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ABSTRACT
A multiplicity queue is a concurrently-defined data type which

relaxes the conditions of a linearizable FIFO queue by allowing con-

current 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances to return the same value. It would seem

that this should allow faster message-passing implementations, as

processes should not need to wait as long to learn about concurrent

operations and previous work has shown that multiplicity queues

are computationally less complex than the unrelaxed version. In-

triguingly, recent work has shown that there is, in fact, little possible

speedup versus an unrelaxed queue. Seeking to understand this dif-

ference between intuition and real behavior, we increase the lower

bound for uniform algorithms. Further, we outline a path toward

building proofs for even higher lower bounds, hypothesizing that

the worst-case time to 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 approaches maximum message de-

lay, which is similar to the time required for an unrelaxed 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 .

We also give an upper bound for a special case to show that our

bounds are tight at that point. To achieve our lower bounds, we

use extended shifting arguments, which have been rarely used but

allow larger lower bounds than traditional shifting arguments. We

use these in series of inductive indistinguishability proofs which

allow us to extend our proofs beyond the usual limitations of shift-

ing arguments. This proof structure is an interesting contribution

independently of the main result, as developing new lower bound

proof techniques may have many uses in future work.
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1 INTRODUCTION AND RELATEDWORK
Relaxed data types [4] have risen as an efficient way to trade off

some of the precise guarantees of an ordered data type for improved

performance [11]. Multiplicity queues are a recent relaxation of

queues [3] which allow concurrent 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances to return

the same value. Since they cannot have a sequential specification

(being defined in terms of concurrency), previous results on relaxed

queues do not apply to multiplicity queues. Multiplicity queues

are particularly interesting due to their reduced computational

complexity. In [3], Castañeda et al. implement multiplicity queues

from 𝑅𝑒𝑎𝑑/𝑊𝑟𝑖𝑡𝑒 registers, which is impossible for FIFO queues

and most previous, sequential relaxations of queues [9, 12]. This

means that it is possible to have queue-like semantics without

the cost of strong primitive operations like 𝑅𝑒𝑎𝑑-𝑀𝑜𝑑𝑖 𝑓 𝑦-𝑊𝑟𝑖𝑡𝑒 .

Further work has shown that this allows interesting application in

work-stealing [2] and that in shared memory systems with strong

primitives, multiplicity queues are more efficient to implement than

the best known algorithm for FIFO queues [5].

We are interested in message-passing implementations of data

types, which provide the simplicity and well-defined semantics of

a shared memory system in the message passing model inherent to

geographically distributed systems [1]. In queue implementations,

the need for concurrent 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances to wait long enough to

learn about each other, so that they can return different values, is

one of the primary reasons that𝐷𝑒𝑞𝑢𝑒𝑢𝑒 is expensive to implement,

in terms of time delay from operation invocation to response [14].

Between the higher performance multiplicity queues achieve in

shared memory models and the intuitive notion that concurrent

𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances need not learn about each other to return dif-

ferent values, it seems intuitive that multiplicity queues should be

very efficient to implement in a message-passing system.

To the contrary, recent work [10] showed that there are limited

performance gains possible in thismodel. In a partially-synchronous

system with maximum message delay 𝑑 and delay uncertainty 𝑢,

that work showed that the worst-case delay from invocation to

return for 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 is at least min

{
2𝑑
3
, 𝑑+𝑢

2

}
, at most a factor of 2

speedup over unrelaxed queues, where 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 can return after

𝑑 + (1 − 1/𝑛)𝑢 time [14].

We here extend the work in [10], improving the lower bound

for the return time of 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 in uniform algorithms (those whose

behavior does not depend on the number of participating processes)

to min

{
3𝑑+2𝑢

5
, 𝑑
2
+ 𝑢

}
. Our bound is larger everywhere except for

matching at the edge case of 𝑢 = 0, which we show is tight. Intu-

itively, a𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instance may not need to know about concurrent

instances, but determining which instances are concurrent is in-

herently expensive. This insight could help develop more efficient
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algorithms or precise relaxations to provide minimal weakening

while achieving performance improvements.

