℎ × 𝑐𝑜𝑡(𝜃)

2
) 

𝑥𝐴 = −
𝑏
2

+ 𝑏 − (
𝐴𝑝
2ℎ

+
𝑏 + ℎ × 𝑐𝑜𝑡(𝜃)

2
) 

𝑥𝐴 = −
ℎ𝑐𝑜𝑡(𝜃)

2
−
𝐴𝑝
2ℎ

 

• B(𝑥𝐵, 𝑦𝐵) 

𝑥𝐵 = −
𝑏
2

+ (𝑥2 − 𝑥1) 

𝑥𝐵 = −
𝑏
2

+
𝑏 + ℎ × 𝑐𝑜𝑡(𝜃)

2
−
𝐴𝑝
2ℎ

 

𝑦𝐵 =
ℎ
2
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4.1.2 RESULTS 

The theoretical yield surface of a solid rectangular section is the same for any proportions 

of solid rectangular section. The interaction curves (traces of the theoretical yield surface) 

of a solid rectangular yield surface are shown in Fig. 24a. They are identical to 

interaction curves for the solid rectangular section calculated by Chen and Atsuta that are 

shown in Fig. 24b. The comparison between the major- and the minor-axis bending 

interaction curves of the theoretical, regression and MASTAN2 are shown in Fig. 25.  

(a) 
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(b) 

Figure 24. Top views of theoretical interaction curves for solid rectangular section 

(a) calculated in this study and  (b)  calculated by Chen and Atsuta (adopted from 

reference [2]).  
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(a) 

 

(b) 

Figure 25. Interaction curves for a solid rectangular section (h/b=10), (a) major-axis 

and (b) minor-axis.  
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For major-axis, the regression curve underestimates the theoretical curve when 

p=[0,0.65] and overestimates the theoretical curve when p=[0.65,1]. The MASTAN2 

curve underestimates the theoretical curve when p=[0,0.83] and overestimates the 

theoretical curve when p=[0.83,1].  For minor-axis behavior, the regression curve 

overestimates the theoretical curve when p=[0,0.69], just overestimates the theoretical 

curve when p=[0.95,1], and underestimates the theoretical curve when p=[0.69,0.95]. The 

MASTAN2 curve overestimates the theoretical curve for all values of p. 

 The results of the analysis of solid rectangular section are shown in Table A.1. 

MASTAN2’s coefficients provide a negative 𝑅2 value of -0.5842 and the yield surface 

that is completely convex. This indicates that the general form of Eq. 7 cannot be used to 

model the theoretical yield surface of a solid rectangular section. The regression 

coefficients found with and without using weighting factors all provide with an 𝑅2 value 

at a maximum of 0.24 and the yield surface that is convex almost entirely. This shows the 

improvement of regression equation over MASTAN2 equation; however, only 24% of 

the theoretical yield surface data can be explained by the regression equation. Therefore, 

it can be concluded from these results that the customized MASTAN2 equation is not a 

good model for the yield surface of solid rectangular section.   

4.2 HOLLOW RECTANGULAR SECTION 

4.2.1 METHOD 

Inputs: cross-section dimensions: 
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ℎ  = depth of the shape 

𝑏  = width of base 

𝑡  = wall-thickness 

𝐹𝑦  = yield strength of material 

Output: arrays of  𝑝, 𝑚𝑥, and 𝑚𝑦.  

STEP #1 CROSS SECTION PROPERTIES (𝑨,𝑴𝒑𝒙,𝑴𝒑𝒚) 

By the principle of superposition, the properties of a hollow rectangular shape can be 

determined from the two solid rectangular shapes by 

ℎ𝑜𝑙𝑙𝑜𝑤 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 =  𝑜𝑢𝑡𝑒𝑟 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 − 𝑖𝑛𝑛𝑒𝑟 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒.   

Inputs: cross-section dimensions: 

ℎ𝑜𝑢𝑡𝑒𝑟 = ℎ ℎ𝑖𝑛𝑛𝑒𝑟 = ℎ − 𝑡                                                                        Eq.(20) 

𝑏𝑜𝑢𝑡𝑒𝑟 = 𝑏 𝑏𝑖𝑛𝑛𝑒𝑟 = 𝑏 − 𝑡 
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Figure 26. Hollow rectangular section 

Apply superposition to cross-section properties/capacities: 

• Cross-sectional area, 𝐴ℎ𝑜𝑙𝑙𝑜𝑤 = 𝐴𝑜𝑢𝑡𝑒𝑟 − 𝐴𝑖𝑛𝑛𝑒𝑟                           

• Plastic Moment, 𝑀𝑝(ℎ𝑜𝑙𝑙𝑜𝑤) = 𝑀𝑝(𝑜𝑢𝑡𝑒𝑟) −𝑀𝑝(𝑖𝑛𝑛𝑒𝑟)  

Apply superposition to applied forces/moments: 

• Bending Moment, 𝑀ℎ𝑜𝑙𝑙𝑜𝑤 = 𝑀𝑜𝑢𝑡𝑒𝑟 − 𝑀𝑖𝑛𝑛𝑒𝑟  

By applying the superposition principle, (𝑚𝑧 ,𝑚𝑦,𝑝 ) of the hollow rectangular section 

can be generated from two solid rectangular shapes being analyzed simultaneously (Fig. 

27).  
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Figure 27. Rectangular section as an assemblage of rectangles. 

STEP #2 BENDING SEGMENT’S VERTICES AND CENTROID 

Unfortunately, studying the different locations of the N.A. and using above the 

trapezoidal technique can only be done with one solid rectangular section. Because 

different sizes of solid rectangular sections are being considered together, a given 

location of N.A. can fall into more than one trapezoidal area which increases significantly 

the number of required cases that need to be considered. In most cases, it is difficult to 

find the critical angles to distinguish between these cases.  Furthermore, the geometry of 

bending moment segment for these cases makes it nearly impossible to calculate the 

coordinates of the vertices of the bending segment. 

 With this in mind, a new technique was derived in this study to avoids the above 

shortcomings and provides a general solution to finding coordinates of vertices of 

bending moment segment for all kinds of cross sections that can be considered as the 

assemblage of rectangles. This new technique is called the “interpolating technique” and 

takes advantage of the MATLAB linear interpolation function “interp1.” 
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 In this technique, the unique line N.A., for a given bending moment area  𝐴𝐴 

(= 𝐴𝑚/2 and corresponds to a given 𝑝) and 𝜃, can be found by determining the 

parameter taken as the vertical intersection (𝑦𝑦) of the line (N.A.): 

𝑦 = tan (𝜃)𝑥 + 𝑦𝑦                                                Eq.(21 )  

The unique line of the N.A. can be used to locate the vertices of the bending moment 

segment by determining the intersections between the line and any rectangles of the 

assemblage. An algorithm called “line_intersect_rect” was created in this thesis to find 

such intersections. The location 𝑦𝑦 can be found for any location of the N.A. by 

interpolating between only a few reference points that relate the area 𝐴𝐴 to the 

location 𝑦𝑦. The illustration of such a relationship is shown in (Fig.28).  

 

Figure 28. Relationship between vertical interception of line N.A.: 𝒚 = 𝐭𝐚𝐧 (𝜽)𝒙 +

𝒚𝒚 and bending moment area 𝑨𝑨. 
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The three reference points that are used in the interpolation to calculate 𝑦𝑦 from any 

given  𝐴𝐴 are identified below. 

The first point is at (−𝑏/2,ℎ/2) 

𝐴𝐴 = 0 

𝑦𝑦 =
ℎ
2

+
𝑏
2

tan (𝜃) 

The second point is at (−𝑏
2

, ℎ
2
− 𝑡) 

There are two cases of 𝜃 as shown in Fig. 29.  

