
Bucknell University
Bucknell Digital Commons

Honors Theses Student Theses

Spring 2012

Utilization of Probabilistic Models in Short Read
Assembly from Second-Generation Sequencing
Matthew W. Segar
Bucknell University, mws022@bucknell.edu

Follow this and additional works at: https://digitalcommons.bucknell.edu/honors_theses

Part of the Theory and Algorithms Commons

This Honors Thesis is brought to you for free and open access by the Student Theses at Bucknell Digital Commons. It has been accepted for inclusion in
Honors Theses by an authorized administrator of Bucknell Digital Commons. For more information, please contact dcadmin@bucknell.edu.

Recommended Citation
Segar, Matthew W., "Utilization of Probabilistic Models in Short Read Assembly from Second-Generation Sequencing" (2012).
Honors Theses. 97.
https://digitalcommons.bucknell.edu/honors_theses/97

https://digitalcommons.bucknell.edu?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/honors_theses?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/student_theses?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/honors_theses?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/honors_theses/97?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@bucknell.edu


 
 

Utilization of Probabilistic Models in Short Read 
Assembly from Second-Generation Sequencing 

 

 

by 

 

Matthew W. Segar 

 

 

A Thesis  
 

Presented to the Faculty of 
Bucknell University 

In partial Fulfillment of the Requirements for the Degree of 
Bachelor of Arts with Honors in Computer Science 

May 10, 2012 
 

 

 

Approved:     ________________________________________ 

   Dr. Brian King 
   Thesis Advisor 
 

 

________________________________________ 

   Dr. Daniel Hyde 
   Acting Chair, Department of Computer Science 



 ii 

Acknowledgements 
 

 

 This thesis would not have been possible without the support of many people. 
I would like to take this time to thank these individuals for their continued 
encouragement and belief in me throughout my time at Bucknell: 

• First and foremost, Dr. Brian King, for all his guidance, help, and patience in 
introducing me to the crazy field of bioinformatics. I’ve enjoyed the time we’ve 
spent rambling on about our lives and I appreciate all you knowledge you’ve 
instilled upon me. I can’t thank you enough. 
 

• Peg Cronin, for her knowledge and expertise in helping me write this thesis. I 
came to you as a nervous and timid writer and you taught me techniques that 
I will carry with me for years to come. This thesis would not have been 
possible without your help. 
 

• Professor L. Felipe Perrone and Professor Sharon Garthwaite, for helping me 
understand the thesis defense process and taking the time out of your busy 
schedules to be my faculty readers. 
 

• Aurimas Liutikas, for helping me immensely the last 4 years. I’ve thoroughly 
enjoyed talking technology with you and I can’t thank you enough for all the 
support you’ve given me.  
 

• Family and friends, for supporting me throughout this entire thesis process.  

 

 

 

 

  



 iii 

Table of Contents 
 

Acknowledgements .................................................................................................... ii	
  

Table of Contents ...................................................................................................... iii	
  

List of Tables ................................................................................................................ v	
  

List of Figures .............................................................................................................. v	
  

Abstract ......................................................................................................................... 1	
  

Chapter 1	
   Introduction ........................................................................................... 2	
  

	
   Introduction to Bioinformatics ........................................................................... 2	
  1.1

	
   Sequence Assembly ............................................................................................. 3	
  1.2

	
   Chapter Summary .............................................................................................. 5	
  1.3

Chapter 2	
   DNA Sequencing and Assembly ......................................................... 7	
  

	
   Biology Background ............................................................................................ 8	
  2.1

	
   The Sanger Method ........................................................................................... 10	
  2.2

	
   Next-Generation Sequencing ........................................................................... 12	
  2.3

	
   The FASTQ Format .......................................................................................... 13	
  2.4

	
   Assembly Methods ............................................................................................ 16	
  2.5

2.5.1	
   Reference-based Assembly ......................................................................... 17	
  

2.5.2	
   De novo Assembly ....................................................................................... 18	
  

	
   The Need for Accurate Assemblies .................................................................. 22	
  2.6

	
   Chapter Summary ............................................................................................ 23	
  2.7

Chapter 3	
   Methods and Implementation .......................................................... 24	
  

	
   Pre-Processing ................................................................................................... 24	
  3.1

	
   n-gram Dictionary ............................................................................................. 26	
  3.2

	
   Assembly ........................................................................................................... 27	
  3.3

3.3.1	
   Notation ...................................................................................................... 28	
  

3.3.2	
   Determining Optimal Joins ....................................................................... 29	
  

3.3.3	
   Assembly ..................................................................................................... 34	
  

3.3.4	
   Bookkeeping ................................................................................................ 36	
  



 iv 

	
   Chapter Summary ............................................................................................ 37	
  3.4

Chapter 4	
   Results ................................................................................................... 38	
  

	
   Simulated Data ................................................................................................. 38	
  4.1

	
   Chapter Summary ............................................................................................ 42	
  4.2

Chapter 5	
   Conclusion and Future Work ........................................................... 43	
  

	
   Future Work ...................................................................................................... 45	
  5.1

Bibliography ............................................................................................................... 48	
  

Appendix A  Functionality ...................................................................................... 51	
  

A.1 How to Run the Program .................................................................................... 51	
  

A.2 Configuration File ............................................................................................... 52	
  

Appendix B UML and Profiling ............................................................................. 54	
  

B.1 UML ..................................................................................................................... 54	
  

B.2 Callgrind Profiling Analysis ............................................................................... 55	
  

Appendix C Glossary ................................................................................................ 56	
  

 

 

 

 

 

 

 

 

 

 

 



 v 

List of Tables 
 

Table 1 Summary of nucleotide single-letter abbreviations ....................................... 10	
  

Table 2 Summary of the three described FASTQ variants ........................................ 15	
  

Table 3 Substitution matrix for sequence alignment ................................................. 33	
  

Table 4 Assembly results for G10k and G100k ........................................................... 42	
  

 

List of Figures 
 

Figure 1 Number of genomes in RefSeq by year ........................................................... 4	
  

Figure 2 Cost per genome by year ................................................................................. 5	
  

Figure 3 The two base pairs of DNA .............................................................................. 9	
  

Figure 4 Potential reads produced from the addition of ddGTP ................................ 11	
  

Figure 5 Gel electrophoresis and corresponding wavelengths ................................... 11	
  

Figure 6 Sequence read over many chemistry cycles ................................................. 13	
  

Figure 7 Example of a minimal FASTQ file ................................................................ 14	
  

Figure 8 Shortest common supersequence of two reads ............................................. 17	
  

Figure 9 Set of 8 8-bp reads and corresponding de Bruijn graph .............................. 20	
  

Figure 10 A sample N50 calculation using 9 contigs .................................................. 22	
  

Figure 11 Example of reads and the corresponding dictionary ................................. 27	
  

Figure 12 Outline of the dictionary creation method ................................................. 27	
  

Figure 13 Top-level outline of main assembly function .............................................. 28	
  

Figure 14 Arrangement of two reads for assembly ..................................................... 31	
  



 vi 

Figure 15 Example of sequence alignment and score calculation .............................. 34	
  

Figure 16 Example of the bookkeeping function ......................................................... 36	
  

Figure 17 Assembly time of various n-gram lengths for G10k .................................. 39	
  

Figure 18 Assembly time of various n-gram lengths for G110k ................................ 40	
  

Figure 19 Length of longest contig by various n-gram siezes for G10k ..................... 41	
  

Figure 20 Length of longest contig of various n-gram sizes for G110k ..................... 41	
  

Figure 21 Example of scaffolding using two contigs and five paired-ends ................ 46	
  

Figure 22 Overview of possible parallelization in the bookkeeping function ............ 47	
  

Figure 23 UML diagram for project ............................................................................. 54	
  

Figure 24 Callgrind analysis of the assembly method ............................................... 55	
  

 



