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Abstract

A conjecture by Harder shows a surprising congruence between the coefficients of
“classical” modular forms and the Hecke eigenvalues of corresponding Siegel modular
forms, contigent upon “large primes” dividing the critical values of the given classical
modular form.

Harder’s Conjecture has already been verified for one-dimensional spaces of clas-
sical and Siegel modular forms (along with some two-dimensional cases), and for
primes p ≤ 37. We verify the conjecture for higher-dimensional spaces, and up to a
comparable prime p.
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Chapter 1

Introduction

1.1 Motivation

Mathematics is often thought of as mechanistic and predictable - this, however, is
not the case at all. Results in mathematics can, in fact, be quite surprising (even
to mathematicians). Our story of Harder’s Conjecture begins with a particularly
surprising mathematician - Srinivasa Ramanujan.

Born to a poor family in Erode, India in 1887, Ramanujan worked largely in-
dependently until he was “discovered” by G.H. Hardy in 1913. He discovered many
results independently (most of which have been proven correct to date). One of which
regards the function ∆:

∆(q) = q

∞∏
n=0

(1− qn)24. (1.1)

When expanded, ∆ has coefficients

∆(q) = q−24q2 +252q3−1472q4 +4830q5−6048q6−16744q7 +84480q8 + . . . , (1.2)

which we can write as the sum
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∞∑
n=1

τ(n)qn, (1.3)

where τ(n) is the coefficient of the qn term of ∆ (e.g. τ(1) = 1, τ(4) = −1472). We
list the first 25 values of τ(n) in Table 1.1:

n τ(n)
1 1
2 -24
3 252
4 -1472
5 4830
6 -6048
7 -16744
8 84480
9 -113643

10 -115920
11 534612
12 -370944
13 -577738
14 401856
15 1217160
16 987136
17 -6905934
18 2727432
19 10661420
20 -7109760
21 -4219488
22 -12830688
23 18643272
24 21288960
25 -25499225

Table 1.1: The first 25 coefficients of ∆.

At first glance, the values for τ(n) appear to be completely random, unrelated
integers (yet their absolute value does appear to increase). Suppose, however, that
we try to multiply them together:
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τ(2) · τ(3) = −24 · −252 = −6048 (1.4)

But, that’s τ(6)! Could it be that τ(m) ·τ(n) = τ(m ·n)? Ramanujan conjectured
(later, Louis Mordell proved) that for relatively prime m, n (i.e. the greatest common
divisor of m and n is 1), this is true:

Surprising Result 1.1.1. Let m, n be positive integers. If m, n are relatively prime,
then τ(m) · τ(n) = τ(m · n). [3]

(We say that, given this above property, τ is a multiplicative function.)

Ramanujan found another, equally surprising relationship between the coefficents
τ(n). Suppose we consider coefficents τ(p) for primes p, and the quantity p11 + 1.
Ramanujan found that, if divided by 691, both τ(p) and p11 + 1 yield the same
remainder!

p τ(p) τ(p) mod 691 p11 + 1 (p11 + 1) mod 691
2 -24 667 2049 667
3 252 252 177148 252
5 4830 684 48828126 684
7 -16744 531 1977326744 531

11 534612 469 285311670612 469
13 -577738 629 1792160394038 629
17 -6905934 611 34271896307634 611
19 10661420 672 116490258898220 672
23 18643272 92 952809757913928 92
29 128406630 173 12200509765705830 173
31 -52843168 366 25408476896404832 366
37 -182213314 622 177917621779460414 622
41 308120442 87 550329031716248442 87
43 -17125708 36 929293739471222708 36
47 2687348496 435 2472159215084012304 435

Table 1.2: τ(p) mod 691 and (p11 + 1) mod 691 for primes p.

G.N. Watson proved this relationship:



CHAPTER 1. INTRODUCTION 4

Surprising Result 1.1.2. Let p be a prime. Then,

τ(p) ≡ p11 + 1 (mod 691) (1.5)

[3]

Later, Mordell proved that ∆ is a modular form (see Section 1.4). However, the
study of ∆ (and modular forms in general) became somewhat dormant following
this. The last fifty years, however, have shown a resurgence of interest in modular
forms. Since this resurgence, the general theory of modular forms (including the
theory of L-functions and periods; see Section 2.2) has been greatly expanded upon.
There has been considerable interest in modular forms in recent years; for exam-
ple, Wiles/Taylor’s proof of Fermat’s Last Theorem relied heavily on the intimate
relationship between modular forms and elliptic curves. They, in fact, proved this
relationship, thus implying Fermat’s Last Theorem.

Also, two of the seven Clay Mathematics Institute’s Millenial Prize Problems (each
of which include a $1,000,000 prize for a proof/solution) are related to modular forms
and L-functions (i.e. the BSD Conjecture and the Riemann Hypothesis). In addition,
a large number of Fields Medals have been awarded to mathematicians whose work
regarded modular forms.

The original ideas behind modular forms have also been generalized in the past
fifty years; for example, Siegel modular forms (see Section 1.5) represent a gener-
alization of modular forms themselves. We can also generalize the congruence in
(1.5):

Surprising Result 1.1.3. The congruence in (1.5) can actually be thought of as a
congruence between modular forms.

But, we can generalize further:

Surprising Result 1.1.4. There exist analogous congruences between “classical”
and Siegel modular forms.

In very general terms, this is the main idea of Harder’s Conjecture.
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1.2 The Conjecture

We will state Harder’s Conjecture in full at this point, even though very little of its
specifics have yet been explained (this is largely the purpose of the introduction to
this thesis):

Harder’s Conjecture. Let f =
∑∞

n=1 anq
n ∈ Sr be a normalized eigenform with field

of Fourier coefficients Qf . If a large prime ` of Qf divides a critical value Λ(f, t)
then there exists a Siegel modular form F ∈ Sk,j with j = 2t− r− 2 and k = r− t+2
that is an eigenform with eigenvalue λp for Tp, with field QF of eigenvalues λp and
such that there exists a prime `′ of the compositum of QF and Qf dividing ` for which

λp ≡ pk−2 + ap + pj+k−1 (mod `′) (1.6)

for all primes p ∈ Q.

We can see, though, a similarity in the form of the congruence in (1.6) to the con-
gruences that Ramanujan found. The concepts and notation of Harder’s Conjecture,
however, require much more explanation. We will start with a brief overview of neces-
sary number theoretic background, and conclude the section with a discussion of the
LLL Algorithm and algebraic dependence (which is specifically used in Section 2.3).
We will then provide an introduction to the necessary theory of “classical” and Siegel
modular forms.

Chapters 2 and 3 will discuss the specific calculations needed to verify Harder’s
Conjecture; i.e. the computations of the critical values of classical modular forms and
the Hecke eigenvalues of spaces of Siegel modular forms.

Finally, we will discuss the actual verification of the Harder’s Conjecture in Chap-
ter 4.

1.3 Number Theoretic Background

At the heart of elementary number theory lies the notion of division:

Definition 1.3.1. Let m, n ∈ N. If there exists a positive integer l such that lm = n,
then we say m divides n. We denote this as m | n.
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Remark 1.3.2. We call l and m divisors of n.

We then define a prime number :

Definition 1.3.3. Let n ∈ N. If n has exactly two divisors (namely 1 and n itself),
we call n prime.

In general, prime numbers act as “building blocks” of the integers Z. Any number
in Z can be written as a product of prime numbers. Moreover, this factorization is
unique:

Theorem 1.3.4 (Fundamental Theorem of Arithmetic). Let n ∈ Z, then n can be
written uniquely as the product of positive integer powers δi of primes p1

δ1 , . . . , pi
δi:

n =
i∏

j=1

pj
δj (1.7)

In the next section, we will see that the idea of prime numbers can be extended
to other fields.

1.3.1 Basic Algebraic Number Thoery

Throughout this section, let F ∈ C be a field. We first define what it means for a
number to be algebraic:

Definition 1.3.5. Let α ∈ C. If α is the root of some irreducible, monic polynomial

f(x) = xn + an−1x
n−1 + · · ·+ a0 (1.8)

where each ai ∈ Q, then we say that α is an algebraic number.

Definition 1.3.6. We say that the irreducible, monic polynomial (1.8) defines α,
and that the degree of α is equal to the degree of (1.8).

Remark 1.3.7. We call the irreducible, monic polynomial which defines α the min-
imal polynomial of α.
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Also, we can define the norm of an algebraic number:

Definition 1.3.8. Let α1 be an algebraic number whose minimal polynomial f has
n roots, each denoted αi with 1 < i ≤ n. We define the norm of α1 N(α1) as

N(α1) =
n∏

i=1

αi (1.9)

We can adjoin an algebraic number α to a field F:

Definition 1.3.9. Let α be an algebraic number, and let F be a field. Let F(α) be
the smallest field containing both F and α. We call F(α) a simple extension of F by
α.

Example 1.3.10. Consider the algebraic number i =
√
−1 (it is the root of the

polynomial f(x) = x2 + 1). We can see that Q(i) ⊆ C is the field of numbers of the
form a + bi, where a, b ∈ Q.

Remark 1.3.11. We can see that, if α ∈ F, then F(α) is a trivial extension, and
F(α) = F.

We can extend a field by multiple algebraic numbers:

Definition 1.3.12. Let {α1, . . . , αi} be a finite set of algebraic numbers, and let F
be a field. Let F(α1, . . . , αi) is the smallest field containing both F and {α1, . . . , αi}.
F(α1, . . . , αi) is called a finite extension of F.

However, there is an important theorem that allows us to simplify finite extensions
into simple extensions:

Theorem 1.3.13 ([7]). Every finite extension of a field F is a simple extension. That
is, given any finite extension F(α1, . . . , αi), there exists an algebraic number α such
that F(α) = F(α1, . . . , αi).

Definition 1.3.14. We call a finite extension of Q a number field.

Definition 1.3.15. Let α have degree δ. The degree of the extension Q(α) of Q
(which we denote [Q(α) : Q]) is δ.

Example 1.3.16. Let α =
√

2. The irreducible polynomial defining α, which is
x2 − 2, has degree 2; thus, [Q(

√
2) : Q] = 2.
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Definition 1.3.17. We call a degree 2 extension (as in Example 1.3.16) a quadratic
extension.

As one might recall, Z is a ring and Z ⊆ Q; here, Z is called the ring of rational
integers. We can generalize this notion for any field:

Definition 1.3.18. Let α be an algebraic number. If α is the root of some irreducible,
monic polynomial of the form

f(x) = xn + an−1x
n−1 + · · ·+ a0 (1.10)

where each ai ∈ Z, then α is an algebraic integer.

Theorem 1.3.19. If α is an algebraic integer, then N(α) ∈ Z.

There exists a special kind of algebraic integer, called a unit :

Definition 1.3.20. Let α be an algebraic integer. If its multiplicative inverse α−1 is
also an algebraic integer, then α is called a unit.

Example 1.3.21. Both i and 3−2
√

2 are units, in Q(i) and Q(
√

2), respectively. [7]

Theorem 1.3.22. If α is a unit, then N(α) = 1.

Definition 1.3.23. Given a field F, we denote the set of its algebraic integers as OF.

Example 1.3.24. We can show that OQ = Z:

Proof. We can see that n ∈ Z is the root of the polynomial f(x) = x − n; thus,
n ∈ OQ.

Now, let m ∈ OQ be arbitrary. Thus, m is the root of some irreducible monic
polynomial g with coefficients in Z. Since g is irreducible over Q, this implies that
g(x) = x−m. Thus, since the coefficients of g are in Z, this implies that m ∈ Z.

Example 1.3.25. For Q(i), OQ(i) = {a+bi : a, b ∈ Z} (These are called the Gaussian
integers Z[i]).