When 𝜃 ≥ 𝜃𝑐 = atan (𝑡
𝑏
) 

𝐴𝐴 =
𝑡2

2tan (𝜃)
 

𝑦𝑦 = �
ℎ
2
− 𝑡� +

𝑏 tan(𝜃)
2

 

When 𝜃 < 𝜃𝑐 = atan (𝑡
𝑏
) 

𝐴𝐴 = 𝑏𝑡 −
𝑏2 tan(𝜃)

2
 

𝑦𝑦 = �
ℎ
2
− 𝑡� +

𝑏 tan(𝜃)
2

 

The third point is at the origin: 
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𝐴𝐴 =
𝐴
2

 

𝑦𝑦 = 0 

 

(a) 𝜃 ≥ 𝜃𝑐                                      (b) 𝜃 < 𝜃𝑐 

Figure 29. Three reference points from the relationship between 𝒚𝒚 and 𝑨𝑨. 

4.2.2 RESULTS 

The analyses of hollow rectangular sections provided similar results to the results of the 

solid rectangular section, as shown in Table A.2. On average the 𝑅2 values calculated 

from both the regression and MASTAN2 coefficients are close to zero. All of the yield 

surfaces are completely concave.  The theoretical interaction curves for the hollow 

rectangular section with the ratio of height to base to wall thickness of 40:20:1 is shown 

in Fig. 30. The regression, the MASTAN2, and theoretical interaction curves are plotted 

together in Fig. 31. For major-axis behavior, the regression curve stays very close to the 
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MASTAN2 curve which both underestimate the theoretical curve when p=[0,0.7] and 

overestimate the theoretical curve when p=[0.7,1]. For minor-axis behavior, the 

MASTAN2 curve overestimates excessively the theoretical curve for all values of p. The 

regression curve starts off from p=0 by staying close to the MASTAN2 curve until it 

starts to move away from the MASTAN2 curve at p=0.35. It directs toward the 

theoretical curve until it touches the theoretical curve when p=0.75. Then it stays close to 

the theoretical curve when p=[0.75,1].  

 

Figure 30. The theoretical interaction curves for a hollow rectangular section.  
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 (a) 

(b) 

Figure 31. The regression, MASTAN2, and theoretical interaction curves for a 

hollow rectangular section, (a) major-axis, (b) minor-axis.  
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Although some improvement can be realized by customizing the MASTAN2 equation to 

the theoretical yield surface of hollow rectangular section, the resulting regression yield 

surface still cannot provide a good model for the theoretical yield surface of any 

corresponding hollow rectangular sections.  

4.3 SOLID CIRCULAR SECTION 

4.3.1 METHOD 

Inputs: cross-section dimensions: 

𝐷  = diameter of cross section (𝑅 = 𝐷/2) 

𝐹𝑦  = yield strength of material 

Output: arrays of  𝑝, 𝑚𝑥, and 𝑚𝑦.  

 

Figure 32. Solid circular section 
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Step #1 CROSS SECTION PROPERTIES (𝑨,𝑴𝒑𝒙,𝑴𝒑𝒚) 

For circular shape:  

• Cross-sectional area, 𝐴 = 𝜋𝑅2     Eq.(21) 

• Plastic Moment, 𝑀𝑝 = 𝐹𝑦
4𝑅3

3
  

Step #2 BENDING MOMENT SEGMENT’S VERTICES AND CENTROID    

The bending moment segment in this case is the shaded circular segment whose area is 

equal to 𝐴𝑚/2. Its moment arms can be calculated using the following equations 

• x-component: 𝐶𝑥 = sin(𝜃)𝑦�               Eq.(22)  

• y-component: 𝐶𝑦 = cos(𝜃)𝑦� 

where, 𝑦� =
4𝑅𝑠𝑖𝑛(𝛽2)3

3(𝛽−sin(𝛽)) 

The area of the bending moment segment can be defined in terms of the circular radius R 

and the center angle 𝛽 (in radians) by 

𝐴𝑚/2 = 𝑅2 𝛽−sin(𝛽)
2

                                                Eq.(23) 

with 𝐴𝑚 = 𝐴 − 𝐴𝑝 = A(1 − p), Eq.(23) can be rewritten as  

𝑅2(𝛽 − sin(𝛽)) = 𝐴(1 − 𝑝)                                         Eq.(24) 
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With this,  𝛽 can be solved from the above equation for the known values 𝑅 and 𝑝.  

4.3.2 RESULTS 

The theoretical yield surface for solid circular section is the same for all sizes of a solid 

circular section. Its theoretical interaction curves are shown in Fig. 33. The comparison 

between the major- and the minor-axis interaction equations of the theoretical, regression, 

and MASTAN2 yield surfaces for a solid circular section is also shown in Fig. 34. The 

results of the regression analysis for a solid circular section are similar to the previous 

sections, as shown in Table A.3. The MASTAN2 coefficients provide a negative  𝑅2 

value of -1.7474. The regression coefficients [ 2.0649   10.6746    1.9695] provide the 

corresponding 𝑅2 value of  0.1974.   

 

Figure 33. The theoretical interaction curves for a solid circular section.  
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(a) 

(b) 

Figure 32.The regression, MASTAN2, and  theoretical interaction curves for a solid 

circular section, (a) major-axis, (b) minor-axis.  
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This once again shows that the regression equation (Eq. 7) that results from fitting the 

MASTAN2 equation to fit the theoretical yield surface of a solid circular section cannot 

provide a good model for the theoretical yield surface of any solid circular sections. The 

regression and MASTAN2 curves of solid circular sections behave in a similar manner to 

that of the regression and MASTAN2 curves of hollow rectangular section with respect 

to their theoretical curves, as described in section 4.2.2. The same conclusion is reached, 

MASTAN2 cannot be used to give a good customized yield surface equation to model the 

theoretical yield surface of solid circular section.  

4.4 HOLLOW CIRCULAR SECTION 

4.4.1 METHOD 

Inputs: cross-section dimensions: 

𝑂𝐷  = Outside diameter 

𝑡  = thickness of pipe 

𝐹𝑦  = yield strength of material 

Output: arrays of  𝑝, 𝑚𝑥, and 𝑚𝑦.  
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Figure 33. Hollow circular section 

Similar to a hollow rectangular cross-section, the principle of superposition can be used 

to determine the properties of hollow rectangular cross-section from the corresponding 

properties of the outer and inner solid circular cross-sections.  

 ℎ𝑜𝑙𝑙𝑜𝑤 𝑝𝑖𝑝𝑒 =  𝑜𝑢𝑡𝑒𝑟 𝑝𝑖𝑝𝑒 − 𝑖𝑛𝑛𝑒𝑟 𝑝𝑖𝑝𝑒   

Inputs: cross-section dimensions: 

𝑅𝑜𝑢𝑡𝑒𝑟 = 𝑂𝐷/2 𝑅𝑖𝑛𝑛𝑒𝑟 = 𝑂𝐷/2 − 𝑡      Eq.(25) 

Apply superposition to cross-section properties/capacities: 

• Cross-sectional area, 𝐴ℎ𝑜𝑙𝑙𝑜𝑤 = 𝐴𝑜𝑢𝑡𝑒𝑟 − 𝐴𝑖𝑛𝑛𝑒𝑟 

• Plastic Moment, 𝑀𝑝(ℎ𝑜𝑙𝑙𝑜𝑤) = 𝑀𝑝(𝑜𝑢𝑡𝑒𝑟) −𝑀𝑝(𝑖𝑛𝑛𝑒𝑟)  

Apply superposition to applied forces/moments: 
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• Bending Moment, 𝑀ℎ𝑜𝑙𝑙𝑜𝑤 = 𝑀𝑜𝑢𝑡𝑒𝑟 − 𝑀𝑖𝑛𝑛𝑒𝑟  

Therefore, (𝑚𝑧 ,𝑚𝑦,𝑝 ) of hollow rectangular shape can be generated from (𝑚𝑧 ,𝑚𝑦,𝑝) of 

two solid rectangular shapes by applying the superposition principle.  