The proofs in [10] used shifting and indistinguishability argu-

ments among three processes, which limited their results. We de-

velopmore complex indistinguishability arguments, using inductive

definitions of different runs of the algorithm with all processes par-

ticipating. This requires more advanced shifting tools, as developed

in [14]. These allow us to prove larger bounds and are indepen-

dently interesting as they may also enable larger lower bounds

on other problems. The piecewise nature of our bound may also

provide insight into the optimal lower bound. We show that the

𝑑
2
+𝑢 portion of the bound, which seems weaker, is tight in the edge

case when all messages have delay 𝑑 (𝑢 = 0). However, for larger

uncertainties in message delay (𝑢 > 𝑑/6), the 3𝑑+2𝑢
5

portion of the

bound is higher. In fact, if one can strengthen our induction’s base

case, our proof structure may give bounds for larger 𝑢 larger than

3𝑑+2𝑢
5

, perhaps even increasing more than linearly with 𝑢. This

direction suggests that the optimal lower bound may in fact be as

high as 𝑑 for 𝑢 > 0, and may be discontinuous at that point, which

would be interesting. The base case is already the most complex

portion of the proof, so such strengthening and finding an optimal

lower bound remain as future work.

2 SYSTEM MODEL AND DEFINITIONS
We work in the same partially synchronous, message-passing, fail-

ure free model of computation as [10]. Lower bounds in this model

apply in harder models, so a high lower bound here is still meaning-

ful. There are 𝑛 processes, {𝑝0, . . . , 𝑝𝑛−1}, which participate in an

algorithm implementing a shared memory object. Each process is a

state machine with a local clock running at the same rate as real

time, but potentially offset from real time and can set timers based

on this clock. Users invoke data type operations at any process at

any time, as long as the previous invocation at that process has

received a response. Invocations, message arrivals, and timer expira-

tions trigger state machine steps, which perform local computation,

set timers, send messages, and generate operation responses. A run
is a set of sequences of state machine steps, one for each process,

each a valid state machine history with a real time for each step

and either infinite or ending in a state with no unexpired timers

and no messages sent to that process but not received. A run is

admissible if there is a bijection between message send and receive

steps with the delay between mapped sends and receives at least

𝑑 − 𝑢 and at most 𝑑 real time and the skew, or maximum difference

between local clocks, is at most 𝜀 := (1− 1/𝑛)𝑢 [7]. 𝑑 and 𝑢 ≤ 𝑑 are

known system parameters. A uniform algorithm is independent of

the number of processes, using the same logic for all values of 𝑛.

A sequential data type specification gives a set of operations the

user may invoke, with argument and return types, and the set of

legal sequences of invocation-response pairs, or instances, of those
operations. We are interested in data types whose behavior may

depend on concurrency in a distributed system, so we consider

set-sequential data type specifications. A set-sequential data type

specification replaces the set of legal sequences of instances with a

set of legal sequences of sets of instances. Thus, not all instances in a

run must be totally ordered relative to each other, but each set of in-

stances must be totally ordered relative to others. We are interested

in set-linearizable implementations of set-sequential data types, as

defined in [8] and [3], which requires that every admissible run

of the algorithm has a total order of sets containing all operation

instances in the run which is legal by the set-sequential data type

specification and respects the real-time order of non-overlapping

instances. That is, there must be a way to place all operation in-

stances in the run in sets and put those sets in a legal sequence

such that for every pair of instances where 𝑜𝑝1 returns before 𝑜𝑝2’s

invocation, 𝑜𝑝1 is in a set preceding the set containing 𝑜𝑝2. The

time cost of operation 𝑂𝑃 , denoted |𝑂𝑃 |, is the largest time in any

admissible run from invocation to response of any instance of 𝑂𝑃 .

We use shifting [6, 7, 14] in our proofs, a mechanism for creating

indistinguishable runs. Given run 𝑅 and vector ®𝑣 of length 𝑛, we

define 𝑆ℎ𝑖 𝑓 𝑡 (𝑅, ®𝑣) as a new run in which each event 𝑒 at each 𝑝𝑖 , 0 ≤
𝑖 < 𝑛, which occurs at real time 𝑡 in 𝑅 occurs at real time 𝑡 + 𝑣 [𝑖]
in the shifted run. To ensure that the runs are indistinguishable to

the processes, local clock offsets 𝑐𝑖 are changed to 𝑐′
𝑖
= 𝑐𝑖 − 𝑣 [𝑖].