 1 

Abstract 
 

With the advent of cheaper and faster DNA sequencing technologies, assembly 

methods have greatly changed. Instead of outputting reads that are thousands of 

base pairs long, new sequencers parallelize the task by producing read lengths 

between 35 and 400 base pairs. Reconstructing an organism’s genome from these 

millions of reads is a computationally expensive task. Our algorithm solves this 

problem by organizing and indexing the reads using n-grams, which are short, 

fixed-length DNA sequences of length n.  These n-grams are used to efficiently 

locate putative read joins, thereby eliminating the need to perform an exhaustive 

search over all possible read pairs. Our goal was develop a novel n-gram method for 

the assembly of genomes from next-generation sequencers. Specifically, a 

probabilistic, iterative approach was utilized to determine the most likely reads to 

join through development of a new metric that models the probability of any two 

arbitrary reads being joined together. Tests were run using simulated short read 

data based on randomly created genomes ranging in lengths from 10,000 to 100,000 

nucleotides with 16 to 20x coverage. We were able to successfully re-assemble entire 

genomes up to 100,000 nucleotides in length. 
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Chapter 1   

Introduction 

 

The goal of this project is to develop a novel method for the assembly of short read 

data generated from Next-Generation Sequencers (NGS). Chapter 1 discusses the 

importance of bioinformatics and describes the recent explosion of biological data. 

Chapter 2 provides an explanatory background on DNA biology and the 

advancements in DNA sequencing technologies. Also, the FASTQ file format and 

previous methods are discussed. Chapter 3 describes the methods and 

implementations used in the assembler. Chapter 4 details results and discusses 

metrics used analyzing an assembly. Chapter 5 discusses possible future work and 

conclusion.  

 

 Introduction to Bioinformatics 1.1
 

In this day and age, computers are an integral part of nearly every aspect of life. 

Computers allow us to simplify tasks and solve difficult and time-consuming 
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problems. One field in which computers are playing an increasing role is biology. 

Bioinformatics is the application of statistics and computer science to the field of 

molecular biology. Computers now are being used to collect, archive, organize, and 

interpret biological data. Due to the efforts of bioinformaticians worldwide, great 

strides are being made toward developing an understanding of the biological 

functions on a level that we have not ever seen.  

There is an overwhelming amount of biological data. Organizations, such as 

the National Center for Biotechnology Information (NCBI), maintain and house 

genome-sequencing data from thousands of organisms. However, the difficulty lies 

in trying to interpret and understand the ever-increasing amount of biological 

information. In response to this influx of data, a large number of tools have been 

developed to aid researchers in accomplishing these tasks, such as locating genes in 

a newly discovered genome, understanding various interactions between cells, and 

understanding how a protein folds (Baxevanis, 2004). One area in particular that 

has received significant attention is sequence assembly.  

 

 Sequence Assembly 1.2
 

Sequence assembly is a specific category of bioinformatics that pertains to the 

alignment and reassembly of DNA fragments (M. Pop, Salzberg, & Shumway, 
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2002). Typically this is seen in DNA sequencing where genome sequencers cannot 

read the entire genome. Instead, current sequencing technologies split the genome 

into millions of reads, short fragments of DNA, to speed up the task (Section 2.3). 

The goal is then to use a computer program to reassemble the separated genome. 

However, these newer technologies have resulted in an enormous increase in 

sequenced and unassembled genomes. As of March 5, 2012, the NCBI non-

redundant sequence database contained 16,923 completed DNA sequences (“NCBI 

Reference Sequence (RefSeq),” 2012; Pruitt, Tatusova, Klimke, & Maglott, 2009). 

Even more astonishing is the exponential increase with which the genomes are 

being sequenced (Figure 1). This inequality results in a great disparity between the 

number of genomes sequenced and genomes that have been assembled an analyzed. 

Therefore, the use of computers is essential in reassembling and examining the 

enormous amounts of sequenced data.  

 

Figure 1 Number of genomes in RefSeq by year 
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 Besides increasing the amount of data, one major advantage to newer 

sequencing technologies is the rapidly decreasing costs of sequencing new genomes 

(Figure 2). Eventually, whole-genome sequencing will fall to below $1,000. The 

$1,000 genome has long been considered the tipping-point for personalized medicine 

(Davies, 2010). The idea is that once the price drops below that amount, it will 

finally be cost effective enough to allow doctors to deliver treatment based on a 

patient’s genetic makeup. Instead of administering treatments based on tests and 

symptoms, a physician will now be able to study a patient’s genome to make 

diagnoses and perfect treatments in everything from diabetes to Alzheimer’s.  

 

Figure 2 Cost per genome by year 
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technologies have greatly increased the amount of biological data generated. It is 

the goal of advanced computer programs to reassemble this data into the original 

genome. Eventually, whole-genome sequencing will be cheap enough for physicians 

to treat patients based on their genome sequence and prescribe specific treatments 

based on that information.  

 In the next chapter, the specifics of DNA sequencing are examined.  
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Chapter 2   

DNA Sequencing and Assembly 

 

The Deoxyribonucleic Acid (DNA) sequence represents the blueprint of every living 

organism. Understanding this sequence has been crucial in biological research. 

Ever since Watson and Crick first correctly presented the structure of DNA in 1953, 

much work has been focused on determining the order of nucleotide bases. 

However, it wasn’t until 1975 that Frederick Sanger developed a method that was 

fast enough to enable researchers to finally sequence small genomes (Section 2.2). 

Ever since then, there has been much research on accelerating the sequencing 

process. Knowledge of the DNA sequence allows researchers to search for 

regulatory and gene sequences and subsequently compare sequences between 

species. Sequence comparisons also aid researchers in identifying mutations in 

unhealthy cells and cancers.  

In this chapter, a biological review of DNA will be discussed. The majority of 

the chapter presents the technologies used in the Sanger method of DNA 
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sequencing and the more modern Next-Generation Sequencing (NGS) models 

(Section 2.3). Finally, an overview of the FASTQ file format (Section 2.4) and other 

assembly methods (Section 2.5) will be examined.  

 

 Biology Background 2.1
 

In all known living organisms, deoxyribonucleic acid (DNA) is the basic genetic 

material found in all cells. DNA, often referred to the “blueprint of life,” carries the 

instructions for making all the materials and structures needed for a cell to survive. 

The structure of DNA contains two parts: a backbone and a nitrogenous base. The 

backbone of a DNA molecule contains alternating phosphate and sugar residues. 

Attached to the backbone can be one of four nitrogenous bases or nucleobases. Since 

the backbone of DNA is the same, it is the specific nucleobase that characterizes 

each nucleotide. The four bases found in DNA are adenine (abbreviated A), cytosine 

(C), guanine (G), and thymine (T). Furthermore, nucleobases can be classified into 

one of two types: purines, A and G, and pyrimidines, T and C (Freeman, 2011).  
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Figure 3 The two base pairs of DNA 

 

 DNA is a double helix, forming a unique, stable structure where each 

nucleobase on one strand interacts with an appropriate base on the other. Also 

called base pairing, one purine molecule hydrogen bonds to one pyrimidine. 

Furthermore, as seen in Figure 3, an A will only bind to a T and a C will only bind 

to G (Isilanes, 2007).  As stated earlier, each nucleotide is represented using a 

unique letter. However, in DNA sequencing, ambiguities can arise. For example, it’s 

possible for a nucleotide to be G or a C in a sequence. Therefore, the International 

Union of Pure and Applied Chemistry (IUPAC) developed abbreviations for 

different permutations of nucleic acids as specified in Table 1 below.   
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Table 1 Summary of nucleotide single-letter abbreviations 

Symbol Meaning Origin of Designation 
G G Guanine 
A A Adenine 
T T Thymine 
C C Cytosine 
R G or A puRine 
Y T or C pYrimidine 
M A or C aMino 
K G or T Keto 
S G or C Strong interaction (3 H bonds) 
W A or T Weak interaction (2 H bonds) 
H A or C or T not-G, H follows G  
B G or T or C not-A, B follows A 
V G or C or A not-T, V follows U 
D G or A or T not-C, D follows C 
N G, A, T, or C aNy 

 

 

 The Sanger Method 2.2
 

In 1975, Frederick Sanger developed a chain-terminated method that quickly 

became the method of choice for DNA sequencing. First, the DNA strands are 

denatured, or separated, using heat. The solution is then divided into four tubes 

corresponding to the four nucleotides. Next, dideoxynucleotides (ddNTP) are added 

in addition to the normal nucleotides (NTP). Dideoxynucleotides are similar to 

normal nucleotides except they prevent the addition of further nucleotides (hence 

the name chain-terminated method). As the base-strand of DNA is synthesized, 

normal nucleotides are added to the complementary strand. However, on occasion, a 

ddNTP is added instead of a normal nucleotide that prevents the further growth of 
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the strand. This results in many reads of various lengths. For example, strands 

terminated with a G-dideoxynucleotide (ddGTP) may result in reads as seen in 

Figure 4.  