Step #2 BENDING MOMENT SEGMENT’S VERTICES AND CENTROID    

The interpolating technique described above can be extended to determine the bending 

moment segment of the hollow circular section. This can be done by relating the hollow 

circular section 𝑟 to the area 𝐴𝐴. There are only two reference points that can be easily 

identified as shown below (Fig. 34).  Due to the symmetry of a circle about any axis, 

these two points can be identified the same way for any given 𝜃.  

 

Figure 34. Two reference points from the relationship between r and AA.  

The first point is located at any location on the outer circle: 
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𝐴𝐴 = 0 

𝑟 = 𝑅 

The second point is at the origin:  

𝐴𝐴 = 𝐴/2 

𝑟 = 0  

4.4.2 RESULTS  

The theoretical interaction curves for a hollow circular section with the ratio of outside 

diameter to wall thickness of 12:1 are plotted to compare with the corresponding 

interaction curves calculated by Chen and Atsuta (Fig. 35). They are identical.  

(a) 
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(b) 

Figure 35. The theoretical interaction curves for hollow circular section (a) 

calculated in this study and (b) calculated by Chen and Atsuta (adopted from 

reference [2])  

(a) 
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(b) 

Figure 36.The regression, MASTAN2, and theoretical interaction curves for a 

hollow circular section (OD/t=12/1), (a) major-axis, (b) minor-axis.  

The results of regression analysis for hollow circular sections are also similar to those of 

the previous sections, as shown in Table A.4. The regression and MASTAN2 yield 

surfaces did have some percentages of concavity. Similar to the findings in the above 

sections, the MASTAN2 yield surface equation cannot provide a good regression 

equation to  model the corresoponding  theoretical yield surfaces of any hollow circular 

sections. 

4.5 WIDE-FLANGE SECTION 

4.5.1 METHOD 

Inputs: cross-section dimensions: 
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𝑑  = depth of the shape 

𝑏𝑓  = width of base 

𝑡𝑤  = width of the web 

𝑡𝑓    = width of the flange 

Output: arrays of  𝑝, 𝑚𝑥, and 𝑚𝑦.  

Step #1 CROSS SECTION PROPERTIES (𝑨,𝑴𝒑𝒙,𝑴𝒑𝒚) 

To simplify the analysis, a wide-flange cross-section can be broken into three rectangles. 

The cross-section’s yield surface (𝑚𝑥,𝑚𝑦,𝑝 ) is then the superposition of the behavior of 

these three rectangles (refer Fig.37).  

 

Figure 37. Wide-flange section as the assemblage of rectangles. 

 

Rectangle 1: Outer rectangle 
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• Area, 𝐴1 = 𝑏𝑓𝑑       Eq.(26) 

• Plastic moment, 𝑀𝑝(1) = 𝐹𝑦(𝑏𝑓𝑑2)/4  

Rectangle 2: Inner rectangle 

• Area, 𝐴2 = 𝑏𝑓(𝑑 − 2𝑡𝑓) 

• Plastic moment, 𝑀𝑝(2) = 𝐹𝑦[𝑏𝑓�𝑑 − 2𝑡𝑓�
2

]/4 

Rectangle 3: Web 

• Area, 𝐴3 = 𝑡𝑤(𝑑 − 2𝑡𝑓) 

• Plastic moment, 𝑀𝑝(3) = 𝐹𝑦[𝑡𝑤�𝑑 − 2𝑡𝑓�
2

]/4  

STEP #2 BENDING MOMENT SEGMENT’S VERTICIES AND CENTROID:   

With the wide-flange section defined as an assemblage of rectangles, the bending 

moment segment can be determined by using the previously described interpolation 

technique. The parameter and reference points for the wide-flange section are almost 

identical to those for the hollow rectangular section.  

The first point is at (−𝑏𝑓/2,𝑑/2) 

𝐴𝐴 = 0 

𝑦𝑦 =
𝑑
2

+
𝑏𝑓
2

tan (𝜃) 
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The second point is at (−𝑏𝑓
2

, 𝑑
2
− 𝑡𝑓). 

There are two cases of 𝜃 as shown in Fig. 38.  

When 𝜃 ≥ 𝜃𝑐 = atan (𝑡𝑓
𝑏𝑓

) 

 𝐴𝐴 = 𝑏𝑓2

2tan (𝜃)
 

 𝑦𝑦 = �𝑑
2
− 𝑡𝑓�+ 𝑏𝑓 tan(𝜃)

2
 

When 𝜃 < 𝜃𝑐 = atan (𝑡𝑓
𝑏𝑓

) 

 𝐴𝐴 = 𝑏𝑓𝑡𝑓 −
𝑡𝑓2 tan(𝜃)

2
 

 𝑦𝑦 = �𝑑
2
− 𝑡𝑓�+ 𝑏𝑓 tan(𝜃)

2
 

The third point is at the origin 

 𝐴𝐴 = 𝐴
2

 

 𝑦𝑦 = 0 
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                             (a)𝜃 ≥ 𝜃𝑐                                        (b) 𝜃 < 𝜃𝑐      

Figure 38. Three reference points from the relationship between 𝒚𝒚 and 𝑨𝑨. 

4.5.2 RESULTS 

The theoretical interaction curves for a W14x426 section generated in this study are 

compared to the interaction curves generated by Chen and Atsuta (Fig. 39). These two 

sets of interaction curves are identical. Table A. 5 shows complete results of the analysis 

of wide-flange sections. For all such sections, the 𝑅2 of the regression equation is closer 

to the ideal value of unit than the 𝑅2 of the MASTAN2 equation. Within the tolerance 

defined by using the percentage of concavity of the theoretical yield surface, both the 

MASTAN2 and regression yield surfaces were tested to contain zero percent concavity. 

In several cases, remarkable improvement can observed.  For example, a W24x55 results 

in regression coefficients defined [2.80 18.49 2.55] and the corresponding 𝑅2 is 0.79, 
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which is a significant improvement when compared to the MASTAN2 𝑅2 of 0.16. A 

comparison between the major- and the minor-axis interaction equations of the 

theoretical, regression, and MASTAN2 yield surfaces for W24x55 is shown in Fig. 40.  

Figure 41 provides three-dimensional surface plots of the theoretical, regression, and 

MASTAN2 yield surfaces.  
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(a)

    (b)  

Figure 39. The theoretical interaction curves of W14x426 calculated (a) using 

method derived in this study and (b) using Chen and Atsuta’s Exact Method. 
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(a) 

(b) 

Figure 40. The regression, MASTAN2, and theoretical interaction curves for 

W24x55, (a) major-axis, (b) minor-axis. 
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(a)

(b)
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(c) 

(d) 
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(e) 

(f) 

Figure 41. (a), (b), and (c) surface plots comparing the theoretical and regression 

yield surfaces for W24x55. (d), (e), and (f) surface plots comparing the theoretical 

and MASTAN2 yield surfaces for W24x55.  
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5 CONCLUSIONS 

For wide-flange sections, coefficients found by performing a weighted regression 

analysis on theoretical data points always provides a better coefficient of determination 

𝑅2 than MASTAN2. A better 𝑅2 indicates a better model because the value of 𝑅2 

represents the percentage of the variation of theoretical data points that can be explained 

by the model. This study also proved that a small percent of concavity can always be 

found in the theoretical yield surfaces and their modeling equations. However, the 

degrees of concavity in the regression equations for wide-flange sections are 

insignificant. 