Finally, any message from 𝑝𝑖 to 𝑝 𝑗 which had delay 𝑥 in 𝑅 has delay

𝑥 +𝑣 [ 𝑗] −𝑣 [𝑖], as the real times when it is sent and received change.

A challenge in using shifting arguments is that the shifted run must

also be admissible. Too large a shift vector causes message delays

that are too long or short, preventing us from drawing conclusions

about algorithm behavior. Wang et al. [14] extended the classic

idea of shifting by showing that if a shift is too large, making the

shifted run inadmissible, it is in some cases possible to chop off

each process’ sequence of steps before a message arrives after an

inadmissible delay, then extend the run from that collection of chop

points with different, admissible delays. This new run is not, by

default, indistinguishable from the original, but in some cases we

can argue it is, to a certain point. We use this technique to exceed

previous lower bounds based on classic shifting.

We consider a set-sequential data type based on a traditional

FIFO queue called a multiplicity queue, defined in [3].

Definition 2.1. A multiplicity queue over value set 𝑉 has two

operations: 𝐸𝑛𝑞𝑢𝑒𝑢𝑒 (𝑎𝑟𝑔) takes one parameter 𝑎𝑟𝑔 ∈ 𝑉 and returns

nothing;𝐷𝑒𝑞𝑢𝑒𝑢𝑒 () takes no parameter and returns one value in𝑉∪
{⊥}, where ⊥ ∉ 𝑉 is a special value. A sequence of sets of 𝐸𝑛𝑞𝑢𝑒𝑢𝑒

and 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances is legal if (i) every 𝐸𝑛𝑞𝑢𝑒𝑢𝑒 instance is in a

singleton set, (ii)𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances in the same set return the same

value, and (iii) each 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instance 𝑑𝑒𝑞 returns the argument of

the earliest 𝐸𝑛𝑞𝑢𝑒𝑢𝑒 instance preceding 𝑑𝑒𝑞 in the sequence, which

has not been returned by another 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instance preceding 𝑑𝑒𝑞.

If there is no such 𝐸𝑛𝑞𝑢𝑒𝑢𝑒 instance, 𝑑𝑒𝑞 returns ⊥.
This definition implies that in a set-linearizable implementation

of a multiplicity queue, any two concurrent 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances

may, but do not necessarily, return the same value. Such instances

would be placed in the same set. If two 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances are not

concurrent, then one must precede the other in the set linearization,

so they must return different values. Note that we assume that all

𝐸𝑛𝑞𝑢𝑒𝑢𝑒 arguments are unique, which is easily achieved by a higher

abstraction layer timestamping the user’s arguments.

3 LOWER BOUND PROOF OUTLINE
We prove our lower bound of |𝐷𝑒𝑞𝑢𝑒𝑢𝑒 | ≥ min{ 3𝑑+2𝑢

5
, 𝑑
2
+ 𝑢} by

contradiction (see [13] for details), building up two sets of runs of

an assumed algorithm which beats the bound. In both sets, each

371



BA: Multiplicity Queue Lower Bounds PODC ’23, June 19–23, 2023, Orlando, FL, USA

process invokes a single 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instance. In the first set, we show

that each of these𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances, despite being concurrent with

at least one other, returns a unique value. In the second set, we show

that there are fewer distinct return values than 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances,

so there must be 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances returning the same value. We

then show that, for sufficiently large 𝑛, these two sets of runs

converge, in that processes cannot distinguish which set they are

in until after they choose return values for their 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances.

Thus, they must have the same behavior in both, contradicting their

different return values and proving our bound.