       ATG 
       ATGCTTCG 
       ATGCTTCGG 
       ATGCTTCGGAAG 

Figure 4 Potential reads produced from the addition of ddGTP 

 

 The process of adding ddNTP and NTP is repeated for the other respective 

tubes. This results in the whole DNA sequence being terminated at each nucleotide. 

As seen in Figure 5, each tube is run in separate lanes on a polyacrylamide gel in 

order to separate each strand by size (Lakdawalla, 2007). The lanes are then 

merged and read using a computer. Since each chain-terminated dye fluoresces at a 

different wavelength, a laser can be used to identify each nucleotide in the gel. 

 

Figure 5 Gel electrophoresis and corresponding wavelengths 
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 Next-Generation Sequencing 2.3
 

The advent of new sequencing technologies has radically lowered the cost of 

sequencing large-scale genomes (Section 1.2). Next-Generation sequencing 

technologies from 454 LifeSciences/Roche and Solexa/Illumina revolutionized the 

methodologies used in whole-genome sequencing. Next-Generation Sequencers 

(NGS) parallelize the sequencing task by splitting the copies of DNA into millions of 

smaller reads and sequencing them simultaneously (Schatz, Delcher, & Salzberg, 

2010).  

First, the DNA sample is sheared into a collection of fragments using acoustic 

waves (Mardis, 2008). Special proprietary adapters are then added to the ends of 

the DNA fragments to aid in binding to the flow cell surface. The flow cell is a 

specialized surface that aids the binding of DNA and enzymes to the cell surface for 

manipulation. The fragments are then size separated to determine the optimal 

fragment length for cloning. Next, the chosen fragments are used as a template 

strand and cloned using polymerase chain reaction (PCR). PCR is a technique used 

to drastically amplify the number of copies of a certain region of DNA. The 

fragments are washed over the flow cell, which then bind randomly to the surface. 

Subsequently, the DNA undergoes another cloning step to form clusters of the same 

fragment on the flow cell surface. Next, the four bases are added one at a time to 
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the flow cell. Since each base emits a certain color dye, a camera can be used to 

image the flow cell after each round as seen in Figure 6 (Mardis, 2008).  

Finally, from this image, the DNA sequence can be generated for thousands 

of DNA fragments at the same time resulting in a collection of reads – DNA 

sequences whose sequence is known (Mihai Pop, 2009). This is accomplished by 

using a computer to analyze certain pixels in the image. Since the location of the 

DNA reads does not change, a change in pixel color at a specific location 

corresponds to a different nucleotide in the sequence. For example, as indicated in 

Figure 6, the yellow ‘G’ in the first slide changes to a blue ‘C’ in the next.  

 

Figure 6 Sequence read over many chemistry cycles 

 

 The FASTQ Format 2.4
 

In DNA sequencing, the FASTQ file format has emerged as the de facto format for 

sharing NGS data between tools (Cock, Fields, Goto, Heuer, & Rice, 2010). 

Sequencing instruments such as Roche/454 and Illumina/Solexa use the FASTQ 

format for storing their outputted data. Developed by the Wellcome Trust Sanger 

Institute, the FASTQ format combines the FASTA sequence and the corresponding 

quality data. The file format normally uses four lines per read and encodes the 
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nucleotide and quality value with a single ASCII character (Figure 7). The first line 

begins with a ‘@’ character and only contains a header and optional sequence 

identifier. Line 2 is the nucleotide sequence of the DNA read outputted from the 

sequencer. The third line begins with a ‘+’ character and, similar to Line 1, only 

contains a header and optional sequence identification. Finally, Line 4 contains the 

quality values for the corresponding nucleotides in Line 2.  

@SRR090119.2 length=25 
TTACAAGTCAAAGCCCTAACCGGTA 
+SRR090119.2 length=25 
@8;==4<<<EA3<?;$<A9?7B:=@ 

Figure 7 Example of a minimal FASTQ file 

 

Typically, software tools such as PHRED, the industry standard nucleotide 

identification software package, are used to determine the nucleotide and 

corresponding quality value (Ewing & Green, 1998). The quality value, also called 

the PHRED score, is an integer indicating the likelihood that the sequencer 

generated the correct nucleotide. By definition, the quality value QV is derived from 

the probability P that the base call is incorrect as defined in (Cock et al., 2010): 

𝑄𝑉!"#$% = −10 ∗ 𝑙𝑜𝑔!"(𝑃) 

For example, a quality score of 30 would correspond to a base call accuracy of 

99.9%.  
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Each machine technology encodes the quality value using their own scoring 

mechanism. A standard approach to address this non-uniformity is to standardize 

the score to follow the original PHRED standard. The Sanger FASTQ files use the 

ASCII values 33-126 to encode PHRED scores of 0-93. This corresponds to a 

PHRED score with an ASCII offset of 33. Solexa sequencing uses a logarithmic 

mapping with scores ranging from -5 to 62. The equation to convert the Solexa 

quality value into PHRED is: 

𝑄𝑉!"#$%& = 10 ∗ 𝑙𝑜𝑔!"(10
!"!"#$%

!" − 1) 

Illumina sequencing initially used the Solexa format but eventually switched 

to a third FASTQ variant (Cock et al., 2010). The Illumina FASTQ encode PHRED 

scores ranging from 0-62 and corresponds to an ASCII score of 64-126 (i.e. an offset 

of 64). A summary of the three FASTQ variants is described in the table below 

(Cock et al., 2010). 

Table 2 Summary of the three described FASTQ variants 

Description, name ASCII characters Quality scores 
Range Offset Type Range 

Sanger standard 
    fastq-sanger 

 
33-126 

 
33 

 
PHRED 

 
0 to 93 

Solexa 
    fastq-solexa 

 
59-126 

 
64 

 
Solexa 

 
-5 to 62 

Illumina  
  fastq-illumina 

 
64-126 

 
64 

 
PHRED 

 
0 to 62 
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 Assembly Methods 2.5
 

By definition, an assembly is a hierarchical data structure that maps the sequence 

data to the putative reconstruction of the target (Miller, Koren, & Sutton, 2010). 

Since a genome is sequenced in only small portions, a software program can be used 

to reassemble the complete genome. Software assemblers focus on one obvious 

assumption: if two sequence reads share a common overlapping substring of letters, 

then it is because they are likely to have originated from the same chromosomal 

region in the genome (Narzisi & Mishra, 2011).   

The general algorithm behind sequence assembly is straightforward. A large 

number of candidate pairs of reads are tested to see if they can be joined based on 

the assessment of various characteristics of the overlapping region between the 

reads.  A scoring mechanism is used to quantitatively compare different putative 

joined reads.  The algorithm picks the highest scoring overlap before merging the 

two reads. The process is repeated until no more moves/merges can be made.  

The problem of sequence assembly is similar to the problem of finding the 

shortest common supersequence (SCS), a well-known problem in computer science 

(Cormen et al., 2009). The SCS is defined as a common superstring of minimum 

length between two given sequences. In other words, sequence C is a supersequence 

of subsequences A and B if the shortest sequence C contains both subsquences A 
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and B. For example, given two sequences A = ACGCTAC and B = CTGACA, the 

SCS of A and B is: C = ACGCTGACA as indicated in Figure 8. Therefore, sequence 

C is the shortest sequence that contains both A and B.  