For other shapes, 𝑅2 for both the regression and MASTAN2 equations are on 

average negative or close to zero. This indicates that MASTAN2 and its customized 

versions are not good representatives of the theoretical yield surfaces for solid and hollow 

rectangular and circular sections. The reason that customized versions of MASTAN2 for 

wide-flange sections provide better 𝑅2 than for other sections is simply that the 

MASTAN2 equation was derived from the theoretical yield surface of a wide-flange 

section, which is W12x31.  

With this in mind, future work may include employing weighted regression 

analysis on other general forms of equations that are similar but the not the same as 

MASTAN2’s yield surface equation. Hopefully this could produce that could be 

employed for cross-sectional shapes that are not wide-flange sections.  
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APPENDICES 

APPENDIX A: ANALYSIS RESULTS  

Table A1. Results of the analysis of the solid rectangular section. 

Solid Rectangular Section  

W
ei
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n
g 
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c1 c2 c3 

R squares % concavity 

R
eg

re
ss

io
n

 

M
A
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A

N
2

 

R
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ss
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n

 

M
A
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A

N
2

 

Area 2.257 10.090 3.529 0.087 -0.584 0 0 
Crowd 1.680 14.532 2.108 0.243 -1.774 11.12 0 
Without 1.858 13.428 3.712 0.143 -0.584 0 0 

 

Table A2. Results of the analysis of the hollow rectangular sections. 

Hollow Rectangular Section (area weighting factors) 

h/b b/t c1 c2 c3 

R squares 
% 

concavity 

R
eg

re
ss

io
n

 

M
A

S
T

A
N

2
 

R
eg
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ss
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n

 

M
A

S
T

A
N

2
 

1 2/5 7     2.505 27.359 3.862 -0.269 -1.266 0 0 
1     8     2.962 24.809 3.748 -0.165 -1.156 0 0 

1 1/4 9     2.659 27.002 3.805 -0.230 -1.233 0 0 
1     10     2.962 24.812 3.748 -0.165 -1.156 0 0 

1 1/5 11     2.714 26.608 3.789 -0.219 -1.219 0 0 
1 2/5 12     2.514 28.091 3.860 -0.263 -1.270 0 0 

1     13     2.963 24.814 3.748 -0.165 -1.156 0 0 
1 1/3 14     2.576 27.629 3.834 -0.249 -1.254 0 0 

1     15     2.963 24.816 3.748 -0.165 -1.156 0 0 
1 1/4 16     2.660 27.010 3.805 -0.230 -1.233 0 0 
1 1/3 17     2.576 27.639 3.834 -0.249 -1.254 0 0 



1     18     2.976 25.148 3.745 -0.162 -1.161 0 0 
1     19     2.976 25.153 3.745 -0.162 -1.162 0 0 
1     20     2.980 25.245 3.744 -0.161 -1.163 0 0 
1     21     2.982 25.312 3.743 -0.161 -1.164 0 0 

1 1/3 22     2.582 28.187 3.832 -0.244 -1.258 0 0 
1     23     2.982 25.316 3.743 -0.161 -1.164 0 0 

1 1/3 24     2.582 28.192 3.832 -0.244 -1.258 0 0 
1     25     2.985 25.406 3.743 -0.160 -1.166 0 0 

1 1/5 26     2.725 27.245 3.786 -0.213 -1.225 0 0 
1 2/5 27     2.520 28.770 3.858 -0.257 -1.274 0 0 

1     28     2.985 25.410 3.743 -0.160 -1.166 0 0 
1 1/5 29     2.725 27.250 3.786 -0.213 -1.225 0 0 

1     30     2.990 25.548 3.741 -0.159 -1.168 0 0 
1 1/4 31     2.671 27.810 3.802 -0.224 -1.240 0 0 

1     32     2.990 25.554 3.741 -0.159 -1.168 0 0 
1 1/8 33     2.819 26.752 3.765 -0.193 -1.206 0 0 
1 1/4 34     2.671 27.816 3.802 -0.224 -1.240 0 0 

1     35     2.993 25.645 3.741 -0.158 -1.169 0 0 
1     36     2.993 25.648 3.741 -0.158 -1.169 0 0 

1 2/7 37     2.634 28.202 3.814 -0.231 -1.250 0 0 
1     38     2.997 25.770 3.740 -0.157 -1.171 0 0 

1 1/3 39     2.586 28.704 3.831 -0.240 -1.262 0 0 
1     40     2.997 25.773 3.740 -0.157 -1.171 0 0 
1     41     2.997 25.774 3.740 -0.157 -1.171 0 0 

1 1/3 42     2.586 28.708 3.831 -0.240 -1.262 0 0 
1 1/3 43     2.586 28.712 3.831 -0.240 -1.262 0 0 

1     44     2.997 25.778 3.740 -0.157 -1.171 0 0 
1     45     3.000 25.880 3.739 -0.156 -1.173 0 0 

1 1/4 46     2.675 28.173 3.801 -0.220 -1.243 0 0 
1     47     3.000 25.883 3.739 -0.156 -1.173 0 0 

1 1/4 48     2.675 28.176 3.801 -0.220 -1.243 0 0 
1     49     3.001 25.945 3.738 -0.156 -1.174 0 0 

1 1/5 50     2.733 27.827 3.784 -0.208 -1.231 0 0 
1 2/5 51     2.523 29.391 3.856 -0.252 -1.278 0 0 

1     52     3.001 25.949 3.738 -0.156 -1.174 0 0 
1 1/5 53     2.733 27.832 3.784 -0.208 -1.231 0 0 
1 2/5 54     2.523 29.396 3.856 -0.252 -1.278 0 0 

1     55     3.003 26.014 3.738 -0.155 -1.175 0 0 
1     56     3.003 26.017 3.738 -0.155 -1.175 0 0 

1 2/7 57     2.637 28.613 3.813 -0.227 -1.253 0 0 
1     58     3.004 26.054 3.738 -0.155 -1.176 0 0 
1     59     3.004 26.057 3.738 -0.155 -1.176 0 0 
1     60     3.005 26.080 3.737 -0.155 -1.176 0 0 
1     61     3.007 26.187 3.737 -0.154 -1.178 0 0 

1 1/4 62     2.677 28.512 3.800 -0.218 -1.246 0 0 
1     63     3.007 26.188 3.737 -0.154 -1.178 0 0 



 

1 1/5 64     2.735 28.090 3.784 -0.206 -1.234 0 0 
1     65     3.007 26.189 3.737 -0.154 -1.178 0 0 

1 1/3 66     2.589 29.177 3.829 -0.236 -1.265 0 0 
1     67     3.007 26.190 3.737 -0.154 -1.178 0 0 

1 1/4 68     2.677 28.515 3.800 -0.217 -1.246 0 0 
1     69     3.007 26.190 3.737 -0.154 -1.178 0 0 

1 2/5 70     2.524 29.675 3.855 -0.249 -1.280 0 0 
1     71     3.007 26.192 3.737 -0.154 -1.178 0 0 

1 1/8 72     2.829 27.422 3.762 -0.188 -1.214 0 0 
1 1/4 73     2.677 28.517 3.800 -0.217 -1.246 0 0 

1     74     3.007 26.192 3.737 -0.154 -1.178 0 0 
1 1/3 75     2.589 29.181 3.829 -0.235 -1.265 0 0 

1     76     3.009 26.293 3.736 -0.153 -1.180 0 0 
1     77     3.010 26.314 3.736 -0.153 -1.180 0 0 
1     78     3.010 26.317 3.736 -0.153 -1.180 0 0 
2     5 3/4 2.120 29.052 4.126 -0.371 -1.374 0 0 