We can see that the set of algebraic integers have a certain algebraic structure:

Theorem 1.3.26 ([7]). Given a field F, the set OF forms a ring.
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Definition 1.3.27. Let R be a ring, and A ⊆ R. A is called an ideal of R if:

(i) Given a, b ∈ A, a + b ∈ A.

(ii) Given a ∈ A and r ∈ R, ar ∈ A.

We can generate ideals from algebraic integers:

Theorem 1.3.28. Let α1, . . . , αn ∈ OF for some field F. The set A ⊆ OF of elements
of the form

η1α1 + · · ·+ ηnαn, (1.11)

where each ηi ∈ OF, is an ideal of OF.

Definition 1.3.29. We say that the ideal A of Theorem 1.3.28 is generated by
α1, . . . , αn; we use the notation A = (α1, . . . , αn).

Definition 1.3.30. An ideal [α] generated by a single algebraic integer α is called a
principal ideal. [7]

Definition 1.3.31. Let F be a field with multiplicative identity 1. The principal
ideal (1), denoted O, is called the unit ideal of F.

Remark 1.3.32. One can see that O = OF.

We can then define the product of two ideals:

Definition 1.3.33. Let A = (α1, . . . , αm) and B = (β1, . . . , βn) Let

A ·B = (α1β1, . . . , α1βn, . . . , α2β1, . . . , α2βn, . . . , αmβn) (1.12)

We can show that this product is commutative:

Theorem 1.3.34. Let A, B be ideals. Then, A ·B = B · A.

Then, we can generalize the idea of divisibility for ideals:

Definition 1.3.35. Let A, B be ideals. If there exists an ideal C such that A = B ·C,
then we say B divides A, and we write B | A. We call B and C the divisors of A. [7]
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We introduce the following theorem [7]:

Theorem 1.3.36. Let F be a field, and let A be an ideal of F. Then, there exists an
ideal B ⊆ F and a natural number a such that A ·B = (a).

The above notion of divisibility can be difficult to check through our definition of
the product of ideals given in Definition 1.3.33. Fortunately, there exists an easier
way to check divisibility of ideals:

Theorem 1.3.37. Let A, B be ideals of field F. B | A if and only if A ⊆ B.

Proof. (i) Let B | A. Then, there exists C such that A = B · C. Let B =
(β1, . . . , βm) and C = (γ1, . . . , γn). We know each α ∈ A can be written as the
sum

α =
∞∑
i=1

∞∑
j=1

ηi,jβiγj, (1.13)

where each ηi,j ∈ OF. This sum is equivalent to

α =
∞∑
i=1

(
∞∑

j=1

ηi,jγj

)
βi, (1.14)

and since each ηi,jγj ∈ OF, we know α ∈ B.

(ii) Now, let A ⊆ B. Using Theorem 1.3.36, we let C and b be such that C ·A = (b).
We can see that the ideal C · A is a subset of (b) = B · C. Thus, we can write
C · A as

(bα1, . . . , bαm) = (b)(α1, . . . , αm) = B · C · (α1, . . . , αm). (1.15)

Thus, A = B · (α1, . . . , αm), and we have B | A.

Example 1.3.38. Consider Z, and the ideals (3) and (6). We can see that (3) =
{z ∈ Z : 3 | z}, and that (6) = {z ∈ Z : 6 | z}. Any element divisible by 6 must also
be divisible by 3; thus, (6) ⊆ (3). Also, (6) = (3) · (2).

Thus, the question of divisibility of ideals simply becomes a question of set-
containment - Theorem 1.3.37 can be summarized as “to contain is to divide”. As
one might expect, this leads to a definition of “primeness” for ideals:
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Definition 1.3.39. Let P be an ideal with only two divisors, namely O and P itself.
We call P a prime ideal.

Alternatively, we can show the following:

Theorem 1.3.40. Let P be an ideal of a ring R. This ideal P is prime if and only
if the following are true:

(i) P 6= R.

(ii) Given a, b ∈ R such that their product ab ∈ P, either a ∈ P or b ∈ P.

The following theorem holds for prime ideals:

Theorem 1.3.41. (Fundamental Theorem for Ideals) Let A 6= O be an ideal. Then
A can be uniquely expressed as the product of prime ideals:

A = P1 ·P2 · · · · ·Pn, (1.16)

with multiplicity.

We can then generalize the notion of “prime number” for fields other than Q:

Theorem 1.3.42. Let F be a field, and let OF be its ring of integers, with m, n ∈ OF.
If (m) | (n), then m | n.

Definition 1.3.43. Let F be a field, and let OF be its ring of integers. A positive
integer n ∈ OF is prime if ideal (n) of OF is a prime ideal.

Example 1.3.44. Consider Q, and its ring of integers Z. We know that 3Z is an
ideal of Z, generated by 3. Also, 3Z can be written alternatively as {z ∈ Z : z ≡ 0
mod 3}. Let x = ab ∈ 3Z be arbitrary, where a, b ∈ Z. Then 3 | x. We know that,
since x = ab, either 3 | a or 3 | b. This implies that either a or b are in 3Z. Since
3Z 6= Z, then we have shown that 3Z is a prime ideal of Z. Thus, by Definition 1.3.43,
3 is a prime of Q, which is as expected.

A prime p of one field F may not necessarily be prime in an extension F(α) of F:
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Example 1.3.45. Consider Q, in which 2 is prime. However, if we extend Q to the
Gaussian numbers Q(i) and consider the ideal (2) = {a + bi : 2 | a and 2 | b} of Z(i),
we see that 2 (which is clearly in (2)) can be written as the product

2 = (1 + i)(1− i), (1.17)

yet neither 1 + i nor 1− i are in (2). Thus, 2 is not prime in Q(i).

In fact, we have special terminology for what happened in Example 1.3.45:

Definition 1.3.46. Let p ∈ F be a prime, and let F(α) be an extension of F. If
[p] = P1 ·P2, where P1 and P2 are distinct prime ideals of OF(α), then we say p splits
in F(α).

Example 1.3.47. Given Example 1.3.45, we can show that both (2) ⊆ (1 + i) and
(2) ⊆ (1− i). Then, by Theorem 1.3.37, we know that (1 + i) | (2) and (1− i) | (2).
Since (1 + i) and (1− i) are prime ideals of Z(i), we can see that 2 splits in Q(i).

There is a special case of primes splitting:

Definition 1.3.48. Let p ∈ F be a prime, and let F(α) be an extension of F. If
[p] = P ·P = P2, where P is a prime ideal of OF(α), then we say p ramifies in F(α).

Finally, if splitting does not occur, we say that p is inert:

Definition 1.3.49. Let p ∈ F be a prime, and let F(α) be an extension of F. If [p]
is a prime ideal of F(α), then we say p is inert in F(α).

Given 2 and 1 + i of Example 1.3.45, it makes sense to say that 1 + i divides 2,
even though both are primes (of Q and Q(i), respectively). We shall express this
formally:

Definition 1.3.50. Let F be a field, and let F(α) be an extension of F. Let p be a
prime in F, and assume that (p) splits into prime ideals (π1) and (π2) of OF(α). Then,
we say that both π1 and π2 divide p, and write π1 | p and π2 | p.

Theorem 1.3.51. Let F be a field, and let F(α) be an extension of F. Suppose p is
a prime in F and π1 are primes in F(α). If N(π1) | N(p), then π1 | p.
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The ideas behind Definition 1.3.50 are very important for understanding some
of the terminology of Harder’s Conjecture, specifically regarding “primes dividing
primes.” Additionally, the conjecture refers to the compositum of two field extensions:

Definition 1.3.52. Let F be a field, and let K and L be extensions of F. The
compositum of K and L, denoted K + L, is the intersection of all fields containing
both K and L.

Example 1.3.53. If we consider Q and extensions Q(i) and Q(
√

2), then the com-
positum of Q(i) and Q(

√
2) is Q(i,

√
2) = Q(i +

√
2).

1.3.2 The LLL Algorithm and Algebraic Dependence

As explained later in Section 2.3, we will be calculating ratios of critical values of
modular forms. These critical value ratios are known to be algebraic (see [10]), but
can sometimes only be presented as floating-point decimals. We can use a process
called “algebraic dependence” (which itself uses the LLL Algorithm) to find exact
expressions for these critical value ratios. We begin this section with a discussion of
the LLL Algorithm.

The LLL Algorithm

Recall from elementary linear algebra the definition of linear independence:

Definition 1.3.54. Let {b1, . . . ,bm} be a set of vectors in Rn. The set of vectors
{b1, . . . ,bm} is linearly independent if the only solution to the equation

c1b1 + c2b2 + · · ·+ cmbm = 0 (1.18)

is the trivial solution c1 = c2 = · · · = cm = 0, where each ci ∈ R.

We now define a lattice:

Definition 1.3.55. A lattice L is a subset of Rn, generated by all integer combinations
of a set B = {b1, . . . ,bm} of linearly independent vectors:

L =
m∑

i=1

zibi (1.19)
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where each zi ∈ Z. We call B the basis of F .

Remark 1.3.56. We can express B as an n×m matrix:

MB =


...

...
...

...
b1 b2 . . . bm

...
...

...
...

 (1.20)

The basis for a given lattice is not unique:

Example 1.3.57. Consider lattice L = Z× Z. We can see that both

B1 =

(
1 0
0 1

)
(1.21)

and

B2 =

(
0 1
1 1

)
(1.22)

each form a basis for L.

Given a lattice L, we are interested in finding an orthogonal basis for L:

Definition 1.3.58. Let B be a basis. If, for each pair bi,bj ∈ B, the dot product
bi · bj = 0, then we say B is orthogonal.

Remark 1.3.59. We can see that B1 of Example 1.3.57 is orthogonal, while B2 is
not.

Through the Gram-Schmidt Orthogonalization Method, we can find an orthogonal
basis B∗, given basis B of L:

Algorithm 1.3.60 (Gram-Schmidt Orthogonalization Method). Let B = {b1,b2, . . . ,bm}
be a basis of lattice L.

1. Set b1
∗ = −b1.
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2. For each 2 ≤ i ≤ m in succession, set

bi
∗ = bi −

i−1∑
k=1

bi · bk
∗

bk
∗ · bk

∗bk
∗ (1.23)

3. B∗ = {b1
∗,b2

∗, . . . ,bm
∗} is an orthogonal basis for L.

Remark 1.3.61. Performing Step 2 of the Gram-Schmidt Orthogonalization Method
once, for a single i, is called incremental Gram-Schmidt.

We can also reduce a basis B for lattice L:

Definition 1.3.62. Let B be a basis for lattice L. We say B is reduced if, for each
bi
∗ ∈ B∗,

‖bi
∗‖2 ≥

(
3

4
− (µi,i−1)

2

)
‖bi−1

∗‖2, (1.24)

for 1 < i ≤ m, where

µi,j =
bi · bj

∗

bj
∗ · bj

∗ (1.25)

(see [4]).

We can think of a reduced basis as one which includes the shortest possible vector
elements. The Lenstra-Lenstra-Lovász (or LLL) Algorithm, named by Computing
and Science and Engineering in 2000 as one of the top ten algorithms of the last
century [2], allows us to find a reduced basis B′ for a basis B of a lattice L. The
specifics of the algorithm are beyond the scope of this text; however, we will outline
it below in very broad terms (see [4] p. 87 for a more detailed description):

LLL Algorithm. 1. Perform Incremental Gram-Schmidt on vectors in B.

2. Test whether the resulting basis is reduced; if it is, then the algorithm terminates.
If not, continue to the next step.