A = ACGCT   AC 
  B =    C     TGACA 
  C = ACGCTGACA 

Figure 8 Shortest common supersequence of two reads 

 

It is important to note that there exists two approaches for the assembly of 

genomes: de novo and reference-based. De novo methods are aimed at 

reconstructing genomes that are not similar to any organism previously sequenced 

(Mihai Pop, 2009). Conversely, reference-based assemblers use the sequence of a 

closely related organism to aid the assembly process. This thesis project focuses on 

de novo assemblies, however, for sake of completeness, both method backgrounds 

are briefly discussed.  

 

2.5.1 Reference-based Assembly 
 

Reference-based assembly, also called mapped assembly, replaces overlap detection 

with alignment against a similar genome. Similar to the shortest common 

subsequence problem, an alignment is a way of rearranging and comparing DNA to 

identify commonalities between the sequences (Baxevanis, 2004). An alignment 
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increases the number of matches between the sequences in order to increase the 

similarities between them. This is accomplished by taking the DNA sequences and 

adding gaps to one or both sequences in order to maximize the similarities between 

the reads. Computationally, reference-based assemblies are much faster since it 

eliminates the need for determining overlaps (Mihai Pop, 2009). First, the 

sequenced reads are aligned to the reference sequence under the assumption that 

the reference is similar to the newly sequenced genome. Next, the alignment is used 

to compute a consensus sequence of the new genome. However, this approach is 

error-prone if the reference is vastly different than the sequenced reads (“NCBI: 

Assembly Basics,” 2012).  

 

2.5.2 De novo Assembly 
 

The method of analyzing and determining the evaluation of overlaps for de 

novo assemblers falls into two main categories: greedy and graph-based.  A greedy 

algorithm is an algorithm that makes the optimal choice at each stage of the 

problem solving process. Even though a greedy algorithm is fairly easy to 

implement, a major flaw is that it focuses too much on the current stage and ignores 

long-term optimal joins. Furthermore, the memory requirements to implement such 

algorithms are expensive. Current implementations require up to one gibabyte of 

RAM for each megabase of assembled sequence (M. Pop et al., 2002). For both of 
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these reasons, the effectiveness of greedy algorithms is limited. Currently, TIGR, 

CAP3, and PHUSION are well-known assemblers in this category (Huang & 

Madan, 1999; Mullikin & Ning, 2003; G. G. Sutton, White, Adams, & Kerlavage, 

1995).  

 To combat this problem, a graph-based approach to sequence assembly was 

developed. Instead of focusing on the raw sequences, graph-based algorithms start 

by preprocessing the sequence to determine overlap information to store in an 

unweighted edge-based string-graph (Narzisi & Mishra, 2011). The algorithm first 

starts by dividing the sequence into a collection of n-grams, which are short, fixed-

length DNA sequences of length n. Next, a de Bruijn graph is constructed.  A de 

Bruijn graph is a directed graph where each edge represents a fixed-length overlap 

and each node corresponds to overlaps of n-1 bases (Miller et al., 2010). Finally, an 

Eulerian path is found containing each edge exactly once (Pevzner, Tang, & 

Waterman, 2001). The result is a genome sequence consistent with the n-gram data 

on every read (Figure 9). Graph-based algorithms benefit greatly from their speed. 

An Eulerian path, in theory, can be calculated in O(n) time.  
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Figure 9 Set of 8 8-bp reads and corresponding de Bruijn graph 

 

In reality, three main factors cause complications in an assembly. First, 

sequencing errors in the read data can cause false-positive joins and mislead the 

algorithm (Narzisi & Mishra, 2011). Most assemblers implement an error-correcting 

stage to account for such problems. Second, double stranded DNA and palindromes 

can cause paths to repeat themselves continuously. Third, and most importantly, 

repeat structures cause much of the complexity associated in determining optimal 

assemblies. If a repeat is longer than the n-gram, then the graph will have the same 

n-gram corresponding to multiple locations on the genome. The algorithm does not 

contain enough information to disambiguate the repeat (Miller et al., 2010). 

Current examples of de Bruijn graph-based assemblers include Velvet, ABySS, and 

SOAPdenovo (R. Li et al., 2010; Simpson et al., 2009; Zerbino & Birney, 2008).  

Although all three assemblers utilize a de Bruijn graph, the implementation 

and methodologies for each program is different. Velvet makes extensive use of a 

graph simplification to reduce non-intersecting paths to single nodes (Miller et al., 
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2010). Simplification compresses the graph without losing essential information. 

Velvet also has a parameter for the minimum number of n-gram occurrences needed 

to be considered a graph node. This step eliminates n-grams that are highly 

probable of being error-prone. Velvet utilizes a breadth-first-search to first scan to 

the perimeters of the graph and removes reads below a certain threshold (Zerbino & 

Birney, 2008). Finally, after other error-avoidance steps, Velvet forms contigs by 

traversing the graph similar to Figure 9.  

ABySS differentiates itself by distributing the n-gram graph across a 

compute grid whose combined memory is typically larger than a traditional desktop 

computer (Miller et al., 2010; Simpson et al., 2009). Typically suited for 

Illumina/Solexa data sets, AByss assigns each node in the graph to a specific CPU 

in the cluster. After running through error-correcting steps, the graph is traversed 

to form contigs. However, the traversal is not performed on one CPU. Each node 

stores information on the successor node in the traversal. By switching CPUs, the 

algorithm offsets the requesting and retrieval of information to other CPUs (Zerbino 

& Birney, 2008). 

SOAPdenovo is one of the few freely available assemblers capable of 

assembling mammalian genome sequences of Illumina/Solexa reads (Miller et al., 

2010). SOAPdenovo utilizes a rigorous error-correcting step to remove any possible 

error-prone reads. This saves a significant amount of space, but at the cost of 
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potentially removing useful read information. Finally, a traversal on the de Bruijn 

graph is performed similarly to the methods described above. 

 

 The Need for Accurate Assemblies 2.6
 

 Even though there are many NGS assemblers currently available, there is no 

commonly accepted and standardized method for the task. Additionally, validating 

if an assembler outputs the correct sequence is a difficult and time-consuming task. 

The most widely accepted metric for evaluating an assembly is the N50 scoring 

metric. The N50 is defined as the largest number L such that the combined length 

of all contigs of length ≥ L is at least 50% of the total length of all contigs (Narzisi & 

Mishra, 2011). An example of an N50 calculation is given in Figure 10. 

 

Figure 10 A sample N50 calculation using 9 contigs 

 

Moreover, the current metrics, whether it is the N50 or contig size, only emphasize 

size and not the quality of the joins. In this case, an assembler can sacrifice optimal 
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joins for longer contigs to give the appearance of outperforming others. There is 

thus an expressed interest in the bioinformatics community for an assembler that 

takes into consideration the quality of the joins to form an optimal assembly. This 

thesis research hopes to address this problem by developing a novel n-gram method 

for the assembly of genomes from next-generation sequencers. Specifically, a 

probabilistic, iterative approach will be utilized to determine the most likely reads 

to join through development of a new metric that models the probability of any two 

arbitrary reads being joined together. 

 

 Chapter Summary 2.7
 

In this chapter, the necessary background information of sequence assembly and 

DNA was discussed. For the computer scientist, an introduction to the biology of 

DNA and the rules regulating base pairing was presented. DNA sequencing, from 

the original Sanger method to today’s current next-generation sequencing, has 

greatly transformed the way researchers analyze biological data. The FASTQ file 

format and its importance was also explained. Finally, an analysis of previous 

methods and their limitations was examined.  