Every run we use starts with process 𝑝0 sequentially executing

the sequence 𝐸𝑛𝑞𝑢𝑒𝑢𝑒 (1) · 𝐸𝑛𝑞𝑢𝑒𝑢𝑒 (2) · · · 𝐸𝑛𝑞𝑢𝑒𝑢𝑒 (𝑛). We then

fix a time 𝑡1 after the algorithm completes those. Thus, any set

linearization of any of our runs will start with 𝑛 singleton sets,

enqueueing the values 1..𝑛 in order. All further operation instances

will set-linearize after those 𝐸𝑛𝑞𝑢𝑒𝑢𝑒 instances. In general in our

runs, messages from lower-indexed processes to higher-indexed

processes take𝑑−𝑢 time, while those from higher-indexed processes

to lower-indexed processes take 𝑑 time. The primary exception is

that in some runs, after a certain point, messages from 𝑝𝑛−1 to

𝑝𝑛 will also take 𝑑 time. For sufficiently large 𝑛, this prevents 𝑝𝑛
from collecting complete history information, which allows us to

complete our indistinguishability proof.

We denote our first set of runs by 𝐷𝑘 , 1 ≤ 𝑘 ≤ 𝑛 (𝐷 for “Distinct)

and will show that all 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances return distinct values. In

each𝐷𝑘 , the first𝑘 processes invoke𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances overlapping

by 𝑢 real time, and higher-indexed processes invoke 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 later.

All messages from 𝑝𝑖 to 𝑝 𝑗 have delay 𝑑 − 𝑢 if 𝑗 ≥ 𝑘 > 𝑖 , 𝑖 < 𝑗 < 𝑘 ,

or 𝑘 < 𝑖 < 𝑗 and 𝑑 otherwise. We show that the 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 at 𝑝𝑘
must return a different value from those at 𝑝0, . . . , 𝑝𝑘−1, then shift

the run to obtain 𝐷𝑘+1, which is indistinguishable. By induction,

this is true for all 1 ≤ 𝑘 ≤ 𝑛, so all 𝑛 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances in 𝐷𝑛 must

return different values.

Lemma 3.1. For all 2 ≤ 𝑘 < 𝑛, 𝐷𝑘 = 𝑆ℎ𝑖 𝑓 𝑡 (𝐷𝑘−1,
−−−→𝑠𝑘−1), where−−−→𝑠𝑘−1 = ⟨0, . . . ,−𝑢, . . . , 0⟩, with −𝑢 at index 𝑘 − 1.

Lemma 3.2. ∀0 ≤ 𝑖 < 𝑛, 𝑝𝑖 ’s 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instance in 𝐷𝑛 returns 𝑖 + 1.

For the second set of runs, we show that 𝑛 processes, each in-

voking one 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instance in our same partially-overlapping

pattern, will not return all different values to those 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 in-

stances. To do this, we first show that if only three processes invoke

𝐷𝑒𝑞𝑢𝑒𝑢𝑒 , then they will only return two distinct values. We then

inductively construct pairs of more complex runs, with one more

process joining the pattern and invoking 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 in each succes-

sive pair. When the induction reaches 𝑛, we show that we have a

run, 𝑆𝑛 , with 𝑛 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances returning only 𝑛 − 1 values.

We define the families of runs 𝑆𝑘 , 0 ≤ 𝑘 ≤ 𝑛 and 𝑆 ′
𝑘
, 1 ≤ 𝑘 < 𝑛,

in each of which only 𝑘 ≤ 𝑛 processes invoke 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 . We induc-

tively show that each of these has two 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances which

return the same value, eventually showing that not all 𝐷𝑒𝑞𝑢𝑒𝑢𝑒

instances in 𝑆𝑛 return distinct values. In 𝑆𝑘 , the first 𝑘 processes in-

voke 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 exactly as in 𝐷𝑘 , and all delays from lower-indexed

processes to higher indexed are 𝑑 − 𝑢, while those in the other

direction are 𝑑 , except that after a certain point, the earliest time

information about 𝑝0’s 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 invocation could travel through

all 𝑝1, .., 𝑝𝑘−2, messages from 𝑝𝑘−2 to 𝑝𝑘−1 have delay 𝑑 instead.

