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Abstract 

Treatment plants that operate either thermophilic or mesophilic anaerobic digesters with 

centrifugal dewatering processes have consistently observed densities of fecal coliform and 

Escherichia coli, both indicator bacteria, that decrease during digestion but then increase after 

dewatering and storage. The increases have been characterized as two separate phenomena to 

explain this observation: 1) “Sudden Increase,” or SI, which is defined as the increase that occurs 

immediately after dewatering and 2) “regrowth,” which is defined as an increase during storage of 

cake samples over a period of hours or days. The SI observation appears to be more prevalent 

with biosolids that are generated with thermophilic processes and dewatered by centrifugation.  

Both thermophilic and mesophilic digesters with centrifuge dewatering processes have observed 

the regrowth phenomena.   

This research hypothesizes that the SI phenomenon is due to the presence of viable non-

culturable (VNC) bacteria that are reactivated during dewatering.  In other words, the bacteria 

were always present but were not enumerated by standard culturing methods (SCM).   Analysis 

of the E. coli density in thermally treated solids by SCMs and quantitative real-time polymerase 

chain reaction (qPCR) indicated that E. coli densities are often underestimated by SCM.  When 

analyzed with qPCR, the E. coli density after digestion can be 4-5 orders of magnitude greater 

than the non-detect levels identified by SCMs, which supports the non-culturable hypothesis. 

The VNC state describes a condition where bacteria are alive but unable to sustain the metabolic 

process needed for cellular division.  Supplements added to culturing media were investigated to 

determine if the resuscitation of VNC bacteria could be enhanced.  The autoinducer molecules N-

hexanoyl-L-Homoserine lactone (C6-HSL), 3-oxo-N-octanoyl-L-Homoserine lactone (3-oxo-

C8-HSL), and norepinephrine were unable to induce the resuscitation of VNC E. coli. 



 xiii

Additional sampling was performed to determine if autoinducer molecules, peroxides, or other as 

of yet unknown inhibitory agents and toxins could be removed from biosolids during SCM.  

Culture media supplemented with the peroxide degrading compounds catalase, α-ketoglutaric 

acid, and sodium pyruvate was unable to resuscitate non-culturable E. coli.  The additions of 

bentonite and exponential growth phase E. coli cell-free supernatant to culturing media were also 

unable to increase the culturability of E. coli.  To remove inhibitory agents and toxins, a cell 

washing technique was employed prior to performing SCM; however, this cell washing technique 

may have increased cellular stresses that inhibited resuscitation since cell densities decreased.   

A novel laboratory-scale dewatering process was also investigated to determine if the SI and 

regrowth phenomena observed in full-scale centrifugal dewatering could be mimicked in the 

laboratory using a lab shearing device.  Fecal coliform and E. coli densities in laboratory prepared 

cake samples were observed to be an order of magnitude higher than full-scale dewatered cakes.  

Additionally, the laboratory-scale dewatering process was able to resuscitate fecal coliforms and 

E. coli in stored sludge such that the density increased by 4-5 orders of magnitude from non-

detect values. 

Lastly, the addition of aluminum sulfate during centrifuge dewatering at a full-scale utility 

produced an increased regrowth of fecal coliforms and E. coli that was sustained for 5 days.
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Chapter 1: Introduction 

1.1 Overview of a Wastewater Treatment Plant 

Municipal wastewater treatment plants typically contain the same basic subunits.  Figure 1–1 

depicts a generalized process flow diagram for a typical municipal wastewater treatment plant.  

First, grit and sediment are removed during pre-treatment in a grit chamber which uses gravity to 

settle stones, sand, and silt.  The influent then enters a primary sedimentation unit which removes 

a portion of the total suspended solids from the plant influent water.  Secondary treatment 

consists of a biological treatment process which decreases the concentration of organic dissolved 

solids and organic suspended solids (Reynolds et al., 1996).  In the biological or secondary 

treatment stage, microorganisms grow and multiply, which cause a buildup of biomass.  The 

growth of microorganisms during biological treatment is mitigated by wasting a fraction of the 

activated sludge generated.  The primary and secondary sludge is often then digested, which 

further reduces the amount of organic solids, prior to dewatering.  The dewatering process is 

necessary to remove water so that the weight and volume of the biosolids are at a manageable 

value.  Effluent and biosolids are required to meet regulatory requirements prior to discharge. 

 

Figure 1–1: Schematic for Wastewater Treatment Plant 
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1.2 Overview of Sludge Treatment 

The activated sludge, otherwise known as mixed liquor suspended solids, undergoes a 

sedimentation process whereby the solids concentrate and compact.  The solids that leave from 

the bottom of the sedimentation tank (Figure 1–1) are termed waste activated sludge (WAS).  A 

portion of the WAS is replenished into the aeration basin as the return activated sludge (RAS).  

The RAS is important since it maintains the microbial population within the biological treatment 

system.   

Typically the WAS is combined with the primary clarifier solids and is digested either by anaerobic 

or aerobic digestion (Figure 1–1).  The digestion process reduces the amount of degradable 

solids.  Solids are made from three constituents: active biomass, inactive biomass, and fixed 

solids (Reynolds et al., 1996; Rittmann et al., 2001).  To degrade the solids further, the digester is 

operated at relatively long solids retention times (SRT) of approximately 10-60 days.  During this 

prolonged SRT, bacteria selectively compete for nutrients.  As nutrients become scarce, bacteria 

either die, cannibalize one-another, or enter a suspended state.  Through this process, the 

amount of organics are decreased leaving mostly fixed solids and residual organic biomass. 

Typically, anaerobic digestion technologies are employed for solids reduction since anaerobic 

digestion does not require energy for aeration like aerobic digestion processes.  Anaerobic 

digestion does have the drawback of requiring higher operating temperatures.  An important 

family of anaerobic microbes in a wastewater treatment plant are the methanogens (Reynolds et 

al., 1996; Rittmann et al., 2001), a group of Archaea that are capable of producing methane.  

Since these microbes produce methane, many treatment plants burn the methane to produce the 

heat required to operate an anaerobic digester and some plants also use the methane to produce 

electricity.   
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After digestion, most utilities dewater the sludges to reduce hauling and disposal costs.  The most 

common dewatering technologies are belt filter presses (BFPs) and centrifuges, low solids 

centrifugation (LSC) and high solids centrifugation (HSC).  Dewatered sludge is called the cake 

while the liquid is termed centrate or filtrate.  HSC typically achieves 22-30% solids while belt filter 

presses produce cakes with 12-20% solids (Reynolds et al., 1996). 

1.3 Overview of Biosolids Regulations in the United States 

The term biosolids can be somewhat misleading since some liquids, as well as the solids, are 

classified as biosolids (EPA, 1994).  Biosolids are a federally regulated material that is produced 

when sewage sludge is treated.  Biosolids are classified according to the United States 

Environmental Protection Agency (EPA) document titled "The Standards for the Use or Disposal 

of Sewage Sludge” (Title 40 of the Code of Federal Regulations [CFR], Part 503) as published in 

the Federal Register (58 FR 9248 to 9404) on February 19, 1993.  The Part 503 rule, as this 

regulation is commonly known, describes biosolids as "…solid, semi-solid, or liquid residue 

generated during the treatment of domestic sewage in a treatment works" (EPA, 1994; EPA 

1999).  Therefore, sewage sludges that have been treated according to the methods outlined in 

the Part 503 rule are considered biosolids.  This research will consider the Part 503 standards for 

digested sludge and cake from wastewater treatment plants. 

The Part 503 rule applies to the uses for and disposal practices of biosolids.  The subparts of the 

rule include the requirements for land application, surface disposal, pathogen and vector 

attraction requirements, and incineration.  Because the biosolids discussed in this thesis only 

pertain to land applied and landfilled biosolids, this discussion will only detail the practices for the 

land application option for biosolids.  Subpart D of the Part 503 rule defines criteria for pathogen 

and vector attraction requirements.  Pathogens, such as certain bacteria, viruses, and parasites, 

can cause disease when introduced near a human population.  Insects and rodents are some of 
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the vectors that transport and transfer pathogens to humans.  The criteria listed in Subpart D 

aims to reduce the pathogenicity of biosolids and to minimize the attractiveness of vectors. 

The pathogenicity of the biosolids are a concern to human health and the environment because 

of the potential diseases that can be contracted from exposure.  In order to meet pathogen 

reduction requirements, Subpart D allows for the quantification of pathogens (Salmonella sp. 

bacteria, enteric viruses, and viable helminth ova) or pathogen indicators (fecal coliform and 

Escherichia coli).   

1.3.1 EPA Class A and Class B Biosolids 

Two biosolid classifications are commonly utilized as part of the Subpart D specifications: Class A 

and Class B.  The Part 503 requirements for Class A and Class B biosolids are detailed in the 

following sections.  Water and wastewater quality has been characterized though the detection of 

indicator bacteria.  Commonly, the fecal coliform (FC) group of bacteria has served as the 

indicator bacteria for wastewater process as required by regulations in the United States of 

America (EPA, 1994).  Although there are many definitions for the types of bacteria that are 

members of the total coliform (TC) group, the Standard Methods for the Examination of Water 

and Wastewater (Eaton, 1995) describe the coliform group as follows: 

All facultative anaerobic, Gram-negative, non-spore-forming, rod-shaped bacteria that 

ferment lactose with gas and acid formation within 48 hours at 35°C (SM 9921A). 

Included within the TC group are FC and Escherichia coli, typically members of the 

Enterobacteriaceae family of bacteria.  Because bacteria within this family can be pathogenic and 

are used as indicators of fecal contamination, the specificity and accurate quantitation of these 

bacteria are needed. 
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1.3.2 EPA Class A Biosolids Requirements 

The Class A biosolids classification pertains to treated materials that do not contain pathogens 

(Salmonella sp., enteric viruses, and viable helminth ova) at detectable levels (EPA, 1994).  In 

order to meet the Class A biosolids classification, treatment plants need to meet the requirements 

specified in the Part 503 rule.  Six alternatives exist for treating biosolids so they can be classified 

as Class A with respect to pathogens.  For the purpose of this research, only Alternative 1 

“Thermally Treated Biosolids” will be discussed. 

In the early 1980s, Feachem et al. (1983) developed time and temperature plots for pathogen 

reduction including Ascaris ova, enteric viruses, Vibrio cholarae, and Salmonella sp.  The plots, 

depicted in Figure 1–2, described how time and temperature related to inactivation of the selected 

pathogens.  Feachem et al. (1983) used this data to delineate a “Zone of Safety,” the 

requirements for digestion time and temperature that resulted in inactivation of pathogens. 

However, as EPA was developing their Part 503 rules, the EPA determined that Feachem et al.  

(1983) did not provide enough detail when developing the time and temperature plots from the 

raw data (Willis et al., 2006).  Thus, EPA created their own Time and Temperature Curves as 

depicted on Figure 1–2.  The EPA Time and Temperature Curves were selected as the Part 503 

rule requirement for Class A biosolids to be more conservative than Feachem et. al. (1983).   

According to the Part 503 rules for Class A biosolids under Subpart D, four time-temperature 

regimes have been developed for different scenarios of treatment.  For each of these regimes, 

time-temperature requirements are listed with time-temperature relationship equations.  The four 

time-temperature regimes under Alternative 1 are listed in Table 1–1, and basically result in two 

curves, the regimes A-B-C curve and the regime D curve, as shown in Figure 1–2. 
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Table 1–1: The four time-temperature regimes and equations for Class A pathogen 
reduction under Title 40 CFR Part 503, Subpart D, Alternative 1 

Regime Applies to: Requirement Time-Temperature 
Relationship* 

A 
Biosolids with 7% solids or 
greater (except those 
covered by Regime B) 

Temperature of biosolids 
must be 50°C or higher for 
20 minutes or longer 

t14.010
000,700,131D =  

(Equation 2 of Section 
503.32) 

B 

Bioloids with 7% solids or 
greater in the form of small 
particles and heated by 
contact with either warmed 
gases or an immiscible 
liquid 

Temperature of biosolids 
must be 50°C or higher for 
15 seconds or longer 

t14.010
000,700,131D =  

C Biosolids with less than 7% 
solids 

Heated for at least 15 
seconds but less than 30 
minutes 

t14.010
000,700,131D =  

D Biosolids with less than 7% 
solids 

Temperature of sludge is 
50°C or higher with at least 
30 minutes or longer 
contact time 

t14.010
000,070,50D =  

(Equation 3 of Section 
503.32) 

* D = time in days; t = temperature in degrees Celsius.  For example, if a plant was using Curve D 
and operated at 55°C, they would need to hold the solids for a minimum of 24 hours to meet 
Class A requirements. 

Treatment plants that operate thermophilic digesters that follow the EPA Time and Temperature 

Curve requirements also need to meet bacterial requirements set by the Part 503 rule.  A Class A 

biosolid must be treated with time and temperature requirements so that the density of the 

pathogen indicator FC is less than 1,000 most probable number (MPN) per gram dry solids 

(MPN/g DS) or the density of the pathogen Salmonella sp. is less than 3 MPN per 4 grams of 

total solids (dry-weight basis) (EPA, 1994; NRC, 2002).  The objective of the law is that the 

biosolids are essentially pathogen free. 