 In the next chapter, the specific methods and implementations of the 

research program will be discussed.   
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Chapter 3   

Methods and Implementation 

 

The functionality of the program can be broken down into two distinct parts. First, 

after being filtered through a data cleaning step, raw sequence reads are read in to 

form a dictionary of n-grams. Second, the necessary assembly is made using a novel 

method to determine the optimal joining of two arbitrary reads. The assembly also 

requires a bookkeeping step to update the dictionary on the newly formed contigs –a 

set of overlapping DNA segments that together represent a consensus region of 

DNA.  

 

 Pre-Processing 3.1
 

In data mining, pre-processing is an essential step that precedes data analysis. Pre-

processing allows for the screening of data points to remove out-of-range values, 

impossible data combinations, or missing values (Kotsiantis, Kanellopoulos, & 

Pintelas, 2006). In sequence assembly, data pre-processing is used to filter and 
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remove low quality reads. Specifically, three standards are used to remove low 

quality reads from the data set and prevent them from being added to the 

dictionary. First, the read must be longer than the n-gram length. An n-gram is a 

subsequence of DNA of length n and forms a critical basis for indexing all of the 

reads, and thus represents the minimal length read allowed. For example, if the 

read is 18 characters long but the n-gram length is 22 then the read is too short to 

be useful in joining. Second, an entry can be filtered based on the average quality of 

the read. A read with a low average QV score does not contain nucleotides with a 

high probability of being correct. Thus, low QV scores can result in incorrect joins. 

Finally, an entry can be filtered on the percentage of N’s in a read. As seen in Table 

1, the IUPAC single-letter abbreviation N appearing in the sequence means that 

position in the sequence can be any of the four nucleotides. Therefore, there is no 

information on what the nucleotide should be at that particular location. Again, a 

high percentage of N’s in a read can result in low quality and improper joins. 

Setting a threshold for both the average QV score and percentage of N’s in a read 

can eliminate reads that do not contain a high probability of being correct.  

 The benefits of data pre-processing are two-fold. First, the size of the 

dictionary is minimized. Eliminating low quality data entries in an analysis greatly 

speeds up the processing time. In the case of sequence assembly, reducing the 

number of entries in the dictionary, without sacrificing quality, can greatly 
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minimize the number of comparisons needed to determine an optimal join. Finally, 

pre-processing limits the data to include only high quality entries. Removing 

incorrect reads from the dictionary decreases the probability of forming an incorrect 

join. 

 

 n-gram Dictionary 3.2
 

Before we start an assembly, the initial set of sequence reads must be read and 

stored in the system. This is accomplished using FASTQ files (Section 2.4). The 

next, and arguably most crucial step, is to map reads to sequences of origin (Horner 

et al., 2010). The main data structure to store this information is the C++ Standard 

Library map. Maps are a type of associative container that store information based 

on a key and mapped value. In this instance, a map is used to match an n-gram to a 

vector of read indices. A secondary data structure, called readIndices, is used to 

store three integers: a read index, indicating the read identifier the n-gram was 

found in, the starting index of the n-gram in the read, and the distance the n-gram 

is located from the end. Therefore, each readIndices represents each instance of 

the n-gram in the short-read data set. An example of a dictionary is given in Figure 

11.  
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Figure 11 Example of reads and the corresponding dictionary 

 

The structure readIndices also allows for a quick way of calculating where 

in a read the n-gram resides. Another data structure is required to store the reads. 

A vector of reads allows for a quick lookup of the specific read sequence and quality 

value. The index for each read corresponds to the read index stored in the map. The 

dictionary creation method is outlined in Figure 12.  

1. read in FASTQ file 
2. start = 0 
3. end = ngramSize 
4. while a line exists 
5.   read in seq and qv 
6.     create vector of readfragIndices 
7.    while end is less than read length 
8.      ngram is the substring of read from start to end 
9.      readIndices ← start, end, and index 
10.      add readIndices to vector 
11.      increment start and end 
12.      add sequence and qv to reads vector 

Figure 12 Outline of the dictionary creation method 

 

 Assembly 3.3
 

An assembly is a hierarchical data structure that maps the reads from the NGS 

instrumentation together in such a way that a putative reconstruction of the target 
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is generated (Miller et al., 2010). The assembly function plays the largest role in the 

genome reconstruction and is outlined in Figure 13. The main loop of the function 

iterates through every n-gram in the dictionary. For each n-gram, three functions 

are executed. First, a probabilistic scoring model is used to determine the optimal 

joins between two reads that contain the specific n-gram. Second, the actual 

assembly is made based on the scoring model. Finally, bookkeeping is performed to 

update the dictionary. Each of the three functions is explained in more detail below. 

 mainAssembly() { 
  for each n-gram in dictionary { 
   find best join from sequences containing n-gram; 
   assemble the join; 
   update data structures 
  } 

} 

Figure 13 Top-level outline of main assembly function 

 

3.3.1 Notation 
 

First, we define the notation required to formalize the explanation of the method. 

Let G represent an arbitrary sequence of DNA to be processed by some NGS 

instrumentation. Let D represent the set of all reads that were output by the NGS 

instrumentation that processed G. In an ideal world, G is observable information, 

and we simply map the reads back to G. However, in this problem, G is hidden, 

unobservable information. The aim of a de novo assembly method is to determine 
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the most likely assembly of sequences in D that give us back the original sequence 

G.   

Let Xi represent the ith read in D of length m. Let s represent an arbitrary 

nucleotide in sequence X, then Xi = s1,s2,…,sm, and Xi has m-n+1 n-grams. Let ngk 

represent the kth n-gram in the data. Every n-gram ngk forms a key for referencing 

every Xi that contains ngk in its sequence, and serves a critical role by providing 

efficient assessment of the quality of the overlapping region between Xi and Xj, and 

serves as a key to mapping an index indicating the precise location of that n-gram 

in the data. 

 

3.3.2 Determining Optimal Joins 
 

For our work, we define an optimal join over all possible pairs of reads in D as being 

the join that is most likely to come from the same origin. Considering all possible 

joins is 𝑂 𝑫 ! , multiplied by the cost of performing an alignment of both sequences 

being considered. Considering that typical datasets can contain millions of reads, 

and that the vast majority of these joins should not be considered, a mechanism is 

needed to efficiently reduce the search space of possible joins. The n-gram index 

serves to substantially reduce the reads to consider for joining to those that share a 

common n-gram. 
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Aligning two sequences is similar to the problem of finding the longest 

common subsequence between two sequences (Section 2.5). In a true alignment, we 

allow a limited number of insertions and deletions (indels) in one or both of the 

sequences in order to maximize the number of matching symbols between them. 

However, in this work, we do not consider insertions and deletions due to the low 

likelihood that these errors are introduced by the sequencing instrumentation. This 

also avoids the computational complexity that arises if indels were considered. 

(Modeling this error is left for investigation in future work.) For two sequences of 

length m1 and m2, the cost of aligning two sequences is 𝑂 𝑚!𝑚! .  

Every n-gram ng in D has a set of reads 𝑫!" = {𝑋!…𝑋!} that contain ng in 

the sequence. For each combination of reads, a score 𝑆 is calculated. For example, 

𝑆!,! is the score resulting from joining reads 𝑋! and 𝑋!. More specifically, score 𝑆 is 

the sum of the calculations from three separate regions in the resulting joined 

sequence. The reads are arranged such that they follow a strict pattern shown in 

Figure 14. Given two indices i and j for reads in 𝑫!", the reads are arranged such 

that region A is found only on 𝑋! while region C is found only on 𝑋!. Region B is 

overlap of 𝑋! and 𝑋! and is thus found in both reads. Each n-gram ng will thus have 

a 𝑫!"  by 𝑫!"  matrix created.  
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   Region: 
    A        B          C 
   Xi = ACGT CGATTA 
   Xj =             CGATTA CGATAC 

Figure 14 Arrangement of two reads for assembly 

 

The score for each potential join is computed by the function scoreJoin(Xi, Xj).  