3. If µi, j > .5, round µi,j to the nearest integer. Then, swap vectors in a specified
way discussed in [4]

4. Return to step 2.

Theorem 1.3.63 (Lenstra-Lenstra-Lovász). The LLL Algorithm produces a reduced
basis for a lattice L in polynomial time. [4]
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Algebraic Dependence

Given a real number α, which may be presented as a floating-point decimal, we often
want to find a polynomial f(x) (with coefficients in Z) such that f(α) is close to
zero. This is known as algebraic dependence. The LLL Algorithm gives a method for
finding this polynomial:

Algorithm 1.3.64 (Algebraic Dependence). Let α ∈ R, and let n be such that n−1
is the desired degree of the polynomial f for which f(α) is as close to zero as possible.

1. Consider the quadratic form Q(a); given a vector a = (a1, a2, . . . , an) and suffi-
ciently large N ∈ Z:

Q(a) = a2
2 + a3

2 + · · ·+ an
2 + N(a1 + a2α + a3α

2 + · · ·+ anα
n−1) (1.26)

2. Let A be the Gram matrix defining Q(a), i.e. Q(a) = aTAa.

3. Using the LLL Algorithm, reduce A; call this reduced matrix A′.

4. Let a′ be the first vector of A′.

5. Let Q′(a′) be the quadratic form defined by a′;

Q′(a′) = a2
′2 + a3

′2 + · · ·+ an
′2 + N(a1

′ + a2
′α + a3

′α2 + · · ·+ an
′αn−1). (1.27)

Since A′ is LLL-reduced, this implies that the vector a′ is small, and that both∑n
i=1 ai

2 and
N(a1

′ + a2
′α + a3

′α2 + · · ·+ an
′αn−1) (1.28)

are small. Thus, if N is large, we know
∑n

i=1 a1
′αi−1 is extremely small.

6. We then use the polynomial

f(x) = a1
′ + a2

′x + a3
′x2 + · · ·+ an

′xn−1, (1.29)

for which α is approximately a root (i.e. f(α) is close to zero).

In Sage [15], the function algdep (which itself is actually a GP/PARI [1] function)
takes three parameters: the real number α for which f is approximated, a precision
parameter, and the maximum degree of f . When we compute critical values (see
Section 2.3), we are sometimes presented with floating-point decimals. However, we
know which field these critical value ratios are in; thus, we know which degree to
specify for algdep.
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1.4 “Classical” Modular Forms

Modular forms are important structures in modern number theory, as introduced
in Section 1.1. They are intimately connected with elliptic curves, and their study
heavily contributed to Andrew Wiles’ proof of Fermat’s Last Theorem. [14]

In Section 1.5, we will encounter generalizations of modular forms, called “Siegel”
modular forms. In order to alleviate confusion between the two, we will later refer to
the modular forms discussed in this section as “classical” modular forms. However,
since Siegel modular forms have not yet been introduced, we will simply refer to
“classical” modular forms as “modular forms” throughout this section.

1.4.1 Preliminaries

Before we formally define modular forms, we must first define some of their prelimi-
nary aspects. First, we define their domain - the upper-half plane H1:

Definition 1.4.1. Let
H1 = {z ∈ C : Im(z) > 0}. (1.30)

The criteria for defining modular forms are linked to the modular group SL2(Z):

Definition 1.4.2. Let SL2(Z) be the group of 2-by-2 integer-valued matrices with
determinant 1; i.e.

SL2(Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
. (1.31)

One can easily show that SL2(Z) is a group, with standard matrix multiplication
as its operation. For the purposes of this paper, however, we are primarily con-
cerned with its connection to fractional linear transformations of the Riemann sphere
Ĉ = C ∪∞: [5]

Definition 1.4.3. Let M = ( a b
c d ) ∈ SL2(Z), and let τ ∈ Ĉ. We define the fractional

linear transformation γM of M on τ as such:

γM(τ) =
aτ + b

cτ + d
. (1.32)
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Example 1.4.4. Consider M =
(

1 −2
−1 3

)
. We can see that M corresponds to the

fractional linear transformation

γM(τ) =
τ − 2

−τ + 3
(1.33)

Proposition 1.4.5. SL2(Z) is generated by the elements

A =

(
1 1
0 1

)
(1.34)

and

B =

(
0 −1
1 0

)
. (1.35)

Remark 1.4.6. We can see that A and B correspond to the transformations γA(τ) =
τ + 1 and γB(τ) = − 1/τ , respectively. Also, both I and −I correspond to the
identity transformation γI(τ) = τ . [5]

The upper-half plane H1 ∈ Ĉ is actually mapped to itself by elements of SL2(Z):

Theorem 1.4.7. Let M ∈ SL2(Z), and let τ ∈ H1. Then, γM(τ) ∈ H1.

Proof. Let M ∈ SL2(Z), and let τ ∈ H1. We know τ is of the form x + yi, where
x, y ∈ R and y > 0. Thus,

γM(τ) =
ax + b + ayi

cx + d + cyi
. (1.36)

If we then multiply by the conjugate of the denominator, we get

γM(τ) =
acx2 + adx + acy2 + bcx + bd

c2y2 + (cx + d)2
+

(ad− bc)y

c2y2 + (cx + d)2
i. (1.37)

Since ad− bc = 1 and y > 0, we know the imaginary part of γM(τ) is positive. Thus,
γM(τ) ∈ H1.

We now require some definitions from complex analysis:

Definition 1.4.8. Let z = x + iy and let U be some open neighborhood of z. Let f
be a complex-valued function of z, i.e. f(x, y) = u(x, y) + iv(x, y) for some functions
u, v of x and y. If ∂u

∂x
= ∂v

∂y
and ∂v

∂x
= −∂u

∂y
and these partial derivatives of z are

continuous on U , then f is complex differentiable.
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Definition 1.4.9. A function f : A → B is holomorphic on A if, for every point
z ∈ A, f is complex differentiable at z.

Definition 1.4.10. A function f : H1 → C is holomorphic at ∞ if limIm(τ)→∞ f(τ)
exists.

1.4.2 Modular Forms

We can now define modular forms:

Definition 1.4.11. Let r > 0 be an integer, and f : H1 → C. f is a modular form
of weight r if

(i) f is holomorphic on H1,

(ii) f is holomorphic at ∞,

(iii) f satisfies the functional equation

f(γM(τ)) = (cτ + d)rf(τ), ∀τ ∈ H1 (1.38)

and for all fractional linear transformations γM defined by M = ( a b
c d ) ∈ SL2(Z).

Remark 1.4.12. If a function f satisfies Conditions (i) and (iii) of Def. 1.4.11, then
it is said to be “weakly” modular of weight r. [5]

We can see that condition (iii) of 1.4.11 yields an infinite number of symmetries
which must be checked in order to determine whether a function f is a modular form.
Fortunately, since SL2(Z) is generated by A = ( 1 1

0 1 ) and B = ( 0 −1
1 0 ), we only need to

check whether 1.4.11 (iii) holds for A and B:

Theorem 1.4.13. Let r be an integer and τ ∈ H1. If f satisfies

f(τ + 1) = f(τ) (1.39)

and
f(−1/τ) = τ rf(τ), (1.40)

then f satisfies
f(γM(τ)) = (cτ + d)rf(τ). (1.41)

for all M ∈ SL2(Z).
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We can define spaces of modular forms:

Definition 1.4.14. We denote the set of modular forms of weight r as Mr(SL2(Z)).

However, for simplicity’s sake, we will refer to this set as Mr. We can easily check
that Mr forms a vector space over C [5]. Furthermore,

Theorem 1.4.15. Let f ∈ Mr1 and g ∈ Mr2. The product fg is a modular form of
weight r1 + r2.

Then, we can define the direct sum M∗ of spaces of modular forms, which itself
has a certain algebraic structure:

Theorem 1.4.16. Let
M∗ =

⊕
r∈Z

Mr. (1.42)

Then, M∗ is a ring.

In addition, given (1.39), modular forms are Z-periodic. [5] Thus, they have
Fourier expansions:

Theorem 1.4.17. Let f be a modular form. The form f has a Fourier expansion

f(q) =
∞∑

n=0

anq
n where q = e2πiτ . (1.43)

Remark 1.4.18. If the leading coefficient an (i.e. the smallest n such that an 6= 0)
of a modular form f is equal to 1, we say f is normalized.

For the purposes of this paper, we are primarily concerned with the above Fourier
series representations of modular forms, and the coefficients an of such series. We
will not be explicitly evaluating any modular form for τ ; thus, for the purposes of
simplicity, we can think of them as functions of q.

Remark 1.4.19. A theorem by Shimura [10] tells us that the coefficients an of a
normalized modular form are algebraic.

Thus, given a form f , we define the number field of its coefficients:
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Definition 1.4.20. Let f =
∑∞

n=0 anq
n be a modular form. We denote the smallest

field which contains all of an as Qf .

Remark 1.4.21. Shimura [10] also tells us that the degree of the extension [Qf : Q]
is finite.

We will now explore some examples of modular forms:

Example 1.4.22. The zero function f(q) = 0 is a modular form of any weight.

Example 1.4.23. The constant function g(q) = k, k 6= 0 is a modular form of weight
0.

Example 1.4.24. A very famous modular form is ∆ (see Section 1.1):

∆(q) = q
∞∏

n=0

(1−qn)24 = q−24q2+252q3−1472q4+4830q5−. . . =
∞∑

n=1

τ(n)qn, (1.44)

where τ is the Ramanujan τ -function. ∆ has weight 12.

Another important class of modular forms are the Eisenstein series:

Definition 1.4.25. Let r > 2 be an even integer. We define the Eisenstein series of
weight r as:

er(τ) =
∑

{(c,d)∈Z2−{(0,0)}}

1

(cτ + d)r
, τ ∈ H1. (1.45)

Mordell [5] shows us that we can write each er in terms of the arithmetic function
σk:

Theorem 1.4.26. Let er denote the Eisenstein series of weight r, for even r > 2.
Then

er(q) = 2ζ(r)

(
1− 4r

Br

∞∑
n=1

σr−1(n)qn

)
(1.46)

where ζ denotes the Riemann zeta function, σr−1(n) is the function

σr−1(n) =
∑
m|n
m>0

mr−1, (1.47)

and Br denotes the rth Bernoulli number (see Section 4.2).
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We can “build” any modular form by multiplying and adding together various er.
Specifically, we can “build” the space Mr with e4 and e6:

Theorem 1.4.27. The space Mr can be written as a linear combination of e4
ae6

b for
positive integers a, b that satisfy 4a + 6b = r. The dimension of Mr is equal to the
number of solutions to 4a + 6b = r.

We found the dimensions of certain Mr using Sage code in the Appendices (see
5.1).

Example 1.4.28. ∆ (see 1.4.24) is a linear combination of e4
3 and e6

2:

∆(q) =
e4

3 − e6
2

ζ(12)1728
∈ M12 (1.48)

Example 1.4.29. ∆22, a modular form of weight 22, is a linear combination of e4
4e6

and e4e6
3:

∆22(q) =
288

ζ(22)497664

(
e4

4e6 − e4e6
3
)
∈ M22 (1.49)

We can verify that the coefficients of ∆22 display the Ramanujan congruence
shown in Section 1.1.

1.4.3 Cuspidal Forms

For the verification of Harder’s Conjecture, we are interested in a specific type of
modular form, called a “cuspidal” form:

Definition 1.4.30. Let f be a modular form of weight r. If the Fourier expansion
of f has leading coefficient a0 = 0, then f is said to be a cuspidal, or “cusp” form.

Equivalently, given q = e2πiτ , we can define cusp forms as such:

Definition 1.4.31. Let f be a modular form. If limIm(τ)→∞f(τ) = 0, then f is a
cusp form [5].