1.3.3 EPA Class B Biosolids Requirements 

The Class B biosolids classification pertains to treated materials that contain pathogens 

(Salmonella sp. bacteria, enteric viruses, and viable helminth ova) at detectable levels that can be 
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managed with land application restrictions to prevent exposure to the biosolids after their use or 

disposal (EPA, 1994).  Three alternatives exist in the Part 503 rule for meeting Class B pathogen 

requirements.  Alternative 1 requires monitoring of indicator organisms such that the density of 

FC is less than 2 million (2 x 106) MPN/g DS, based on geometric mean of seven samples (EPA, 

1994).   

Alternatives 2 and 3 require that biosolids are treated in a Process to Significantly Reduce 

Pathogens (PSRP) or equivalent process.  Under Appendix B of 40 CFR Part 503, PSRPs 

include aerobic digestion, air drying, anaerobic digestion, composting, and lime stabilization.  

Each PSRP has specific requirements for time and temperature.  For example, the anaerobic 

digestion (studied in this research) PSRP requires that SRT shall be between 15 days at 35°C to 

55°C (mesophilic) and 60 days at 20°C.  When a PSRP is utilized, microbial monitoring for the 

regrowth of FC or Salmonella sp. bacteria are not required (EPA, 1994).  Therefore, treatment 

plant operators are not required to monitor whether the density of FC is less than 2 x 106 

MPN/g DS. 

The assumption that the concentration of FC and other indicator bacteria do not increase during 

biosolids storage is a core assumption of the Part 503 rule.  As demonstrated by a growing 

community of researchers, the density of indicator bacteria can increase after dewatering, and 

this has implications for meeting regulatory requirements (Iranpour et al., 2002; Qi et al., 2004; 

Monteleone et al., 2004; Estrada et al., 2004).  Class A and Class B biosolids requirements were 

defined by the Part 503 rule to provide a reasonable confidence that the public would not 

encounter health consequences from the land application of biosolids.  

1.4 Issue of Sudden Increase and Regrowth 

“Sudden Increase (SI)” and regrowth are phenomena that have been observed in full-scale 
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wastewater treatment plants that operate anaerobic digesters with HSC dewatering technologies.  

This section discusses the current literature as it pertains to mesophilic and thermophilic 

digesters designed to achieve Class A or Class B biosolids requirements. 

1.4.1 Impact of SI and Regrowth on Class A Biosolids 

Iranpour et al. (2002) indicated that wastewater treatment plant operators that operate 

thermophilic digesters designed to meet Class A biosolids requirements have become aware that 

increases in FC densities are readily occurring in post-digestion biosolids.  Higgins et al. (2006) 

described the increases as occurring in two distinct phases, “Sudden Increase” and “regrowth.” 

This phenomenon is shown graphically as presented in Figure 1–3.  The data is from a plant that 

utilized pre-pasteurization (66°C for 1 hour) to meet Class A time and temperature requirements 

followed by anaerobic digestion and centrifuge dewatering.  The results show that after pre-

pasteurization and digestion, the plant meets the Class A requirement of <103 FC/g DS, in fact, 

after digestion the FC density was below detection.  However, after dewatering, the FC density 

increased to 105 FC/g DS, a 4-5 order of magnitude increase in less than 20 minutes.  After 

storage, the FC density continued to increase to 107 FC/g DS.   

The term SI refers to the sudden increase in indicator bacteria, mainly FC and/or E. coli, 

immediately after the dewatering process when compared to the enumerations prior to 

dewatering, a time frame of less than 20 minutes (Higgins et al., 2006).  Regrowth refers to the 

growth of microbes during the storage of the dewatered biosolids, typically on the order of hours 

to days (Higgins et al., 2006). 
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Figure 1–3: Fecal coliform counts from different locations before and after thermophilic 
digestion, after dewatering, and after on-site cake storage (Pre-Past-1) (Error bars 
represent one standard deviation) 

1.4.2 Impact of SI and Regrowth on Class B Biosolids 

At Class B mesophilic anaerobic wastewater treatment systems, SI has not been significantly 

observed; however, the regrowth phenomena has been observed (Erdal et al., 2003; Monteleone 

et al., 2004; Qi et al., 2004; Higgins et at., 2006).  FC concentrations in mesophilic cake samples 

initially meet the 2 x 106 MPN/g DS bacteria requirements.  However, after 24 hours of incubation 

at 20°C, FC concentrations increase by 2-3 orders of magnitude, making the cake samples no 

longer compliant with the Part 503 rule requirements for Class B biosolids classification.   
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1.4.3 Implications of SI and Regrowth 

The SI and regrowth of bacteria are therefore a significant problem for wastewater treatment 

plants that produce biosolids for land application.  Treatment plants typically meet the FC limits 

after digestion but no longer meet the requirements after dewatering.  Because of the SI and 

regrowth phenomena, uncertainty exists about the true density of FC in biosolids being land 

applied.   

1.5 Hypotheses for Sudden Increase 

The term SI is defined as an increase in FC or E. coli density in cake solids collected immediately 

after a dewatering process compared to the feed to the dewatering process (Higgins et al., 2006).  

Typically, solids remains in a HSC for 1-3 minutes before exiting as dewatered cake and centrate.  

During this short period of time, the culturability of FC and E. coli has been observed to suddenly 

increase.  These increases can be up to 4 or 5 orders of magnitude in this 1-3 minute time period 

(Iranpour et al., 2002; Monteleone et al., 2004; Qi et al., 2004; Higgins et at., 2006).  Also, during 

cake storage, a one to two orders of magnitude increase is typically observed for FC and E. coli 

density within 48 hours as determined by standard culturing methods (SCMs). 

The term “SI” has been utilized to describe the observation of sudden increase in microbial 

population by SCMs and not to describe a mechanism to the observed increase.  Several 

theories have been proposed to explain the SI phenomena: 

1. Floc breakup 

2. Bacteria growth 

3. Contamination 
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4. Resuscitation of viable non-culturable bacteria 

These theories have been discussed in various literature sources, and a review of these theories 

is discussed in the following sections. 

1.5.1 Floc Breakup 

Many treatment plants rely on the flocculation process to thicken sludges that are wasted from 

secondary clarifiers.  These floc particles are formed by the attractions between bacteria, inert 

and organic solids, and flocculants (typically polymers or chemical coagulants). The flocs that 

settle during sedimentation are further degraded during the digestion process.  These digested 

flocs, which may have a different composition than when they entered the digester, are 

dewatered by various technologies, including HSC.  As discussed previously, SI has been 

identified as a common occurrence with anaerobic, thermally treated sludges that are dewatered 

using HSC.  The breakup of flocs during HSC may be one potential reason that SI occurs. 

Qi et al. (2004) presumed that the intensive shearing forces associated with centrifuge 

dewatering may be a reason for the increased enumeration of FC.  Qi et al. (2004) suggested that 

shearing forces were responsible for the breakup of flocs which would increase the surface area 

where bacteria could culture.  Upon testing this hypothesis with a kitchen blender (maximum 

speed for 3 minutes at room temperature [25°C]), Qi et al. (2004) noted that the blended and 

unblended samples contained the same concentration of FC.  Microscopy of the blended and 

unblended samples identified that the blending process produced smaller floc sizes.  

Nevertheless, the blending of digester feed sludge did not result in higher FC enumeration 

compared to unblended feed sludge (Qi et al., 2004). 

Instead of producing shear forces using a kitchen blender, Monteleone et al. (2004) used a 

laboratory-scale centrifuge to determine if increasing centrifugal force resulted in higher 
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enumeration of FC.  Unfortunately, the research did not indicate a simple relationship between 

centrifugal force and E. coli concentration.  Low centrifugal force (below 500 xg) resulted in the 

highest concentration of E. coli.  Increasing the centrifugal force beyond 500 xg resulted in 

diminished E. coli enumeration.  When laboratory-scale data was compared to full-scale 

centrifugal dewatering, the immediate resuscitation of FC was not observed (Monteleone et al., 

2004).  Qi et al. (2004) and Monteleone et al. (2004) both concluded that floc breakup did not 

explain the SI of the FC and E. coli density.   

1.5.2 Bacteria Growth 

Qi et al. (2004) suggested bacterial growth, specifically regrowth, as an explanation for the 

increase in FC concentration after centrifugal dewatering.  The MPN data collected in the Qi et al. 

(2004) experiments suggested that FC concentrations did not increase during centrifugation but 

rather after centrifugation.  The regrowth after centrifugal dewatering was not able to be 

replicated using laboratory centrifugation techniques and the possibility that resuscitation 

occurred during centrifugation could not be dismissed (Qi et al., 2004).  However, because the 

centrifugation process takes 1-3 minutes, which is much less than the doubling time for bacteria, 

the large increase in bacteria density immediately after centrifugation is not due to bacterial 

growth.  Thus, the Qi et al. (2004) suggestion that regrowth explained the increase in FC 

concentration after centrifugal dewatering is likely not correct. 

1.5.3 Contamination 

Iranpour et al. (2002) suggested that the increase in FC density measured after a thermophilic 

digestion process and HSC may be a consequence of contamination from in-plant transfer 

(pipelines) and storage of biosolids.  Specifically, they theorized that after digestion contamination 

and cooling of biosolids resulted in the increases of FC (Iranpour et al., 2002).  It is hypothesized 

that contamination from process equipment, pipelines, and storage facilities may also provide a 
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bacteria source that increased bacteria densities.  Contamination should be considered at plant, 

but researchers have eliminated this as a mechanism in several cases so other potential 

mechanisms should be explored. 

1.5.4 Resuscitation of Viable Non-Culturable Bacteria 

Another possible explanation for the SI phenomena is the presence of viable non-culturable 

(VNC) bacteria that are resuscitated and become culturable after centrifuge dewatering.  Oliver 

(2005a) compiled literature referencing that bacteria, such as E. coli, are capable of entering the 

VNC state when subjected to environmental stresses (e.g., heat stress, nutrient starvation, white 

light, toxicity from inhibitory agents, etc.).  Because the scientific community has yet to define 

which biochemical parameters are necessary for viable versus dead cells, the existence of the 

VNC state is controversial (Oliver, 2005a). Typically, however, a cell, which is metabolically active 

yet unable to experience sustained cellular division that produces a colony that is discernable 

using SCMs, is considered to be in the VNC state (Oliver, 1993).  SCMs, which typically assay for 

enzymatic activity (e.g., β-galactosidase, β-glucuronidase, etc.) do not typically culture VNC 

bacteria since VNC bacteria do not have the same metabolic activity as a normal viable cell 

(Anglès d’Auriac, 2000).  It is possible that after thermophilic treatment, a portion of the FCs enter 

the VNC state and are resuscitated after centrifuge dewatering. 

As mentioned previously, many researchers have identified that the concentration of FC 

increases by 4-5 orders of magnitude after centrifugal dewatering of thermophilic sludges.  

Because the dewatering process only constitutes 1-3 minutes, which is too short a period of time 

for population doubling to occur, the resuscitation of VNC bacteria is one potential explanation for 

the observed SI phenomenon.  Unfortunately, current SCMs have also been described as being 

incapable of correctly enumerating VNC bacteria (Oliver, 2005a).  Thus, the true density of viable 

bacteria measured by SCMs is potentially biased low.   
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In the Part 503 rule, the application and use of biosolids are regulated in part based on the 

population of bacteria.  If bacterial enumerations are biased-low, utilities may be underestimating 

viable organisms after thermophilic digestion.  Oliver (2005a) has identified literature supporting 

the conclusion that the VNC bacteria retain their virulence.   

This thesis proposes that resuscitated VNC bacteria are a potential cause for the SI of bacteria in 

thermophilic processes.  As a result, the SCMs currently used to enumerate FC in biosolids 

underestimate the actual densities.  If culturing methods can be identified to promote the 

resuscitation of bacteria, then more accurate enumeration of indicator bacteria can be achieved.  

It is not clear how the bacteria are resuscitated by centrifuges.  In this research, the following two 

hypotheses for resuscitating VNC bacteria were investigated: 

1. Removal of growth inhibitors produced during dewatering 

2. Resuscitation of VNC bacteria by quorum sensing 

These two hypotheses are discussed in further detail in the following sections. 

1.5.4.1 Removal of Growth Inhibitors Produced during Dewatering 

Mizunoe et al. (1999) reported that peroxides reduce the culturability of bacteria by promoting the 

VNC state.  Peroxides are typically produced by bacteria during metabolic instabilities caused by 

heat stress, nutrient starvation, and other environmental changes.  The same factors causing 

peroxide production are also theorized to promote the VNC state. Literature indicates that 

peroxide-degrading compounds such as catalase, sodium pyruvate, and α-ketoglutaric acid are 

capable of resuscitating bacteria in the VNC state (Mizunoe et al., 1999).   

In experiments conducted by Mizunoe et al. (1999), E. coli O157:H- strain E32511/HSC was 
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subjected to low-temperature stress (4°C incubation for 21 days) to cause the VNC state.  Luria-

Bertani (LB) agar plates enhanced with enzymatic (i.e., catalase) and nonenzymatic (i.e., sodium 

pyruvate, α-ketoglutaric acid) peroxide degrading compounds were able to restore the 

culturability of stressed cells after incubation at 25°C for 48-hours.  Culturability typically 

increased from non-detect to 104-105 colony forming units (CFU)/mL within 48-hours on LB agar 

plates supplemented with catalase, sodium pyruvate, or α-ketoglutaric acid. 