1 1/2 6 7/8 2.421 27.786 3.904 -0.289 -1.288 0   
1 1/2 8 3/5 2.429 28.733 3.901 -0.282 -1.293 0 0 
2 1/3 8 5/8 1.984 32.461 4.257 -0.394 -1.418 0 0 
2 1/3 10 1/3 1.980 33.156 4.253 -0.389 -1.418 0 0 

2     11 1/2 2.117 32.231 4.113 -0.350 -1.379 0 0 
2 1/3 13     1.976 33.822 4.248 -0.384 -1.417 0 0 
1 1/2 13 3/4 2.435 29.998 3.897 -0.271 -1.299 0 0 

2     14 3/8 2.115 32.768 4.110 -0.345 -1.379 0 0 
1 1/2 17 1/6 2.435 30.366 3.895 -0.268 -1.300 0 0 

2     21 1/2 2.111 33.422 4.104 -0.339 -1.379 0 0 
2     21 5/9 2.111 33.427 4.104 -0.339 -1.379 0 0 
2     23     2.111 33.505 4.104 -0.339 -1.379 0 0 

2 1/3 25 6/7 1.967 35.011 4.237 -0.375 -1.414 0 0 
1 1/2 27 1/2 2.435 30.867 3.893 -0.263 -1.302 0 0 

2     28 3/4 2.109 33.732 4.101 -0.337 -1.378 0 0 
2 1/3 34 1/2 1.964 35.283 4.234 -0.374 -1.410 0 0 
1 2/3 41 1/4 2.305 32.200 3.960 -0.288 -1.330 0 0 
1 1/2 46     2.433 31.167 3.892 -0.260 -1.301 0 0 
2 1/2 5 3/4 1.942 30.572 4.330 -0.422 -1.433 0 0 

3     6 8/9 1.816 32.950 4.505 -0.454 -1.473 0 0 
2 6/7 7 1/2 1.842 33.182 4.455 -0.442 -1.463 0 0 

3     8 5/8 1.805 34.185 4.500 -0.449 -1.473 0 0 
3     10 1/3 1.798 34.951 4.495 -0.445 -1.472 0 0 

2 1/2 11 1/2 1.923 34.020 4.316 -0.403 -1.433 0 0 
2 6/7 12     1.825 35.139 4.443 -0.431 -1.461 0 0 

3     13     1.791 35.684 4.489 -0.440 -1.470 0 0 
2 1/2 13 7/9 1.919 34.523 4.311 -0.399 -1.433 0 0 
2 6/7 15     1.819 35.733 4.438 -0.427 -1.460 0 0 
3 1/3 17 1/4 1.719 37.110 4.586 -0.459 -1.486 0 0 



 

 

Table A3. Results of the analysis of the solid circular section. 
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Area 2.065 10.675 1.970 0.197 -1.747 [0] [0] 
Crowd 1.680 14.532 2.108 0.243 -1.774 [0] [0] 
Without 1.796 12.299 2.156 0.319 -1.774 [0] [0] 

 

 

2 6/7 20 1/9 1.813 36.306 4.431 -0.424 -1.457 0 0 
3     20 5/8 1.780 36.709 4.479 -0.434 -1.466 0 0 
3     23     1.778 36.876 4.476 -0.434 -1.464 0 0 

3 1/3 25 6/7 1.710 37.795 4.578 -0.456 -1.477 0 0 
2 1/2 27 1/2 1.909 35.664 4.299 -0.391 -1.427 0 0 
2 6/7 30 1/6 1.807 36.839 4.425 -0.422 -1.450 0 0 
2 1/2 34 1/2 1.906 35.878 4.297 -0.390 -1.423 0 0 

4     5 3/4 1.688 33.042 4.780 -0.512 -1.524 0 0 
4     6 7/8 1.673 34.450 4.784 -0.509 -1.523 0 0 
4     8 3/5 1.656 35.801 4.781 -0.505 -1.522 0 0 
4     10 1/3 1.646 36.648 4.777 -0.502 -1.520 0 0 

3 1/2 11 1/2 1.705 36.299 4.644 -0.474 -1.498 0 0 
4     11 1/2 1.640 37.074 4.774 -0.500 -1.519 0 0 
4     12 7/8 1.635 37.463 4.772 -0.498 -1.517 0 0 
4     13 3/4 1.633 37.665 4.770 -0.498 -1.516 0 0 
4     17 1/4 1.625 38.252 4.764 -0.495 -1.512 0 0 

3 1/2 23     1.685 37.959 4.628 -0.467 -1.487 0 0 
5     5 3/4 1.613 33.914 4.981 -0.548 -1.553 0 0 
5     6 7/8 1.594 35.400 4.988 -0.546 -1.553 0 0 
5     8 3/5 1.574 36.820 4.989 -0.543 -1.551 0 0 
5     11 1/2 1.555 38.178 4.985 -0.540 -1.546 0 0 
5     13 3/4 1.546 38.823 4.981 -0.538 -1.542 0 0 
5     17 1/6 1.536 39.446 4.976 -0.537 -1.535 0 0 
6     6 7/8 1.546 36.053 5.143 -0.573 -1.571 0 0 
6     8 3/5 1.524 37.533 5.147 -0.571 -1.569 0 0 
6     11 1/2 1.502 38.966 5.145 -0.569 -1.562 0 0 



 

Table A4. Results of the analysis of hollow circular sections. 

Hollow Circular Section (area weighting factors) 
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10 1/5 2.696 23.675 2.155 0.107 -1.364 11.279 5.636 
10 3/4 2.697 23.791 2.155 0.108 -1.365 11.276 5.636 

11     2.698 23.829 2.155 0.108 -1.365 11.275 5.636 
11 2/3 2.699 23.969 2.155 0.109 -1.366 11.271 5.636 
11 5/6 2.700 23.989 2.155 0.110 -1.366 11.270 5.636 

12     2.700 24.010 2.155 0.110 -1.366 11.269 5.636 
12 1/3 2.700 24.064 2.155 0.110 -1.367 11.268 5.636 
12 1/2 2.701 24.092 2.155 0.110 -1.367 11.267 5.636 
12 3/4 2.701 24.121 2.155 0.111 -1.367 11.266 5.636 
12 7/8 2.701 24.135 2.155 0.111 -1.367 11.266 5.636 
12 8/9 2.701 24.137 2.155 0.111 -1.367 11.266 5.636 

13     2.701 24.138 2.155 0.111 -1.367 11.266 5.636 
13 2/3 2.702 24.224 2.155 0.111 -1.367 11.263 5.636 
13 3/4 2.702 24.235 2.155 0.112 -1.368 11.263 5.636 

14     2.702 24.268 2.155 0.112 -1.368 11.262 5.636 
14 1/4 2.702 24.284 2.155 0.112 -1.368 11.262 5.636 
14 1/3 2.702 24.293 2.155 0.112 -1.368 11.261 5.636 
14 3/8 2.702 24.297 2.155 0.112 -1.368 11.261 5.636 
14 7/9 2.703 24.334 2.155 0.112 -1.368 11.260 5.636 
14 5/6 2.703 24.339 2.155 0.112 -1.368 11.260 5.636 

15     2.703 24.345 2.155 0.112 -1.368 11.260 5.636 
15 1/5 2.703 24.369 2.155 0.113 -1.369 11.259 5.636 
15 3/4 2.703 24.410 2.155 0.113 -1.369 11.258 5.636 
15 7/8 2.703 24.419 2.155 0.113 -1.369 11.258 5.636 