This function uses a simple probabilistic model to assess the likelihood that these 

two reads came from the same origin in G. The resulting score is used to judge this 

join against all other possible joins being considered for this n-gram. More 

specifically, this score represents the probability that the two reads being 

considered are joined together by random chance. The lower the probability that 

these two sequences came from the same origin by chance, the more likely that 

these two sequences originated from the same place in G. 

To obtain a probability for the join, we first assume that each read is 

generated according to a random process, and is identically and independently 

distributed. Each position in the sequence has a probability of taking on one of four 

nucleotides. We make two important assumptions for simplicity. First, we assume a 

uniform distribution of nucleotides for any position, implying that each nucleotide is 

equally likely. Therefore, 𝑃 𝐴,𝐶,𝐺,𝑇 = !
!. The symbol N in the sequence implies 

that the position could be any nucleotide, 𝑃 𝑁 =   1. Second, we make a Markov 
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assumption, which assumes that the occurrence of each nucleotide in the sequence 

is independent of the previous nucleotide.  

The score for the join is broken into scoring three distinct regions, denoted as 

A, B, and C (Figure 14). Regions A and C use a similar calculation. Since the 

confidence of a nucleotide decreases the farther away the nucleotide is from the 

overlapped region (region B), a discount factor equation was created to show the 

degradation in nucleotide confidence. Therefore, the farther away from B, the less 

confidence, and thus lower probability, the nucleotide is of being correct. Given 𝛼 to 

be the probability of a non-overlapped nucleotide, 𝛽 to be the discount factor, and 𝑑 

being the absolute distance from region B, the probability of a nucleotide 𝑁 at 

position 𝑖 is shown in Equation 3.1. Typically, 𝛼 is 1− 𝑃 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒 = 1− 0.25 =

0.75. 

  (3.1) 
   

Therefore, the probability for region A is the sum of the probabilities of the 

individual nucleotides in region A. Similarly, the probability for region C can be 

calculated by summing the probabilities of the individual nucleotides in C. We 

compute log probabilities instead of standard probabilities to simplify the 

computation. Using log probabilities has two main advantages. First, the 

calculation speed is increased. Multiplying probabilities is much slower 

computationally than addition. Second, log probabilities aid in number accuracy. 

P(Ni ) =αβ
d
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Multiplying small probabilities over a long sequence can result in an underflow 

error – a small number outside the precision limits of a computer. Therefore, log 

probabilities prevent these problems without compromising the accuracy of the final 

answer. 

 Instead of taking into consideration the probability of a single nucleotide, 

region B requires the probability of two nucleotides. In most alignment methods 

where mismatched symbols might need to be aligned, a substitution matrix is often 

used to make the computation of the final score for the alignment more efficient. 

There are five symbols that we consider as indicated in Table 3.  

Table 3 Substitution matrix for sequence alignment 

 A C G T N 
A 1

4

!

 
2
1

1
4

3
4  

2
1

1
4

1
2  

2
1

1
4

3
4  

1
4  

C 2
1

1
4

3
4  1

4

!

 
2
1

1
4

3
4  

2
1

1
4

1
2  

1
4  

G 2
1

1
4

1
2  

2
1

1
4

3
4  1

4

!

 
2
1

1
4

3
4  

1
4  

T 2
1

1
4
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4
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1
4  

N 1
4  

1
4  

1
4  

1
4  

1 
 

 

For example, consider a sequence X1 = GCTATAA and X2 = CTGCTACN.  

Suppose both of these are considered for the n-gram GCTA. In this case, X2 would 

be the left sequence in the join, and X1 would be the right as indicated in Figure 15. 
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        Region: 
                    A         B        C 
            Xi = CTGCTACN 
            Xj =      GCTATA A      

Figure 15 Example of sequence alignment and score calculation 

 

Regions A and C are calculated as follows: 

 

Region B requires the substitution matrix and a nucleotide-to-nucleotide 

comparison. 

G −G = − log(0.25*0.25) =1.2041
C −C = − log(0.25*0.25) =1.2041
T −T = − log(0.25*0.25) =1.2041
A− A = − log(0.25*0.25) =1.2041
C −T = − log((2C1)*0.25*0.50) = 0.9031
N − A = − log(0.25) = 0.6021
Sum = 6.3212

 

Therefore, the score S is the sum of the three regions. 

S = 0.2486+ 6.3212+ 0.1241= 6.6939  

 

3.3.3 Assembly 
 

The assembly function combines the two reads with the highest probability score 

calculated in the previous section and forms a new contig – a set of overlapping 

reads that represent a consensus region of DNA. Given two indices i and j for reads 

A = − log(0.75*1.0012 )− log(0.75*1.0011) = 0.2486
C = − log(0.75*1.0011) = 0.1241
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in 𝑫!", let Xi and Xj be the two reads with the highest join score. Similar to the 

determining optimal joins function, Xi and Xj are separated into three similar 

regions. The reads are arranged such that region A is found only on 𝑋! while region 

C is found only on 𝑋!. Region B is the overlap of 𝑋! and 𝑋! and is thus found in both 

reads. Adding regions A and C to the new contig is straightforward, however region 

B requires the comparison of two separate read sequences. A character-to-character 

comparison is made for each nucleotide in B. In Region B, given 𝑋!,!   and 𝑋!,! to be 

the nucleotide characters at position 𝑘 for read 𝑋! and 𝑋!, 𝐽! to be the nucleotide at 

position 𝑘 at newly formed contig 𝐽, and 𝑄𝑉!!,! and 𝑄𝑉!!,! to be the quality value 

sequences for  𝑋! and 𝑋! at position 𝑘, the comparison rules are: 

1. If 𝑋!,! = 𝑋!,! then 𝐽! = (𝑋!,!   |  𝑋!,!) 
2. If 𝑋!,! ≠ 𝑋!,! then  

a. If  𝑄𝑉!!,! > 𝑄𝑉!!,! then 𝐽! =   𝑋!,! 

b. If  𝑄𝑉!!,! < 𝑄𝑉!!,!then 𝐽! =   𝑋!,! 

3. If 𝑋!,! = 𝑁 and 𝑋!,! ≠ 𝑁 then 𝐽! = 𝑋! 
4. If 𝑋!,! ≠ 𝑁 and 𝑋!,! = 𝑁 then 𝐽! = 𝑋! 
5. If 𝑋!,! = 𝑁 and 𝑋!,! = 𝑁 then 𝐽! = 𝑁 

This can be summarized as follows. If the two nucleotides are the same, add the 

nucleotide to the contig. If they are different, add the nucleotide with the higher 

quality value to the contig. If either nucleotide is a ‘N’, add the other nucleotide. If 

both nucleotides are ‘N’, add a ‘N’ to the contig. After the three regions have been 

merged, if the contig is unique (i.e. there exists no other contigs with that particular 
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sequence) then it is added to the reads vector. Quality values are joined in a similar 

manner. In Regions A and C, the QV is copied over directly. In Region B, the 

average of the two QV scores is added to the contig. 

 

3.3.4 Bookkeeping 
 

The goal of the bookkeeping function is to update the dictionary on the newly 

formed contig. Bookkeeping is broken down into two separate stages. The first step 

is to remove the old read entries. This is accomplished by scanning the entire 

dictionary looking for the readIndices of the two reads used in the join. Let f and g 

correspond to the location in the reads vector for the reads 𝑋! and 𝑋! used in the 

assembly. Next, every entry in D is scanned looking for readIndices containing f 

and g. When either index is found, the readIndices is removed from D. Finally, 

each n-gram of the new contig is added to D similar to the dictionary creation step 

(Section 3.2). Given m being the length of the contig, the number of n-grams added 

is m-n+1. An example of the Bookkeeping step is shown in Figure 16. 

 

Figure 16 Example of the bookkeeping function 
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 Chapter Summary 3.4
 

In this chapter, an overview of the two distinct steps in the assembly methods was 

discussed. First, the dictionary is created by mapping an n-gram to a vector of 

indices corresponding to the location of each instance of the n-gram. Next, the 

assembly is made by iteratively traversing the dictionary. First, the optimal join is 

determined by using a probabilistic method that takes into the consideration the 

occurrence of the join to chance. Next, the actual assembly is made. Finally, a 

bookkeeping step is used to update the dictionary on the newly formed contig.  

