
Bucknell University
Bucknell Digital Commons

Honors Theses Student Theses

Spring 2012

Utilization of Probabilistic Models in Short Read
Assembly from Second-Generation Sequencing
Matthew W. Segar
Bucknell University, mws022@bucknell.edu

Follow this and additional works at: https://digitalcommons.bucknell.edu/honors_theses

Part of the Theory and Algorithms Commons

This Honors Thesis is brought to you for free and open access by the Student Theses at Bucknell Digital Commons. It has been accepted for inclusion in
Honors Theses by an authorized administrator of Bucknell Digital Commons. For more information, please contact dcadmin@bucknell.edu.

Recommended Citation
Segar, Matthew W., "Utilization of Probabilistic Models in Short Read Assembly from Second-Generation Sequencing" (2012).
Honors Theses. 97.
https://digitalcommons.bucknell.edu/honors_theses/97

https://digitalcommons.bucknell.edu?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/honors_theses?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/student_theses?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/honors_theses?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/honors_theses/97?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@bucknell.edu

Utilization of Probabilistic Models in Short Read
Assembly from Second-Generation Sequencing

by

Matthew W. Segar

A Thesis

Presented to the Faculty of
Bucknell University

In partial Fulfillment of the Requirements for the Degree of
Bachelor of Arts with Honors in Computer Science

May 10, 2012

Approved: __

 Dr. Brian King
 Thesis Advisor

__

 Dr. Daniel Hyde
 Acting Chair, Department of Computer Science

 ii

Acknowledgements

 This thesis would not have been possible without the support of many people.
I would like to take this time to thank these individuals for their continued
encouragement and belief in me throughout my time at Bucknell:

• First and foremost, Dr. Brian King, for all his guidance, help, and patience in
introducing me to the crazy field of bioinformatics. I’ve enjoyed the time we’ve
spent rambling on about our lives and I appreciate all you knowledge you’ve
instilled upon me. I can’t thank you enough.

• Peg Cronin, for her knowledge and expertise in helping me write this thesis. I
came to you as a nervous and timid writer and you taught me techniques that
I will carry with me for years to come. This thesis would not have been
possible without your help.

• Professor L. Felipe Perrone and Professor Sharon Garthwaite, for helping me
understand the thesis defense process and taking the time out of your busy
schedules to be my faculty readers.

• Aurimas Liutikas, for helping me immensely the last 4 years. I’ve thoroughly
enjoyed talking technology with you and I can’t thank you enough for all the
support you’ve given me.

• Family and friends, for supporting me throughout this entire thesis process.

 iii

Table of Contents

Acknowledgements .. ii	

Table of Contents .. iii	

List of Tables .. v	

List of Figures .. v	

Abstract ... 1	

Chapter 1	 Introduction ... 2	

	 Introduction to Bioinformatics ... 2	 1.1

	 Sequence Assembly ... 3	 1.2

	 Chapter Summary .. 5	 1.3

Chapter 2	 DNA Sequencing and Assembly ... 7	

	 Biology Background .. 8	 2.1

	 The Sanger Method ... 10	 2.2

	 Next-Generation Sequencing ... 12	 2.3

	 The FASTQ Format .. 13	 2.4

	 Assembly Methods .. 16	 2.5

2.5.1	 Reference-based Assembly ... 17	

2.5.2	 De novo Assembly ... 18	

	 The Need for Accurate Assemblies .. 22	 2.6

	 Chapter Summary .. 23	 2.7

Chapter 3	 Methods and Implementation .. 24	

	 Pre-Processing ... 24	 3.1

	 n-gram Dictionary ... 26	 3.2

	 Assembly ... 27	 3.3

3.3.1	 Notation .. 28	

3.3.2	 Determining Optimal Joins ... 29	

3.3.3	 Assembly ... 34	

3.3.4	 Bookkeeping .. 36	

 iv

	 Chapter Summary .. 37	 3.4

Chapter 4	 Results ... 38	

	 Simulated Data ... 38	 4.1

	 Chapter Summary .. 42	 4.2

Chapter 5	 Conclusion and Future Work ... 43	

	 Future Work .. 45	 5.1

Bibliography ... 48	

Appendix A Functionality .. 51	

A.1 How to Run the Program .. 51	

A.2 Configuration File ... 52	

Appendix B UML and Profiling ... 54	

B.1 UML ... 54	

B.2 Callgrind Profiling Analysis ... 55	

Appendix C Glossary .. 56	

 v

List of Tables

Table 1 Summary of nucleotide single-letter abbreviations 10	

Table 2 Summary of the three described FASTQ variants .. 15	

Table 3 Substitution matrix for sequence alignment ... 33	

Table 4 Assembly results for G10k and G100k ... 42	

List of Figures

Figure 1 Number of genomes in RefSeq by year ... 4	

Figure 2 Cost per genome by year ... 5	

Figure 3 The two base pairs of DNA .. 9	

Figure 4 Potential reads produced from the addition of ddGTP 11	

Figure 5 Gel electrophoresis and corresponding wavelengths 11	

Figure 6 Sequence read over many chemistry cycles ... 13	

Figure 7 Example of a minimal FASTQ file .. 14	

Figure 8 Shortest common supersequence of two reads ... 17	

Figure 9 Set of 8 8-bp reads and corresponding de Bruijn graph 20	

Figure 10 A sample N50 calculation using 9 contigs .. 22	

Figure 11 Example of reads and the corresponding dictionary 27	

Figure 12 Outline of the dictionary creation method ... 27	

Figure 13 Top-level outline of main assembly function .. 28	

Figure 14 Arrangement of two reads for assembly ... 31	

 vi

Figure 15 Example of sequence alignment and score calculation 34	

Figure 16 Example of the bookkeeping function ... 36	

Figure 17 Assembly time of various n-gram lengths for G10k 39	

Figure 18 Assembly time of various n-gram lengths for G110k 40	

Figure 19 Length of longest contig by various n-gram siezes for G10k 41	

Figure 20 Length of longest contig of various n-gram sizes for G110k 41	

Figure 21 Example of scaffolding using two contigs and five paired-ends 46	

Figure 22 Overview of possible parallelization in the bookkeeping function 47	

Figure 23 UML diagram for project ... 54	

Figure 24 Callgrind analysis of the assembly method ... 55	

 1

Abstract

With the advent of cheaper and faster DNA sequencing technologies, assembly

methods have greatly changed. Instead of outputting reads that are thousands of

base pairs long, new sequencers parallelize the task by producing read lengths

between 35 and 400 base pairs. Reconstructing an organism’s genome from these

millions of reads is a computationally expensive task. Our algorithm solves this

problem by organizing and indexing the reads using n-grams, which are short,

fixed-length DNA sequences of length n. These n-grams are used to efficiently

locate putative read joins, thereby eliminating the need to perform an exhaustive

search over all possible read pairs. Our goal was develop a novel n-gram method for

the assembly of genomes from next-generation sequencers. Specifically, a

probabilistic, iterative approach was utilized to determine the most likely reads to

join through development of a new metric that models the probability of any two

arbitrary reads being joined together. Tests were run using simulated short read

data based on randomly created genomes ranging in lengths from 10,000 to 100,000

nucleotides with 16 to 20x coverage. We were able to successfully re-assemble entire

genomes up to 100,000 nucleotides in length.

 2

Chapter 1

Introduction

The goal of this project is to develop a novel method for the assembly of short read

data generated from Next-Generation Sequencers (NGS). Chapter 1 discusses the

importance of bioinformatics and describes the recent explosion of biological data.

Chapter 2 provides an explanatory background on DNA biology and the

advancements in DNA sequencing technologies. Also, the FASTQ file format and

previous methods are discussed. Chapter 3 describes the methods and

implementations used in the assembler. Chapter 4 details results and discusses

metrics used analyzing an assembly. Chapter 5 discusses possible future work and

conclusion.

 Introduction to Bioinformatics 1.1

In this day and age, computers are an integral part of nearly every aspect of life.

Computers allow us to simplify tasks and solve difficult and time-consuming

 3

problems. One field in which computers are playing an increasing role is biology.

Bioinformatics is the application of statistics and computer science to the field of

molecular biology. Computers now are being used to collect, archive, organize, and

interpret biological data. Due to the efforts of bioinformaticians worldwide, great

strides are being made toward developing an understanding of the biological

functions on a level that we have not ever seen.