Given 1.4.30, we can see that a cusp form f can be written as:
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f(q) =
∞∑

n=1

anq
n. (1.50)

Some examples of cusp forms include:

Example 1.4.32. The zero function f(q) = 0 is trivially a cusp form.

Example 1.4.33. The modular form ∆ is also a cusp form (note how the first term
of the Fourier expansion ∆ in (1.44) is q).

Cusp forms of weight r have an associated vector space:

Definition 1.4.34. The space of cusp forms of weight r is denoted Sr.

We can find the dimension of Sr given the following theorem [5]:

Theorem 1.4.35. Let Sr be the space of cusp forms of weight r. Then,

dim Sr = dim Mr−12 (1.51)

1.5 Siegel Modular Forms

We can generalize the ideas behind modular forms; SL2(Z), H1, and the Eisenstein
series all have analogues in the properties in Siegel modular forms. First, we must
define

Definition 1.5.1. Let Sp(4, Q) be the group of matrices M ∈ M(4, Q) such that

MT JM = J, (1.52)

where J =
(

I2
−I2

)
represents the standard symplectic form, and MT denotes the

transpose of M . We can see a similarity to SL2(Z), as discussed in Section 1.4.

We can then define the full Siegel modular group Γ(2):

Definition 1.5.2. Let Γ(2) = Sp(4, Z) = Sp(4, Q) ∩M(4, Z).

We now consider a generalization of the upper-half plane H1 (recall 1.4.1):



CHAPTER 1. INTRODUCTION 24

Definition 1.5.3. Let

H2 := {Z ∈ M(2, C) : tZ = Z, Im(Z) > 0}. (1.53)

This is called the Siegel upper-half space of degree 2.

The coefficients of vector-valued Siegel modular forms are homogenous polynomi-
als:

Definition 1.5.4. Let p(X, Y ) =
∑n

i=0 XaiY bi be a polynomial of X and Y . If, for
all i, j = ai + bi remains constant, then we say that p is a homogenous polynomial of
degree j.

Example 1.5.5. Both p1(X, Y ) = X2 +2XY −Y 2 and p2(X, Y ) = 4X3− 6XY 2 are
homogenous. We can see that p1 has degree 2 and that p2 has degree 3.

Definition 1.5.6. C[X, Y ]j is the space of homogeneous polynomials of degree j with
coefficients in C.

Now we can define Siegel modular forms:

Definition 1.5.7. Let k, j be non-negative integers. A Siegel modular form of genus
2 and weight (k, j) is a complex analytic function F : H2 → C[X, Y ]j such that

F (gZ) := F
(
(AZ + B)(CZ + D)−1

)
= det(CZ + D)k (CZ + D) · F (Z) (1.54)

for all g = ( A B
C D ) ∈ Γ(2), where Γ(2) is as in Definition 1.5.2.

We can observe that such an F is a function of three complex variables, given
g ∈ Γ(2).

Definition 1.5.8. Given k, j, we denote the space of all Siegel modular forms with
weight (k, j) as M

(2)
k,j ; we suppress j if it is 0.

Definition 1.5.9. If j is positive F is called vector-valued ; if j = 0, F is scalar-valued.

We write M
(2)
∗ :=

⊕
k M

(2)
k for the ring of (scalar-valued) Siegel modular forms of

degree 2.



CHAPTER 1. INTRODUCTION 25

Theorem 1.5.10. Let

Q :=
{
f = [a, b, c] : a, b, c ∈ Z, b2 − 4ac ≤ 0, a ≥ 0

}
.

A Siegel modular form F has a Fourier expansion of the form

F (Z) =
∑

f=[a,b,c]∈Q

CF (f) e (aτ + bz + cτ ′) .

Here Z := ( τ z
z τ ′ ) (τ, τ ′ ∈ H1 and z ∈ C) and e(x) = e2πix.

Spaces of Siegel modular forms have subspaces analogous to the classical Sr:

Definition 1.5.11. A Siegel modular form F is called a cusp form if its Fourier
expansion is supported on positive-definite elements of Q; i.e. [a, b, c] ∈ Q such that
aX2 + bXY + cY 2 > 0 for all X, Y 6= 0.

Definition 1.5.12. The subspace of cusp forms in M
(2)
k,j is denoted S

(2)
k,j .

The ring of all vector-valued Siegel modular forms
⊕

k,j M
(2)
k,j is not finitely gen-

erated [3]. For this reason, we usually fix the coefficient degree j. We are specifically
interested in the case of weight (k, 2); we have a concrete way to calculate these spaces
thanks to the work of Satoh.

1.5.1 Satoh’s Theorem

Given Siegel modular forms in M
(2)
k,0 , we can compute Siegel modular forms in M

(2)
k,2

using the Satoh bracket [13]:

Definition 1.5.13. Suppose F ∈ M
(2)
k and G ∈ M

(2)
k′ are two scalar-valued Siegel

modular forms. We define the Satoh bracket by

[F, G]2 =
1

2πi

(
1

k
G ∂ZF − 1

k′
F ∂ZG

)
∈ M

(2)
k+k′,2, (1.55)

where ∂Z =
(

∂τ 1/2 ∂z

1/2 ∂z ∂τ ′

)
.

The weight of the resulting Siegel modular form is given explicitly:
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Theorem 1.5.14. Let F ∈ M
(2)
k and G ∈ M

(2)
k′ . Then, [F, G] ∈ M

(2)
k+k′,2.

In the same paper, Satoh showed that
⊕

k M
(2)
k,2 is generated by Satoh brackets of

scalar-valued elements. More precisely, he shows that

M
(2)
k,2 =[E4, E6]2M

(2)
k−10 ⊕ [E4, χ10]2M

(2)
k−14⊕

[E4, χ12]2M
(2)
k−16 ⊕ [E6, χ10]2C[E6, χ10, χ12]k−16⊕

[E6, χ12]2C[E6, χ10, χ12]k−18 ⊕ [χ10, χ12]2C[χ10, χ12]k−22.

Here, the forms E4, E6, χ10, χ12 are the generators of the ring of scalar-valued Siegel
modular forms, as described by Igusa [9]. C[A1, . . . , An]k refers to the module of
weight k modular forms that can be expressed in terms of generators A1, . . . , An.

We can compute a basis for the space M
(2)
k,2 through a Sage [15] implementation

in [11] of an algorithm found in [12].

1.6 Notation

This section will serve primarily as a reference for the (often abundant) notation used
in this text. See Table 1.3.



CHAPTER 1. INTRODUCTION 27

Notation Meaning Section
∆ A modular form of weight 12 1.1

τ(n) Ramanujan τ -function 1.1
m | n “m divides n” 1.3
N(α) The norm of α 1.3.1
F(α) An extension of field F by α 1.3.1

[Q(α) : Q] The degree of the extension of Q(α) by α 1.3.1
OF The ring of algebraic integers in field F 1.3.1
(a) The ideal generated by element a 1.3.1
O The unit ideal of field F 1.3.1
P A prime ideal 1.3.1

K + L The compositum of K and L 1.3.1
µi,j Used for Gram-Schmidt Orthogonalization 1.3.2
A′ The LLL-reduced basis of the lattice defined by A 1.3.2

Q(a) A quadratic form, defined by a, used for algebraic dependence 1.3.2
H1 The upper-half plane 1.4

SL2(Z) The group of 2-by-2 integer-valued matrices with determinant 1 1.4
Mr The space of modular forms of weight r 1.4
Qf The coefficient field of a classical modular form f 1.4
er The Eisenstein series of weight r 1.4

σr−1(n) The σ function 1.4
Sr The space of cusp forms of weight r 1.4

Sp(4, Q) Analogous to SL2(Z) for classical modular forms 1.5

Γ(2) The full Siegel modular group 1.5
H2 The Siegel upper-half space of degree 2 1.5

C[X, Y ]j The space of homogenous polynomials of degree j 1.5
Sk,j The space of Siegel modular forms of weight (k, j) 1.5
QF The coefficient field of a Siegel modular form F 1.5

[F, G]2 The Satoh bracket of F and G 1.5.1
Lf (s) The L-series of f 2.1

Λ(f, s) The L-function of f 2.1
Λ(f, t) The critical value of f at integer t 2.2
Rt(f) The t-th period of f 2.4

Tp Hecke operator for prime p 3.1
λp Hecke eigenvalue for Tp 3.2
` Large prime 4.2

Bk The kth Bernoulli number 4.2

Table 1.3: Notation used in this text.
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Chapter 2

L-functions, Critical Values and
Periods

As discussed in Chapter 1, Harder’s Conjecture relates large primes (i.e. primes larger
than the form’s weight r) dividing the ratios of critical values of cusp forms. In this
chapter, we will define L-functions for modular forms, as well as their critical values.
Then, we will discuss methods for calculating these critical values.

2.1 L-functions

We can, for f(q) =
∑∞

n=1 anq
n ∈ Sr, define the Dirichlet series

Lf (s) =
∞∑

n=1

an

ns
= a1 +

a2

2s
+

a3

3s
+ . . . . (2.1)

Given the Ramanujan bound on the coefficients of the modular form (i.e. |an| ≤
n(r−1)/2), we can show that this series converges when <s > (1 + r)/2. However, this
series has an analytic continuation

Λ(f, s) =
Γ(s)

(2π)s
Lf (s), (2.2)

which represents the associated L-function for f , defined over the entire complex
plane. One can show that there is a certain symmetry to this function; for example,



CHAPTER 2. L-FUNCTIONS, CRITICAL VALUES AND PERIODS 29

it satisfies the functional equation

Λ(f, s) = (−1)r/2Λ(f, k − s). (2.3)

Also, given that the Mellin transform of f [5] is

g(s) =

∫ ∞

0

f(y)ys−1dy, (2.4)

we can show that [6] this L-function is equal to the integral∫ ∞

0

f(iy)ys−1dy = Λ(f, s). (2.5)

The specifics of Mellin transforms are beyond the scope of this text; however, we will
note their connection to the calculation of sums like Lf (s) (these are called “Dirichlet
series”). More on the derivation of can be found in [5].

In general, we are only concerned with the values of this L-function evaluated at
specific s, called “critical” values.

2.2 Critical Values

We now define the critical values of the L-function associated to f :

Definition 2.2.1. Let f ∈ Sr and let t be an integer such that 1 ≤ t ≤ r − 1. Then
Λ(f, t) is the critical value of the L-function Λ(f, t) at t. Moreover, if t is odd, we call
Λ(f, t) an odd critical value, and if t is even, we call Λ(f, t) an even critical value.

Each Λ(f, t) is likely to be transcendental [10]; however, they can be divided by
a specific real number (which depends on the parity of t) such that the result is
algebraic. We can make this more precise through the following theorem: [10]:

Theorem 2.2.2. Let f ∈ Sr. Then there exists a number ω+ such that for even
critical values Λ(f, t), Λ(f, t)/ω+ is in Qf . Similarly, there exists a number ω− such
that for odd critical values Λ(f, t), Λ(f, t)/ω− is in Qf .
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By Theorem 2.2.2, each of the terms of the ratio of even critical values

Λ(f, 2) : Λ(f, 4) : · · · : Λ(f, r − 2) (2.6)

is in Qf , since dividing each Λ(f, t) by Λ(f, 2) will cancel the ω+ term, and each
Λ(f, t)/ω+ is in Qf . Similarly, each of the terms of the ratio of odd critical values

Λ(f, 1) : Λ(f, 3) : · · · : Λ(f, r − 1) (2.7)

is also rational in Qf . In order to verify Harder’s Conjecture, we need to examine these
above ratios of critical values (see Chapter 4). In the next two sections, we discuss
two methods for computing these critical values; one method uses the functionality of
Sage to directly calculate each critical value Λ(f, t) (see Section 2.3, while the other
uses Manin’s theory of periods [10] (see Section 2.4).