This research proposes that peroxide-degrading compounds can be added to SCM to promote 

the resuscitation of non-culturable bacteria.  Because peroxide inhibition should be neutralized by 

the addition of peroxide-degrading compounds, this research hypothesizes that improved 

enumeration of bacteria density will occur when culturing media is enhanced with peroxide-

degrading compounds. 

1.5.4.2 Resuscitation of VNC Bacteria by Quorum Sensing 

Prokaryotic bacteria were once considered to live unicellularly, with only stimulation from 

environmental factors such as the presence of chemicals and physical changes (Reading et al., 

2006).  This simplistic view of prokaryotic life has been dismissed with the discovery of small 

“hormone-like” organic molecules called autoinducers, which allow bacteria to communicate with 

one another (Reading et al., 2006).  These autoinducers provide a cell-to-cell signaling system 

that serves to regulate gene expression based on cell density.  Because autoinducers signal for 

the expression of certain genes based on cell density, autoinducers are considered quorum 

sensing molecules (Reading et al., 2006). 

Early research into quorum sensing molecules first occurred during a study into the regulation of 

bioluminescence in Vibrio fischeri and Vibrio harveyi (Reading et al., 2006).  Since then, many 

more quorum sensing signaling molecules and genes have been identified (Reading et al., 2006).  

These quorum sensing molecules are divided into three classes.  In Gram-negative bacteria, the 
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LuxR/I-type system is utilized for quorum sensing using various acyl-homoserene lactone (AHL) 

molecules.  A peptide signaling system (luxS/autoinducer-2 [AI-2]) is utilized by Gram-positive 

bacteria, and an interkingdom signaling system utilizing epinephrine/norepinephrine/ 

autoinducer-3 (AI-3) has also been identified for cross-species signaling (Reading et al., 2006). 

Multiple studies have found that quorum sensing in E. coli is essential for regulating culturability 

based on both cell density and metabolic potential of the environment (Surette et al., 1998; Lyte 

et al., 1996; Reissbrodt et al., 2002; Valle et al., 2004).  These studies reference both the AHL 

and norepinephrine quorum sensing pathways.  For E. coli, which does not produce a known 

AHL, the ability to interpret signaling molecules from other bacteria provide E. coli with 

information about cell density and nutrient available in the environment.  This may be important 

for pathogenic E. coli because dispersion is necessary for greatest pathogenicity.  Signaling 

molecules produced within nutrient-rich environments could communicate to nearby cells that 

reproduction is possible.   

This research theorizes that the presence of E. coli in a nutrient-rich environment could promote 

exponential growth of bacteria because of cell-to-cell signaling molecules.  This research will 

evaluate the hypothesis that the addition of cell-to-cell signaling molecules to culturing media will 

promote the resuscitation of non-culturable bacteria. 

1.6 Hypotheses for Regrowth 

The term regrowth is defined as an additional increase of FC or E. coli density during storage of 

cake samples over a period of hours or days (Higgins et al., 2006).  The regrowth of FC and E. 

coli is hypothesized to occur from the release of substrate (e.g., polysaccharides, proteins, etc.) 

during the shearing process of HSC (Higgins et al., 2006).  This regrowth phenomena has been 

observed by Qi et al. (2004) and Monteleone et al. (2004) in full-scale wastewater treatment 
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plants with mesophilic digestion.  However, Qi et al. (2004) and Monteleone et al. (2004) were 

unable to replicate full-scale observations using laboratory procedures to replicate centrifugation 

and shearing forces. 

The research presented herein poses questions on how to mimic full-scale dewatering processes 

in the laboratory such that regrowth occurs.  Qi et al. (2004) and Monteleone et al. (2004) 

proposed that shear and centrifugation independently promote the breakup of flocs.  Qi et. al 

(2004) presumed that the intensive shearing forces associated with centrifugation may be a 

reason for the increased FC density. 

Our theory is that the shearing forces imparted to the solids during HSC releases bioavailable 

materials that support microbial growth.  Therefore, the dewatering process (including 

centrifugation, shear forces from screw conveyance, and pressure dewatering) contains features 

that, when combined, may result in the regrowth of FC and E. coli. 

1.7 Research Needs 

The current understanding of the SI and regrowth phenomena are not well understood based on 

the literature reviewed.  Previous research has indicated that the concentration of FC and E. coli 

has been observed to decrease after digestion and to increase after the dewatering process.  

However, the mechanisms for these increases are not understood.  Research is needed to 

determine a better method for enumerating FC and E. coli that are in a VNC state after 

thermophilic treatment.  Additional research is required to determine if enhancements to SCM can 

be used to increase the culturability of FC and E. coli by laboratory culturing techniques.  

Alternatively, research needs to be performed to determine if novel laboratory methods can be 

employed to promote the culturability of FC and E. coli.  In addition, approaches are needed to 

prevent or mitigate SI and regrowth such that utilities can meet regulatory requirements. 
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1.8 Research Objectives 

This research was focused on evaluating the resuscitation and regrowth hypotheses and 

determining methods of enumerating FC and E. coli to more accurately estimate the density of 

VNC bacteria.  The main objectives of the research are summarized as follows: 

• Examine the impact of digestion and dewatering processes on the extent of the 

increases; 

• Investigate the resuscitation hypothesis; 

• Examine potential culturing media supplements to improve the enumeration of FC after 

thermophilic treatment; 

• Investigate if quorum sensing molecules are capable of reversing the VNC state; 

• Determine if inhibitor toxicity results in diminished culturability; 

• Determine if substrate is required for SI and regrowth. 

• Investigate methods for controlling SI and regrowth. 

This research hypothesizes that shear during centrifuge dewatering promotes the release of 

polysaccharides and proteins which then become bioavailable to resuscitate bacteria.  The 

release of substrates bound in flocs provides a nutrient source for stressed and non-culturable 

bacteria.  Once non-culturable bacteria are exposed to bioavailable nutrients in biosolids 

samples, the bacteria resuscitate and regrowth occurs. 
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1.9 Report Organization 

This thesis is organized into the following sections: 

• Chapter 1 describes the background information pertaining to wastewater treatment, 

sludge treatment, and biosolids regulations in the United States.  Additionally, Chapter 1 

presents the issues of SI and regrowth and describes and the hypotheses for their 

causes.   

• In Chapter 2, the SI and regrowth are examined for different digestion and dewatering 

processes that are presented for the wastewater treatment plants discussed in this 

thesis.   

• The time and temperature effects on the destruction of pathogens in Class A biosolids 

are discussed in Chapter 3.   

• An investigation into the effects of peroxide as an inhibitor to bacterial growth is 

presented in Chapter 4.   

• In Chapter 5, the cell-to-cell signaling by quorum sensing molecules hypothesis is 

examined.   

• Chapter 6 presents data examining whether inhibitory substances can be removed from 

wastewater samples prior to bacterial enumeration by SCM.   

• The effect of shear during the dewatering of sludge samples is discussed in Chapter 7.   
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• In Chapter 8, a full-scale experiment was performed to determine if coagulant addition 

during centrifugal dewatering bound substrates thus reducing regrowth.   

• Finally, the overall conclusions from this thesis research are presented in Chapter 9. 
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Chapter 2: Observation of Sudden Increase and 
Regrowth in Full-Scale Treatment Plants with 

Thermophilic and Mesophilic Anaerobic Digesters 

2.1 Introduction 

The SI phenomena observed after the centrifugal dewatering of thermally treated anaerobic 

sludge is an important concern for wastewater operators trying to meet Class A biosolids 

culturability requirements.  As indicated in Section 1.4.1, the density of FC and E. coli has been 

found to increase by 4-5 orders of magnitude after centrifugal dewatering and cake storage.  This 

rapid increase in FC and E. coli density typically causes biosolids to no longer meet Class A 

pathogen reduction requirements.  One possible mechanism explaining the SI phenomenon is the 

resuscitation of VNC bacteria.  As discussed in Section 1.5.4, VNC bacteria are metabolically 

inactive bacteria that do not culture by SCMs.  The presence of VNC bacteria would provide a 

rationale for the underestimated population of viable bacteria when determined by SCMs. 

SCMs for detecting TC, FC, and E. coli include multiple tube fermentation and membrane 

filtration.  These techniques allow for an aliquot of sample to be inoculated into standard media 

which promotes the growth of specific bacteria.  Multiple tube fermentation and membrane 

filtration are commonly utilized because the equipment needed to perform the methods are 

inexpensive and because the methods themselves are not complicated and do not require highly 

skilled laboratory technicians.  Nevertheless, there are problems associated with the traditional 

culturing techniques.  Culturing techniques require the multiplication of bacterial cells so that 

quantification can be performed.  Typically 1-2 days is required for TC sampling with 

confirmational sampling for FC and E. coli taking another 1-2 days.  Additionally, antagonistic 

organisms interfere with the growth of target bacteria, thus diminishing the true number of target 
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bacteria (Rompré et al., 2002).  Lastly, traditional culturing techniques do not have the specificity 

nor detection capabilities for VNC bacteria (Rompré et al., 2002).   

The EPA requires the use of Method 1680 for enumeration of FC in bolsolids which is the same 

as Standard Method (SM) 9921.  Bromocresol purple, a chromogenic pH indicator, changes color 

when the breakdown of lactose is catalyzed by β-D-galactosidase, which is an indication that TC 

are present (Rompré et al., 2002).  In this breakdown, the pH of the culture media decreases as 

lactose is split into galactose and glucose.  Similarly, the presence of E. coli is typically assessed 

through color change of a fluorogenic substance that is cleaved by β-D-glucuronidase (Rompré et 

al., 2002).  SM 9921 utilizes the fluorogenic substrate 4-methylumbelliferyl-β-D-glucuronide 

(MUG), which fluoresces under long-wave UV light, to determine the presence of E. coli.  

Because both of these methods require enzymatically active bacteria, the culturing techniques 

utilized by SM 9921, and similar culturing methods can potentially underestimate the population 

of bacteria present because of VNC bacteria (Rompré et al., 2002).  Therefore, traditional 

culturing techniques for the enumeration of coliforms and E. coli are potentially biased low 

because of the VNC population and problems associated with enumeration by traditional 

methods. 

In addition to traditional culturing techniques to enumerate E.coli, direct enumeration can be 

performed using molecular-based techniques.  Current molecular-based techniques include 

polymerase chain reaction (PCR) and fluorescent in-situ hybridization (FISH).  As our 

understanding of DNA and RNA increase, the specificity, time and cost for analytical methods has 

decreased.  Likewise, molecular-based techniques have become more mainstream within 

laboratories for microorganism enumeration.  Nevertheless, because of the cost associated with 

the requisite equipment and the technical knowhow and precision required to complete these 

techniques, molecular-based methods are not likely to become standardized methods for use in 

non-laboratory environments (Rompré et al., 2002). 
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The quantification of TC by quantitative real-time polymerase chain reaction (qPCR) has been 

possible because the known DNA sequence for the lacZ gene which encodes β-galactosidase 

(Rompré et al., 2002).  E. coli density has been quantified by qPCR using the uidA gene which 

encodes β-glucuronidase and the homologous gene pair gadA and gadB which encode 

glutamate decarboxylase (Rompré et al., 2002; McDaniels et al., 1996).   Both uidA and gadA/B 

have been identified to be specific to E. coli (McDaniels et al., 1996). However, differences in the 

expression of the uidA and gadA/B genes have been identified for various E. coli strains (Rompré 

et al., 2002; McDaniels et al., 1996; Venkateswaran et al., 1996).  Venkateswaran et al. (1996) 

indicates that pathogenic serogroups of E. coli (i.e., Enterohaemorrhagic Escherichia coli [EHEC] 

serogroup O157:H7) typically do not produce β-glucuronidase even though they possess the uidA 

gene.  The absence of β-glucuronidase is the result of catabolic repression by lactose 

(Venkateswaran et al., 1999), which results in VNC EHEC bacteria when cultured on MUG 

enhanced media while qPCR still detects EHEC bacteria because the uidA gene is present.  For 

phenotypic analysis using culturing techniques, detection of glutamate decarboxylase activity was 

more specific for E. coli than β-glucuronidase.  Additionally, culturing methods that test for 

glutamate decarboxylase activity did not yield detections for false positive bacteria (i.e., Shigella 

spp. and Citrobacter freundi) like culturing methods that test for β-glucuronidase activity 

(McDaniels et al., 1996).  Genotypic analysis for E. coli was equivalent when PCR primers were 

designed to amplify sequences of either the uidA or gadA/B genes (McDaniels et al., 1996). 

As discussed with traditional culturing techniques, the lacZ, uidA, and gadA/B genes encode 

enzymes (i.e., β-galactosidase, β-glucuronidase and glutamate decarboxylase, respectively) that 

are specific to quantify TC and E. coli.  Nonetheless, qPCR techniques still lack the specificity 

required to determine if DNA present in environmental samples is attributable to live or dead 

bacterial cells since bulk DNA is collected from the sample prior to analysis (Panutdaporn et al., 

2006).  Consequently, qPCR techniques can result in an E. coli quantification that is biased high. 