There is an overwhelming amount of biological data. Organizations, such as

the National Center for Biotechnology Information (NCBI), maintain and house

genome-sequencing data from thousands of organisms. However, the difficulty lies

in trying to interpret and understand the ever-increasing amount of biological

information. In response to this influx of data, a large number of tools have been

developed to aid researchers in accomplishing these tasks, such as locating genes in

a newly discovered genome, understanding various interactions between cells, and

understanding how a protein folds (Baxevanis, 2004). One area in particular that

has received significant attention is sequence assembly.

 Sequence Assembly 1.2

Sequence assembly is a specific category of bioinformatics that pertains to the

alignment and reassembly of DNA fragments (M. Pop, Salzberg, & Shumway,

 4

2002). Typically this is seen in DNA sequencing where genome sequencers cannot

read the entire genome. Instead, current sequencing technologies split the genome

into millions of reads, short fragments of DNA, to speed up the task (Section 2.3).

The goal is then to use a computer program to reassemble the separated genome.

However, these newer technologies have resulted in an enormous increase in

sequenced and unassembled genomes. As of March 5, 2012, the NCBI non-

redundant sequence database contained 16,923 completed DNA sequences (“NCBI

Reference Sequence (RefSeq),” 2012; Pruitt, Tatusova, Klimke, & Maglott, 2009).

Even more astonishing is the exponential increase with which the genomes are

being sequenced (Figure 1). This inequality results in a great disparity between the

number of genomes sequenced and genomes that have been assembled an analyzed.

Therefore, the use of computers is essential in reassembling and examining the

enormous amounts of sequenced data.

Figure 1 Number of genomes in RefSeq by year

0	

1000	

2000	

3000	

4000	

1998	 2000	 2002	 2004	 2006	 2008	 2010	

Number	 of	 Genomes	 Complete	 and	 Incomplete	 by	 Year	

Complete+Incomplete	
Complete	

 5

 Besides increasing the amount of data, one major advantage to newer

sequencing technologies is the rapidly decreasing costs of sequencing new genomes

(Figure 2). Eventually, whole-genome sequencing will fall to below $1,000. The

$1,000 genome has long been considered the tipping-point for personalized medicine

(Davies, 2010). The idea is that once the price drops below that amount, it will

finally be cost effective enough to allow doctors to deliver treatment based on a

patient’s genetic makeup. Instead of administering treatments based on tests and

symptoms, a physician will now be able to study a patient’s genome to make

diagnoses and perfect treatments in everything from diabetes to Alzheimer’s.

Figure 2 Cost per genome by year

 Chapter Summary 1.3

In this chapter, the importance of bioinformatics and its applications was discussed.

Additionally, the importance of sequence assembly was emphasized. Newer

	 $1,000	 	

	 $10,000	 	

	 $100,000	 	

	 $1,000,000	 	

	 $10,000,000	 	

	 $100,000,000	 	

4/01	 9/02	 1/04	 5/05	 10/06	 2/08	 7/09	 11/10	 4/12	

Cost per Genome by Year

 6

technologies have greatly increased the amount of biological data generated. It is

the goal of advanced computer programs to reassemble this data into the original

genome. Eventually, whole-genome sequencing will be cheap enough for physicians

to treat patients based on their genome sequence and prescribe specific treatments

based on that information.

 In the next chapter, the specifics of DNA sequencing are examined.

 7

Chapter 2

DNA Sequencing and Assembly

The Deoxyribonucleic Acid (DNA) sequence represents the blueprint of every living

organism. Understanding this sequence has been crucial in biological research.

Ever since Watson and Crick first correctly presented the structure of DNA in 1953,

much work has been focused on determining the order of nucleotide bases.

However, it wasn’t until 1975 that Frederick Sanger developed a method that was

fast enough to enable researchers to finally sequence small genomes (Section 2.2).

Ever since then, there has been much research on accelerating the sequencing

process. Knowledge of the DNA sequence allows researchers to search for

regulatory and gene sequences and subsequently compare sequences between

species. Sequence comparisons also aid researchers in identifying mutations in

unhealthy cells and cancers.

In this chapter, a biological review of DNA will be discussed. The majority of

the chapter presents the technologies used in the Sanger method of DNA

 8

sequencing and the more modern Next-Generation Sequencing (NGS) models

(Section 2.3). Finally, an overview of the FASTQ file format (Section 2.4) and other

assembly methods (Section 2.5) will be examined.

 Biology Background 2.1

In all known living organisms, deoxyribonucleic acid (DNA) is the basic genetic

material found in all cells. DNA, often referred to the “blueprint of life,” carries the

instructions for making all the materials and structures needed for a cell to survive.

The structure of DNA contains two parts: a backbone and a nitrogenous base. The

backbone of a DNA molecule contains alternating phosphate and sugar residues.

Attached to the backbone can be one of four nitrogenous bases or nucleobases. Since

the backbone of DNA is the same, it is the specific nucleobase that characterizes

each nucleotide. The four bases found in DNA are adenine (abbreviated A), cytosine

(C), guanine (G), and thymine (T). Furthermore, nucleobases can be classified into

one of two types: purines, A and G, and pyrimidines, T and C (Freeman, 2011).

 9

Figure 3 The two base pairs of DNA

 DNA is a double helix, forming a unique, stable structure where each

nucleobase on one strand interacts with an appropriate base on the other. Also

called base pairing, one purine molecule hydrogen bonds to one pyrimidine.

Furthermore, as seen in Figure 3, an A will only bind to a T and a C will only bind

to G (Isilanes, 2007). As stated earlier, each nucleotide is represented using a

unique letter. However, in DNA sequencing, ambiguities can arise. For example, it’s

possible for a nucleotide to be G or a C in a sequence. Therefore, the International

Union of Pure and Applied Chemistry (IUPAC) developed abbreviations for

different permutations of nucleic acids as specified in Table 1 below.

 10

Table 1 Summary of nucleotide single-letter abbreviations

Symbol Meaning Origin of Designation
G G Guanine
A A Adenine
T T Thymine
C C Cytosine
R G or A puRine
Y T or C pYrimidine
M A or C aMino
K G or T Keto
S G or C Strong interaction (3 H bonds)
W A or T Weak interaction (2 H bonds)
H A or C or T not-G, H follows G
B G or T or C not-A, B follows A
V G or C or A not-T, V follows U
D G or A or T not-C, D follows C
N G, A, T, or C aNy

 The Sanger Method 2.2

In 1975, Frederick Sanger developed a chain-terminated method that quickly

became the method of choice for DNA sequencing. First, the DNA strands are

denatured, or separated, using heat. The solution is then divided into four tubes

corresponding to the four nucleotides. Next, dideoxynucleotides (ddNTP) are added

in addition to the normal nucleotides (NTP). Dideoxynucleotides are similar to

normal nucleotides except they prevent the addition of further nucleotides (hence

the name chain-terminated method). As the base-strand of DNA is synthesized,

normal nucleotides are added to the complementary strand. However, on occasion, a

ddNTP is added instead of a normal nucleotide that prevents the further growth of

 11

the strand. This results in many reads of various lengths. For example, strands

terminated with a G-dideoxynucleotide (ddGTP) may result in reads as seen in

Figure 4.

 ATG
 ATGCTTCG
 ATGCTTCGG
 ATGCTTCGGAAG

Figure 4 Potential reads produced from the addition of ddGTP

 The process of adding ddNTP and NTP is repeated for the other respective

tubes. This results in the whole DNA sequence being terminated at each nucleotide.

As seen in Figure 5, each tube is run in separate lanes on a polyacrylamide gel in

order to separate each strand by size (Lakdawalla, 2007). The lanes are then

merged and read using a computer. Since each chain-terminated dye fluoresces at a

different wavelength, a laser can be used to identify each nucleotide in the gel.

Figure 5 Gel electrophoresis and corresponding wavelengths

 12

 Next-Generation Sequencing 2.3

The advent of new sequencing technologies has radically lowered the cost of

sequencing large-scale genomes (Section 1.2). Next-Generation sequencing

technologies from 454 LifeSciences/Roche and Solexa/Illumina revolutionized the

methodologies used in whole-genome sequencing. Next-Generation Sequencers

(NGS) parallelize the sequencing task by splitting the copies of DNA into millions of

smaller reads and sequencing them simultaneously (Schatz, Delcher, & Salzberg,

2010).

First, the DNA sample is sheared into a collection of fragments using acoustic

waves (Mardis, 2008). Special proprietary adapters are then added to the ends of

the DNA fragments to aid in binding to the flow cell surface. The flow cell is a

specialized surface that aids the binding of DNA and enzymes to the cell surface for

manipulation. The fragments are then size separated to determine the optimal

fragment length for cloning. Next, the chosen fragments are used as a template

strand and cloned using polymerase chain reaction (PCR). PCR is a technique used

to drastically amplify the number of copies of a certain region of DNA. The

fragments are washed over the flow cell, which then bind randomly to the surface.