16     2.703 24.424 2.155 0.113 -1.369 11.258 5.636 
16 1/8 2.703 24.438 2.155 0.113 -1.369 11.257 5.636 
16 1/2 2.703 24.460 2.155 0.113 -1.369 11.257 5.636 
16 3/5 2.703 24.469 2.155 0.113 -1.369 11.256 5.636 
17 1/9 2.703 24.502 2.155 0.113 -1.370 11.256 5.636 
17 1/6 2.703 24.505 2.155 0.113 -1.370 11.255 5.636 
17 1/5 2.703 24.506 2.155 0.113 -1.370 11.255 5.636 
17 1/4 2.703 24.508 2.155 0.113 -1.370 11.255 5.636 
17 2/5 2.703 24.516 2.155 0.113 -1.370 11.255 5.636 
18 1/5 2.703 24.557 2.155 0.114 -1.370 11.254 5.636 
18 1/2 2.703 24.573 2.155 0.114 -1.370 11.254 5.636 
18 5/9 2.703 24.574 2.155 0.114 -1.370 11.254 5.636 

19     2.703 24.594 2.155 0.114 -1.370 11.253 5.636 



19 1/2 2.703 24.616 2.155 0.114 -1.370 11.252 5.636 
19 2/3 2.703 24.624 2.155 0.114 -1.371 11.252 5.636 

20     2.703 24.639 2.155 0.114 -1.371 11.252 5.636 
20 1/9 2.703 24.641 2.155 0.114 -1.371 11.252 5.636 
20 4/9 2.704 24.653 2.155 0.114 -1.371 11.251 5.636 
20 1/2 2.704 24.654 2.155 0.114 -1.371 11.251 5.636 
20 5/8 2.704 24.659 2.155 0.114 -1.371 11.251 5.636 
20 2/3 2.704 24.662 2.155 0.114 -1.371 11.251 5.636 
20 5/6 2.704 24.667 2.155 0.114 -1.371 11.251 5.636 
21 2/7 2.703 24.682 2.155 0.114 -1.371 11.251 5.636 
21 1/2 2.703 24.688 2.155 0.114 -1.371 11.250 5.636 
21 5/9 2.703 24.691 2.155 0.114 -1.371 11.250 5.636 
21 6/7 2.703 24.700 2.155 0.114 -1.371 11.250 5.636 
22 3/4 2.703 24.727 2.155 0.115 -1.371 11.249 5.636 

23     2.703 24.731 2.155 0.115 -1.371 11.249 5.636 
23 1/8 2.703 24.736 2.155 0.115 -1.371 11.249 5.636 
23 1/6 2.703 24.738 2.155 0.115 -1.371 11.249 5.636 
23 5/8 2.703 24.748 2.155 0.115 -1.371 11.249 5.636 

24     2.703 24.758 2.155 0.115 -1.372 11.249 5.636 
24 1/5 2.703 24.761 2.155 0.115 -1.372 11.249 5.636 
24 5/7 2.703 24.774 2.155 0.115 -1.372 11.248 5.636 
24 7/9 2.703 24.775 2.155 0.115 -1.372 11.248 5.636 

25     2.703 24.780 2.155 0.115 -1.372 11.248 5.636 
25 1/2 2.703 24.790 2.155 0.115 -1.372 11.248 5.636 
25 3/4 2.703 24.795 2.155 0.115 -1.372 11.248 5.636 
25 7/9 2.703 24.795 2.155 0.115 -1.372 11.248 5.636 
25 6/7 2.703 24.798 2.155 0.115 -1.372 11.248 5.636 
27 3/7 2.703 24.826 2.155 0.115 -1.372 11.247 5.636 
27 1/2 2.703 24.828 2.155 0.115 -1.372 11.247 5.636 
27 4/7 2.703 24.829 2.155 0.115 -1.372 11.247 5.636 
28 3/7 2.703 24.841 2.155 0.115 -1.372 11.246 5.636 
28 2/3 2.703 24.846 2.155 0.115 -1.372 11.246 5.636 
28 3/4 2.703 24.847 2.155 0.115 -1.372 11.246 5.636 
29 1/2 2.703 24.858 2.156 0.115 -1.372 11.278 5.636 

30     2.703 24.865 2.156 0.115 -1.372 11.277 5.636 
30 1/9 2.703 24.866 2.156 0.115 -1.372 11.277 5.636 
30 1/6 2.703 24.867 2.156 0.115 -1.373 11.277 5.636 
30 4/5 2.702 24.874 2.156 0.115 -1.373 11.277 5.636 

32     2.702 24.887 2.156 0.115 -1.373 11.277 5.636 
32 1/5 2.703 24.890 2.156 0.115 -1.373 11.277 5.636 

33     2.703 24.900 2.156 0.115 -1.373 11.276 5.636 
34 3/8 2.702 24.913 2.156 0.115 -1.373 11.276 5.636 
34 2/5 2.702 24.913 2.156 0.115 -1.373 11.276 5.636 
34 1/2 2.702 24.914 2.156 0.115 -1.373 11.276 5.636 

37     2.702 24.934 2.156 0.115 -1.373 11.275 5.636 
38     2.702 24.942 2.156 0.115 -1.373 11.275 5.636 



 

38 5/7 2.702 24.947 2.156 0.115 -1.373 11.275 5.636 
38 4/5 2.702 24.948 2.156 0.115 -1.373 11.275 5.636 
39 1/3 2.702 24.951 2.156 0.115 -1.373 11.275 5.636 
39 1/2 2.702 24.953 2.156 0.115 -1.373 11.275 5.636 
40 1/9 2.702 24.956 2.156 0.115 -1.373 11.275 5.636 
40 2/9 2.702 24.957 2.156 0.115 -1.373 11.275 5.636 
41 1/3 2.702 24.963 2.156 0.115 -1.373 11.275 5.636 

43     2.702 24.972 2.156 0.115 -1.373 11.275 5.636 
43 1/9 2.702 24.973 2.156 0.115 -1.373 11.275 5.636 
44 6/7 2.702 24.982 2.156 0.115 -1.373 11.274 5.636 
45 5/6 2.702 24.986 2.156 0.115 -1.373 11.274 5.636 
46 1/7 2.702 24.987 2.156 0.115 -1.373 11.274 5.636 
48 1/9 2.702 24.995 2.156 0.115 -1.373 11.274 5.636 
49 4/7 2.702 25.001 2.156 0.115 -1.373 11.274 5.636 
51 4/7 2.701 25.008 2.156 0.115 -1.374 11.274 5.636 
51 5/7 2.701 25.008 2.156 0.115 -1.374 11.274 5.636 
54 5/7 2.701 25.017 2.156 0.114 -1.374 11.273 5.636 

55     2.701 25.018 2.156 0.114 -1.374 11.273 5.636 
55 1/3 2.701 25.018 2.156 0.114 -1.374 11.273 5.636 
57 1/9 2.701 25.023 2.156 0.114 -1.374 11.273 5.636 
57 1/3 2.701 25.024 2.156 0.114 -1.374 11.273 5.636 
57 1/2 2.701 25.024 2.156 0.114 -1.374 11.273 5.636 

60     2.701 25.030 2.156 0.114 -1.374 11.273 5.636 
60 1/3 2.701 25.031 2.156 0.114 -1.374 11.273 5.636 
68 2/3 2.701 25.046 2.156 0.114 -1.374 11.273 5.636 
 

Table A5. Results of the analysis of wide-flange sections.  
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'W44X335' [3.2899] [3.7166] [3.9617] [0.7967] [0.7647] [0] [0] 

'W44X290' [3.3812] [3.7867] [3.9390] [0.8046] [0.7731] [0] [0] 

'W44X262' [3.3862] [3.6745] [3.8383] [0.8103] [0.7761] [0] [0] 

'W44X230' [3.3430] [3.4038] [3.6414] [0.8156] [0.7682] [0] [0] 

'W40X593' [3.3452] [5.0730] [4.9643] [0.6687] [0.5652] [0] [0] 

'W40X503' [3.3693] [4.7937] [4.7452] [0.7099] [0.6346] [0] [0] 