 25

Although more complex and less common among molecular-based techniques, FISH has been 

used to overcome the problem associated with live/dead specificity in qPCR.  The FISH 

technique utilizes an oligonucleotide probe to detect complementary sequences of 16S rRNA 

molecules within phylogenetically identified micro-organisms (e.g., Enterobacteriaceae, E. coli, 

etc.).  FISH cannot, however, be used to detect the coliforms as a group since the oligonucleotide 

probe is highly specific and will not detect mismatches from phylogenetically diverse 

microorganisms (Rompré et al., 2002).   Additionally, because of their low metabolic activity, VNC 

bacteria typically have a low ribosome content, which results in a low quantity of 16S rRNA 

targets for hybridization and induces a weak fluorescent hybridization signal (Rompré et al., 

2002).  Another problem caused by VNC bacteria and dead cells is residual rRNA molecules that 

exist after the cell is no longer physiologically intact (Rompré et al., 2002).  Thus, the 

quantification of bacteria using FISH is also problematic and typically yields data that is biased 

low. 

2.2 Research Needs 

Molecular techniques are currently able to more accurately determine the order of magnitude 

concentration for E. coli.  However, the E. coli density determined by molecular techniques 

potentially result in an overestimation because of non-specificity for live and dead cells. SCM 

potentially result in an under-estimation of FC and E. coli populations because of diminished 

culturability caused by VNC bacteria or other mechanism yet to be understood.  Research needs 

to be conducted to evaluate if molecular techniques are capable of estimating the SI and 

regrowth phenomena in Class A and Class B biosolids. 

2.3 Research Objectives 

The SCM available are not capable of adequately quantifying potentially VNC FC and E. coli 
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when compared to molecular techniques.  Molecular techniques, however, might overestimate 

the number of cells because genetic material remains regardless of whether the cell is live or 

dead.  This difference between enumerating FC and E. coli by molecular techniques and SCM 

creates a situation where potentially neither method accurately enumerates the quantity of FC 

and E. coli present.   

This research will evaluate the density of FC and E. coli using both SCM and molecular 

techniques from various configurations of full-scale wastewater treatment plants utilizing HSC.  

The data from SCM and molecular techniques will be compared to determine if the SI and 

regrowth phenomena can be predicted. 

2.4 Methods and Procedure 

To support the research contained in this thesis, six wastewater treatment plants were studied 

because of the SI and regrowth phenomena observed after dewatering by HSC.  As summarized 

in Table 2–1, two wastewater treatment plants were designed to meet EPA Class A biosolids 

requirements while four plants were designed to meet Class B biosolids requirements.  Various 

digester configurations and time-temperature regimes were studied as they pertain to the SI and 

regrowth phenomena.  This treatment plant data is presented to demonstrate the commonality of 

SI and regrowth in different configurations of wastewater treatment plants.  Samples were 

collected after various process elements for evaluation by SCM and molecular based techniques 

as described in Sections 2.4.1 and 2.4.3. 
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Table 2–1: Summary of plant processes and operating conditions 

Plant 
Digestion 

Dewatering 
Series/Parallel SRT Temperature EPA Class 

A or B 

TPAD-1 
Thermophilic 
Mesophilic 
(in Series) 

15 days 
20 days 

 

58 °C 
36 °C 

 
A HSC 

Pre-past-1 
Pre-Pasteruization 

 Mesophilic 
(in Series) 

1 hour 
19 days 

 

66 °C  
35 °C 

 
A HSC 

Thermo-1 
Continuous Stir 
Tank Reactors 

(in Parallel) 
15-20 days 55 °C B HSC 

Meso 1 Mesophilic 
(in Parallel) 32 days 38 °C B HSC 

Meso-2 Mesophilic 
(in Parallel) 22 days 36 °C B HSC 

Meso-3 Mesophilic 
(in Parallel) 22 days 36 °C B HSC 

 

2.4.1 Multiple Tube Fermentation Culturing Technique 

Samples were shipped overnight on ice to preserve bacterial activity in accordance with SM 

9060B (Eaton, 1995). 

2.4.1.1 Culturing Technique 

Sample preparation, serial dilutions, and culturing methods were conducted in accordance with 

SM 9221B and EPA Method 1680.  Total percent solids analysis of the sludge and cake samples 

was performed by SM 2540B.  Cake samples (30.0 ± 0.1 g) were homogenized with 270 mL 

sterile phosphate-buffered saline (PBS) dilution water (1:10 dilution) in a sterile blender for 2 

minutes (EPA Method 1680).  For liquid samples, 300 mL of sludge were homogenized in a 

sterile blender for 2 minutes (EPA Method 1680).  Serial dilutions (1:10) were prepared for each 

sample.  One milliliter of each serial dilution was aseptically transferred into 10 mL sterile LTB 

media.  Five replicate tubes were inoculated for each dilution.  Presumptive cultures were 
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incubated in a 35°C ± 0.5°C water bath.  At 24 ± 2 hours, presumptive cultures were swirled 

gently and examined for color change (purple to yellow indicating a positive reaction). At 48 ± 3 

hours, final assessment of color change was performed prior to transfer to the confirmation 

phase.   

From the presumptive Lauryl tryptose broth (LTB) media, the three most dilute serial dilutions with 

positive detections were aseptically transferred from LTB broth into confirmatory EC-MUG media 

using a sterile wooden stick for FC and E. coli conformational culture analysis.  Confirmatory 

cultures were incubated in a 44.5°C ± 0.2°C water bath for 24 ± 2 hours.  FC detection was 

identified by gas buildup within the Durham tube.  E. coli detection was ascertained by visual 

observation of EC-MUG media fluorescence under ultraviolet-B (UVB) lighting.   

2.4.1.2 Presumptive Media 

Quantification of TC was performed according to SM 9221B and EPA Method 1680 (Eaton, 1995; 

EPA, 2006).  LTB (Difco, Sparks, MD) was supplemented with 0.01 g/L of bromocresol purple 

(Sigma Aldrich Co., St. Louis, MO) for colorimetric analysis of TC as described in SM 9221B.   

2.4.1.3 Confirmatory Media 

EPA Method 1680 was modified for FC and E. coli quantification using the proposed SM 9921F 

(Eaton, 1995).  EC-MUG media (Difco), which contains the fluorogenic substrate MUG, was used 

in place of the EPA Method 1680 specified EC Media (Difco).  A Durham tube was placed into the 

EC-MUG tubes to enumerate FC as described in SM 9921E (Eaton, 1995). 

2.4.2 Most Probable Number Analysis 

MPN statistics were calculated with the EPA Most Probable Number Calculator (EPA, 1996) with 

a 95% confidence level.  MPN statistics were normalized for moisture content by converting the 



 29

MPN/mL (wet weight) to MPN/g total solids (dry weight) using the percent total solids. 

2.4.3 Enumeration of E. coli using Molecular Methods 

Samples were collected in triplicate, and bacteria were quantified by molecular methods using the 

following methodology: 

1. Collection, preparation, and storage of biosolid samples in triplicate 

2. Extraction and purification of DNA from triplicate samples 

3. Quantification of total DNA extracted 

4. Enumeration of E. coli using qPCR 

5. Comparison of DNA results to traditional culturing methods 

 

Because this methodology uses DNA to directly quantify E. coli, the culturability of the target 

bacteria does not affect quantification. 

2.4.3.1 Biomass Sampling for Molecular Analysis 

Samples were shipped overnight on ice to preserve bacterial activity in accordance with SM 

9060B (Eaton, 1995).  The total solids of the biomass was determined according to SM 2540D 

(Eaton, 1995).  Liquid sludge samples were centrifuged at 14,000 xg for 5 minutes in an attempt 

to remove suspended naked DNA.  Approximately 200 mg of homogenized, centrifuged pellet or 

100 mg of homogenized, dewatered cake were prepared in triplicate for DNA extraction.  This 

mass of biosolids was weighed into a Lysing Matrix E tube (QBIOgene, Carlsbad, CA) and stored 

at -80ºC until DNA extraction was performed. 

2.4.3.2 DNA Extraction from Biosolids 

This DNA extraction protocol was developed from Garbor et al. (2003) with some modifications as 
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discussed in detail herein.  Biosolids were weighed directly into a Lysing Matrix E tube 

(QBIOgene, Carlsbad, CA) as described in Section 3.4.5.1.  Biomass was homogenized with 750 

µL sterile lysis buffer (100 mM Tris-HCl, 100 mM Sodium EDTA, 1.5 M NaCl, 1% 

hexadecylmethylammonium bromide (CTAB), pH 8) in a FastPrep® Instrument (QBIOgene, 

Carlsbad, CA) for 30 seconds at a speed of 5.5.  A 5 µL aliquot of 20 mg/mL protease K was 

added to the Matrix E tube and incubated at 55°C for 30 minutes.  A 200 µL aliquot of sterile 20% 

sodium dodecylsulfate (SDS) was added to the Matrix E tube and incubated at 65°C for 2 hours.  

The tube was shaken by hand every 30 min.  The Matrix E tube was centrifuged at 14,000 xg for 

10 minutes, and the supernatant was removed for further extraction.  This extraction method was 

repeated two more times by adding 500 µL of lysis buffer to the pellet and homogenizing in the 

FastPrep® Instrument for 30 seconds at a speed of 5.5 as indicated previously.  The 

homogenized tube was incubated at 65°C for 10 minutes during each re-extraction.  The 

suspension was centrifuged at 14,000 xg for 10 minutes to pelletize the solids.  The supernatant 

was removed and combined with the previous extracts. 

An equal volume of phenol/chloroform/isoamyl alcohol (25:24:1) was added to the supernatant.  

The tube was mixed by inversion and incubated for 10 minutes at room temperature.  After 

incubation, the tube was centrifuge at 10,000 xg for 10 minutes at 4°C.  The organic phase was 

removed into a new tube.  The phenol/chloroform/isoamyl alcohol addition, mixing, incubation, 

centrifugation, and removal were repeated once and combined with the first organic phase 

extraction.  An equal volume of chloroform was added to the combined organic phase extract. 

The tube was mixed by inversion and incubated for 10 minutes at room temperature.  After 

incubation, the tube was centrifuged at 10,000 xg for 10 minutes at 4°C.  The organic phase was 

removed and wasted.  Next, 0.6 volumes (compared to the volume of organic phase wasted) of 

2-propanol (-20°C) was added to the pellet and incubated overnight at 4°C.  After incubation, the 

tube was centrifuged at 16,000 xg for 10 minutes at 4°C.  Supernatant was decanted and the 

pellet was washed with 500 µL of 70% ethanol.  Next, the tube was centrifuged at 10,000 xg; and 
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the supernatant was removed.  The pellet was air dried for 15 minutes and resuspended with 200 

µL of TE buffer (10 mM Tris-Cl, 1 mM Sodium EDTA, pH 7.5).  Humic substances were removed 

with a Promega Wizard® Genomic DNA Purification Kit (Madison, WI).  Extracted DNA was 

stored at -80°C until DNA quantification and PCR could be performed. 

2.4.3.3 Total DNA Quantification 

Total genomic DNA was quantified using a fluorescence-based method that combines 

PicoGreen® dsDNA Quantitation Reagent (Molecular Probe, Eugene, OR) in equal proportion 

with the sample DNA.  A Turner TBS-380 Mini-Fluorometer (Turner BioSystems Inc., Sunnyvale, 

CA) was used to measure fluorescence response.  Known concentrations of Calf Thymus DNA 

(Sigma Aldrich Co., St. Louis, MO) were prepared with PicoGreen® to determine the 

concentration of genomic DNA. 

2.4.3.4 E. coli Quantification using Real-Time PCR 

E. coli was quantified using the qPCR technique cited by Chen et. al. (2006).  In brief, since the 

gadA/B gene, which encodes glutamate decarboxylase, has been shown to have sensitivity and 

specificity to E. coli (Gabor et al., 2003; McDaniels et al., 1996; Smith et al., 1992), qPCR primers 

were constructed to amplify the gadA/B sequence.  The PrimerQuestSM software provided by 

Integrated DNA Technologies (Coralville, IA) was used to design the forward primer (5’-GCG TTG 

CGT AAA TAT GGT TGC CGA-3’) and reverse primer (5’-CGT CAC AGG CTT CAA TCA TGC 

GTT-3’) sequences (Chen et al., 2006), which yield a 305 bp PCR product.  These primers were 

analyzed against BLAST to confirm their specificity to E. coli.  Triplicate PCR reactions with 12.5 

µL of Brilliant® SYBR® Green QPCR Master Mix (Stratagene, La Jolla, CA), 0.5 µM of each 

primer, 30 nM of reference dye (ROX), and 10 µL of 10 ng sample DNA, all diluted to a final 

volume of 25 µL with DNase/RNase free water, were quantified with the Stratagene MX3005P 

qPCR system (La Jolla, CA) (Chen et al., 2006).  The PCR program contained a 10-minute initial 
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denaturation at 95ºC, followed by 40 cycles each of denaturation at 95ºC for 30s, annealing at 

59ºC for 1min, and extension at 72ºC for 30s (Chen et al., 2006).  The program then conducted a 

final dissociation curve analysis of the PCR products.  Serially diluted E. coli DNA ranging from 2 

to 7,620 copies was used as an external DNA standard for each qPCR analysis (Chen et al., 

2006).  Pseudomonas putida DNA (10 ng) was included in each standard as background DNA 

(Chen et al., 2006). 

2.5 Results and Discussion 

The culturing and molecular data collected from six full-scale wastewater treatment plants is 

discussed in the following sections. 