Subsequently, the DNA undergoes another cloning step to form clusters of the same

fragment on the flow cell surface. Next, the four bases are added one at a time to

 13

the flow cell. Since each base emits a certain color dye, a camera can be used to

image the flow cell after each round as seen in Figure 6 (Mardis, 2008).

Finally, from this image, the DNA sequence can be generated for thousands

of DNA fragments at the same time resulting in a collection of reads – DNA

sequences whose sequence is known (Mihai Pop, 2009). This is accomplished by

using a computer to analyze certain pixels in the image. Since the location of the

DNA reads does not change, a change in pixel color at a specific location

corresponds to a different nucleotide in the sequence. For example, as indicated in

Figure 6, the yellow ‘G’ in the first slide changes to a blue ‘C’ in the next.

Figure 6 Sequence read over many chemistry cycles

 The FASTQ Format 2.4

In DNA sequencing, the FASTQ file format has emerged as the de facto format for

sharing NGS data between tools (Cock, Fields, Goto, Heuer, & Rice, 2010).

Sequencing instruments such as Roche/454 and Illumina/Solexa use the FASTQ

format for storing their outputted data. Developed by the Wellcome Trust Sanger

Institute, the FASTQ format combines the FASTA sequence and the corresponding

quality data. The file format normally uses four lines per read and encodes the

 14

nucleotide and quality value with a single ASCII character (Figure 7). The first line

begins with a ‘@’ character and only contains a header and optional sequence

identifier. Line 2 is the nucleotide sequence of the DNA read outputted from the

sequencer. The third line begins with a ‘+’ character and, similar to Line 1, only

contains a header and optional sequence identification. Finally, Line 4 contains the

quality values for the corresponding nucleotides in Line 2.

@SRR090119.2 length=25
TTACAAGTCAAAGCCCTAACCGGTA
+SRR090119.2 length=25
@8;==4<<<EA3<?;$<A9?7B:=@

Figure 7 Example of a minimal FASTQ file

Typically, software tools such as PHRED, the industry standard nucleotide

identification software package, are used to determine the nucleotide and

corresponding quality value (Ewing & Green, 1998). The quality value, also called

the PHRED score, is an integer indicating the likelihood that the sequencer

generated the correct nucleotide. By definition, the quality value QV is derived from

the probability P that the base call is incorrect as defined in (Cock et al., 2010):

𝑄𝑉!"#$% = −10 ∗ 𝑙𝑜𝑔!"(𝑃)

For example, a quality score of 30 would correspond to a base call accuracy of

99.9%.

 15

Each machine technology encodes the quality value using their own scoring

mechanism. A standard approach to address this non-uniformity is to standardize

the score to follow the original PHRED standard. The Sanger FASTQ files use the

ASCII values 33-126 to encode PHRED scores of 0-93. This corresponds to a

PHRED score with an ASCII offset of 33. Solexa sequencing uses a logarithmic

mapping with scores ranging from -5 to 62. The equation to convert the Solexa

quality value into PHRED is:

𝑄𝑉!"#$%& = 10 ∗ 𝑙𝑜𝑔!"(10
!"!"#$%

!" − 1)

Illumina sequencing initially used the Solexa format but eventually switched

to a third FASTQ variant (Cock et al., 2010). The Illumina FASTQ encode PHRED

scores ranging from 0-62 and corresponds to an ASCII score of 64-126 (i.e. an offset

of 64). A summary of the three FASTQ variants is described in the table below

(Cock et al., 2010).

Table 2 Summary of the three described FASTQ variants

Description, name ASCII characters Quality scores
Range Offset Type Range

Sanger standard
 fastq-sanger

33-126

33

PHRED

0 to 93

Solexa
 fastq-solexa

59-126

64

Solexa

-5 to 62

Illumina
 fastq-illumina

64-126

64

PHRED

0 to 62

 16

 Assembly Methods 2.5

By definition, an assembly is a hierarchical data structure that maps the sequence

data to the putative reconstruction of the target (Miller, Koren, & Sutton, 2010).

Since a genome is sequenced in only small portions, a software program can be used

to reassemble the complete genome. Software assemblers focus on one obvious

assumption: if two sequence reads share a common overlapping substring of letters,

then it is because they are likely to have originated from the same chromosomal

region in the genome (Narzisi & Mishra, 2011).

The general algorithm behind sequence assembly is straightforward. A large

number of candidate pairs of reads are tested to see if they can be joined based on

the assessment of various characteristics of the overlapping region between the

reads. A scoring mechanism is used to quantitatively compare different putative

joined reads. The algorithm picks the highest scoring overlap before merging the

two reads. The process is repeated until no more moves/merges can be made.

The problem of sequence assembly is similar to the problem of finding the

shortest common supersequence (SCS), a well-known problem in computer science

(Cormen et al., 2009). The SCS is defined as a common superstring of minimum

length between two given sequences. In other words, sequence C is a supersequence

of subsequences A and B if the shortest sequence C contains both subsquences A

 17

and B. For example, given two sequences A = ACGCTAC and B = CTGACA, the

SCS of A and B is: C = ACGCTGACA as indicated in Figure 8. Therefore, sequence

C is the shortest sequence that contains both A and B.

A = ACGCT AC
 B = C TGACA
 C = ACGCTGACA

Figure 8 Shortest common supersequence of two reads

It is important to note that there exists two approaches for the assembly of

genomes: de novo and reference-based. De novo methods are aimed at

reconstructing genomes that are not similar to any organism previously sequenced

(Mihai Pop, 2009). Conversely, reference-based assemblers use the sequence of a

closely related organism to aid the assembly process. This thesis project focuses on

de novo assemblies, however, for sake of completeness, both method backgrounds

are briefly discussed.

2.5.1 Reference-based Assembly

Reference-based assembly, also called mapped assembly, replaces overlap detection

with alignment against a similar genome. Similar to the shortest common

subsequence problem, an alignment is a way of rearranging and comparing DNA to

identify commonalities between the sequences (Baxevanis, 2004). An alignment

 18

increases the number of matches between the sequences in order to increase the

similarities between them. This is accomplished by taking the DNA sequences and

adding gaps to one or both sequences in order to maximize the similarities between

the reads. Computationally, reference-based assemblies are much faster since it

eliminates the need for determining overlaps (Mihai Pop, 2009). First, the

sequenced reads are aligned to the reference sequence under the assumption that

the reference is similar to the newly sequenced genome. Next, the alignment is used

to compute a consensus sequence of the new genome. However, this approach is

error-prone if the reference is vastly different than the sequenced reads (“NCBI:

Assembly Basics,” 2012).

2.5.2 De novo Assembly

The method of analyzing and determining the evaluation of overlaps for de

novo assemblers falls into two main categories: greedy and graph-based. A greedy

algorithm is an algorithm that makes the optimal choice at each stage of the

problem solving process. Even though a greedy algorithm is fairly easy to

implement, a major flaw is that it focuses too much on the current stage and ignores

long-term optimal joins. Furthermore, the memory requirements to implement such

algorithms are expensive. Current implementations require up to one gibabyte of

RAM for each megabase of assembled sequence (M. Pop et al., 2002). For both of

 19

these reasons, the effectiveness of greedy algorithms is limited. Currently, TIGR,

CAP3, and PHUSION are well-known assemblers in this category (Huang &

Madan, 1999; Mullikin & Ning, 2003; G. G. Sutton, White, Adams, & Kerlavage,

1995).

 To combat this problem, a graph-based approach to sequence assembly was

developed. Instead of focusing on the raw sequences, graph-based algorithms start

by preprocessing the sequence to determine overlap information to store in an

unweighted edge-based string-graph (Narzisi & Mishra, 2011). The algorithm first

starts by dividing the sequence into a collection of n-grams, which are short, fixed-

length DNA sequences of length n. Next, a de Bruijn graph is constructed. A de

Bruijn graph is a directed graph where each edge represents a fixed-length overlap

and each node corresponds to overlaps of n-1 bases (Miller et al., 2010). Finally, an

Eulerian path is found containing each edge exactly once (Pevzner, Tang, &

Waterman, 2001). The result is a genome sequence consistent with the n-gram data

on every read (Figure 9). Graph-based algorithms benefit greatly from their speed.