We then define 𝑆 ′
𝑘
from 𝑆𝑘−1 by having 𝑝𝑘−1 additionally invoke

𝐷𝑒𝑞𝑢𝑒𝑢𝑒 𝑢 before 𝑝𝑘−2’s 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instance returns, and delaying

messages from 𝑝𝑘−2 to 𝑝𝑘−1 similarly to those from 𝑝𝑘−3 to 𝑝𝑘−2.
Thus, 𝑆 ′

𝑘
is similar to 𝑆𝑘 , except that messages from 𝑝𝑘−3 to 𝑝𝑘−2

and from 𝑝𝑘−2 to 𝑝𝑘−1 are both eventually delayed. We show that,

despite this difference, 𝑆 ′
𝑘
and 𝑆𝑘 are indistinguishable until after

all 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances return, so they return the same values in

both. The base case, 𝑘 = 3, is the core of our overall proof, using

the extended shifting technique from [14] to prove that the three

𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances return only two distinct values.

Lemma 3.3. In 𝑆 ′𝑛 and 𝑆𝑛 , all 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances return values
from the set {1, . . . , 𝑛 − 1}, for sufficiently large 𝑛.

Now, we want to show that 𝐷𝑛 and 𝑆𝑛 are indistinguishable,

which leads to a contradiction, as processes must return the same

values in indistinguishable runs. 𝐷𝑛 and 𝑆𝑛 are nearly identical:

They have the same initial sequence of 𝐸𝑛𝑞𝑢𝑒𝑢𝑒 instances, the same

𝐷𝑒𝑞𝑢𝑒𝑢𝑒 invocations, and nearly identical message delays. The only

difference is that past a certain point in time, messages in 𝑆𝑛 from

𝑝𝑛−2 to 𝑝𝑛−1 have delay 𝑑 , while such messages in 𝐷𝑛 have delay

𝑑 −𝑢. We show that delaying those messages in 𝐷𝑛 , for sufficiently

large 𝑛, gives a run indistinguishable from 𝑆𝑛 , a contradiction.

Theorem 3.4. There is no uniform, set-linearizable implementa-

tion of a multiplicity queue with |𝐷𝑒𝑞𝑢𝑒𝑢𝑒 | < min

{
𝑑
2
+ 𝑢, 3𝑑+2𝑢

5

}
.

Finally, we note that our result is an improvement over the

previously best-known bound from [10], with the added restriction

to uniform algorithms. This follows because
𝑑+𝑢
2

= 𝑑
2
+ 𝑢

2
< 𝑑

2
+ 𝑢

and
𝑑+𝑢
2

≤ 2.5𝑑+2.5𝑢
5

≤ 3𝑑+2𝑢
5

, since 𝑢 ≤ 𝑑 .

4 TIGHTNESS: EDGE CASE UPPER BOUND
While it may seem that the

𝑑
2
+ 𝑢 term in the lower bound is an

artifact of our limited proof techniques for lower bounds, and future

work may increase the bound to
3𝑑+2𝑢

5
or better for all values of 𝑢,

we developed an algorithm for the special case where 𝑢 = 0 which

matches the
𝑑
2
+𝑢 = 𝑑

2
lower bound, beating

3𝑑
5
. This suggests

𝑑
2
+𝑢

may be somehow fundamental, despite not holding everywhere

The idea of the algorithm is that all processes maintain a local

copy of the queue, which they update based on messages about

operation invocations. Each invoking process broadcasts operations

and arguments on invocation, then returns after 𝑑/2 time. Thus,

if two instances are concurrent, neither can learn about the other,

since messages take 𝑑 time to arrive when 𝑢 = 0. If instances

are non-concurrent, then there is more than 𝑑 time from the first

instance’s invocation to the second’s return, so by that return, the

second process must know about any preceding instances. Each

process will execute every 𝐸𝑛𝑞𝑢𝑒𝑢𝑒 instance on its local copy, An

𝐸𝑛𝑞𝑢𝑒𝑢𝑒 instance’s invoking process will execute it after 𝑑/2 time,

and all other processes after 𝑑 time, when they receive the message.

Non-invoking processes only locally execute 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 instances if

they have not already seen a concurrent 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 , which is where

multiplicity benefits us. If they have seen a concurrent 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 ,

detected by timestamps, they have already removed the return

value, so there is no further work to do.

Theorem 4.1. If𝑢 = 0, there is an optimal uniform, set-linearizable
implementation of a multiplicity queue with |𝐷𝑒𝑞𝑢𝑒𝑢𝑒 | = 𝑑/2.
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