 In the next chapter, the results from the implemented assembly methods are 

shown. 
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Chapter 4   

Results 

 

Analyzing a DNA assembly is a difficult task. Typically, due to errors in DNA 

sequencing, complete assemblies are not made. Instead, most assemblers output the 

longest contigs and use a secondary program, like AMOS, to merge the contigs 

together into scaffolds – a portion of DNA reconstructed from contigs and the 

appropriate gaps (“AMOS,” 2010). Therefore, typical assembly metrics are based on 

the N50 value, a measure of the coverage, and the length of the longest contigs. 

Analysis of this thesis project is conducted using simulated data. 

 

 Simulated Data 4.1
 

A simulated data set benefits the researcher by being able to compare the assembly 

results to the known solution. Additionally, since simulated data sets are typically 

smaller than real genomes, the time needed to perform an assembly is decreased 

significantly. For this analysis, two simulated data sets were generated from a self-
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made helper program. A 10,000 nucleotide genome with 20x coverage and an 

average read length of 40, hereby called G10k, and a 100,000 nucleotide genome 

with 16x coverage with an average read length of 50, called G100k, were generated 

using self-made helper programs. The G10k data set resulted in 8,005 reads while 

the G100k data set contained 66,636 reads. The QV score was a strict 40 for every 

nucleotide. 

Analysis was conducted by observing the longest contig and execution time. If 

a complete assembly was not made, the N50 was calculated. A total of 10 trials with 

varying n-gram lengths were run for both G10k and G100k. Figures 17 and 18 show 

the n-gram length and the execution time for G10k and G100k respectively. The 

G100k trials resulted in 6 of 10 being completely assembled while 5 of 10 G10k 

trials were completely assembled for the simulated genomes. The results of all 20 

trials are shown in Table 4 below.  

 

Figure 17 Assembly time of various n-gram lengths for G10k 
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Figure 18 Assembly time of various n-gram lengths for G110k 

 

 Both Figures 17 and 18 indicate that n-gram size greatly impacts the speed of 

an assembly. If an n-gram is too small, the number of occurrences for each n-gram 

increases. This results in a higher execution time to create a matrix and determine 

the optimal join (Section 3.3.2). Conversely, too large an n-gram size results in too 

many unique n-gram occurrences. Consequently, there isn’t enough data to support 

an optimal join of two reads. This can be seen in the larger n-gram trials for both 

G10k and G100k (Figures 19 & 20).  
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Figure 19 Length of longest contig by various n-gram siezes for G10k 

 

Figure 20 Length of longest contig of various n-gram sizes for G110k 
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Table 4 Assembly results for G10k and G100k 

G10k G100k 

n-gram Time (s) N50 
Longest 
Contig n-gram Time (s) N50 

Longest 
Contig 

15 98 188 10000 17 11927 299 100000 
17 92 151 10000 19 11402 264 100000 
19 87 125 10000 21 10935 255 100000 
21 81 105 10000 23 10355 177 100000 
23 72 97 10000 25 9879 170 100000 
25 62 85 9974 27 9437 147 100000 
27 50 82 9949 29 8499 126 99933 
29 41 76 9259 31 7393 114 99933 
31 33 67 2964 33 5811 98 62002 
33 26 62 1499 35 5056 88 15641 

 

 Chapter Summary 4.2
 

In this chapter, experiments were run using simulated datasets for genomes of 

lengths 10,000 and 100,000 (referred to as G10k and G100k respectively). A total of 

20 trial runs of various n-gram lengths were conducted for both G10k and G100k. 

The G10k tests resulted in 5 of the 10 runs being successfully assembled while the 

G100k tests resulted in 6 of 10 successfully assembled trials.  

 In the next chapter, future work and concluding remarks are presented. 
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Chapter 5   

Conclusion and Future Work 

 

This thesis has shown that a probabilistic n-gram based method can be used to 

successfully assemble small length genomes. Using simulated datasets for genomes 

of lengths 10,000 and 100,000 (referred to as G10k and G100k respectively), 10 trial 

runs of various n-gram lengths were conducted for both G10k and G100k for a total 

of 20 trials. The G10k tests resulted in 5 of the 10 runs being successfully 

assembled with a fastest, accurate assembly of 72 seconds. The G100k trials 

assembled 6 of the 10 runs with a fastest, accurate assembly of 9,437 seconds (2:37). 

Both datasets exhibited similar behavior with larger n-grams. The larger the n-

gram, the shorter the longest contig assembled. This is caused by too much 

uniqueness in the dictionary. Too large an n-gram size results in too many unique 

n-gram occurrences. Therefore, there isn’t enough data to support an optimal join of 

two reads.  
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Sequence assembly is a challenging task. Currently, no method, algorithm, or 

implementation solves the whole-genome assembly problem (Miller et al., 2010). 

Mathematically, de novo genome assembly has been proven to be difficult by being 

classified in a set of problems (NP-hard) where there is no efficient computational 

solution (Medvedev, Georgiou, Myers, & Brudno, 2007; E. W. Myers, 1995; Mihai 

Pop, 2009). However, sequence assembly is still an evolving field. With new 

research constantly being published, sequencing and assembly technologies are 

quickly evolving (Chapter 1). Furthermore, there is an expressed interest in 

accurate DNA assemblies (Section 2.6).  

One area in particular that will benefit greatly from improvements in DNA 

sequencing is healthcare. Being able to quickly and accurately sequence a person’s 

genome will allow doctors to get a precise analysis of predisposed illnesses and 

determine the best method of treatment for various ailments. Cancer, for example, 

is notoriously difficult to treat. Recently, improvements in DNA sequencing have 

shown that cancer is not a homogenous region of the same mutated DNA (Gerlinger 

et al., 2012). Instead, there are many mutations that are not consistent across the 

same tumor. Although a momentary setback in cancer treatment research, without 

the advancements in DNA sequencing, researchers would have been focusing their 

time and efforts on incorrect information.  
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DNA sequencing is increasingly becoming an integral role in genomic 

research. As this thesis research has shown, novel methods for whole-genome 

sequence assembly can accurately assemble small length genomes. However, much 

work is still yet to be done. As technology advances, the volume of data generated 

by high-throughput sequencing will continue to increase. Assembly algorithm 

developers will have to continue to adapt to the endless challenges associated with 

de novo assemblies. Assembly is not a solved problem, but continued advancements 

can greatly change the biological research landscape for years to come. 

 

 Future Work 5.1
 

Further optimization of the assembly program can be achieved in many areas. The 

utilization of paired-ends and scaffolding would greatly increase the size of the 

assembled genome. In DNA sequencing, the length of the fragments typically 

exceed the read length achievable by a sequencing technology (Mihai Pop, 2009). 

Therefore, only the ends of the fragments are sequenced. This results in a collection 

of read pairs that are separated by a known distance (the size of the original 

fragment) (Schatz et al., 2010). Paired-ends allow for assemblies larger than the 

length of the individual reads. This is accomplished by creating scaffolds – genome 

sequences reconstructed from contigs and gaps. Scaffolding allows for the joining of 
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two contigs even if there is no discernible overlap. Since the length is known 

between two paired-ends, the number of bases between two contigs that contain two 

paired-ends can be calculated. The scaffolding of two contigs with five sets of paired 

ends is given in Figure 21.  