An Eulerian path, in theory, can be calculated in O(n) time.

 20

Figure 9 Set of 8 8-bp reads and corresponding de Bruijn graph

In reality, three main factors cause complications in an assembly. First,

sequencing errors in the read data can cause false-positive joins and mislead the

algorithm (Narzisi & Mishra, 2011). Most assemblers implement an error-correcting

stage to account for such problems. Second, double stranded DNA and palindromes

can cause paths to repeat themselves continuously. Third, and most importantly,

repeat structures cause much of the complexity associated in determining optimal

assemblies. If a repeat is longer than the n-gram, then the graph will have the same

n-gram corresponding to multiple locations on the genome. The algorithm does not

contain enough information to disambiguate the repeat (Miller et al., 2010).

Current examples of de Bruijn graph-based assemblers include Velvet, ABySS, and

SOAPdenovo (R. Li et al., 2010; Simpson et al., 2009; Zerbino & Birney, 2008).

Although all three assemblers utilize a de Bruijn graph, the implementation

and methodologies for each program is different. Velvet makes extensive use of a

graph simplification to reduce non-intersecting paths to single nodes (Miller et al.,

 21

2010). Simplification compresses the graph without losing essential information.

Velvet also has a parameter for the minimum number of n-gram occurrences needed

to be considered a graph node. This step eliminates n-grams that are highly

probable of being error-prone. Velvet utilizes a breadth-first-search to first scan to

the perimeters of the graph and removes reads below a certain threshold (Zerbino &

Birney, 2008). Finally, after other error-avoidance steps, Velvet forms contigs by

traversing the graph similar to Figure 9.

ABySS differentiates itself by distributing the n-gram graph across a

compute grid whose combined memory is typically larger than a traditional desktop

computer (Miller et al., 2010; Simpson et al., 2009). Typically suited for

Illumina/Solexa data sets, AByss assigns each node in the graph to a specific CPU

in the cluster. After running through error-correcting steps, the graph is traversed

to form contigs. However, the traversal is not performed on one CPU. Each node

stores information on the successor node in the traversal. By switching CPUs, the

algorithm offsets the requesting and retrieval of information to other CPUs (Zerbino

& Birney, 2008).

SOAPdenovo is one of the few freely available assemblers capable of

assembling mammalian genome sequences of Illumina/Solexa reads (Miller et al.,

2010). SOAPdenovo utilizes a rigorous error-correcting step to remove any possible

error-prone reads. This saves a significant amount of space, but at the cost of

 22

potentially removing useful read information. Finally, a traversal on the de Bruijn

graph is performed similarly to the methods described above.

 The Need for Accurate Assemblies 2.6

 Even though there are many NGS assemblers currently available, there is no

commonly accepted and standardized method for the task. Additionally, validating

if an assembler outputs the correct sequence is a difficult and time-consuming task.

The most widely accepted metric for evaluating an assembly is the N50 scoring

metric. The N50 is defined as the largest number L such that the combined length

of all contigs of length ≥ L is at least 50% of the total length of all contigs (Narzisi &

Mishra, 2011). An example of an N50 calculation is given in Figure 10.

Figure 10 A sample N50 calculation using 9 contigs

Moreover, the current metrics, whether it is the N50 or contig size, only emphasize

size and not the quality of the joins. In this case, an assembler can sacrifice optimal

 23

joins for longer contigs to give the appearance of outperforming others. There is

thus an expressed interest in the bioinformatics community for an assembler that

takes into consideration the quality of the joins to form an optimal assembly. This

thesis research hopes to address this problem by developing a novel n-gram method

for the assembly of genomes from next-generation sequencers. Specifically, a

probabilistic, iterative approach will be utilized to determine the most likely reads

to join through development of a new metric that models the probability of any two

arbitrary reads being joined together.

 Chapter Summary 2.7

In this chapter, the necessary background information of sequence assembly and

DNA was discussed. For the computer scientist, an introduction to the biology of

DNA and the rules regulating base pairing was presented. DNA sequencing, from

the original Sanger method to today’s current next-generation sequencing, has

greatly transformed the way researchers analyze biological data. The FASTQ file

format and its importance was also explained. Finally, an analysis of previous

methods and their limitations was examined.

 In the next chapter, the specific methods and implementations of the

research program will be discussed.

 24

Chapter 3

Methods and Implementation

The functionality of the program can be broken down into two distinct parts. First,

after being filtered through a data cleaning step, raw sequence reads are read in to

form a dictionary of n-grams. Second, the necessary assembly is made using a novel

method to determine the optimal joining of two arbitrary reads. The assembly also

requires a bookkeeping step to update the dictionary on the newly formed contigs –a

set of overlapping DNA segments that together represent a consensus region of

DNA.

 Pre-Processing 3.1

In data mining, pre-processing is an essential step that precedes data analysis. Pre-

processing allows for the screening of data points to remove out-of-range values,

impossible data combinations, or missing values (Kotsiantis, Kanellopoulos, &

Pintelas, 2006). In sequence assembly, data pre-processing is used to filter and

 25

remove low quality reads. Specifically, three standards are used to remove low

quality reads from the data set and prevent them from being added to the

dictionary. First, the read must be longer than the n-gram length. An n-gram is a

subsequence of DNA of length n and forms a critical basis for indexing all of the

reads, and thus represents the minimal length read allowed. For example, if the

read is 18 characters long but the n-gram length is 22 then the read is too short to

be useful in joining. Second, an entry can be filtered based on the average quality of

the read. A read with a low average QV score does not contain nucleotides with a

high probability of being correct. Thus, low QV scores can result in incorrect joins.

Finally, an entry can be filtered on the percentage of N’s in a read. As seen in Table

1, the IUPAC single-letter abbreviation N appearing in the sequence means that

position in the sequence can be any of the four nucleotides. Therefore, there is no

information on what the nucleotide should be at that particular location. Again, a

high percentage of N’s in a read can result in low quality and improper joins.

Setting a threshold for both the average QV score and percentage of N’s in a read

can eliminate reads that do not contain a high probability of being correct.

 The benefits of data pre-processing are two-fold. First, the size of the

dictionary is minimized. Eliminating low quality data entries in an analysis greatly

speeds up the processing time. In the case of sequence assembly, reducing the

number of entries in the dictionary, without sacrificing quality, can greatly

 26

minimize the number of comparisons needed to determine an optimal join. Finally,

pre-processing limits the data to include only high quality entries. Removing

incorrect reads from the dictionary decreases the probability of forming an incorrect

join.

 n-gram Dictionary 3.2

Before we start an assembly, the initial set of sequence reads must be read and

stored in the system. This is accomplished using FASTQ files (Section 2.4). The

next, and arguably most crucial step, is to map reads to sequences of origin (Horner

et al., 2010). The main data structure to store this information is the C++ Standard

Library map. Maps are a type of associative container that store information based

on a key and mapped value. In this instance, a map is used to match an n-gram to a

vector of read indices. A secondary data structure, called readIndices, is used to

store three integers: a read index, indicating the read identifier the n-gram was

found in, the starting index of the n-gram in the read, and the distance the n-gram

is located from the end. Therefore, each readIndices represents each instance of

the n-gram in the short-read data set. An example of a dictionary is given in Figure

11.

 27

Figure 11 Example of reads and the corresponding dictionary

The structure readIndices also allows for a quick way of calculating where

in a read the n-gram resides. Another data structure is required to store the reads.

A vector of reads allows for a quick lookup of the specific read sequence and quality

value. The index for each read corresponds to the read index stored in the map. The

dictionary creation method is outlined in Figure 12.

1. read in FASTQ file
2. start = 0
3. end = ngramSize
4. while a line exists
5. read in seq and qv
6. create vector of readfragIndices
7. while end is less than read length
8. ngram is the substring of read from start to end
9. readIndices ← start, end, and index
10. add readIndices to vector
11. increment start and end
12. add sequence and qv to reads vector

Figure 12 Outline of the dictionary creation method

 Assembly 3.3

An assembly is a hierarchical data structure that maps the reads from the NGS

instrumentation together in such a way that a putative reconstruction of the target

 28

is generated (Miller et al., 2010). The assembly function plays the largest role in the

genome reconstruction and is outlined in Figure 13. The main loop of the function

iterates through every n-gram in the dictionary. For each n-gram, three functions

are executed. First, a probabilistic scoring model is used to determine the optimal

joins between two reads that contain the specific n-gram. Second, the actual

assembly is made based on the scoring model. Finally, bookkeeping is performed to

update the dictionary. Each of the three functions is explained in more detail below.

 mainAssembly() {
 for each n-gram in dictionary {
 find best join from sequences containing n-gram;
 assemble the join;
 update data structures
 }

}

Figure 13 Top-level outline of main assembly function

3.3.1 Notation

First, we define the notation required to formalize the explanation of the method.