2.5.1 Temperature-Phased Anaerobic Digester Plant 1 

This temperature-phased anaerobic digester (TPAD-1) utilized a 58°C thermophilic reactor with a 

15 day SRT followed in series by a 36°C mesophilic reactor with a 20 day SRT to achieve the 

EPA Time and Temperature requirements for Class A biosolids.  After digestion, solids are 

dewatered by HSC to produce cake with 22-23% solids.  Digester effluent contained 3-4% solids. 

The culturing data presented in Figure 2–1 indicated that the SI phenomena occurs after HSC 

since the concentration of FC and E. coli increased immediately after the dewatering process by 

HSC.  Digester effluent contained FC and E. coli densities that were non-detect.  After the 

dewatering process, FC and E. coli enumerations increased to 5 x 103 MPN/g DS.  Additionally, 

culturing data from the TPAD-1 operator indicated that regrowth occurs after cake storage (data 

not presented).  The FC concentrations identified in TPAD-1 cake samples were present at 

concentrations above the Class A biosolids limit. 
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Figure 2–1: Total coliform, fecal coliform, and E. coli densities measured after the TPAD-1 
digestion and dewatering process (Error bars represent 95% confidence interval) 

2.5.2 Pre-Pasteurization Plant 1 

This pre-pasteurization/mesophilic plant (Pre-past-1) utilized a 66°C thermophilic reactor with a 1 

hour SRT followed by a 35°C mesophilic reactor with a 19 day SRT to achieve the EPA Time and 

Temperature requirements for Class A biosolids.  Digester effluent sludge contains 1-2% solids. 

After digestion, sludge is dewatered by HSC to produce cake with 27-29% solids.  A scroll 

conveyor transports dewatered cake to storage hoppers. 

Digester influent FC and E. coli density were observed to be approximately 107 MPN/g DS by 

both SCM and qPCR methods as presented in Figure 2–2.  Culturing and qPCR data depicted in 

Figure 2–2 was collected in cooperation with Dr. Yen-Chih Chen of Bucknell University.  After 
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pre-pasteurization, FC and E. coli enumerations decreased to non-detect by SCM but remained 

at 107 MPN/g DS by qPCR (E. coli density only).  After mesophilic digestion, FC and E. coli 

concentrations remained non-detect by SCM.  E. coli enumerations by qPCR decreased from 107 

to 105 MPN/g DS after mesophilic digestion. 

 

Figure 2–2: Fecal coliform and E. coli density measured using qPCR and standard 
culturing methods in pre-pasteurization (Pre-past-1) followed by mesophilic digestion 
process with high solids centrifugation dewatering (Error bars represent one standard 
deviation) 

The culturing data presented in Figure 2–2 indicated that the SI phenomenon occurs after HSC 

since the concentration of FC and E. coli increased immediately after the dewatering process by 

HSC.  Digester effluent contained FC and E. coli densities that were non-detect by SCM.   

However, E. coli quantification by qPCR indicated densities 4 orders of magnitude higher than 

SCM observations. After the dewatering process, FC and E. coli enumerations increased to 105 
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MPN/g DS, which was comparable to qPCR enumerations for E. coli.  The FC concentrations 

identified in Pre-past-1 cake samples were present at concentrations above the Class A biosolids 

limit.  After cake storage, FC and E. coli regrowth was observed by both SCM and qPCR (E. coli 

quantification only).  The regrowth phenomenon was observed to increase FC and E. coli 

densities by 1-2 orders of magnitude to 106 MPN/g DS. 

2.5.3 Thermophilic Plant 1 

The anaerobic, thermophilic digester at Thermophilic Plant 1 (Thermo-1) utilized two 55°C 

thermophilic continuous stir tank reactors (CSTR) in parallel with a 15-20 day SRT to achieve the 

requirements for Class B biosolids.  Digester effluents are stored prior to dewatering.  The 

dewatering process utilizes HSC to produce mean cake solids of 34.5%.  

Digester influent FC and E. coli density were observed to be approximately 5 x 107 MPN/g DS by 

both SCM and qPCR methods as presented in Figure 2–3.  Culturing and qPCR data depicted in 

Figure 2–3 was collected in cooperation with Dr. Yen-Chih Chen of Bucknell University.  Digested 

sludge was then stored in a tank.  FC and E. coli densities were 5 x 102 MPN/g DS by SCM.  E. 

coli quantification by qPCR indicated that DNA copies were about 105 copies/g DS. The SI 

phenomena occurred after HSC since the concentration of FC and E. coli increased immediately 

after the dewatering process by HSC.  After the dewatering process, FC and E. coli densities 

increased to 5 x 104 MPN/g DS, which was comparable to qPCR enumerations for E. coli.  After 

cake storage, FC regrowth was observed by SCM and E. coli regrowth was observed by qPCR.  

The E. coli density by SCM was unknown (>464 MPN/g DS). Unfortunately, not enough dilutions 

were performed to determine the actual density.  The FC concentrations identified in Thermo-1 

cake samples were present at concentrations below the Class B biosolids limit.   
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Figure 2–3: Fecal coliform and E. coli density measured using qPCR and standard 
culturing methods in a single stage thermophilic digestion (Thermo-1) process with high 
solids centrifugation dewatering (Error bars represent one standard deviation) 

2.5.4 Mesophilic Plant 1 

Two, single stage mesophilic anaerobic digesters operate at 38°C in parallel with a 32 day SRT 

to achieve the requirements for Class B biosolids.  Digester effluents are stored prior to 

dewatering.  The dewatering process utilizes a HSC to produce mean cake solids of 24.3%.  

Digester influent FC and E. coli density were observed to be approximately 108 MPN/g DS by 

both SCM and qPCR methods as presented in Figure 2–4.  Culturing and qPCR data depicted in 

Figure 2–4 was collected in cooperation with Dr. Yen-Chih Chen of Bucknell University.  After the 

first mesophilic digester, FC and E. coli densities decreased to 106 MPN/g DS by SCM and qPCR 

(E. coli density only).  After the second mesophilic digester, FC and E. coli densities remained 
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consistent with those after the first digester.  Digested sludge was then stored in a tank and FC 

and E. coli densities remained consistent with digester effluent concentrations. 

 

Figure 2–4: Fecal coliform and E. coli density measured using qPCR and standard 
culturing methods in mesophilic (Meso-1) digestion process with high solids 
centrifugation dewatering (Error bars represent one standard deviation) Data provided by 
Higgins et al. (2006). 

After the dewatering process by HSC and pumping, FC and E. coli densities decreased slightly 

when compared to digester effluent and storage tank densities.  After cake storage, FC and E. 

coli regrowth was observed by SCM and E. coli regrowth was observed by qPCR as shown by 

increased densities from 105 to 107 MPN/g DS. The FC density after HSC was identified to be at 

concentrations below the Class B biosolids limit.  However, once these dewatered cakes were 

stored, the FC concentrations at Meso-1 were greater than the Class B biosolids limit due to 

regrowth. 
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2.5.5 Mesophilic Plant 2 

Two, single stage mesophilic anaerobic digesters operate at 36°C in parallel with a 22 day SRT 

to achieve the requirements for Class B biosolids.  The dewatering process utilizes a Humboldt 

HSC.  The HSC typically produces cakes in the range of 30-33% solids.  Culturing and qPCR 

results from Meso-2 are presented as Figure 2–5. 

 

Figure 2–5: Fecal coliform and E. coli density measured using qPCR and standard 
culturing methods in mesophilic (Meso-2) digestion process with high solids 
centrifugation dewatering (Error bars represent one standard deviation) 

Digester influent FC and E. coli density were observed to be approximately 5 x 106 MPN/g DS by 

SCM, and E. coli concentration was nearly 108 MPN according to qPCR methods as presented in 

Figure 2–5.  The qPCR data depicted in Figure 2–5 was collected by Dr. Yen-Chih Chen of 

Bucknell University.  After the mesophilic digester, FC and E. coli densities decreased below the 
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Class B biosolids limit when quantified by SCM and qPCR (E. coli only).  After the dewatering 

process by HSC, FC and E. coli densities again decreased to a value of 5 x 105 MPN/g DS as 

determined by SCM and qPCR.  Stored cake samples were not obtained from Meso-2 during this 

experiment; however, data from previous experiments by Dr. Yen-Chih Chen and Dr. Matthew 

Higgins indicate that the FC and E. coli densities increase in stored cake samples due to 

regrowth. 

2.6 Research Significance 

The consequences of SI and regrowth were investigated at multiple full-scale thermophilic and 

mesophilic digesters that utilize HSC dewatering.  The following sections discuss the significance 

of the SI and regrowth phenomena. 

2.6.1 Discussion of Thermophilic Treatment and the SI and Regrowth Phenomena 

Three important observations were consistent in thermally treated sludge dewatered using HSC.  

These three observations, related to the SI and regrowth phenomena and to the use of qPCR, 

are discussed below. 

• A sudden increase in FC and E. coli density was observed immediately after centrifugal 

dewatering of thermally treated sludge.  The SI observation was determined by assessing 

the culturability of FC and E. coli in samples collected after thermal treatment and 

centrifugal dewatering.  These samples represented a 3-4 minute period of process time 

whereby the density of FC and E. coli increased 2-3 orders of magnitude. 

• After storage of cake solids, the FC and E. coli density continued to increase within 24 

hours by 1-2 orders of magnitude.  This increase in population, occurring after cake 

storage has been identified as the regrowth phenomenon.  Regrowth was demonstrated 
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to occur consistently with stored cake samples that were generated from thermally 

treated sludges dewatered by HSC. 

• SCM and qPCR yielded different values for E. coli density after thermal treatment and 

before dewatering. After thermal treatment, SCM determined that the E. coli was below 

detection while qPCR results indicated that the E. coli density was equivalent to the E. 

coli density in dewatered cake samples.  After centrifugal dewatering, the E. coli density 

was equivalent when determined by SCM and qPCR.  Therefore, qPCR may be a 

reasonable predictor for the SI phenomenon since SCMs appear to underestimate the E. 

coli population after thermophilic treatment. 

• The qPCR results support the resuscitation of VNC bacteria hypothesis developed to 

explain the SI phenomena.  The results for E. coli density determined by molecular 

techniques predicted the magnitude of SI that occurs after centrifuge dewatering. 

2.6.2 Discussion of Mesophilic Treatment and the SI and Regrowth Phenomena 

Sludge treated by mesophilic, anaerobic digesters and dewatered by HSC yielded different 

observations pertaining to FC and E. coli densities throughout the solids treatment process when 

compared to thermally treated sludge.  After mesophilic digestion, FC and E. coli density in 

Meso-1 and Meso-2 did not decrease to non-detect values when determined by SCMs.  

Additionally, SCM and qPCR results were equivalent for E. coli density after digestion and 

centrifugal dewatering.  The FC and E. coli density was observed to only increase after storage of 

dewatered cake.  The E. coli density, determined by both SCM and qPCR, increased by 1-2 

orders of magnitude after cake storage for 24 hours. 

Based on the mesophilic, anaerobic treatment data, the following observations can be made in 

reference to the SI and regrowth phenomena. 
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• After centrifugal dewatering, the FC and E. coli densities did not experience SI when 

compared to densities from digester effluent samples.  SCM and qPCR both produced 

comparable results for E. coli density.  Because an immediate increase in FC and E. coli 

population was not observed after dewatering, the SI phenomenon does not appear to 

occur in mesophilic treated sludges. 

• An increase in FC and E. coli density was observed after dewatered cake was stored for 

24 hours.  E. coli density was equivalent when determined by SCM and qPCR.  This 

increase in FC and E. coli population of only 1-2 orders of magnitude is characteristic of 

the regrowth phenomenon. 

• The qPCR results also suggested that SI was not likely to occur since there was little 

difference between qPCR and SCM results for E. coli density after mesophilic digestion. 

• The results from the testing suggest qPCR is a reliable method for predicting SI. 

2.6.3 Frequency of SI and Regrowth Phenomena 

The SI and regrowth phenomena have been observed at wastewater treatment facilities operating 

both thermophilic and mesophilic anaerobic digesters and using both centrifuge and belt filter 

press dewatering technologies.  To further understand the processes associated with SI and 

regrowth, the SI and regrowth observations from the utilities studied in Chapter 2 and the 

literature reviewed in Chapter 1 have been summarized as Table 2–2. 