'W40X431' [3.3801] [4.5258] [4.5357] [0.7428] [0.6892] [0] [0] 

'W40X397' [3.4224] [4.4977] [4.4770] [0.7555] [0.7033] [0] [0] 

'W40X372' [3.4176] [4.3778] [4.3880] [0.7661] [0.7212] [0] [0] 

'W40X362' [3.4323] [4.3775] [4.3747] [0.7691] [0.7239] [0] [0] 

'W40X324' [3.4606] [4.2896] [4.2798] [0.7817] [0.7401] [0] [0] 

'W40X297' [3.4486] [4.1374] [4.1682] [0.7914] [0.7557] [0] [0] 

'W40X277' [3.5506] [4.3336] [4.2336] [0.7917] [0.7447] [0] [0] 

'W40X249' [3.5633] [4.2411] [4.1476] [0.7992] [0.7555] [0] [0] 

'W40X215' [3.5776] [4.1197] [4.0354] [0.8070] [0.7662] [0] [0] 

'W40X199' [3.4219] [3.5814] [3.7241] [0.8156] [0.7769] [0] [0] 

'W40X392' [3.0416] [4.0408] [4.4320] [0.6939] [0.6494] [0] [0] 

'W40X331' [3.0505] [3.7134] [4.1571] [0.7397] [0.6956] [0] [0] 

'W40X327' [3.0794] [3.7606] [4.1749] [0.7436] [0.7034] [0] [0] 

'W40X294' [3.1034] [3.6228] [4.0398] [0.7659] [0.7235] [0] [0] 

'W40X278' [3.0755] [3.4596] [3.9207] [0.7747] [0.7206] [0] [0] 

'W40X264' [3.1053] [3.4422] [3.8820] [0.7833] [0.7307] [0] [0] 

'W40X235' [3.1877] [3.4709] [3.8396] [0.7968] [0.7515] [0] [0] 

'W40X211' [3.1897] [3.3261] [3.7098] [0.8055] [0.7490] [0] [0] 

'W40X183' [3.1847] [3.1023] [3.5120] [0.8131] [0.7314] [0] [0] 

'W40X167' [3.0331] [2.5802] [3.1433] [0.8109] [0.6056] [0] [0] 

'W40X149' [2.8658] [1.9884] [2.6618] [0.7961] [0.2982] [0] [0] 

'W36X800' [3.3709] [5.9567] [5.5085] [0.5677] [0.3554] [0.9] [0] 

'W36X652' [3.4337] [5.5997] [5.2428] [0.6317] [0.4662] [0] [0] 

'W36X529' [3.4955] [5.3019] [4.9969] [0.6853] [0.5558] [0] [0] 

'W36X487' [3.5043] [5.1612] [4.8928] [0.7038] [0.5902] [0] [0] 

'W36X487' [3.5043] [5.1612] [4.8928] [0.7038] [0.5902] [0] [0] 

'W36X441' [3.5325] [5.0451] [4.7870] [0.7234] [0.6217] [0] [0] 

'W36X395' [3.5569] [4.9246] [4.6789] [0.7414] [0.6511] [0] [0] 

'W36X361' [3.5692] [4.8107] [4.5843] [0.7550] [0.6748] [0] [0] 

'W36X330' [3.5971] [4.7539] [4.5173] [0.7652] [0.6887] [0] [0] 

'W36X302' [3.6038] [4.6398] [4.4247] [0.7761] [0.7082] [0] [0] 

'W36X282' [3.6074] [4.5606] [4.3604] [0.7829] [0.7204] [0] [0] 

'W36X262' [3.5767] [4.3748] [4.2424] [0.7923] [0.7421] [0] [0] 

'W36X247' [3.5603] [4.2585] [4.1642] [0.7979] [0.7536] [0] [0] 

'W36X231' [3.5497] [4.1551] [4.0900] [0.8028] [0.7625] [0] [0] 

'W36X256' [3.2065] [3.7636] [4.0746] [0.7775] [0.7450] [0] [0] 

'W36X232' [3.2184] [3.6363] [3.9563] [0.7904] [0.7548] [0] [0] 

'W36X210' [3.1398] [3.2588] [3.6909] [0.8026] [0.7363] [0] [0] 

'W36X194' [3.1490] [3.1746] [3.6073] [0.8078] [0.7326] [0] [0] 



 

'W36X182' [3.1465] [3.0862] [3.5287] [0.8108] [0.7238] [0] [0] 

'W36X170' [3.1382] [2.9789] [3.4368] [0.8128] [0.7090] [0] [0] 

'W36X160' [3.1146] [2.8381] [3.3244] [0.8133] [0.6819] [0] [0] 

'W36X150' [3.0751] [2.6536] [3.1807] [0.8119] [0.6345] [0] [0] 

'W36X135' [2.9512] [2.1906] [2.8151] [0.8012] [0.4423] [0] [0] 

'W33X387' [3.5822] [5.1764] [4.8374] [0.7205] [0.6034] [0] [0] 

'W33X354' [3.5969] [5.0629] [4.7443] [0.7356] [0.6302] [0] [0] 

'W33X318' [3.6304] [4.9827] [4.6574] [0.7500] [0.6514] [0] [0] 

'W33X291' [3.6374] [4.8729] [4.5708] [0.7614] [0.6729] [0] [0] 

'W33X263' [3.6544] [4.7814] [4.4874] [0.7720] [0.6907] [0] [0] 

'W33X241' [3.5945] [4.4830] [4.3114] [0.7870] [0.7300] [0] [0] 

'W33X221' [3.5776] [4.3352] [4.2099] [0.7950] [0.7467] [0] [0] 

'W33X201' [3.5504] [4.1435] [4.0800] [0.8035] [0.7635] [0] [0] 

'W33X169' [3.2974] [3.5781] [3.8365] [0.8057] [0.7689] [0] [0] 

'W33X152' [3.2236] [3.2302] [3.5936] [0.8126] [0.7481] [0] [0] 

'W33X141' [3.1669] [2.9817] [3.4151] [0.8141] [0.7136] [0] [0] 

'W33X152' [3.2236] [3.2302] [3.5936] [0.8126] [0.7481] [0] [0] 

'W33X141' [3.1669] [2.9817] [3.4151] [0.8141] [0.7136] [0] [0] 

'W33X130' [3.0966] [2.6886] [3.1968] [0.8123] [0.6470] [0] [0] 

'W33X118' [3.0110] [2.3394] [2.9221] [0.8046] [0.5228] [0] [0] 

'W30X391' [3.5983] [5.5326] [5.0662] [0.6850] [0.5256] [0] [0] 

'W30X357' [3.6320] [5.4451] [4.9801] [0.7026] [0.5528] [0] [0] 

'W30X326' [3.6493] [5.3282] [4.8861] [0.7188] [0.5824] [0] [0] 

'W30X292' [3.6861] [5.2450] [4.7973] [0.7346] [0.6062] [0] [0] 

'W30X261' [3.6802] [5.0566] [4.6681] [0.7519] [0.6437] [0] [0] 

'W30X235' [3.7226] [5.0283] [4.6109] [0.7613] [0.6540] [0] [0] 

'W30X211' [3.6720] [4.7374] [4.4385] [0.7782] [0.6995] [0] [0] 

'W30X191' [3.6601] [4.5811] [4.3289] [0.7883] [0.7218] [0] [0] 

'W30X173' [3.6475] [4.4337] [4.2248] [0.7966] [0.7397] [0] [0] 

'W30X148' [3.2943] [3.6588] [3.9090] [0.8009] [0.7672] [0] [0] 

'W30X132' [3.1898] [3.2055] [3.6004] [0.8107] [0.7418] [0] [0] 