 

Figure 21 Example of scaffolding using two contigs and five paired-ends 

 

Parallelization, however, would provide the best speed improvements by 

drastically decreasing the time needed to perform an assembly. In computing, 

parallelization is the act of performing many calculations simultaneously (Almasi & 

Gottlieb, 1989). The advent of multi-core processors and multi-processor computers 

has placed an increased emphasis on parallel computing. However, parallelizing a 

program is notoriously much more difficult to program than sequential ones 

(Patterson, 1998). New software bugs are introduced when one process or thread is 

trying to access a block of memory that is shared between all other processes. Also 

called race conditions, problems can arise when multiple processes try to read and 

write the same block of information at the same time. Resolving this situation 
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requires the use of locks. When one process is accessing a shared block of memory 

the memory location is locked. All other processes must wait until the memory is 

updated and unlocked before another process has access to that bit of information.  

 In this thesis, parallelization would prove to be most useful in the assembly 

method. The profiling tool Callgrind from the Valgrind suite was used to analyze 

the timing and call history of the program (Weidendorfer & Kowarschik, 2004). 

Based on the results, upward of 70% of the processing time is spent in the 

bookkeeping function (Appendix B.2). Using two threads to update the dictionary 

would greatly reduce the time necessary to traverse the map. One thread would 

start at the top of the dictionary and work down while another would start at the 

bottom of the dictionary and traverse up. Once they meet the dictionary is fully 

updated. This process is outlined in Figure 22. 

 

Figure 22 Overview of possible parallelization in the bookkeeping function 
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Appendix A  

Functionality 

 

Below is an explanation on the functionality and use of the program. The running of 

the program assumes that the program name is ngassemble. An explanation of the 

configuration file is outlined in Appendix A.2. 

 

A.1 How to Run the Program 
 

Usage: ngassemble [CONFIG] [OVERRIDES] 

CONFIG is the name of the configuration file.  

OVERRIDES follows the format –O[KEY]=[VALUE] where KEY is the key name 

in the configuration file and VALUE is the value to change the 

key to. This overrides the value in the configuration file. 

OVERRIDES is useful when running the program in a script and 

changing the value of a certain key each iteration is unwieldy. 

Multiple overrides (-O) can be used to change multiple keys.  
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A.2 Configuration File 
 

ngramSize is the size of the n-gram to analyze. The ngramSize is also 
used in preprocessing. If the read length is less than the 
ngramSize the read is discarded.  

dataFile is the data file to analyze. This can either be a FASTQ or 
FASTA file. FASTQ files will be assembled. FASTA files are used 
for analysis of n-grams.  

machineSequencer is the machine type used to generate the data file. 
This can be either sanger, 454, solexa, or illumina. Each machine 
type has a different QV calculation. 

percentN is the maximum percentage of N allowed in data preprocessing. 
The value is represented as a percent. For example, the value 76 
is interpreted as 76%. A read is discarded if percentN < the 
actual percentage of N in the read. Therefore, a percentN of 100 
allows for no preprocessing of the N percentage. 

qualityScore is the minimum average quality score to allow in data 
preprocessing. If the average read QV is less than the 
qualityScore the read is discarded. A qualityScore of 0 allows 
for no preprocessing of the QV.  

percentMiss is the maximum percentage of mismatches allowed when 
attempting to join two reads. The value is represented as a 
percent. For example, the value 5 is interpreted as 5%. If the 
percentage of mismatches is greater than the percentMiss the join 
will not be made. 

runPerform is a print option to only print out the performance 
metrics. This includes the number of reads excluded based on n-
gram size, QV score, and percentage of Ns. The final longest 
contig and N50 value is also printed after completion of the 
assembly. This option is useful when running in bash scripts 
since it prints out the minimal amount of information. 

runPrint is a print option to only print out the map after completion 
of the assembly. The excluded reads are also printed. 

runPercentN is a print option to print out the percentage of Ns for 
each read in the read list. The excluded reads are also printed. 
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runQV is a print option to print out the average QV score for each 
read in the read list. The excluded reads are also printed. 

runSequence is a print option to print out all the sequences and their 
QV score for each read in the read list. The excluded reads are 
also printed. 

runGeneric is a print option to print out the runPerform in addition 
to the time it takes to complete the assembly. 

printConfigDB is a print option to print out the configuration file. 
The excluded reads are also printed. 

printMap is a print option to print out the n-gram map. The excluded 
reads are also printed. 

printFrags is a print option to print out the read list. The excluded 
reads are also printed. 

printContigs is a print option to print out the contigs after 
assembly. This is useful when the genome is not fully assembled 
and the contigs need to be imported into another program for 
coverage analysis. The excluded reads are also printed. 

printAnalyses is a print option to print out the final read list and 
map. The excluded reads are also printed. 

printLongest is a print option to print out the longest contig after 
assembly. The excluded reads are also printed. 

printN50 is a print option to print out the N50 score after assembly. 
The excluded reads are also printed. 

printAvgQV is a print option to print out the average QV score for 
each read in the read list. The excluded reads are also printed. 

outputContigs is an option to export the contigs to a separate file 
for additional analysis. This is useful when the genome is not 
fully assembled and the contigs need to be imported into another 
program for coverage analysis. The printContigs flag must also be 
set to TRUE. The excluded reads are also printed. 
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Appendix B 

UML and Profiling 

In Computer Science, UML, short for Unified Modeling Language, is a way to show 

relations and structures between different classes in a program. A UML diagram 

lists the classes and member data used in a project. The UML diagram for this 

thesis was constructed using ArgoUML (Medvedev et al., 2007; E. W. Myers, 1995; 

Mihai Pop, 2009).  

B.1 UML 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 UML diagram for project 
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B.2 Callgrind Profiling Analysis 
 

Profiling was conducted using Callgrind, part of the Valgrind suite of utilities 

(Weidendorfer & Kowarschik, 2004). Timing and call history analysis was recorded 

and a graph was generated. The figure is displayed below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 Callgrind analysis of the assembly method 
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Appendix C 
Glossary 
 

Alignment  A way of rearranging and comparing DNA to identify similarities 

between the sequences. 

Base pairing  In DNA, when a nucleotide on one strand interacts with an 

appropriate base on the other strand. 

Bioinformatics  The interdisciplinary field between biology, statistics, and 

computer science. 

Contig  A set of overlapping DNA segments that together represent a consensus 

region of DNA. 

Dideoxynucleotides  Modified deoxynucleotides used in the Sanger method of 

DNA sequencing to terminate the strand. This prevents the addition of further 

nucleotides. 

FASTA  The de facto standard in bioninformatics for storing DNA and protein 

sequence data. 

Flow cell  A liquid stream which carries and aligns the DNA. This aids in binding 

the DNA to enzymes and the cell surface for manipulation. 

Fragment  Short sections of DNA whose sequence is unknown.  

Map  A C++ Standard Library associative container. A map stores information by a 

combination of a key and corresponding maped value. 
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N50  A metric used to evaluate an assembly. It is defined as the largest number L 

such that the combined length of all contigs of length greater than or equal to L is 

at least 50% of the total length of all contigs. 

NCBI  The National Center for Biotechnology Information. The NCBI stores 

genome sequencing data from thousands of organisms. 

Parallelization  A form of computation where many calculations are performed 

simultaneously. 

PCR  Polymerase chain reaction is a scientific technique in molecular biology to 

amplify a single or a few copies of a piece of DNA across several orders of 

magnitude, generating thousands to millions of copies of a particular DNA 

sequence. 

Process  In parallel computing, an instance of a computer program that is being 

executed. A process can be divided into multiple threads. 

Purines  The nucleotides adenine (A) and guanine (G). 

Pyrimidines  The nucleotides cytosine (C) and thymine (T). 

Race conditions  In parallel computing, when multiple processes try to access 

shared blocks of memory. Problems can arise when multiple processes try to read 

and write the same block of information at the same time. 

Reads  Short fragments of DNA outputted from genome sequencers whose 

sequence is known. 

Sequence assembly  A concentration of bioninformatics that refers to aligning and 

merging reads of a much longer DNA sequence in order to reconstruct the original 

sequence. 
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Scaffold  In whole-genome sequencing , a portion of DNA reconstructed from 

contigs and the appropriate gaps.  

Thread  In parallel computing, the smallest subunit of processing allowed by the 

operating system. A process can be divided into multiple threads. 
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