Let G represent an arbitrary sequence of DNA to be processed by some NGS

instrumentation. Let D represent the set of all reads that were output by the NGS

instrumentation that processed G. In an ideal world, G is observable information,

and we simply map the reads back to G. However, in this problem, G is hidden,

unobservable information. The aim of a de novo assembly method is to determine

 29

the most likely assembly of sequences in D that give us back the original sequence

G.

Let Xi represent the ith read in D of length m. Let s represent an arbitrary

nucleotide in sequence X, then Xi = s1,s2,…,sm, and Xi has m-n+1 n-grams. Let ngk

represent the kth n-gram in the data. Every n-gram ngk forms a key for referencing

every Xi that contains ngk in its sequence, and serves a critical role by providing

efficient assessment of the quality of the overlapping region between Xi and Xj, and

serves as a key to mapping an index indicating the precise location of that n-gram

in the data.

3.3.2 Determining Optimal Joins

For our work, we define an optimal join over all possible pairs of reads in D as being

the join that is most likely to come from the same origin. Considering all possible

joins is 𝑂 𝑫 ! , multiplied by the cost of performing an alignment of both sequences

being considered. Considering that typical datasets can contain millions of reads,

and that the vast majority of these joins should not be considered, a mechanism is

needed to efficiently reduce the search space of possible joins. The n-gram index

serves to substantially reduce the reads to consider for joining to those that share a

common n-gram.

 30

Aligning two sequences is similar to the problem of finding the longest

common subsequence between two sequences (Section 2.5). In a true alignment, we

allow a limited number of insertions and deletions (indels) in one or both of the

sequences in order to maximize the number of matching symbols between them.

However, in this work, we do not consider insertions and deletions due to the low

likelihood that these errors are introduced by the sequencing instrumentation. This

also avoids the computational complexity that arises if indels were considered.

(Modeling this error is left for investigation in future work.) For two sequences of

length m1 and m2, the cost of aligning two sequences is 𝑂 𝑚!𝑚! .

Every n-gram ng in D has a set of reads 𝑫!" = {𝑋!…𝑋!} that contain ng in

the sequence. For each combination of reads, a score 𝑆 is calculated. For example,

𝑆!,! is the score resulting from joining reads 𝑋! and 𝑋!. More specifically, score 𝑆 is

the sum of the calculations from three separate regions in the resulting joined

sequence. The reads are arranged such that they follow a strict pattern shown in

Figure 14. Given two indices i and j for reads in 𝑫!", the reads are arranged such

that region A is found only on 𝑋! while region C is found only on 𝑋!. Region B is

overlap of 𝑋! and 𝑋! and is thus found in both reads. Each n-gram ng will thus have

a 𝑫!" by 𝑫!" matrix created.

 31

 Region:
 A B C
 Xi = ACGT CGATTA
 Xj = CGATTA CGATAC

Figure 14 Arrangement of two reads for assembly

The score for each potential join is computed by the function scoreJoin(Xi, Xj).

This function uses a simple probabilistic model to assess the likelihood that these

two reads came from the same origin in G. The resulting score is used to judge this

join against all other possible joins being considered for this n-gram. More

specifically, this score represents the probability that the two reads being

considered are joined together by random chance. The lower the probability that

these two sequences came from the same origin by chance, the more likely that

these two sequences originated from the same place in G.

To obtain a probability for the join, we first assume that each read is

generated according to a random process, and is identically and independently

distributed. Each position in the sequence has a probability of taking on one of four

nucleotides. We make two important assumptions for simplicity. First, we assume a

uniform distribution of nucleotides for any position, implying that each nucleotide is

equally likely. Therefore, 𝑃 𝐴,𝐶,𝐺,𝑇 = !
!. The symbol N in the sequence implies

that the position could be any nucleotide, 𝑃 𝑁 = 1. Second, we make a Markov

 32

assumption, which assumes that the occurrence of each nucleotide in the sequence

is independent of the previous nucleotide.

The score for the join is broken into scoring three distinct regions, denoted as

A, B, and C (Figure 14). Regions A and C use a similar calculation. Since the

confidence of a nucleotide decreases the farther away the nucleotide is from the

overlapped region (region B), a discount factor equation was created to show the

degradation in nucleotide confidence. Therefore, the farther away from B, the less

confidence, and thus lower probability, the nucleotide is of being correct. Given 𝛼 to

be the probability of a non-overlapped nucleotide, 𝛽 to be the discount factor, and 𝑑

being the absolute distance from region B, the probability of a nucleotide 𝑁 at

position 𝑖 is shown in Equation 3.1. Typically, 𝛼 is 1− 𝑃 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒 = 1− 0.25 =

0.75.

 (3.1)

Therefore, the probability for region A is the sum of the probabilities of the

individual nucleotides in region A. Similarly, the probability for region C can be

calculated by summing the probabilities of the individual nucleotides in C. We

compute log probabilities instead of standard probabilities to simplify the

computation. Using log probabilities has two main advantages. First, the

calculation speed is increased. Multiplying probabilities is much slower

computationally than addition. Second, log probabilities aid in number accuracy.

P(Ni) =αβ
d

 33

Multiplying small probabilities over a long sequence can result in an underflow

error – a small number outside the precision limits of a computer. Therefore, log

probabilities prevent these problems without compromising the accuracy of the final

answer.

 Instead of taking into consideration the probability of a single nucleotide,

region B requires the probability of two nucleotides. In most alignment methods

where mismatched symbols might need to be aligned, a substitution matrix is often

used to make the computation of the final score for the alignment more efficient.

There are five symbols that we consider as indicated in Table 3.

Table 3 Substitution matrix for sequence alignment

 A C G T N
A 1

4

!

2
1

1
4

3
4

2
1

1
4

1
2

2
1

1
4

3
4

1
4

C 2
1

1
4

3
4 1

4

!

2
1

1
4

3
4

2
1

1
4

1
2

1
4

G 2
1

1
4

1
2

2
1

1
4

3
4 1

4

!

2
1

1
4

3
4

1
4

T 2
1

1
4

3
4

2
1

1
4

1
2

2
1

1
4

3
4 1

4

!

1
4

N 1
4

1
4

1
4

1
4

1

For example, consider a sequence X1 = GCTATAA and X2 = CTGCTACN.

Suppose both of these are considered for the n-gram GCTA. In this case, X2 would

be the left sequence in the join, and X1 would be the right as indicated in Figure 15.

 34

 Region:
 A B C
 Xi = CTGCTACN
 Xj = GCTATA A

Figure 15 Example of sequence alignment and score calculation

Regions A and C are calculated as follows:

Region B requires the substitution matrix and a nucleotide-to-nucleotide

comparison.

G −G = − log(0.25*0.25) =1.2041
C −C = − log(0.25*0.25) =1.2041
T −T = − log(0.25*0.25) =1.2041
A− A = − log(0.25*0.25) =1.2041
C −T = − log((2C1)*0.25*0.50) = 0.9031
N − A = − log(0.25) = 0.6021
Sum = 6.3212

Therefore, the score S is the sum of the three regions.

S = 0.2486+ 6.3212+ 0.1241= 6.6939

3.3.3 Assembly

The assembly function combines the two reads with the highest probability score

calculated in the previous section and forms a new contig – a set of overlapping

reads that represent a consensus region of DNA. Given two indices i and j for reads

A = − log(0.75*1.0012)− log(0.75*1.0011) = 0.2486
C = − log(0.75*1.0011) = 0.1241

 35

in 𝑫!", let Xi and Xj be the two reads with the highest join score. Similar to the

determining optimal joins function, Xi and Xj are separated into three similar

regions. The reads are arranged such that region A is found only on 𝑋! while region

C is found only on 𝑋!. Region B is the overlap of 𝑋! and 𝑋! and is thus found in both

reads. Adding regions A and C to the new contig is straightforward, however region

B requires the comparison of two separate read sequences. A character-to-character

comparison is made for each nucleotide in B. In Region B, given 𝑋!,! and 𝑋!,! to be

the nucleotide characters at position 𝑘 for read 𝑋! and 𝑋!, 𝐽! to be the nucleotide at

position 𝑘 at newly formed contig 𝐽, and 𝑄𝑉!!,! and 𝑄𝑉!!,! to be the quality value

sequences for 𝑋! and 𝑋! at position 𝑘, the comparison rules are:

1. If 𝑋!,! = 𝑋!,! then 𝐽! = (𝑋!,! | 𝑋!,!)
2. If 𝑋!,! ≠ 𝑋!,! then

a. If 𝑄𝑉!!,! > 𝑄𝑉!!,! then 𝐽! = 𝑋!,!

b. If 𝑄𝑉!!,! < 𝑄𝑉!!,!then 𝐽! = 𝑋!,!