 



 42

Table 2–2: Summary of SI and regrowth incidence at various wastewater utilities 

Plant Digestion 
EPA 

Class 
A or B 

Dewatering 
Technology

Sudden 
Increase Regrowth

TPAD-1 
Thermophilic 
Mesophilic 
(in Series) 

A HSC NS Yes 

Pre-past-1 
Pre-Pasteruization 

Mesophilic 
(in Series) 

A HSC Yes Yes 

Iranpour et al. (2002) Thermophilic A HSC Yes Yes 

Higgins et al. (2007) 
Thermophilic Plant 1 

Thermophilic 
(in parallel) A HSC Yes Yes 

Higgins et al. (2007) 
Thermophilic Plant 2 

Thermophilic 
(in series) A HSC No No 

Higgins et al. (2007) 
ATAD 

Thermophilic 
aerobic 

(in series) 
A HSC 

BFP 
Yes 
No 

Yes 
NS 

Cheung et al. (2003) Mesophilic B HSC Yes NS 

Thermo-1 
Continuous Stir 
Tank Reactors 

(in Parallel) 
B HSC Yes Yes 

Meso 1 Mesophilic 
(in Parallel) B HSC No Yes 

Meso-2 Mesophilic 
(in Parallel) B HSC No Yes 

Meso-3 Mesophilic 
(in Parallel) B HSC No Yes 

Erdal et al. (2003) Mesophilic B HSC Yes Yes 

Erdal et al. (2003) Mesophilic B BFP No Yes 

Qi et al. (2004) 
Plant 1 Mesophilic B 

BFP 
LSC 
HSC 

No 
Yes 
Yes 

No 
Yes 
Yes 

Qi et al. (2004) 
Plant 2 Mesophilic B HSC Yes Yes 

Qi et al. (2004) 
Plant 3 Mesophilic B HSC No Yes 

BFP = belt filter press, HSC = high solids centrifugation, LSC = low solids centrifugation, 
HSC = high solids centrifugation, NS = not studied 
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Table 2–2 (Continued): Summary of SI and regrowth incidence at various wastewater 
utilities 

Plant Digestion 
EPA 

Class 
A or B 

Dewatering 
Technology

Sudden 
Increase Regrowth

Qi et al. (2004) 
Plant 4 Mesophilic B LSC 

HSC 
Yes 
Yes 

Yes 
Yes 

Monteleone et al. (2004) 
Site 1 

Mesophilic 
(in Series) B HSC No NS 

Monteleone et al. (2004) 
Site 2 

Pasteurization 
and Mesophilic 

(in Series) 
A HSC Yes NS 

Monteleone et al. (2004) 
Site 3 

Pasteurization 
and Mesophilic 

(in Series) 
A BFP No NS 

Monteleone et al. (2004) 
Site 4 

Mesophilic 
(in Series) A HSC Yes NS 

Monteleone et al. (2004) 
Site 5 

Mesophilic 
(in Series) B HSC No NS 

Higgins et al. (2007) 
Meso-2 Mesophilic B BFP No No 

Higgins et al. (2007) 
Meso-4 Mesophilic B BFP No No 

Higgins et al. (2007) 
Meso-5 Mesophilic B BFP No No 

Flemming et al. (2009) 
WWTP Code #1 Mesophilic B HSC No No 

Flemming et al. (2009) 
WWTP Code #2 Mesophilic B BFP/LSC No Yes 

Flemming et al. (2009) 
WWTP Code #3 Mesophilic B HSC Yes No 

Flemming et al. (2009) 
WWTP Code #4 Mesophilic B BFP No No 

Flemming et al. (2009) 
WWTP Code #5 Mesophilic B HSC No Yes 

Flemming et al. (2009) 
WWTP Code #6 Mesophilic B HSC Yes Yes 

BFP = belt filter press, HSC = high solids centrifugation, LSC = low solids centrifugation, 
HSC = high solids centrifugation, NS = not studied 
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In order to understand the frequency of SI and regrowth, the observations presented in Table 2–2 

were then separated into four categories: thermophilic anaerobic digestion, mesophilic anaerobic 

digestion, centrifuge dewatering, and belt filter press dewatering.  The frequencies of these SI 

and regrowth occurrences are tabulated as Table 2–3. 

Table 2–3: Frequency of SI and regrowth occurrence at utilities utilizing anaerobic 
digestion and dewatering technologies 

Digestion Type Dewatering 
Technology 

Sudden 
Increase Regrowth 

Thermophilic 
(EPA Class A) 

Centrifugation 6 /7 5 / 6 

Belt Filter Press 0 / 2 Not Studied 

Mesophilic 
(EPA Class B) 

Centrifugation 10 / 19 14 / 16 

Belt Filter Press 0 / 6 1 / 6 

 

The data presented in Table 1–1 identifies the reactor and dewatering conditions where the SI 

and regrowth phenomena are observed.  At the utilities that operated thermophilic digesters, SI 

and regrowth were observed at nearly all of the utilities where centrifuge dewatering was 

performed.  Belt filter press dewatering of sludges produced by an aerobic thermophilic digestion 

(ATAD) process and by a pasteurization and mesophilic digestion process did not appear to 

promote the SI phenomena. The regrowth phenomena was not studied for this utility treatment 

configuration. 

 At centrifuge dewatered mesophilic sludge utilities, the regrowth phenomena was observed in 

nearly all of the utilities studied.  The SI phenomena, was only observed at half of the utilities 

studied, which operated mesophilic digesters and centrifuge dewatering processes.  The SI and 
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regrowth phenomena do not appear to be prevalent at utilities operating mesophilic digesters with 

belt filter press dewatering technologies.   

This data indicates that the SI phenomenon is most frequently observed at utilities operating 

thermophilic digesters and centrifuge dewatering technologies.  The regrowth phenomenon is 

typically observed after centrifuge dewatering technologies with both thermophilic and mesophilic 

digested sludges. 

2.7 Conclusions 

Based on the observation of FC and E. coli density after process elements in full-scale anaerobic 

wastewater treatment plants utilizing HSC, the following conclusions were identified: 

• SI was observed mainly in full-scale treatment plants utilizing thermal treatment and 

centrifuge dewatering. 

• The regrowth phenomena was observed in full-scale treatment plants designed to meet 

both Class A or Class B biosolids requirements and it is associated mainly with centrifuge 

dewatering. 

• The use of qPCR was effective in predicting the E. coli density after the SI phenomena 

when compared to SCM enumerations. 

• The accuracy of the E. coli density, as determined by qPCR, is unknown since qPCR is 

non-specific for live and dead cells, but the results suggest it may be a reliable method 

for estimating densities of E. coli in sludge.  In fact, the pattern of densities measures by 

SCM and qPCR is the expected outcome if the non-culturable/reactivation hypothesis 

was correct. 
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• The resuscitation of non-culturable bacteria may be a possible explanation for the SI 

phenomena observed with biosolids collected from full-scale treatment plants. 
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Chapter 3: Evaluating the Validity of the Time-
Temperature Curves for Class A Biosolids Treatment: A 

Discussion on the Presence of VNC Bacteria and the 
Resuscitation and Regrowth of Indicator Bacteria 

3.1 Introduction 

A number of wastewater treatment plants are upgrading to Class A biosolids and are using 

thermal treatment to achieve Class A requirements.  For this case, wastewater treatment systems 

are designed so that sludge is processed for a specific detention time and at an appropriate 

reactor temperature as defined by the EPA time and temperature curve (Section 1.3.2).  This 

correlation between time-temperature has received much attention lately because of the SI and 

regrowth phenomena which results in increased FC and E. coli densities greater than the Class A 

requirement after dewatering by HSC. 

In the early 1980s, Feachem et al. (1983) developed time and temperature plots for pathogen 

reduction including Ascaris ova, Enteric viruses, Vibrio cholarae, and Salmonella sp.  The plots, 

depicted in Figure 3–1, described how time and temperature related to the destruction of the 

selected pathogens.  Feachem et al. (1983) used this data to delineate a “Zone of Safety,” the 

time-temperature combination that would result in the destruction of pathogens.  However, as 

EPA was developing the Part 503 rules, the EPA determined that Feachem et al.  (1993) did not 

provide enough detail when developing the time-temperature plots from the raw data (Willis et al., 

2006).  Additionally, the U.S. Food and Drug Administration established pasteurization 

requirements for eggnog which provided time and temperature requirements for a slurry (Willis et 

al., 2006).  With the information from Feachem et al. (1993) and the U.S. Food and Drug 

Administration, EPA created their own Time and Temperature Curve as depicted on Figure 3–1.  
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requirements, FC and E. coli densities were observed to suddenly increase after centrifugal 

dewatering to levels in excess of the Class A biosolids requirement.  This resuscitation of VNC 

bacteria hypothesis was further substantiated by qPCR data that predicted the quantity of VNC 

bacteria.   

3.2 Research Needs 

When the EPA Time and Temperature Curve was created, the idea of a non-culturable bacteria 

was not included.  It was assumed that if a sample had non-detectable densities of FC or E.coli, 

no viable organisms were present.  Because SCMs have been observed to undercount FC and E. 

coli, alternate techniques need to be investigated to determine if the EPA Time and Temperature 

Curve is sufficient for pathogen and indicator destruction.  Molecular based methods have been 

demonstrated in Chapter 2 as a good predictor of potentially viable bacteria that do not culture by 

SCMs.  Additional research is needed to determine if the EPA Time and Temperature Curve 

represents a sufficient amount of thermal treatment to destroy the bacteria and not just put some 

in a VNC state.  

3.3 Research Objectives 

A laboratory scale experiment was performed to examine the impact of time and temperature on 

FC and E. coli destruction.  This experiment was necessary to understand the impacts of VNC 

bacteria on the EPA Time and Temperature Curve requirements for Class A biosolids.  To 

determine the impacts of VNC bacteria on time and temperature requirements, three 

thermostatically controlled bench-top digesters were operated by Chris Wilson and John Novak at 

Virginia Tech.  These reactors were first inoculated and fed weekly with District of Columbia 

Water and Sewer Authority (DCWASA) Blue Plains (BP) Advanced Wastewater Treatment 

Facility sludge over the course of 17 weeks prior to this experiment to establish a stable bacterial 
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consortium.  E. coli were enumerated at prescribed times by both SCM and qPCR to determine a 

time and temperature relationship that evaluated the destruction of VNC bacteria.  Data was 

collected from these reactors over time for evaluation by SCM and qPCR.  E. coli data was 

compared to Class A biosolids requirements to determine if the EPA Time and Temperature 

Curve adequately accounts for VNC bacteria as determined by qPCR. 

3.4 Methods and Procedure 

The following methods and procedures were utilized in this experiment. 

3.4.1 Batch Reactor Design 

Three high-density polyethylene batch fermentation reactors supplied by Hobby Beverage 

Equipment Company (Temecula, California) were utilized for this study.  The nominal volume of 

each vessel was 6.5 gallons (25 liters).  Each reactor operated with an active volume of 22.5 

liters.  A threaded stainless steel thermometer, supplied by Hobby Beverage Equipment 

Company, was installed into each reactor.  Temperature control was achieved by circulating 

heated water through an external jacket (0.5-inch I.D. vinyl tubing wrap).  Reactors were operated 

at 49°C, 53°C, and 57.5°C (± 0.2) throughout this study.   

At startup, 17 weeks prior to this experiment, the three digesters were seeded with approximately 

15 liters of mesophilic anaerobic digested sludge from Pepper’s Ferry Regional Wastewater 

Treatment Facility (Radford, Virginia).  After approximately 15 days of acclimation to the desired 

digestion temperature, daily feeding in the absence of wastage was used to bring the digester 

contents up to its final operating volume of 22.5 liters.  Each reactor was fed with a 1:1 ratio of 

primary and secondary solids from BP sludge, measured on a mass basis, and diluted to 

approximately 3% solids.  The reactor was fed 1.5 liters of blended sludge using a draw-fill 

procedure to achieve the desired SRT.  After 15-weeks of inoculations with BP sludge, the three 
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reactors were starved for 2 weeks to reduce the FC density to non-detect levels.  The reactors 

were then inoculated with sludge provided by Pepper’s Ferry Regional Wastewater Treatment 

Facility (Radford, Virginia).  No further feeding or wasting was performed during this experiment. 

3.4.2 Reactor Sampling 

Samples of reactor contents were collected at 0, 1, 3, 6, 12, 24, and 48 hours, and 7, 14, 21, and 

28 days.  No additional inoculums were added to the reactors during this experiment.  Samples 

were processed for MPN analysis using Method 1680 (Section 3.4.3) and DNA analysis (Section 

3.4.5).  Culturing activities for the 0, 1, 3, 6, 12, 24, and 48 hour samples were performed at 

Virginia Tech by Bucknell University.  Culture samples collected on days 7, 14, 21, and 28 were 

processed at Bucknell University.  DNA samples were collected on days 14, 19, 28, and 34 and 

analyzed at Bucknell University. 

3.4.3 Multiple Tube Fermentation Culturing Technique 

Samples were shipped overnight on ice to preserve bacterial activity in accordance with SM 

9060B (Eaton, 1995). 

3.4.3.1 Culturing Technique 

Sample preparation, serial dilutions, and culturing methods were conducted in accordance with 

SM 9221B and EPA Method 1680.  Total percent solids analysis of the sludge and cake samples 

was performed by SM 2540B.  Cake samples (30.0 ± 0.1 g) were homogenized with 270 mL 

sterile PBS dilution water (1:10 dilution) in a sterile blender for 2 minutes (EPA Method 1680).  

For liquid samples, 300 mL of sludge were homogenized in a sterile blender for 2 minutes (EPA 

Method 1680).  Serial dilutions (1:10) were prepared for each sample.  One milliliter of each serial 

dilution was aseptically transferred into 10 mL sterile LTB media.  Five replicate tubes were 

inoculated for each dilution.  Presumptive cultures were incubated in a 35°C ± 0.5°C water bath.  
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At 24 ± 2 hours, presumptive cultures were swirled gently and examined for color change (purple 

to yellow indicating a positive reaction). At 48 ± 3 hours, final assessment of color change was 

performed prior to transfer to the confirmation phase.   