'W30X124' [3.1724] [3.0753] [3.4968] [0.8130] [0.7266] [0] [0] 

'W30X116' [3.1222] [2.8557] [3.3347] [0.8135] [0.6864] [0] [0] 

'W30X108' [3.0514] [2.5697] [3.1176] [0.8108] [0.6071] [0] [0] 

'W30X99' [2.9772] [2.2659] [2.8730] [0.8033] [0.4837] [0] [0] 

'W30X90' [2.9860] [2.1963] [2.7970] [0.7985] [0.4588] [0] [0] 

'W27X539' [3.4821] [6.4003] [5.6741] [0.5522] [0.2799] [0] [0] 

'W27X368' [3.6138] [5.8164] [5.2358] [0.6565] [0.4602] [0] [0] 

'W27X336' [3.6505] [5.7244] [5.1483] [0.6758] [0.4904] [0] [0] 



'W27X307' [3.6614] [5.5829] [5.0478] [0.6940] [0.5263] [0] [0] 

'W27X281' [3.7053] [5.5383] [4.9822] [0.7082] [0.5443] [0] [0] 

'W27X258' [3.7137] [5.4100] [4.8886] [0.7232] [0.5745] [0] [0] 

'W27X235' [3.7044] [5.2359] [4.7755] [0.7389] [0.6106] [0] [0] 

'W27X217' [3.7489] [5.2442] [4.7437] [0.7458] [0.6145] [0] [0] 

'W27X194' [3.7526] [5.0967] [4.6348] [0.7598] [0.6441] [0] [0] 

'W27X178' [3.6721] [4.7404] [4.4407] [0.7780] [0.6991] [0] [0] 

'W27X161' [3.6779] [4.6390] [4.3578] [0.7864] [0.7149] [0] [0] 

'W27X146' [3.6762] [4.5219] [4.2681] [0.7942] [0.7306] [0] [0] 

'W27X129' [3.3551] [3.8551] [4.0203] [0.7972] [0.7669] [0] [0] 

'W27X114' [3.2702] [3.4368] [3.7366] [0.8094] [0.7642] [0] [0] 

'W27X102' [3.2606] [3.2800] [3.6056] [0.8139] [0.7556] [0] [0] 

'W27X94' [3.2062] [3.0307] [3.4260] [0.8151] [0.7248] [0] [0] 

'W27X84' [3.1203] [2.6652] [3.1548] [0.8115] [0.6451] [0] [0] 

'W24X370' [3.5709] [6.2053] [5.5014] [0.6004] [0.3529] [0] [0] 

'W24X335' [3.6055] [6.0623] [5.3921] [0.6262] [0.3971] [0] [0] 

'W24X306' [3.6456] [5.9618] [5.3007] [0.6478] [0.4311] [0] [0] 

'W24X279' [3.6694] [5.8352] [5.2037] [0.6678] [0.4672] [0] [0] 

'W24X250' [3.7129] [5.7380] [5.1072] [0.6882] [0.4987] [0] [0] 

'W24X229' [3.7236] [5.6013] [5.0092] [0.7052] [0.5327] [0] [0] 

'W24X207' [3.7482] [5.4941] [4.9173] [0.7211] [0.5607] [0] [0] 

'W24X192' [3.7693] [5.4292] [4.8556] [0.7314] [0.5778] [0] [0] 

'W24X176' [3.7750] [5.3197] [4.7749] [0.7429] [0.6018] [0] [0] 

'W24X162' [3.7648] [5.1615] [4.6711] [0.7560] [0.6328] [0] [0] 

'W24X146' [3.7398] [4.9547] [4.5418] [0.7702] [0.6690] [0] [0] 

'W24X131' [3.6869] [4.6638] [4.3691] [0.7857] [0.7119] [0] [0] 

'W24X117' [3.6618] [4.4642] [4.2361] [0.7963] [0.7369] [0] [0] 

'W24X104' [3.6418] [4.2865] [4.1123] [0.8044] [0.7547] [0] [0] 

'W24X103' [3.3569] [3.8652] [4.0269] [0.7968] [0.7665] [0] [0] 

'W24X94' [3.3269] [3.6464] [3.8683] [0.8057] [0.7715] [0] [0] 

'W24X84' [3.2949] [3.4156] [3.6956] [0.8124] [0.7659] [0] [0] 

'W24X76' [3.2380] [3.1395] [3.4981] [0.8153] [0.7410] [0] [0] 

'W24X68' [3.1456] [2.7576] [3.2220] [0.8130] [0.6700] [0] [0] 

'W24X62' [2.8605] [2.1412] [2.8211] [0.8035] [0.3695] [0] [0] 

'W24X55' [2.8017] [1.8489] [2.5485] [0.7927] [0.1642] [0] [0] 

'W21X201' [3.8190] [5.9541] [5.1615] [0.6864] [0.4632] [0] [0] 

'W21X182' [3.8384] [5.8334] [5.0694] [0.7026] [0.4945] [0] [0] 

'W21X166' [3.8787] [5.7922] [5.0110] [0.7138] [0.5088] [0] [0] 

'W21X147' [3.7609] [5.2498] [4.7377] [0.7472] [0.6146] [0] [0] 



 

'W21X132' [3.7840] [5.1764] [4.6658] [0.7575] [0.6316] [0] [0] 

'W21X122' [3.8005] [5.1138] [4.6064] [0.7652] [0.6450] [0] [0] 

'W21X111' [3.8040] [5.0157] [4.5315] [0.7737] [0.6630] [0] [0] 

'W21X101' [3.8281] [4.9789] [4.4834] [0.7794] [0.6707] [0] [0] 

'W21X93' [3.2906] [3.8244] [4.0520] [0.7891] [0.7590] [0] [0] 

'W21X83' [3.3177] [3.7367] [3.9536] [0.7995] [0.7680] [0] [0] 

'W21X73' [3.3349] [3.6251] [3.8424] [0.8077] [0.7726] [0] [0] 

'W21X68' [3.3163] [3.4880] [3.7399] [0.8117] [0.7700] [0] [0] 

'W21X62' [3.2813] [3.2796] [3.5865] [0.8150] [0.7571] [0] [0] 

'W21X68' [3.3163] [3.4880] [3.7399] [0.8117] [0.7700] [0] [0] 

'W21X62' [3.2813] [3.2796] [3.5865] [0.8150] [0.7571] [0] [0] 

'W21X55' [3.1802] [2.8604] [3.2897] [0.8142] [0.6946] [0] [0] 

'W21X48' [3.0488] [2.3530] [2.9081] [0.8026] [0.5383] [0] [0] 

'W21X57' [3.0558] [2.8132] [3.3487] [0.8107] [0.6650] [0] [0] 

'W21X50' [2.9390] [2.3353] [2.9689] [0.8072] [0.4944] [0] [0] 

'W21X44' [2.8583] [1.9741] [2.6508] [0.7959] [0.2852] [0] [0] 

'W18X311' [3.6136] [7.0538] [5.9085] [0.5193] [0.1548] [0] [0] 

'W18X283' [3.6480] [6.8635] [5.7955] [0.5482] [0.2078] [0] [0] 

'W18X258' [3.6976] [6.7510] [5.7056] [0.5727] [0.2454] [0] [0] 

'W18X234' [3.7546] [6.6653] [5.6215] [0.5954] [0.2771] [0] [0] 

'W18X211' [3.7847] [6.5043] [5.5130] [0.6196] [0.3222] [0] [0] 

'W18X192' [3.8325] [6.4217] [5.4322] [0.6387] [0.3502] [0] [0] 

'W18X175' [3.8419] [6.2603] [5.3314] [0.6580] [0.3915] [0] [0] 

'W18X158' [3.8658] [6.1299] [5.2349] [0.6765] [0.4268] [0] [0] 
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