3. If 𝑋!,! = 𝑁 and 𝑋!,! ≠ 𝑁 then 𝐽! = 𝑋!
4. If 𝑋!,! ≠ 𝑁 and 𝑋!,! = 𝑁 then 𝐽! = 𝑋!
5. If 𝑋!,! = 𝑁 and 𝑋!,! = 𝑁 then 𝐽! = 𝑁

This can be summarized as follows. If the two nucleotides are the same, add the

nucleotide to the contig. If they are different, add the nucleotide with the higher

quality value to the contig. If either nucleotide is a ‘N’, add the other nucleotide. If

both nucleotides are ‘N’, add a ‘N’ to the contig. After the three regions have been

merged, if the contig is unique (i.e. there exists no other contigs with that particular

 36

sequence) then it is added to the reads vector. Quality values are joined in a similar

manner. In Regions A and C, the QV is copied over directly. In Region B, the

average of the two QV scores is added to the contig.

3.3.4 Bookkeeping

The goal of the bookkeeping function is to update the dictionary on the newly

formed contig. Bookkeeping is broken down into two separate stages. The first step

is to remove the old read entries. This is accomplished by scanning the entire

dictionary looking for the readIndices of the two reads used in the join. Let f and g

correspond to the location in the reads vector for the reads 𝑋! and 𝑋! used in the

assembly. Next, every entry in D is scanned looking for readIndices containing f

and g. When either index is found, the readIndices is removed from D. Finally,

each n-gram of the new contig is added to D similar to the dictionary creation step

(Section 3.2). Given m being the length of the contig, the number of n-grams added

is m-n+1. An example of the Bookkeeping step is shown in Figure 16.

Figure 16 Example of the bookkeeping function

 37

 Chapter Summary 3.4

In this chapter, an overview of the two distinct steps in the assembly methods was

discussed. First, the dictionary is created by mapping an n-gram to a vector of

indices corresponding to the location of each instance of the n-gram. Next, the

assembly is made by iteratively traversing the dictionary. First, the optimal join is

determined by using a probabilistic method that takes into the consideration the

occurrence of the join to chance. Next, the actual assembly is made. Finally, a

bookkeeping step is used to update the dictionary on the newly formed contig.

 In the next chapter, the results from the implemented assembly methods are

shown.

 38

Chapter 4

Results

Analyzing a DNA assembly is a difficult task. Typically, due to errors in DNA

sequencing, complete assemblies are not made. Instead, most assemblers output the

longest contigs and use a secondary program, like AMOS, to merge the contigs

together into scaffolds – a portion of DNA reconstructed from contigs and the

appropriate gaps (“AMOS,” 2010). Therefore, typical assembly metrics are based on

the N50 value, a measure of the coverage, and the length of the longest contigs.

Analysis of this thesis project is conducted using simulated data.

 Simulated Data 4.1

A simulated data set benefits the researcher by being able to compare the assembly

results to the known solution. Additionally, since simulated data sets are typically

smaller than real genomes, the time needed to perform an assembly is decreased

significantly. For this analysis, two simulated data sets were generated from a self-

 39

made helper program. A 10,000 nucleotide genome with 20x coverage and an

average read length of 40, hereby called G10k, and a 100,000 nucleotide genome

with 16x coverage with an average read length of 50, called G100k, were generated

using self-made helper programs. The G10k data set resulted in 8,005 reads while

the G100k data set contained 66,636 reads. The QV score was a strict 40 for every

nucleotide.

Analysis was conducted by observing the longest contig and execution time. If

a complete assembly was not made, the N50 was calculated. A total of 10 trials with

varying n-gram lengths were run for both G10k and G100k. Figures 17 and 18 show

the n-gram length and the execution time for G10k and G100k respectively. The

G100k trials resulted in 6 of 10 being completely assembled while 5 of 10 G10k

trials were completely assembled for the simulated genomes. The results of all 20

trials are shown in Table 4 below.

Figure 17 Assembly time of various n-gram lengths for G10k

0	

20	

40	

60	

80	

100	

120	

13	 15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	

Ti
m
e(
s)
	

n-‐gram	 size	

n-‐gram	 Length	 vs.	 Time	 for	 G10k	

 40

Figure 18 Assembly time of various n-gram lengths for G110k

 Both Figures 17 and 18 indicate that n-gram size greatly impacts the speed of

an assembly. If an n-gram is too small, the number of occurrences for each n-gram

increases. This results in a higher execution time to create a matrix and determine

the optimal join (Section 3.3.2). Conversely, too large an n-gram size results in too

many unique n-gram occurrences. Consequently, there isn’t enough data to support

an optimal join of two reads. This can be seen in the larger n-gram trials for both

G10k and G100k (Figures 19 & 20).

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	 37	

Ti
m
e	
(s
)	

n-‐gram	 size	

n-‐gram	 Length	 vs.	 Time	 for	 G100k	

 41

Figure 19 Length of longest contig by various n-gram siezes for G10k

Figure 20 Length of longest contig of various n-gram sizes for G110k

Due to the smaller average read length, a large n-gram size results in not

enough information being known to make an optimal join resulting in a shorter

longest contig. Therefore, the n-gram size is crucial in obtaining an optimal

assembly in both accuracy and speed.

0	

2000	

4000	

6000	

8000	

10000	

12000	

15	 20	 25	 30	 35	

Lo
ng
es
t	 C

on
Dg

	 (#
	 n
uc
le
oD

de
s)
	

n-‐gram	 size	

n-‐gram	 Length	 vs.	 Longest	 ConDg	 for	 G10k	

0	

20000	

40000	

60000	

80000	

100000	

120000	

15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	 37	

Lo
ng
es
t	 C

on
Dg

	 (#
	 n
uc
le
oD

de
s)
	

n-‐gram	 size	

n-‐gram	 Lengths	 vs.	 Longest	 ConDg	 for	 G100k	

 42

Table 4 Assembly results for G10k and G100k

G10k G100k

n-gram Time (s) N50
Longest
Contig n-gram Time (s) N50

Longest
Contig

15 98 188 10000 17 11927 299 100000
17 92 151 10000 19 11402 264 100000
19 87 125 10000 21 10935 255 100000
21 81 105 10000 23 10355 177 100000
23 72 97 10000 25 9879 170 100000
25 62 85 9974 27 9437 147 100000
27 50 82 9949 29 8499 126 99933
29 41 76 9259 31 7393 114 99933
31 33 67 2964 33 5811 98 62002
33 26 62 1499 35 5056 88 15641

 Chapter Summary 4.2

In this chapter, experiments were run using simulated datasets for genomes of

lengths 10,000 and 100,000 (referred to as G10k and G100k respectively). A total of

20 trial runs of various n-gram lengths were conducted for both G10k and G100k.

The G10k tests resulted in 5 of the 10 runs being successfully assembled while the

G100k tests resulted in 6 of 10 successfully assembled trials.

 In the next chapter, future work and concluding remarks are presented.

 43

Chapter 5

Conclusion and Future Work

This thesis has shown that a probabilistic n-gram based method can be used to

successfully assemble small length genomes. Using simulated datasets for genomes

of lengths 10,000 and 100,000 (referred to as G10k and G100k respectively), 10 trial

runs of various n-gram lengths were conducted for both G10k and G100k for a total

of 20 trials. The G10k tests resulted in 5 of the 10 runs being successfully

assembled with a fastest, accurate assembly of 72 seconds. The G100k trials

assembled 6 of the 10 runs with a fastest, accurate assembly of 9,437 seconds (2:37).

Both datasets exhibited similar behavior with larger n-grams. The larger the n-

gram, the shorter the longest contig assembled. This is caused by too much

uniqueness in the dictionary. Too large an n-gram size results in too many unique

n-gram occurrences. Therefore, there isn’t enough data to support an optimal join of

two reads.

 44

Sequence assembly is a challenging task. Currently, no method, algorithm, or

implementation solves the whole-genome assembly problem (Miller et al., 2010).