From the presumptive Lauryl tryptose broth (LTB) media, the three most dilute serial dilutions with 

positive detections were aseptically transferred from LTB broth into confirmatory EC-MUG media 

using a sterile wooden stick for FC and E. coli conformational culture analysis.  Confirmatory 

cultures were incubated in a 44.5°C ± 0.2°C water bath for 24 ± 2 hours.  FC detection was 

identified by gas buildup within the Durham tube.  E. coli detection was ascertained by visual 

observation of EC-MUG media fluorescence under ultraviolet-B (UVB) lighting.   

3.4.3.2 Presumptive Media 

Quantification of TC was performed according to SM 9221B and EPA Method 1680 (Eaton, 1995; 

EPA, 2006).  LTB (Difco, Sparks, MD) was supplemented with 0.01 g/L of bromocresol purple 

(Sigma Aldrich Co., St. Louis, MO) for colorimetric analysis of TC as described in SM 9221B.   

3.4.3.3 Confirmatory Media 

EPA Method 1680 was modified for FC and E. coli quantification using the proposed SM 9921F 

(Eaton, 1995).  EC-MUG media (Difco), which contains the fluorogenic substrate MUG, was used 

in place of the EPA Method 1680 specified EC Media (Difco).  A Durham tube was placed into the 

EC-MUG tubes to enumerate FC as described in SM 9921E (Eaton, 1995). 

3.4.4 Most Probable Number Analysis 

MPN statistics were calculated with the EPA Most Probable Number Calculator (EPA, 1996) with 

a 95% confidence level.  MPN statistics were normalized for moisture content by converting the 

MPN/mL (wet weight) to MPN/g total solids (dry weight) using the percent total solids. 
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3.4.5 Enumeration of E. coli using Molecular Methods 

Samples were collected in triplicate, and bacteria were quantified by molecular methods using the 

following methodology: 

1. Collection, preparation, and storage of biosolid samples in triplicate 

2. Extraction and purification of DNA from triplicate samples 

3. Quantification of total DNA extracted 

4. Enumeration of E. coli using qPCR 

5. Comparison of DNA results to traditional culturing methods 

 

Because this methodology uses DNA to directly quantify E. coli, the culturability of the target 

bacteria does not affect quantification. 

3.4.5.1 Biomass Sampling for Molecular Analysis 

Samples were shipped overnight on ice to preserve bacterial activity in accordance with SM 

9060B (Eaton, 1995).  The total solids of the biomass was determined according to SM 2540D 

(Eaton, 1995).  Liquid sludge samples were centrifuged at 14,000 xg for 5 minutes to remove 

suspended naked DNA.  Approximately 200 mg of homogenized, centrifuged pellet or 100 mg of 

homogenized, dewatered cake were prepared in triplicate for DNA extraction.  This mass of 

biosolids was weighed into a Lysing Matrix E tube (QBIOgene, Carlsbad, CA) and stored at -80ºC 

until DNA extraction was performed. 

3.4.5.2 DNA Extraction from Biosolids 

This DNA extraction protocol was developed from Garbor et al. (2003) with some modifications as 

described in detail herein.  Biosolids were weighed directly into a Lysing Matrix E tube 

(QBIOgene, Carlsbad, CA) as described in Section 3.4.5.1.  Biomass was homogenized with 750 
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µL sterile lysis buffer (100 mM Tris-HCl, 100 mM Sodium EDTA, 1.5 M NaCl, 1% CTAB, pH 8) in 

a FastPrep® Instrument (QBIOgene, Carlsbad, CA) for 30 seconds at a speed of 5.5.  A 5 µL 

aliquot of 20 mg/mL protease K was added to the Matrix E tube and incubated at 55°C for 30 

minutes.  A 200 µL aliquot of sterile 20% sodium dodecylsulfate (SDS) was added to the Matrix E 

tube and incubated at 65°C for 2 hours.  The tube was hand-shook every 30 min.  The Matrix E 

tube was centrifuged at 14,000 xg for 10 minutes, and the supernatant was removed for further 

extraction.  This extraction method was repeated two more times by adding 500 µL of lysis buffer 

to the pellet and homogenizing in the FastPrep® Instrument for 30 seconds at a speed of 5.5 as 

indicated previously.  The homogenized tube was incubated at 65°C for 10 minutes during each 

re-extraction.  The suspension was centrifuged at 14,000 xg for 10 minutes to pelletize the solids.  

The supernatant was removed and combined with the previous extracts. 

An equal volume of phenol/chloroform/isoamyl alcohol (25:24:1) was added to the supernatant.  

The tube was mixed by inversion and incubated for 10 minutes at room temperature.  After 

incubation, the tube was centrifuge at 10,000 xg for 10 minutes at 4°C.  The organic phase was 

removed into a new tube.  The phenol/chloroform/isoamyl alcohol addition, mixing, incubation, 

centrifugation, and removal were repeated once and combined with the first organic phase 

extraction.  An equal volume of chloroform was added to the combined organic phase extract. 

The tube was mixed by inversion and incubated for 10 minutes at room temperature.  After 

incubation, the tube was centrifuged at 10,000 xg for 10 minutes at 4°C.  The organic phase was 

removed and wasted.  Next, 0.6 volumes (compared to the volume of organic phase wasted) of 

2-propanol (-20°C) was added to the pellet and incubated overnight at 4°C.  After incubation, the 

tube was centrifuged at 16,000 xg for 10 minutes at 4°C.  Supernatant was decanted and the 

pellet was washed with 500 µL of 70% ethanol.  Next, the tube was centrifuged at 10,000 xg; and 

the supernatant was removed.  The pellet was air dried for 15 minutes and resuspended with 200 

µL of TE buffer (10 mM Tris-Cl, 1 mM Sodium EDTA, pH 7.5).  Humic substances were removed 
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with a Promega Wizard® Genomic DNA Purification Kit (Madison, WI).  Extracted DNA was 

stored at -80°C until DNA quantification and PCR could be performed. 

3.4.5.3 Total DNA Quantification 

Total genomic DNA was quantified using a fluorescence-based method that combines 

PicoGreen® dsDNA Quantitation Reagent (Molecular Probe, Eugene, OR) in equal proportion 

with the sample DNA.  A Turner TBS-380 Mini-Fluorometer (Turner BioSystems Inc., Sunnyvale, 

CA) was used to measure fluorescence response.  Known concentrations of Calf Thymus DNA 

(Sigma Aldrich Co., St. Louis, MO) were prepared with PicoGreen® to determine the 

concentration of genomic DNA. 

3.4.5.4 E. coli Quantification using Real-Time PCR 

E. coli was quantified using the qPCR technique cited by Chen et al. (2006).  In brief, since the 

gadAB gene, which encodes glutamate decarboxylase, has been shown to have sensitivity and 

specificity to E. coli (Gabor et al., 2003; McDaniels et al.,1996; Smith et al., 1992), qqPCR 

primers were constructed to amplify the gadAB sequence.  The PrimerQuestSM software provided 

by Integrated DNA Technologies (Coralville, IA) was used to design the forward primer (5’-GCG 

TTG CGT AAA TAT GGT TGC CGA-3’) and reverse primer (5’-CGT CAC AGG CTT CAA TCA 

TGC GTT-3’) sequences (Chen et al., 2006), which yield a 305 bp PCR product.  These primers 

were analyzed against BLAST to confirm their specificity to E. coli.  Triplicate PCR reactions with 

12.5 µL of Brilliant® SYBR® Green QPCR Master Mix (Stratagene, La Jolla, CA), 0.5 µM of each 

primer, 30 nM of reference dye (ROX), and 10 µL of 10 ng sample DNA, all diluted to a final 

volume of 25 µL with DNase/RNase free water, were quantified with the Stratagene MX3005P 

qqPCR system (La Jolla, CA) (Chen et al., 2006).  The PCR program contained a 10-minute 

initial denaturation at 95ºC, followed by 40 cycles each of denaturation at 95ºC for 30s, annealing 

at 59ºC for 1min, and extension at 72ºC for 30s (Chen et al., 2006).  The program then conducted 
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a final dissociation curve analysis of the PCR products.  Serially diluted E. coli DNA ranging from 

2 to 7,620 copies was used as an external DNA standard for each qPCR analysis (Chen et al., 

2006).  Pseudomonas putida DNA (10 ng) was included in each standard as background DNA 

(Chen et al., 2006). 

3.5 Results and Discussion 

Virginia Tech operated a set of three thermostat thermophilic reactors with a 15 day SRT.  The 

three reactors were operated at 49ºC, 53ºC, and 57.5ºC independently.  At 1, 3, 6, 12, 24, and 24 

hours and 7, 14, 21, and 28 days, sludge samples were collected for SCM.  DNA analysis was 

performed on samples collected on days 0, 14, 19, 28, and 34.   

The TC results, after inoculation with Pepper’s Ferry Regional Wastewater Treatment Facility 

sludge, indicated a rapid decline in concentration at the three thermophilic reactors (Figure 3–2).  

Within three hours, the TC concentration in the 57.5°C reactor decreased below 1,000 MPN/g 

DS.  Although the Class A biosolids requirements do not regulate TC, the 1,000 MPN/g DS 

provides a point of reference for discussion.  The TC concentration in the 53°C reactor decreased 

below 1,000 MPN/g DS after 6 hours.  The 49°C reactor contained TC at levels above 1,000 

MPN/g DS until 24 hours after inoculation.  The time and temperature for TC indicates that longer 

time requirements are needed for reactors operating at lower temperatures which is consistent 

with the results from Feachem et al. (1983). 
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Figure 3–2: Total coliforms densities measured by SCM during batch digestion at different 
temperatures 

The FC results, presented as Figure 3–3, indicated a similar decreasing trend discussed for the 

TC results.  However, the FC values after 6 hours of incubation for all reactor temperatures are 

an order of magnitude lower than the TC values.  Since the Part 503 rule for Class A biosolids 

applies to FC, screening of the FC data against the 1,000 MPN/g DS requirement is meaningful.  

Figure 3–3 presents the FC data in reference to the Class A biosolids requirement.  FC levels 

below 1,000 MPN/g DS were observed after 0.5 hours for the 57.5°C reactor, 1 hour for the 53°C 

reactor, and 4 hours for the 49°C reactors.   
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Figure 3–3: Fecal coliforms densities measured by SCM during batch digestion at different 
temperatures (open symbols indicate non-detect value) 

E. coli data collected for the thermally treated sludge is presented in Figure 3–4.  For the three 

reactor temperatures, the E. coli inactivation trends were observed to be similar to the FC trends.  

E. coli levels below 1,000 MPN/g DS were observed after 0.5 hours for the 57.5°C reactor, 1 hour 

for the 53°C reactor, and 4 hours for the 49°C reactors.   
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Figure 3–4: E. coli densities measured by SCM during batch digestion at different 
temperatures (open symbols indicate non-detect value) 

E. coli were also quantified using qPCR on days 0, 14, 19, 28, and 35 (Figure 3–5).  DNA 

analysis of E. coli indicated a different observation compared to the SCM data presented in 

Figure 3–4.  E. coli concentrations decreased below Class A biosolids requirements (103 

MPN/g DS) by SCM within 6 hours at all reactor temperatures.  The qPCR data indicated that the 

E.  coli density only decreased from 108 to 106 MPN/g DS after 14 days for all temperatures, and 

remained near that level for the next 20 days.   
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Figure 3–5: E. coli densities measured by qPCR during batch digestion at different 
temperatures. 

The higher E. coli density determined by qPCR indicates that SCM potentially underestimate the 

density of viable E. coli.  The DNA numbers need to be qualified however, since qPCR quantifies 

both live and dead cells; it is not clear how many dead cells are being enumerated by qPCR.  

However, the previous results in Chapter 2 indicated that qPCR was a good predictor for bacteria 

population SI and regrowth.  Therefore, even though an overestimation may occur because of 

dead cells, qPCR is effective in predicting the appropriate order of magnitude for E. coli density. 
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In order to understand the implications of the SCM and qPCR data collected from the thermally 

controlled laboratory reactors, the data was incorporated into the context of the EPA Time and 

Temperature requirements.  Figure 3–6 presents the time and temperature relationship at which 

non-detect results for E. coli density were observed.  This figure also presents the qPCR 

predicted E. coli density for comparison with SCM results. 

The solid green circles identified on Figure 3–6 depict the SCM results for each reactor 

temperature in relation to the EPA Time and Temperature Curve.  Each solid green circle 

references the time at which the Class A biosolids limit was achieved for the given reactor 

temperature.  The reactors time-temperature relationship based on culturing method indicates 

that the Zone of Safety observed by Feachem et al. (1983) is a conservative limit for wastewater 

treatment plant designers.  Likewise, the EPA Time and Temperature Curve is more conservative 

than the results from this experiment.  

However, this is not true when culture independent results are used.  The E. coli population, 

when analyzed by qPCR, is plotted on Figure 3–6 as solid red squares.  The solid red squares 

represent the E. coli detections because the E. coli density never decreased below 1,000 

MPN/g DS, the Class A biosolids requirement.  The difference between SCM and molecular 

based quantification of E. coli results in uncertainty as to whether digested sludge has achieved 

Class A biosolids classification.  
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EPA Time and Temperature Curve D, which is the curve that applies in this case.  Nevertheless, 

the SI and regrowth phenomena were identified at both Pre-past-1 and TPAD-1.  At TPAD-1, the 

SI and regrowth phenomena did cause E. coli density to increase past 1,000 MPN/g DS by SCM.  