2.3 Calculating Critical Values

We can calculate each critical value Λ(f, t) in Sage [15] via an implementation of
(2.2). This process yields a number which is approximated in Sage as a floating-point
decimal. As stated above, we can take the ratios of even critical values (e.g. divide
each by Λ(f, 2)).

Λ(f, 2) : Λ(f, 4) : · · · : Λ(f, r − 2). (2.8)

and odd critical values (e.g. divide each by Λ(f, 1))

Λ(f, 1) : Λ(f, 3) : · · · : Λ(f, r − 1). (2.9)

For simplicity, we introduce the following notation:

Definition 2.3.1. Fix a modular form f . Let

xt =

{
Λ(f, t)/Λ(f, 2) if t is even,

Λ(f, t)/Λ(f, 1) if t is odd.
(2.10)
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We can see that each xt is now in Qf . However, each xt is still represented in Sage
as a floating-point decimal. Thus, we can use PARI/GP’s [1] algebraic dependence
(i.e., algdep) function (recall Section 1.3.2). For each floating-point xt, algdep yields
(given certain inputted precision and degree parameters) a polynomial p(x) = a0 +
a1x+a2x

2 + · · ·+anx
n such that xt is a zero of p. Given the dimension of the Qf , we

know what degree p should be, and thus specify this in the appropriate parameter of
algdep.

Example 2.3.2. For f ∈ Sr such that dim Sr = 1, algdep provides a linear equation
p(x) = a0 + a1x which has a solution that is a ratio of integers −a0/a1. Let f ∈ S20,
a one-dimensional space of cusp forms. Using Sage, we can directly calculate

Λ(f, 2) = − 1.529819475 . . . , (2.11)

Λ(f, 4) = 0.2234111365 . . . , (2.12)

and
Λ(f, 6) = − 0.043209186 . . . . (2.13)

We then calculate the ratio

Λ(f, 2) : Λ(f, 4) : Λ(f, 6), (2.14)

or, equivalently,

1 :
Λ(f, 4)

Λ(f, 2)
:
Λ(f, 6)

Λ(f, 2)
≈ 1 : −0.1460375816 · · · : 0.02824463118 . . . . (2.15)

Using algdep, we find that Λ(f,6)
Λ(f,2)

is a solution to the linear equation p(x) = 4896x +

715, and that Λ(f,6)
Λ(f,2)

is a solution to the equation q(x) = 4284x−121. If we solve these

equations, we can express (2.14) as a ratio of integers:

Λ(f, 2) : Λ(f, 4) : Λ(f, 6) = 1 : − 715

4896
:

121

4284
= 34272 : −5005 : 968 (2.16)

Example 2.3.3. If f is in a two-dimensional space of cusp forms, then algdep gives
us quadratic polynomials, which have roots in Qf (in this case, a quadratic field).
Let g ∈ S24, a two-dimensional space of cusp forms. As in 2.3.2, we can directly
calculate each Λ(g, t) in Sage. For this example, we will calculate the ratio of odd
critical values

Λ(g, 1) : Λ(g, 3) : Λ(g, 5) ' 1 : −0.0853312994 : 0.0088169890. (2.17)
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Using algdep, we find that Λ(g,3)
Λ(g,1)

is a solution to

p(x) = 129427105500x2 + 22124013945x + 945456364, (2.18)

and that Λ(g,5)
Λ(g,1)

is a solution to

q(x) = 218446060140000x2 − 3883006019340x + 17254578643. (2.19)

Using Sage, we can solve these equations, and find that

Λ(g, 3)

Λ(g, 1)
= − 134084933

1568813400
± 569

1568813400

√
144169, (2.20)

and that
Λ(g, 5)

Λ(g, 1)
=

162197411

18249462000
± 3403

18249462000

√
144169. (2.21)

We can verify whether to use the positve or negative root by comparing to the
original floating-point value of xt.

This above method for finding critical works well (given enough precision). How-
ever, it is slow, and is still inexact (as it relies upon algdep to convert floating-point
decimals into algebraic numbers). Fortunately, there exists another way to calculate
at least some of these critical values, through purely algebraic means. This method
requires Manin’s equations, which we describe in the next section.

2.4 Manin’s Equations and Calculating Periods

We can alternatively calculate the critical values of a modular form through the
calculation of its periods [10]. We first make the following definition:

Definition 2.4.1. Let f ∈ Sr and let t be an integer 0 ≤ t ≤ r − 2. Then define

Rt(f) =

∫ i∞

0

ztf(z) dz. (2.22)

If t is even, we call Rt(f) an even period and if t is odd, we call it an odd period [6].
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We can see that, given (2.1), a modular form’s periods R0, R1, . . . Rω (where ω =
r − 2) are intimately related to its critical values:

Proposition 2.4.2. Let f ∈ Sr and t be an integer 1 ≤ t ≤ r − 1.

Λ(f, t) = Rt−1(f). (2.23)

It is clear that the even periods of f correspond to its odd critical values, and
that the odd periods of f correspond to its even critical values. We can use Manin’s
Coefficient Theorem to calculate algebraically the exact ratio of even periods (and
therefore find the ratio of odd critical values without using algdep to convert floating-
point decimals). His theorem is as follows [10]:

Manin’s Coefficient Theorem. Let f ∈ Sr be written as f(q) =
∑∞

n=1 anq
n. Then,

for n ≥ 2:

(σω+1(n)− an)R0 =
∑
D

ω−2
4∑

l=1

2

(
ω

2l

)
R2l (∆

2lδω−2l −∆ω−2lδ2l) (2.24)

where an is the nth coefficient of f , and the outer summation is taken over the set D
of integer solutions of the equation n = ∆∆′ + δδ′ which satisfy ∆ > δ > 0 and either

∆′ > δ′ > 0 (2.25)

or
∆|n, ∆′ = n/∆, δ′ = 0, 0 < δ/∆ ≤ 1/2 (2.26)

with a coefficient of 1/2 included if δ/∆ = 1/2.

Example 2.4.3. If n = 4, then there are three possible integer solutions ∆, ∆′, δ, δ′

to the equation n = ∆∆′ + δδ′ that satisfy the conditions of (2.25) and (2.26); here,
each solution is written as a vector (∆, ∆′, δ, δ′):

∆
∆′

δ
δ′

 =


2
2
1
0

 or


4
1
1
0

 or


4
1
2
0

 (2.27)

We can then see that, for n = 4, the outer sum of (2.24) has three terms. We can
then rewrite (2.24) for the n = 4 case (note the coefficient of 1/2, which is included



CHAPTER 2. L-FUNCTIONS, CRITICAL VALUES AND PERIODS 34

whenever δ/∆ = 1/2):

(σω+1(4)− a4)R0 =
1

2

ω−2
4∑

l=1

2

(
ω

2l

)
R2l (2

2l − 2ω−2l) +

ω−2
4∑

l=1

2

(
ω

2l

)
R2l (4

2l − 4ω−2l) +

1

2

ω−2
4∑

l=1

2

(
ω

2l

)
R2l (4

2l2ω−2l − 4ω−2l22l)

Remark 2.4.4. As in Section 1.4, σω+1(n) is the sum of the ω + 1 powers of the
divisors of n. Thus, one can see that since σω+1(n) ∈ Z and so the coefficient of R0

is in Qf (since an ∈ Qf ).

For each n ≥ 2, (2.24) yields a linear equation of the form

b0R0 + · · ·+ b(ω−2)/2R(ω−2)/4 = 0. (2.28)

We can then use Sage to build an matrix M of coefficients for each rk, where each
row of M corresponds to the linear equation given by (2.24) evaluated at some n ≥ 2.
We can see that this matrix has a width equal to the number of even periods in
R0 . . . R(ω−2)/4. Given enough choices of n (specifically, if we evaluate (2.24) for
2 ≤ n ≤ (ω − 2)/4), we can always ensure that M has enough rows to solve it for
ratios 1 : R2/R0 : R4/R0 : · · · : R(ω−2)/4/R0.

Example 2.4.5. Let f ∈ S16. Thus, ω = 14. We can use (2.24) for n = 2, n = 3 and
n = 4 to produce a 3× 4 matrix M of coefficients of even periods R0, . . . R6:

M =

 −32553 −372372 −1009008 −576576
−14352256 −96720624 −118053936 −35026992

−1073760705 −9154765620 −18631332720 −9816206400

 . (2.29)

We want to solve Mr = 0, where r is the vector of even periods (R0, R2, R4, R6).
Thus, we row-reduce M :

M =

 1 0 0 98280
3617

0 1 0 −6
0 0 1 21

11

 . (2.30)

Now, we can see that the ratio of even periods R0 : · · · : R6 is

R0 : R2 : R4 : R6 = −98280

3617
: 6 : −21

11
: 1, (2.31)
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or, equivalently,

R0 : R2 : R4 : R6 = 1 : − 3617

16380
:

3617

51480
: − 3617

98280
. (2.32)

One can see that Manin’s equation (2.24) only yields half of the even period ratios.
However, there exists a certain symmetry between these periods, given by one of the
Shimura-Eichler relation [10]

Theorem 2.4.6. (Shimura-Eichler Relation I) Let f ∈ Sr, and let Rk denote the kth
period of f . Then

Rk + (−1)kRω−k = 0. (2.33)

Thus, using (2.33), we can find the ratio of all the even periods of a given modular
form exactly. One can see, though, that for Sr with dimension greater than one, (2.24)
yields a coefficient of R0 that may not be a ratio of integers in Q (this is due to the
contribution of an, which, for f ∈ Sr such that dim Sr > 1, is rational Qf ).

One might ask whether a similar algebraic method exists for finding odd periods.
Theorem 2.4 can only be used for calculating the ratio of even periods; however,
Manin cites the other Shimura-Eichler relations, which allow for some information to
be gathered about the ratios of odd periods [10]:

Theorem 2.4.7. (Shimura-Eichler Relations II and III) Let f ∈ Sr, and let Rk denote
the kth period of f . Then

Rk + (−1)k
∑

0≤i≤k , i≡0(2)

(
k

i

)
Rω−k+i + (−1)k

∑
0≤i≤ω−k , i≡k(2)

(
ω − k

i

)
ri = 0 (2.34)

and

∑
1≤i≤k , i≡1(2)

(
k

i

)
Rω−k+i +

∑
1≤i≤ω−k , i6≡k(2)

(
ω − k

i

)
Ri = 0 (2.35)

Like with Theorem 2.4, we can use (2.33), (2.34), and (2.35) (given different
choices of k) to produce a matrix M of coefficents for R0 . . . Rω. Specifically, we can
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use these equations to attempt to find the ratios of odd periods (since the Coefficents
Theorem cannot be used to calculate these). For modular forms in one-dimensional
spaces, Mr = 0 can be solved projectively for the odd periods (i.e. we can find the
ratio R1 : R3 : . . . ; however, for higher-dimensional spaces, we need additional ratios
R3/R1, R5/R1, etc. to solve projectively Mr = 0. Specifically, for dim Sr = 2, we
need one additional ratio of periods, while for dim Sr = 3, we need two more such
ratios (it seems as though for dim Sr = d, we require d− 1 additional ratios to solve
projectively Mr = 0).

Thus, for higher-dimensional Sr, we cannot find the ratio of odd periods (and,
therefore, even critical values) through exclusively algebraic means. However, these
above methods are faster than the methods outlined in Section 2.3. We can then
choose to use these methods only to find the ratios that Manin’s Coefficient Theorem
and Theorems 2.4.6 and 2.4.7 do not provide for higher-dimensional Sr; and therefore
find the ratios of even critical values in the most efficient manner possible.