Mathematically, de novo genome assembly has been proven to be difficult by being

classified in a set of problems (NP-hard) where there is no efficient computational

solution (Medvedev, Georgiou, Myers, & Brudno, 2007; E. W. Myers, 1995; Mihai

Pop, 2009). However, sequence assembly is still an evolving field. With new

research constantly being published, sequencing and assembly technologies are

quickly evolving (Chapter 1). Furthermore, there is an expressed interest in

accurate DNA assemblies (Section 2.6).

One area in particular that will benefit greatly from improvements in DNA

sequencing is healthcare. Being able to quickly and accurately sequence a person’s

genome will allow doctors to get a precise analysis of predisposed illnesses and

determine the best method of treatment for various ailments. Cancer, for example,

is notoriously difficult to treat. Recently, improvements in DNA sequencing have

shown that cancer is not a homogenous region of the same mutated DNA (Gerlinger

et al., 2012). Instead, there are many mutations that are not consistent across the

same tumor. Although a momentary setback in cancer treatment research, without

the advancements in DNA sequencing, researchers would have been focusing their

time and efforts on incorrect information.

 45

DNA sequencing is increasingly becoming an integral role in genomic

research. As this thesis research has shown, novel methods for whole-genome

sequence assembly can accurately assemble small length genomes. However, much

work is still yet to be done. As technology advances, the volume of data generated

by high-throughput sequencing will continue to increase. Assembly algorithm

developers will have to continue to adapt to the endless challenges associated with

de novo assemblies. Assembly is not a solved problem, but continued advancements

can greatly change the biological research landscape for years to come.

 Future Work 5.1

Further optimization of the assembly program can be achieved in many areas. The

utilization of paired-ends and scaffolding would greatly increase the size of the

assembled genome. In DNA sequencing, the length of the fragments typically

exceed the read length achievable by a sequencing technology (Mihai Pop, 2009).

Therefore, only the ends of the fragments are sequenced. This results in a collection

of read pairs that are separated by a known distance (the size of the original

fragment) (Schatz et al., 2010). Paired-ends allow for assemblies larger than the

length of the individual reads. This is accomplished by creating scaffolds – genome

sequences reconstructed from contigs and gaps. Scaffolding allows for the joining of

 46

two contigs even if there is no discernible overlap. Since the length is known

between two paired-ends, the number of bases between two contigs that contain two

paired-ends can be calculated. The scaffolding of two contigs with five sets of paired

ends is given in Figure 21.

Figure 21 Example of scaffolding using two contigs and five paired-ends

Parallelization, however, would provide the best speed improvements by

drastically decreasing the time needed to perform an assembly. In computing,

parallelization is the act of performing many calculations simultaneously (Almasi &

Gottlieb, 1989). The advent of multi-core processors and multi-processor computers

has placed an increased emphasis on parallel computing. However, parallelizing a

program is notoriously much more difficult to program than sequential ones

(Patterson, 1998). New software bugs are introduced when one process or thread is

trying to access a block of memory that is shared between all other processes. Also

called race conditions, problems can arise when multiple processes try to read and

write the same block of information at the same time. Resolving this situation

 47

requires the use of locks. When one process is accessing a shared block of memory

the memory location is locked. All other processes must wait until the memory is

updated and unlocked before another process has access to that bit of information.

 In this thesis, parallelization would prove to be most useful in the assembly

method. The profiling tool Callgrind from the Valgrind suite was used to analyze

the timing and call history of the program (Weidendorfer & Kowarschik, 2004).

Based on the results, upward of 70% of the processing time is spent in the

bookkeeping function (Appendix B.2). Using two threads to update the dictionary

would greatly reduce the time necessary to traverse the map. One thread would

start at the top of the dictionary and work down while another would start at the

bottom of the dictionary and traverse up. Once they meet the dictionary is fully

updated. This process is outlined in Figure 22.

Figure 22 Overview of possible parallelization in the bookkeeping function

 48

Bibliography

AMOS. (2010). Retrieved March 21, 2012, from amos.sourceforge.net/

Almasi, G. S., & Gottlieb, A. (1989). Highly Parallel Computing. Redwood City, CA:
Benjamin-Cummings Publishers.

Baxevanis, A. D. (2004). Bioinformatics: A Practical Guide to the Analysis of Genes
and Proteins (3rd ed., p. 560). Wiley-Interscience.

Cock, P. J. a, Fields, C. J., Goto, N., Heuer, M. L., & Rice, P. M. (2010). The Sanger
FASTQ file format for sequences with quality scores, and the Solexa/Illumina
FASTQ variants. Nucleic acids research, 38(6), 1767-71.
doi:10.1093/nar/gkp1137

Cormen, T. H., Leiserson, C., Rivest, R., and Stein, C. (2009) Introduction to
Algorithms. Cambridge (Massachusetts): MIT.

Davies, K. (2010). The $1,000 Genome: The Revolution in DNA Sequencing and the
New Era of Personalized Medicine (p. 352). Free Press.

Ewing, B., & Green, P. (1998). Base-Calling of Automated Sequencer Traces Using
Phred . II . Error Probabilities. Genome Research, 186-194.
doi:10.1101/gr.8.3.186

Freeman, S. (2011). Biological Science. (S. Freeman, Ed.) (4th ed., p. 1320). San
Francisco, CA: Benjamin Cummings.

Gerlinger, M., Rowan, A. J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E.,
Martinez, P., et al. (2012). Intratumor Heterogeneity and Branched Evolution
Revealed by Multiregion Sequencing. New England Journal of Medicine,
366(10), 883-892. doi:10.1056/NEJMoa1113205

Horner, D. S., Pavesi, G., Castrignanò, T., De Meo, P. D., Liuni, S., Sammeth, M.,
Picardi, E., et al. (2010). Bioinformatics approaches for genomics and post
genomics applications of next-generation sequencing. Briefings in
bioinformatics, 11(2), 181-97. doi:10.1093/bib/bbp046

Huang, X., & Madan, a. (1999). CAP3: A DNA sequence assembly program. Genome
research, 9(9), 868-77. Retrieved from
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=310812&tool=pmce
ntrez&rendertype=abstract

 49

Isilanes. (2007) DNA Base Pair. Digital image. Wikimedia Commons.
<http://commons.wikimedia.org/wiki/File:GC_DNA_base_pair.svg>.

Kotsiantis, S. B., Kanellopoulos, D., & Pintelas, P. E. (2006). Data Preprocessing for
Supervised Leaning. Journal of Computer Science, 1(2), 111-117.

Lakdawalla, A. (2007) Radioactive Fluorescent Sequence. Digital image. Wikimedia
Commons.<http://commons.wikimedia.org/wiki/File:Radioactive_Fluorescent_S
eq.jpg>.

Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., et al. (2010). De novo
assembly of human genomes with massively parallel short read sequencing.
Genome Research, 265-272. doi:10.1101/gr.097261.109.20

Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annual review of
genomics and human genetics, 9, 387-402.
doi:10.1146/annurev.genom.9.081307.164359

Medvedev, P., Georgiou, K., Myers, G., & Brudno, M. (2007). Computability and
Equivalence of Models for Sequence Assembly. Algorithms in Bioinformatics,
4645, 50-64. Retrieved from
http://www.citeulike.org/user/niallhaslam/article/1957796

Miller, J. R., Koren, S., & Sutton, G. (2010). Assembly algorithms for next-
generation sequencing data. Genomics, 95, 315-327.
doi:10.1016/j.ygeno.2010.03.001

Mullikin, J. C., & Ning, Z. (2003). The Phusion Assembler. Genome Research, 81-90.
doi:10.1101/gr.731003.

Myers, E. W. (1995). Toward simplifying and accurately formulating fragment
assembly. Journal of Computational Biology, 2(2), 275-90. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/7497129

NCBI Reference Sequence (RefSeq). (2012). Retrieved March 25, 2012, from
http://www.ncbi.nlm.nih.gov/RefSeq/

NCBI: Assembly Basics. (2012). Retrieved March 27, 2012, from
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/assembly.shtml

Narzisi, G., & Mishra, B. (2011). Comparing de novo genome assembly: the long and
short of it. PloS one, 6(4), e19175. doi:10.1371/journal.pone.0019175

Patterson, D. (1998). Computer Organization and Design (Second Ed., p. 715).
Morgan Kaufmann Publishers.

 50

Pevzner, P. a, Tang, H., & Waterman, M. S. (2001). An Eulerian path approach to
DNA fragment assembly. Proceedings of the National Academy of Sciences of
the United States of America, 98(17), 9748-53. doi:10.1073/pnas.171285098

Pop, M., Salzberg, S. L., & Shumway, M. (2002). Genome sequence assembly:
algorithms and issues. Computer, 35(7), 47-54. doi:10.1109/MC.2002.1016901

Pop, Mihai. (2009). Genome assembly reborn: recent computational challenges.
Briefings in bioinformatics, 10(4), 354-66. doi:10.1093/bib/bbp026

Pruitt, K. D., Tatusova, T., Klimke, W., & Maglott, D. R. (2009). NCBI Reference
Sequences: current status, policy and new initiatives. Nucleic acids research,
37(Database issue), D32-6. doi:10.1093/nar/gkn721

Schatz, M. C., Delcher, A. L., & Salzberg, S. L. (2010). Assembly of large genomes
using second-generation sequencing. Genome research, 1165-1173.
doi:10.1101/gr.101360.109

Simpson, J. T., Wong, K., Jackman, S. D., Schein, J. E., Jones, S. J. M., & Birol, I.
(2009). ABySS: a parallel assembler for short read sequence data. Genome
research, 19(6), 1117-23. doi:10.1101/gr.089532.108

Sutton, G. G., White, O., Adams, M. D., & Kerlavage, A. R. (1995). TIGR Assembler:
A new tool for assembling large shotgun sequencing projects. Genome Science
and Technology, 1(1), 9–19. doi:10.1089/gst.1995.1.9

Weidendorfer, J., & Kowarschik, M. (2004). A tool suite for simulation based
analysis of memory access behavior. Proceedings of the 4th International
Conference on Computational Science. Retrieved from
http://www.springerlink.com/index/N6C3ENA60K28LANX.pdf

Zerbino, D. R., & Birney, E. (2008). Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome research, 18(5), 821-9.
doi:10.1101/gr.074492.107

 51

Appendix A

Functionality

Below is an explanation on the functionality and use of the program. The running of

the program assumes that the program name is ngassemble. An explanation of the

configuration file is outlined in Appendix A.2.

A.1 How to Run the Program

Usage: ngassemble [CONFIG] [OVERRIDES]

CONFIG is the name of the configuration file.

OVERRIDES follows the format –O[KEY]=[VALUE] where KEY is the key name

in the configuration file and VALUE is the value to change the

key to. This overrides the value in the configuration file.

OVERRIDES is useful when running the program in a script and

changing the value of a certain key each iteration is unwieldy.

Multiple overrides (-O) can be used to change multiple keys.

 52

A.2 Configuration File

ngramSize is the size of the n-gram to analyze. The ngramSize is also
used in preprocessing. If the read length is less than the
ngramSize the read is discarded.

dataFile is the data file to analyze. This can either be a FASTQ or
FASTA file. FASTQ files will be assembled. FASTA files are used
for analysis of n-grams.

machineSequencer is the machine type used to generate the data file.
This can be either sanger, 454, solexa, or illumina. Each machine
type has a different QV calculation.

percentN is the maximum percentage of N allowed in data preprocessing.
The value is represented as a percent. For example, the value 76
is interpreted as 76%. A read is discarded if percentN < the
actual percentage of N in the read. Therefore, a percentN of 100
allows for no preprocessing of the N percentage.

qualityScore is the minimum average quality score to allow in data
preprocessing. If the average read QV is less than the
qualityScore the read is discarded. A qualityScore of 0 allows
for no preprocessing of the QV.

percentMiss is the maximum percentage of mismatches allowed when
attempting to join two reads. The value is represented as a
percent. For example, the value 5 is interpreted as 5%. If the
percentage of mismatches is greater than the percentMiss the join
will not be made.

runPerform is a print option to only print out the performance
metrics. This includes the number of reads excluded based on n-
gram size, QV score, and percentage of Ns. The final longest
contig and N50 value is also printed after completion of the
assembly. This option is useful when running in bash scripts
since it prints out the minimal amount of information.

runPrint is a print option to only print out the map after completion
of the assembly. The excluded reads are also printed.

runPercentN is a print option to print out the percentage of Ns for
each read in the read list. The excluded reads are also printed.

 53

runQV is a print option to print out the average QV score for each
read in the read list. The excluded reads are also printed.

runSequence is a print option to print out all the sequences and their
QV score for each read in the read list. The excluded reads are
also printed.

runGeneric is a print option to print out the runPerform in addition
to the time it takes to complete the assembly.

printConfigDB is a print option to print out the configuration file.
The excluded reads are also printed.

printMap is a print option to print out the n-gram map. The excluded
reads are also printed.

printFrags is a print option to print out the read list. The excluded
reads are also printed.

printContigs is a print option to print out the contigs after
assembly. This is useful when the genome is not fully assembled
and the contigs need to be imported into another program for
coverage analysis. The excluded reads are also printed.

printAnalyses is a print option to print out the final read list and
map. The excluded reads are also printed.

printLongest is a print option to print out the longest contig after
assembly. The excluded reads are also printed.

printN50 is a print option to print out the N50 score after assembly.
The excluded reads are also printed.

printAvgQV is a print option to print out the average QV score for
each read in the read list. The excluded reads are also printed.

outputContigs is an option to export the contigs to a separate file
for additional analysis. This is useful when the genome is not
fully assembled and the contigs need to be imported into another
program for coverage analysis. The printContigs flag must also be
set to TRUE. The excluded reads are also printed.

 54

Appendix B

UML and Profiling

In Computer Science, UML, short for Unified Modeling Language, is a way to show

relations and structures between different classes in a program. A UML diagram

lists the classes and member data used in a project. The UML diagram for this

thesis was constructed using ArgoUML (Medvedev et al., 2007; E. W. Myers, 1995;

Mihai Pop, 2009).

B.1 UML

Figure 23 UML diagram for project

 55

B.2 Callgrind Profiling Analysis

Profiling was conducted using Callgrind, part of the Valgrind suite of utilities

(Weidendorfer & Kowarschik, 2004). Timing and call history analysis was recorded

and a graph was generated. The figure is displayed below.

Figure 24 Callgrind analysis of the assembly method

 56

Appendix C
Glossary

Alignment A way of rearranging and comparing DNA to identify similarities

between the sequences.

Base pairing In DNA, when a nucleotide on one strand interacts with an

appropriate base on the other strand.

Bioinformatics The interdisciplinary field between biology, statistics, and

computer science.

Contig A set of overlapping DNA segments that together represent a consensus

region of DNA.

Dideoxynucleotides Modified deoxynucleotides used in the Sanger method of

DNA sequencing to terminate the strand. This prevents the addition of further

nucleotides.

FASTA The de facto standard in bioninformatics for storing DNA and protein

sequence data.

Flow cell A liquid stream which carries and aligns the DNA. This aids in binding

the DNA to enzymes and the cell surface for manipulation.

Fragment Short sections of DNA whose sequence is unknown.

Map A C++ Standard Library associative container. A map stores information by a

combination of a key and corresponding maped value.

 57

N50 A metric used to evaluate an assembly. It is defined as the largest number L

such that the combined length of all contigs of length greater than or equal to L is

at least 50% of the total length of all contigs.

NCBI The National Center for Biotechnology Information. The NCBI stores

genome sequencing data from thousands of organisms.

Parallelization A form of computation where many calculations are performed

simultaneously.

PCR Polymerase chain reaction is a scientific technique in molecular biology to

amplify a single or a few copies of a piece of DNA across several orders of

magnitude, generating thousands to millions of copies of a particular DNA

sequence.

Process In parallel computing, an instance of a computer program that is being

executed. A process can be divided into multiple threads.

Purines The nucleotides adenine (A) and guanine (G).

Pyrimidines The nucleotides cytosine (C) and thymine (T).

Race conditions In parallel computing, when multiple processes try to access

shared blocks of memory. Problems can arise when multiple processes try to read

and write the same block of information at the same time.

Reads Short fragments of DNA outputted from genome sequencers whose

sequence is known.

Sequence assembly A concentration of bioninformatics that refers to aligning and

merging reads of a much longer DNA sequence in order to reconstruct the original

sequence.

 58

Scaffold In whole-genome sequencing , a portion of DNA reconstructed from

contigs and the appropriate gaps.

Thread In parallel computing, the smallest subunit of processing allowed by the

operating system. A process can be divided into multiple threads.

	

	Bucknell University
	Bucknell Digital Commons
	Spring 2012

	Utilization of Probabilistic Models in Short Read Assembly from Second-Generation Sequencing
	Matthew W. Segar
	Recommended Citation

	Microsoft Word - Thesis.docx