In short, we can use Theorem 2.4 to find the ratios of all the odd critical values,
and use a sort of “hybridization” of the Shimura-Eichler relations (i.e. Theorems
2.4.6 and 2.4.7) and the equations of Section 2.3 to find the ratios of all the even
critical values. Therefore, given any cusp form f , we are able to find the ratios of all
its critical values.
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Chapter 3

Hecke Operators and Eigenvalues

3.1 Hecke Operators

In order to verify the conjecture, we also need to compute Hecke eigenforms. First,
however, we need to describe the Hecke action on Siegel modular forms. We can give
formulas for the image of a Siegel modular form of weight (k, j) under the operator
T (pδ). Because the Hecke operators are multiplicative, we can understand them by
understanding their image. The formulas for the image of F under T (pδ) can be
found in [8]; however, we present them here for completeness.

Theorem 3.1.1. Let F be a Siegel modular form as above and let the image of F
under T (pδ) have coefficients C ′([a, b, c]). Then

C ′([a, b, c]) =
∑

α+β+γ=δ

pβ(k+j−2)+γ(2k+j−3)×

∑
U∈R(pβ)

aU≡0 (pβ+γ)
bU≡cU≡0 (pγ)

ρj(d0,βU)C

(
pα

[
aU

pβ+γ
,
bU

pγ
,

cU

pγ−β

])

where

(i) R(pβ) is a complete set of representatives for SL(2, Z)/Γ
(1)
0 (pβ); i.e. each ele-

ment of R(pβ) represents an equivalence class in SL(2, Z)/Γ
(1)
0 (pβ);
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(ii) for f = [a, b, c], [aU , bU , cU ] = fU := f
(
(X, Y )UT

)
;

(iii) d0,β =
(

1
pβ

)
;

(iv) for g ∈ GL2, the (j + 1) × (j + 1) matrix ρj(g), which can interpreted as a
homogeneous polynomial of degree j, is determined as such: Given pairs u1, u2

and v1, v2 of variables and for g ∈ GL2, we set (v1, v2) = (u1, u2)g. Then, the
matrix ρj(g) is given by

(vj
1, v

j−1
1 v2, . . . , v1v

j−1
2 , vj

2) = (uj
1, u

j−1
1 u2, . . . , u1u

j−1
2 , uj

2)ρj(g).

Since T is multiplicative, we can write T (n) = T (pδ1) · T (pδ2) · · · · · T (pδm), where
pδ1 · pδ2 · · · · · pδm is the prime decomposition of n.

Definition 3.1.2. We denote the Hecke eigenvalue of a Siegel modular F under the
operator T (n) by λn(F ), or just λn if F is fixed.

Remark 3.1.3. If T (n)(F ) = λn · F F , then F is an eigenform.

3.2 Computing Hecke Eigenforms

Fix Sk,2 with basis {F1, . . . , Fn} (we know that each Fi is an algebraic combination
of the Igusa generators and Satoh brackets). Given that the Hecke operators are a
commuting family of linear operators, we know that there exists a basis {G1, . . . , Gn}
for the Sk,2 for which each Gi is an eigenform of any Hecke operator.

We can compute the forms Gi as follows:

Algorithm 3.2.1. Consider Sk,2 with basis {F1, . . . , Fn}.

1. Determine the matrix representation for the Hecke operator T (2) by computing
the image under T (2) of each basis element Fi.

2. Build an invertible matrix N whose jth row consists of the coefficients of Fj at
certain indices Q1, . . . , Qn. To ensure that N is invertible we pick the indices
one at time, making sure that each choice of index Qi increases the rank of the
matrix.
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3. Construct a matrix M whose jth row consists of coefficients of the image of Fj

under T (2) indexed by Q1, . . . , Qn.

4. Then, the matrix representation of T (2) is M ·N−1.

Using T (2), we compute the Hecke eigenforms, then express them as a linear com-
bination of the basis {F1, . . . , Fn}. Then, in order to compute the Hecke eigenvalues
λpδ , we compute these expressions to high precision, and finally compute their image
under the Hecke operator T (pδ).
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Chapter 4

Verifying Harder’s Conjecture

4.1 The Conjecture

We re-state Harder’s Conjecture:

Harder’s Conjecture. Let f =
∑∞

n=1 anq
n ∈ Sr be a normalized eigenform with field

of Fourier coefficients Qf . If a large prime ` of Qf divides a critical value Λ(f, t)
then there exists a Siegel modular form F ∈ Sk,j with j = 2t− r− 2 and k = r− t+2
that is an eigenform with eigenvalue λp for Tp, with field QF of eigenvalues λp and
such that there exists a prime `′ of the compositum of QF and Qf dividing ` for which

λp ≡ pk−2 + ap + pj+k−1 (mod `′) (4.1)

for all primes p ∈ Q.

The congruence in (4.1) shows a surprising relationship between the critical values
Λ(f, t) and coefficients ap of a classical modular form, and the Hecke eigenvalues λp

of a corresponding Siegel modular form.

At this point, however, we still require the definition of “large prime,” `, and what
it means for ` to divide a critical value Λ(f, t); this is discussed in the next section.
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4.2 Large Primes

We first define the Bernoulli numbers:

Definition 4.2.1. The Bernoulli numbers Bk are the coefficients of the formal power
series expansion

t

et − 1
=

∞∑
k=0

Bk
tk

k!
. (4.2)

Given the power-series expansion for et, Bk can be calculated in succession by
matching coefficients in the equation

t =
∞∑

n=1

(
n−1∑
k=0

(
n

k

)
Bk

)
tn

n!
(4.3)

(see [5], p. 9). We can show that, given (4.3), each Bk is rational.

We list the first few Bernoulli numbers below, expressed in lowest terms (note
that, for each odd k > 1, Bk = 0):

k Bk

0 1
1 −1/2
2 1/6
4 −1/30
6 1/42
8 −1/30

10 5/66
12 −691/2730
14 7/6
16 −3617/510
18 43867/798
20 −174611/330
22 854513/138

Table 4.1: Bernoulli numbers Bk for k = 1 and even 2 ≤ k ≤ 22.

For the purpose of simplicity in describing Harder’s definition of “large primes,”
we will introduce the following terminology:
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Definition 4.2.2. Let p be a prime in Q. If p divides the numerator of the Bernoulli
number Bk expressed in lowest terms, then we say p is a Bernoulli prime of weight
k. If p does not divide the numerator of the Bernoulli number Bk expressed in lowest
terms, then we say p is a non-Bernoulli prime of weight k.

Example 4.2.3. 691 is a Bernoulli prime of weight 12 (as can bee seen in Table 4.1).

Definition 4.2.4. Let f be a classical modular form with weight r, with coefficient
field Qf (see Definition 1.4.20). Let ` be a prime in Qf such that N(`) is a non-
Bernoulli prime of weight r, and

N(`) > r, (4.4)

where N(`) denotes the norm of ` (see Definition 1.3.8). We call ` a large prime (with
respect to the weight of f).

Using the methods outlined in Section 2.4, we can find the ratios of critical values
Λ(f, t) of a given classical modular form f . The hypothesis of Harder’s Conjecture
requires us to determine whether a large prime ` divides one of these critical val-
ues. Since the critical values themselves are likely not algebraic (they contain the
likely transcendental numbers ω+ and ω−, see Theorem 2.2.2), Harder uses a broader
definition of “divides” in the statement of his conjecture:

Definition 4.2.5. Let f be a classical modular form, and let π be prime in Qf . We
say π divides a critical value Λ(f, t) if, for even t:

π | Λ(f, t)/ω+, (4.5)

or, for odd t,

π | Λ(f, t)/ω−. (4.6)

Thus, we examine the ratios of even and odd critical values:

Λ(f, 2) : Λ(f, 4) : · · · : Λ(f, r − 2) (4.7)

and
Λ(f, 1) : Λ(f, 3) : · · · : Λ(f, r − 1), (4.8)
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in order to eliminate the ω±, and check whether p divides each term of the above
ratios. We can easily check this using Theorem 1.3.51, i.e. if N(p) divides one of the
terms of

N(Λ(f, 2)) : N(Λ(f, 4)) : · · · : N(Λ(f, r − 2)) (4.9)

or
N(Λ(f, 1)) : N(Λ(f, 3)) : · · · : N(Λ(f, r − 1)), (4.10)

then by Theorem 1.3.51, p divides the corresponding term of (4.7) or (4.8), and we
say that p divides the corresponding critical value Λ(f, t) itself (by Definition 4.2.5).

Thus, after we find the critical values of a modular form f , we check the prime
decomposition of each of the terms of (4.9) and (4.10) for any primes ` larger than
the weight of f . By Definition 4.2.4, ` is a large prime; thus, Harder’s Conjecture
should apply for f and `.

This procedure can be summarized in the following algorithm:

Algorithm 4.2.6. Let f be a classical modular form of weight r.

1. Compute the even and odd ratios of critical values Λ(f, 1), . . . , Λ(f, r− 1) of f ,
using the methods in Section 2.4.

2. If these ratios are given exactly (i.e. Manin’s equations were used solely), we
skip to the next step. Otherwise, (i.e. if these ratios were computed using the
equations of Section 2.2), we use algdep to provide a polynomial p (which has
degree equal to [Q(f) : Q]) for which each ratio term is a root.

3. Find the norms of N(Λ(f, t)) of each ratio term.

4. Clear all of the denominators of the even and odd ratios, such that each ratio
term is in Z.

5. Factor each of the terms of the ratios

N(Λ(f, 2)) : N(Λ(f, 4)) : · · · : N(Λ(f, r − 2)) (4.11)

and
N(Λ(f, 1)) : N(Λ(f, 3)) : · · · : N(Λ(f, r − 1)). (4.12)



CHAPTER 4. VERIFYING HARDER’S CONJECTURE 44

6. Determine whether any primes in the terms of the above ratios are larger than
r.

7. If such a prime exists, and is not a Bernoulli prime of weight r, then we know
a large prime ` divides the corresponding critical value of f .

Example 4.2.7. Let f ∈ S22. We compute N(Λ(f, 2)) : N(Λ(f, 4)) : · · · : N(Λ(f, 20)),
using Sage:

−82080 : −97100640 : 7469280 : −3365280 : 574560 :

574560 : −3365280 : 7469280 : −97100640 : −82080

Similarly, we compute N(Λ(f, 1)) : N(Λ(f, 3)) : · · · : N(Λ(f, 21)):

15872220000 : −1648122528 : 212074590 : −34335886 : 6603055 : 0 :

−6603055 : 34335886 : −212074590 : 164812252 : −15872220000

Since S22 is a one-dimensional space, we know that Qf = Q. Thus, for each Λ(f, t),
N(Λ(f, t)) = Λ(f, t). If we then factor each ratio term, we get

N(Λ(f, 2)) : N(Λ(f, 4)) : · · · : N(Λ(f, 10)) =

25 · 33 · 54 · 7 · 13 · 17 · 19 :

−1 · 25 · 3 · 13 · 17 · 131 · 593 :

2 · 3 · 5 · 7 · 13 · 131 · 593 :

−1 · 2 · 13 · 17 · 131 · 593 :

5 · 17 · 131 · 593

and

N(Λ(f, 1)) : N(Λ(f, 3)) : · · · : N(Λ(f, 11)) =

−1 · 25 · 33 · 5 · 19 :

−1 · 25 · 33 · 5 · 7 · 132 · 19 :

25 · 33 · 5 · 7 · 13 :

−1 · 25 · 33 · 5 · 19 · 41 :

25 · 33 · 5 · 7 · 19 :

25 · 33 · 5 · 7 · 19 :

−1 · 25 · 33 · 5 · 19 · 41 : 25 · 33 · 5 · 7 · 13 · 19 :

0.



CHAPTER 4. VERIFYING HARDER’S CONJECTURE 45

Both 131 and 594 are Bernoulli numbers of weight 22; thus, despite the fact that
they are larger than 22, they are not large primes. The prime 41, however, is not a
Bernoulli number, and is therefore a large prime.

Example 4.2.8. Let f ∈ S28. S28 is a two-dimensional space; thus, [Q(f) : Q] = 2.
We compute the even and odd critical value ratios, using Sage (we only list critical
values up to t = r/2, due to the symmetries discussed in Section 2.3):

Λ(f, 2) : Λ(f, 4) : · · · : Λ(f, 14) ≈
1 : −0.0657416395 : 0.0051115803 : −0.0004736837 :

5.14533× 10−5 : −5.6821× 10−6 : 6.558× 10−7

Λ(f, 1) : Λ(f, 3) : · · · : Λ(f, 13) ≈
1 : −0.0607104106 : 0.0043345433 : −0.000367817 :

3.71113× 10−5 : −4.2118× 10−6 : 3.966× 10−7.

Then, using algdep, we can find polynomials for which each of these critical value
ratio terms is a root (see Tables 4.2 and 4.3).

t pt(x)
2 x− 1
4 82555200000x2 + 10861798608x + 357271915
6 9398909520000x2 − 96408856260x + 247224523
8 9765100800000x2 + 9386773668x + 2255305

10 324689601600000x2 − 35628539580x + 973609
12 519503362560000x2 + 8156801628x + 29575
14 49952246400000x2 − 250818660x + 143

Table 4.2: For f ∈ S28 and for even t, the polynomial pt for which the ratio term corre-
sponding to Λ(f, t) is a root.
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t pt(x)
1 x− 1
3 177542052187500x2 + 21564388652625x + 654806568371
5 66053447460000000x2 − 573573698051400x + 1245150313949
7 100307042179344000000x2 + 74316802008695400x + 13764509056379
9 4702706782693920000000x2 − 359835450845837400x + 6877165357969

11 146935032308064000000x2 + 1424400418960200x + 3392780147
13 6435282965791680000000x2 − 11106335140828200x + 3392780147

Table 4.3: For f ∈ S28 and for odd t, the polynomial pt for which the ratio term corre-
sponding to Λ(f, t) is a root.

We can then compute the norms of these ratio terms, and express them as a ratio
of integers:

N(Λ(f, 2)) : N(Λ(f, 4)) : · · · : N(Λ(f, 14)) =

−1 · 212 · 36 · 55 · 72 · 11 · 13 · 19 · 23 :

212 · 36 · 56 · 73 · 112 · 133 · 172 · 192 · 23 :

212 · 36 · 55 · 73 · 11 · 133 · 17 · 192 · 23 · 647 :

212 · 36 · 56 · 72 · 11 · 133 · 17 · 19 · 23 · 157 :

212 · 36 · 55 · 73 · 11 · 133 · 19 · 23 · 823 :

212 · 36 · 57 · 73 · 11 · 133 · 19 · 23 :

212 · 36 · 55 · 72 · 112 · 132 · 19 · 23
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N(Λ(f, 1)) : N(Λ(f, 3)) : · · · : N(Λ(f, 13)) =

212 · 38 · 57 · 74 · 113 · 132 · 17 · 192 · 232 :

210 · 34 · 7 · 11 · 17 · 192 · 232 · 193 · 9349 · 362903 :

24 · 34 · 72 · 11 · 13 · 17 · 192 · 367 · 9349 · 362903 :

22 · 5 · 13 · 17 · 192 · 23 · 4057 · 9349 · 362903 :

2 · 7 · 11 · 13 · 17 · 23 · 2027 · 9349 · 362903 :

2 · 32 · 5 · 72 · 13 · 19 · 23 · 9349 · 362903 :

7 · 11 · 17 · 19 · 23 · 9349 · 362903.

Both 9349 and 362903 are Bernoulli numbers of weight 8; thus, they are not large
primes. However, we find large primes in the factorizations in the following critical
values (see Table 4.4):

t ` | Λ(f, t)
3 193
5 367
6 647
7 4057
8 157
9 2027

10 823
18 823
19 2027
20 157
21 4057
22 647
23 367
25 193

Table 4.4: Large primes dividing the critical values of f ∈ S28.

Example 4.2.9. Let f ∈ S32. Like S28 in Example 4.2.8, S32 is a two-dimensional
space. Using similar methods to Example 4.2.8, we can compute the ratios
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N(Λ(f, 2)) : N(Λ(f, 4)) : · · · : N(Λ(f, 16)) =

−1 · 211 · 311 · 54 · 74 · 11 · 13 · 23 · 292 :

211 · 311 · 56 · 74 · 11 · 132 · 17 · 19 · 232 · 292 · 7687 :

211 · 311 · 55 · 74 · 11 · 13 · 17 · 192 · 232 · 292 · 751 :

211 · 311 · 56 · 74 · 11 · 13 · 17 · 19 · 23 · 292 · 31 · 173 :

211 · 311 · 55 · 74 · 11 · 132 · 17 · 19 · 23 · 292 · 1307 :

211 · 311 · 56 · 74 · 11 · 13 · 172 · 23 · 292 :

211 · 311 · 55 · 74 · 11 · 13 · 23 · 292 · 211 :

211 · 311 · 56 · 74 · 11 · 132 · 23 · 292

N(Λ(f, 1)) : N(Λ(f, 3)) : · · · : N(Λ(f, 15)) =

−1 · 210 · 313 · 56 · 77 · 112 · 133 · 17 · 192 · 232 · 292 :

211 · 313 · 56 · 77 · 112 · 133 · 17 · 192 · 232 · 292 · 37 · 683 · 3119 · 305065927 :

210 · 313 · 56 · 77 · 112 · 133 · 17 · 192 · 232 · 292 · 372 · 683 · 51199 · 305065927 :

210 · 313 · 56 · 77 · 112 · 133 · 17 · 192 · 232 · 292 · 37 · 47 · 67 · 683 · 305065927 :

210 · 313 · 56 · 77 · 112 · 133 · 17 · 192 · 232 · 292 · 37 · 503 · 683 · 14243 · 305065927 :

210 · 313 · 56 · 77 · 113 · 133 · 17 · 192 · 232 · 292 · 37 · 683 · 305065927 :

210 · 313 · 56 · 77 · 112 · 133 · 17 · 192 · 232 · 292 · 37 · 61 · 683 · 305065927 :

210 · 313 · 56 · 77 · 112 · 133 · 17 · 192 · 232 · 292 · 37 · 683 · 305065927.

After we disregard the Bernoulli numbers of weight 32, we list the large primes
dividing the critical values of f (see Table 4.5):
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t ` | Λ(f, t)
3 3119
4 7687
5 51199
6 751
7 47
8 173
9 503

10 1307
13 61
14 211
18 211
19 61
22 1307
23 503
24 173
25 47
26 751
27 51199
28 7687
29 3119

Table 4.5: Large primes dividing the critical values of f ∈ S32.

If a large prime ` divides the critical value Λ(f, t) at t, then Harder’s Conjecture
should apply for f . This means that there should exist a Siegel modular form that is
a Hecke eigenform of Sk,j (see Section 1.5), with

j = 2t− r − 2 (4.13)

and
k = r − t + 2, (4.14)

for which the congruence in (4.1) should hold.

Even though they contain large primes, not all of the critical values listed in
Tables 4.4 and 4.4 correspond to Siegel modular forms that we can calculate using
the methods outlined in this text (we are able to calculate Sk,j for even k and j = 0
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or j = 2). For example, if r = 22, the critical values Λ(f, 8) and Λ(f, 14) contain the
large prime 41, yet we find that given 4.13 and 4.14, the conjecture should apply for
S16,−8 and S10,4. The “space” S16,−8 has j < 0, and thus is not a space of vector-
valued Siegel modular forms. S10,4 is a legitimate space of Siegel modular forms, yet
we have not implemented methods for computing spaces of weight (k, 4).

In fact, of the f ∈ Sr with at least one large prime dividing a critical value of
f , the least r for which there exists a corresponding “legitimate,” calculable (by our
methods) Sk,j is r = 32. We see that Λ(f, 18) contains the large prime 211, and
thus, given 4.13 and 4.14, S32 should correspond with S16,2 through the congruence
in Harder’s Conjecture.

Once we are given Sk,j, we then compute the Hecke eigenforms F of the space (see
Section 3.2). Then, for each eigenform F and for each prime p, we compute the Hecke
eigenvalue λp corresponding to the Hecke operator Tp, using the methods outlined in
Section 3.1.

After computing λp and ap, We then check the congruence in (4.1) through simple
calculations in Sage:

Algorithm 4.2.10. Let r, k, j, `, p, ap, and λp be as defined in the hypothesis of
Harder’s Conjecture. We verify the congruence of the conjecture through the following
process:

1. We construct the field K = Z/`Z.

2. Let A be the polynomial for which the ap are roots, and let L be the polynomial
for which the λp are roots.

3. Let α1, . . . , αm denote the roots of A in K, and let ν1, . . . , νn denote the roots
of L in K.

4. If some αi is congruent to some νi in K, then the conjecture is verified.

4.3 Results

We list the spaces of classical and Siegel modular forms for which Harder’s Conjecture
has been verified in Table 4.6:
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(k, j) r dim S
(2)
k,j dim S

(1)
r t ordinary ` | Norm(Λ(f, t)/ω±) p

(14, 2) 28 1 2 16 NONE
(16, 2) 32 2 2 18 211 p ≤ 31
(18, 2) 36 2 3 20 269741 p ≤ 31
(20, 2) 40 3 3 22 509 p ≤ 31

1447 p ≤ 31
(22, 2) 44 5 3 24 205157 p ≤ 31
(24, 2) 48 5 4 26 168943 p ≤ 31
(26, 2) 52 8 4 28 173 p ≤ 31

929 p ≤ 31
4261 p ≤ 31

434167 p ≤ 31
(28, 2) 56 10 4 30 173 p ≤ 31

1721 p ≤ 31
38053 p ≤ 31

1547453 p ≤ 31
(30, 2) 60 11 5 32 325187 p ≤ 31

32210303 p ≤ 31
427092920047 p ≤ 31

Table 4.6: A summary of the cases for which Harder’s Conjecture has been verified.

4.4 Conclusion

Since it is a fairly simple congruence calculation, the final verification of Harder’s
Conjecture is a relatively fast and easy computation. However, computing the com-
ponents of the congruence can be much less trivial. Yet, with the exception of S60,
the computation of each critical value (using a hybridization of Manin’s equations
and direct periods calculations) is also relatively fast (usually taking on the order of
minutes to complete). Since S60 is a five-dimensional space, it is possible that the
calculation of its critical values is slowed by algdep straining to produce a quintic
polynomial.

However, what required the most computational resources, and what limited our
range of primes p, was the calculation of the Hecke eigenvalues. The Hecke operators
themselves do not require much time to complete; yet, they do require the compu-
tation of Siegel eigenforms to a certain number of coefficients (which increases as p
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increases). For k ≤ 20, the computation of the eigenforms of Sk,2 was relatively easy,
as it requires only one or two Satoh bracket calculations. However, for higher k, the
number of Satoh brackets (and multiplications of Satoh brackets) that are required
drastically increases; for the these cases, the calculation of eigenforms to the required
number of coefficients was often taxing to our systems.

Harder’s Conjecture has previously been verified, but in limited cases. Most no-
tably, Van der Geer verified it for one-dimensional spaces of classical and Siegel modu-
lar forms, and for p ≤ 37. We therefore extend the work of these previous attempts by
including higher-dimensional classical and Siegel spaces, and checking the congruence
up to a comparable prime p.
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Chapter 5

Appendices

5.1 Sage Code

Calling classical dim() allows one to compute the dimension of a given space of
modular forms of weight weight:

def mod_dim(x,y,k):

#returns how many integer solutions a,b solve x*a + y*b

#= k, thus, lets you find the dimension of a space of weight-k cuspidal

#forms using "dim = mod_dim(4,6,weight - 12)"

no_solutions = 0

for a in [0..k]:

for b in [0..k]:

if (x*a + y*b) == k:

no_solutions += 1

return no_solutions

def classical_dim(weight):

dim = mod_dim(4,6,weight - 12)

return dim

The following code lets us directly calculate periods:
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def r(j,f,prec):

#Nathan Ryan’s Code: Explicitly calculates a given period

#r_j, up to a certain precision. This calls the below function

if f.base_ring() == QQ:

return (factorial(j)*I^(j+1)/2^(j+1)/pi^(j+1)*

f.cuspform_lseries(prec)(j+1)).n(prec)

else:

return (factorial(j)*I^(j+1)/2^(j+1)/pi^(j+1)*

my_cuspform_lseries(f,prec)(j+1)).n(prec)

def my_cuspform_lseries(f, prec=53, max_imaginary_part=0,

max_asymp_coeffs=40):

#Nathan Ryan’s Code:

if f.q_expansion().list()[0] !=0:

raise TypeError,"f = %s is not a cusp form"%self

from sage.lfunctions.all import Dokchitser

key = (prec, max_imaginary_part, max_asymp_coeffs)

l = f.weight()

N = f.level()

w = f.atkin_lehner_eigenvalue()

if w is None:

raise ValueError, "Form is not an eigenform for Atkin-Lehner"

e = (-1)**(l/2)*w

L = Dokchitser(conductor = N,

gammaV = [0,1],

weight = l,

eps = e,

prec = prec)

phi = f.hecke_eigenvalue_field().complex_embeddings(prec)[0]

my_qexp = [ phi(a) for a in f.q_expansion(prec).list() ]

s = ’coeff = %s;’%my_qexp#f.q_expansion(prec).list()

#print s

L.init_coeffs(’coeff[k+1]’,pari_precode = s,

max_imaginary_part=max_imaginary_part,

max_asymp_coeffs=max_asymp_coeffs)

L.check_functional_equation()

L.rename(’L-series associated to the cusp form %s’%f)
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return L

The following code is an implementation of Manin’s equations:

def delta_solutions(n):

#Used for the outer sum of Manin’s Coefficient Theorem; the sum is

#taken over special solutions to "n = D1*D2 + d1*d2"

d1_list = [1..n]

d2_list = [0..n]

D1_list = [1..n]

D2_list = [0..n]

output_list = []

for d1 in d1_list: #"Brute-force" method - tries every

#possible delta-value to see if they satisfy Manin’s criteria

for d2 in d2_list:

for D1 in D1_list:

for D2 in D2_list:

if (n == D1*D2 + d1*d2) and (D1 > d1):

if (D2 > d2) and (d2 > 0):

output_list.append([D1,D2,d1,d2])

elif (n % D1 == 0) and (D2 == n/D1)

and (d2 == 0) and (d1/D1 <= (1/2)):

output_list.append([D1,D2,d1,d2])

return output_list

def inner_coeffs(omega,deltas):

#returns r_2, r_4, r_6 . . . given the weight omega

#and the list [D,D’,d,d’]

l_list = [1..((omega - 2)/4)]

return [2*binomial(omega,2*l)*(deltas[0]^(2*l)*deltas[2]^(omega-2*l) -

deltas[0]^(omega-2*l)*deltas[2]^(2*l)) for l in l_list]

def sigma(x,n): #returns sigma_n (x)

running_sum = 0

d_list = divisors(n)

for d in d_list:
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running_sum += d^(x)

return running_sum

def lamb(f,n): #returns the nth coefficent of the modular form f

return f[n]

def outer_sum(omega,n): #Actually computes the outer sum of

#Manin’s Coefficient Theorem

running_sum = [0*i for i in [1..((omega - 2)/4)]]

for deltas in delta_solutions(n):

if (deltas[2]/deltas[0] == 1/2) and (deltas[3] == 0):

leading_term = 1/2

else:

leading_term = 1

for j in [0..(len(running_sum) - 1)]:

running_sum[j] += leading_term * inner_coeffs(omega,deltas)[j]

return running_sum

def coeffs_matrix(f,n):

#returns a matrix of coefficients to r_2l with n number of rows,

#with the r_0 term at the leftmost end of the matrix

omega = f.weight() - 2

F = f.hecke_eigenvalue_field() #makes sure the matrix

# is in the correct field

output_list = []

for m in [2..n]: #n = 2 is the base case for

#Manin’s Coefficient Theorem

row_next = [-(sigma(omega + 1,m) - lamb(f,m))]

for i in outer_sum(omega,m):

row_next.append(i)

output_list.append(row_next)

output_matrix = matrix(F,output_list)

return output_matrix

def coeffs_matrix_solve(f,n):

#puts the matrix produced by the Coefficient Theorem
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#in row-reduced echelon form, and solves it. The

#final row of the matrix is, therefore, the vector

#(1, r2 / r0, r4 / r0, . . .)

M = coeffs_matrix(f,n)

no_cols = M.ncols()

N = M.rref()

last_col = N.column(no_cols - 1).list()

output_list = []

for i in [0..(no_cols - 2)]:

output_list.append(-last_col[i])

output_list.append(1)

output_vector = vector(output_list)

return output_vector / output_list[0]

def periods_ratio(f):

#automatically calculates how how many rows of the

#above matrix are needed to solve the matrix

omega = f.weight() - 2

return coeffs_matrix_solve(f,ceil((omega - 2) / 4) + 2)

def even_periods(f):

return periods_ratio(f)

Then, using a combination of Manin’s equations and direct calculations, we can
calculate the norms of the even and odd ratios of periods:

def odd_norms2(g, prec = 1200):

#Allows us to calculate all of the odd period ratios.

#Manin 5k, 6k, 7k do not provide enough information to

#calculate periods of modular forms in spaces of

#dimenion two or higher. For dimension 2 spaces, the

#ratios r3 / r1 and r5 / r1 are needed, and are

#calculated explicitly.

#For higher dimenions, it is necessary to calculate more of such ratios explicitly.

A = full_odd_matrix(g).rref()

omega = g.weight() - 2

weight = g.weight()
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dim = mod_dim(4,6,weight - 12) #the dimension of g

if (dim > 1):

#If the dimension is one, then Manin 5k, 6k, and 7k are

#enough information to calculate all of the period ratios.

r_one = r(1,g,prec)

r_list = []

for i in [0..(dim - 1)]:

if (dim > 1):

r_list.append(r(2*i + 1,g,prec) / r_one)

else:

r_list.append(1)

for j in [dim..(omega/2 - dim)]:

jth_row = A.row(j)

next_period = sum([r_list[i - 1]*jth_row[-i] for i in [1..dim]])

r_list.append(next_period)

poly_list = [algdep(xx,dim) for xx in r_list]

denom_list = [pp.coeffs()[-1] for pp in poly_list]

ll = lcm(denom_list)

odd_norm_list = [factor(ll*pp(x=0)) for pp in poly_list[:-2]]

return odd_norm_list

def even_norms2(g):

#Uses Manin’s equations (specifically the Coefficient Theorem,

#as shown above, to calculate the ratio of even periods)

even_periods_list = even_periods(g)

pre_norm_list = [norm(x) for x in even_periods_list]

denom_list = [x.denominator() for x in pre_norm_list]

ll = lcm(denom_list)

int_list = (vector(pre_norm_list)*ll).list()

even_norm_list = [factor(i) for i in int_list]

return even_norm_list

Or, we can directly calculate each period, and then calculate the norms of each
ratio term:
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def odd_norms_nathans_method(f,prec = 1200):

#Directly calculates all of the odd periods

#(using none of Manin’s equations)

r1 = r(1,f,prec)

k = f.weight()

dim = mod_dim(4,6,k - 12)

omega = k - 2

period_list = [r(j,f,prec)/r1 for j in range(1,omega,2)]

period_list.append(-r(k - 3,f,prec)/r1)

poly_list = [algdep(xx,dim) for xx in period_list]

denom_list = [pp.coeffs()[-1] for pp in poly_list]

ll = lcm(denom_list)

odd_norm_list = [factor(ll*pp(x=0)) for pp in poly_list[:-1]]

return odd_norm_list

def even_norms_nathans_method(f,prec = 1200):

#Directly calculates all of the even periods

#(using none of Manin’s equations)

k = f.weight()

r0 = r(0,f,prec)

omega = k - 2

dim = mod_dim(4,6,k - 12)

period_list = [r(j,f,prec)/r0 for j in range(0,omega+1,2)]

period_list.append(r(k - 2,f,prec)/r0)

poly_list = [algdep(xx,dim) for xx in period_list]

if x in poly_list:

poly_list.remove(x)

denom_list = [pp.coeffs()[-1] for pp in poly_list]

ll = lcm(denom_list)

even_norm_list = [factor(ll*pp(x=0)) for pp in poly_list[:-1]]

return even_norm_list

Then, we use the following code to compute the ratios of critical value norms,
given one of the above two methods of periods calculations (lambda ratios full()

automatically removes the Bernoulli primes from each critical value prime decompo-
sition):
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def lambda_ratios_even(g,davidsMethod = True,prec = 1200):

if davidsMethod:

return odd_norms2(g,prec)

else:

return odd_norms_nathans_method(g,prec)

def lambda_ratios_odd(g,davidsMethod = True,prec = 1200):

if davidsMethod:

return even_norms2(g)

else:

return even_norms_nathans_method(g,prec)

def lambda_ratios_full(f,davidsMethod = True,prec = 1200):

k = f.weight()

c = k/2

start_list_even = lambda_ratios_even(f,davidsMethod,prec)

start_list_odd = lambda_ratios_odd(f,davidsMethod,prec)

true_final_output = []

bern_list = factor(bernoulli(k).numerator())

for t in [1..(k - 1)]:

if (t % 2 == 0):

start_list = start_list_even

odd = false

else:

start_list = start_list_odd

odd = true

if (t < c):

output = start_list[ceil(t/2) - 1]

if (t == c):

if (c % 2 == 0):

output = start_list[ceil(t/2) - 1]

else:

output = [(0,0)]

if (t > c):

u = k - t

output = -start_list[ceil(u/2) - 1]

final_output = []
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for (p,e) in output:

add_p_e = true

for (b_p,b_e) in bern_list: #bernoulli primes

if (abs(p) == abs(b_p)):

add_p_e = false

if add_p_e:

final_output.append((p,e))

true_final_output.append(final_output)

return true_final_output

We can then check which large primes divide the critical values of a certain modu-
lar form. The following code outputs a list, where each entry is itself a list, including
the weight of the given modular form, any large primes and the critical values that
they divide, and the corresponding space of Siegel modular forms for which the con-
jecture should hold:

def large_prime_check(weight,loadFromFile = False,

davidsMethod = True,prec = 1200):

f = create_form(weight)

k = weight

if loadFromFile:

filename = ’CRIT_VALS/crit_vals’ + str(k)

loaded_tuple = load(filename)

full_list = [i for i in loaded_tuple]

else:

full_list = lambda_ratios_full(f,davidsMethod,prec)

output_list = []

for t in [1..(k - 1)]:

current_row = [weight]

current_row.append(t)

L = full_list[t - 1]

large_primes = false

prime_list = []

for (p,e) in L:

if p > k:
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large_primes = true

prime_list.append(p)

current_row.append(prime_list)

if large_primes:

current_row.append((k - t + 2,2*t - k - 2))

output_list.append(current_row)

return output_list
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