Enumeration by qPCR was not performed on TPAD-1 biosolids.  However, at Pre-past-1, the SI 

and regrowth phenomena did cause the E. coli density to increase beyond the Class A biosolids 

requirements after HSC and storage.  As determined by SCM, non-detect results were observed 

after pasteurization and mesophilic digestion but not after centrifugation and storage.  The SI and 

regrowth phenomena caused the E. coli density to increase to 106 MPN/g DS after centrifugation 

and storage.  E. coli density as determined by qPCR adequately predicted the density of E. coli 

after SI.  Therefore, the E. coli density, when determined by SCM, does not accurately enumerate 

non-culturable E. coli, whereas qPCR effectively predicts the density of E. coli after SI and 

regrowth. 

3.6 Research Significance 

The results from this work suggest that the EPA Time and Temperature Curve is not adequate for 

complete inactivation of the indicator bacteria.  Instead, some of the thermally treated bacteria are 

entering a VNC state and are therefore not being enumerated by the SCMs, giving a false 

indication that no viable indicators are present.  As a result, utilities are not meeting Class A FC 

requirements even though thermophilic digestion meets the time and temperature requirements. 

The underestimation of E. coli density by SCM and the possible overestimation of E. coli density 

by qPCR yield a significant problem for treatment plant designers and operators attempting to 

achieve Class A biosolids requirements.  SCM do not adequately quantify bacteria present prior 

to SI and regrowth as determined by qPCR.  Therefore, further research needs to be performed 

to determine if SCM can be enhanced to quantify non-culturable E. coli during anaerobic 

thermophilic digestion.  
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Higgins et al. (2006) proposed three possibilities for the difference between SCM and qPCR 

quantification of E. coli: 

1. A portion of the E. coli DNA measured by qPCR stems from undegraded, free DNA that 

remains in solution after cell lysis. 

2. A fraction of the E. coil DNA quantified by qPCR is due to dead or nonviable cells that 

have not yet lysed. 

3. Part of the E. coli DNA enumerated by qPCR is due to VNC E. coli that are still viable. 

Although Higgins et al. (2006) does not resolve which phenomena is occurring, the discussion of 

the literature supports their three possibilities; and the results presented in Chapter 2 and Chapter 

3 support the third possibility.  In this thesis, the third possibility will be examined to determine if 

non-culturable bacteria can be resuscitated through enhancements to SCMs.  The following 

report sections will investigate various methods to enhance SCMs such that E. coli density will be 

enumerated at a magnitude similar to E. coli density determined by qPCR. 

3.7 Conclusions 

The FC and E. coli results presented for the time-temperature experiment yielded the following 

observations: 

• The EPA Time and Temperature Curve is a conservative design standard that results in 

enumerations of FC and E. coli below the Class A requirements, when determined by 

SCM. 
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• Molecular techniques do not support the conclusion that E. coli are destroyed when time-

temperature design standards are achieved. 

• The “Zone of Safety,” described by Feachem et al. (1983), do not adequately account for 

non-culturable bacteria that may still be viable. 

• Full-scale anaerobic thermophilic wastewater treatment plants have the potential to 

produce biosolids that do not meet EPA Class A biosolids requirements when E. coli 

density is determined by qPCR instead of SCM even though they meet the EPA Time 

and Temperature requirement. 

Culturing data and DNA data collected for E. coli density do not provide consistent results during 

anaerobic thermophilic digestion as hypothesized. The non-detect E. coli results, as determined 

by SCM and observed during anaerobic thermophilic digestion, do not account for the non-

culturable E. coli density characterized by qPCR data.  Research needs to be performed to 

determine if viable non-culturable E. coli are responsible for the discrepancy SCM and qPCR E. 

coli densities. 
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Chapter 4: Investigation of Peroxide Scavengers to 
Enhance the Recovery of Thermally Treated Indicator 

Bacteria by Standard Culturing Methods 

4.1 Introduction 

Bacteria, such as E. coli, are capable of entering a reversible, VNC state when subjected to 

environmental stresses such as heat stress or nutrient starvation.  Because the scientific 

community has yet to define which biochemical parameters are necessary for viable versus dead 

cells, defining the VNC state is controversial. Typically, however, a cell, which is metabolically 

active yet unable to experience sustained cellular division that produces a colony that is 

discernable using standard culturing methods, is considered to be in the VNC state 

(Oliver, 1993).  

VNC bacteria are one of the hypotheses explaining the SI of FC and E. coli as discussed in 

Chapter 2 and Chapter 3.  As discussed in Chapter 3, heat stress is one possible cause for the 

VNC state.  Because thermal treatment of sludge causes heat stress on bacteria, the VNC state 

is a plausible cause for non-culturable bacteria.  Fundamentally, if the VNC hypothesis is correct, 

the reason VNC bacteria are non-culturable with SCMs is that culturing methods are providing 

false negative results.   

Unfortunately, heat stress alone does not describe the mechanistic change required to influence 

culturability by SCMs indicative of the VNC state.  One possible explanation for the VNC state 

has been discussed by Bloomfield et al. (1998) who suggests that the generation of H2O2 

compounds is a result of a metabolic imbalance caused by a change in environment.  The 

transfer of thermally treated biosolids from an anaerobic environment to standard culturing media 

results in significant redox, temperature, and nutrient changes which may promote the generation 
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of H2O2 compounds.  These peroxides are produced when stressed VNC cells are transferred 

into nutrient-rich LB plates at optimal growth and enzymatic activity temperatures.  Cellular 

metabolism causes the rapid production of superoxide and free radicals.  Because the cell is not 

phenotypically adapted to the new environment, detoxification of the superoxides and other free 

radicals cannot keep up with cellular growth and cell death typically occurs.  VNC cells are not 

capable of degrading peroxides because of their diminished metabolic state.  The metabolic 

pathways that typically exist in the cell are not functioning because of the stressed state.  Normal, 

viable cells would not have difficulty detoxifying peroxides in their environment. 

Research indicates that peroxide-degrading compounds such as catalase, sodium pyruvate, and 

α-ketoglutaric acid are capable of resuscitating bacteria in the stressed state or preventing their 

death when placed in rich media (Mizunoe et al., 1999).  In one experiment, E. coli O157:H- strain 

E32511/HSC was subjected to low-temperature stress (4°C incubation for 21 days) to cause cells 

to enter the VNC state.  LB agar plates enhanced with enzymatic (i.e., catalase) and 

nonenzymatic (i.e., sodium pyruvate, α-ketoglutaric acid) peroxide degrading compounds were 

able to restore the culturability of stressed cells after incubation at 25°C for 48-hours.  Plates 

without peroxide-degrading compounds were not able to resuscitate VNC bacteria.  Culturability 

typically increased from non-detect to 104-105 CFU/mL within 48-hours on LB agar plates 

supplemented with catalase, sodium pyruvate, or α-ketoglutaric acid. 

Similar research performed by Czechowicz et al. (1996) found that sodium pyruvate was able to 

resuscitate E. coli O157:H7 strain 933 that was subjected to heat stress (57°C for up to 60 

minutes).  Czechowicz et al. (1996) identified that plate count agar supplemented with 1% sodium 

pyruvate was able to increase the resuscitation of heat-stressed E. coli by up to 103 CFU/mL 

when compared to the tryptic soy agar control media with heat-stressed E. coli inoculation.   Plate 

count agar contained glucose and yeast extract which were not present in the tryptic soy agar.  

The presence of glucose and yeast extract in the plate count agar in addition to supplementation 
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with 1% sodium pyruvate may have had a synergistic effect on the resuscitation of heat-stressed 

E. coli cells. 

Literature related to the effects of catalase supplementation on the enumeration of 

Staphylococcus aureus and E. coli were also reviewed in addition to Mizunoe et al. (1999).  In 

research presented by Flowers et al. (1977), S. aureus cells were heat stressed for varying 

periods of time at 52°C and enumerated on various selective media.  Media supplemented with 

780 units/plate of bovine catalase were able to resuscitate stressed S. aureus by up to 1,100-fold.  

Collaborative research by Martin et al. (1976) investigated the resuscitation effects of catalase 

with E. coli.  Instead of using heat-stressed E. coli cells, Martin et al. (1976) studied the effects of 

catalase on the enumeration of acid injured E. coli cells (cells were incubated for 1 hour at 32°C 

in 300 mM sodium acetate buffer, pH 4.2).  The acid injured E. coli cells incubated on violet red 

bile agar supplemented with 0.1 mL of a 0.02% catalase solution produced a 102 CFU/mL 

increase compared to the control vile red bile agar plates. 

Based on the research of Mizunoe et al. (1999), it was identified that 0.1% sodium pyruvate and 

1000 units/plate of catalase were optimal for E. coli resuscitation.  Mizunoe et al. (1999) found 

that the 0.1% concentration of sodium pyruvate was capable of a greater resuscitation rate when 

compared to the 1% sodium pyruvate concentration suggested by Czechowicz et al. (1996).  The 

effects of the α-ketoglutaric acid supplement on E. coli resuscitation were not as pronounced; 

however, the 0.1% α-ketoglutaric acid supplemented medium appeared to have the highest plate 

counts after resuscitation (Mizunoe et al., 1999). 

Mizunoe et al. (1999) performed additional experimentation to determine if the supplements were 

merely serving as a nutrient source or if their H2O2 degrading properties were utilized during 

cellular resuscitation.  The resuscitation of E. coli on 0.1% sodium pyruvate supplemented media 

was compared to 0.1% acetic acid supplemented media; acetate is a closely related metabolite 
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for sodium pyruvate (Mizunoe et al., 1999).  Additionally, plates with catalase supplemented LB 

agar were compared to plates with heat-denatured catalase supplement.  In both instances, the 

metabolizable substrate did not enhance the culturability of E. coli.  Therefore, the resuscitation of 

cells was attributable to the destruction of H2O2 compounds. 

Because of the peroxide-degrading properties of sodium pyruvate and catalase, the 

supplemented culture media in the Mizunoe et al. (1999) experiments were able to resuscitate 

stressed VNC cells.  The peroxide-degrading compounds were fundamental in protecting 

stressed cells against oxidative stresses caused by resuscitation in nutrient-rich media at optimal 

growth temperatures. 

4.2 Research Needs 

The VNC state is a plausible explanation for diminished culturability after thermal treatment.  As 

observed previously, qPCR data suggests that the density of viable E. coli is significantly higher 

than the concentration determined by SCM.  Research needs to be performed to determine if 

enhancements to SCMs can be performed to resuscitate VNC bacteria.  Specifically, peroxide 

degrading compounds have been identified to resuscitate VNC bacteria in pure cultures.  

Research needs to be performed to determine if peroxide degrading compounds can resuscitate 

FC and E. coli in wastewater biosolids. 

4.3 Research Objective 

The objectives of this experiment were to determine if improvements to SCMs will result in 

improved resuscitation of VNC indicator bacteria in thermally treated biosolids.  In this study, the 

effect of adding peroxide-degrading compounds to the standard culturing media to enhance 

recovery of E. coli in thermally treated sludges was examined.  Catalase, sodium pyruvate, and 
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α-ketoglutaric acid were supplemented to traditional culturing methods for wastewater sludge and 

cake samples. 

Cake and sludge samples were received from the TPAD-1 wastewater facility, which follows the 

EPA Time and Temperature Curve to achieve Class A biosolids.  Sampling of this plant has 

shown that it experiences SI and regrowth in that the E. coli density is below detection after 

digestion, but after dewatering cake densities are 104-105/g DS.  Cake and sludge samples were 

cultured using both traditional and enhanced presumptive media during the multiple tube 

fermentation culturing technique.  The enhanced presumptive media investigated whether sodium 

pyruvate, α-ketoglutaric, or catalase addition to traditional presumptive media yielded higher 

enumerations of FC and E. coli. 

The generation and presence of peroxides in wastewater samples is hypothesized to prevent the 

enumeration of VNC FC and E. coli from thermally treated sludges.  This research will determine 

if the addition of peroxide-degrading compounds can effectively resuscitate VNC bacteria such 

that enhanced SCM adequately account for the SI and regrowth phenomena identified in Class A 

biosolids. 

4.4 Methods and Procedure 

Class A sludge and cake were provided by the TPAD-1 wastewater facility.  This facility utilizes 

the EPA time-temperature to achieve Class A biosolids.  Samples were shipped on ice by 

overnight FedEx shipment and were stored at 4°C prior to the start of the experiment which 

commenced on same day as sample receipt. MPN analysis was performed on the sludge and 

cake using both traditional and enhanced presumptive media as described herein.  Total percent 

solids analysis of the sludge and cake samples was performed by SM 2540B. 
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4.4.1 Multiple Tube Fermentation Culturing Technique 

Sample preparation, serial dilutions, and culturing methods were conducted in accordance with 

SM 9221B and EPA Method 1680.  Cake samples (30.0 ± 0.1 g) and sludge samples (30.0 ± 0.1 

mL) were homogenized with 270 mL sterile PBS dilution water (1:10 dilution) in a sterile blender 

for 2 minutes (EPA Method 1680).  Serial dilutions (1:10) were prepared for liquid and solid 

samples.  One milliliter of each serial dilution was aseptically transferred into 10 mL sterile LTB 

media (traditional and enhanced).  Five replicate tubes were inoculated for each dilution.  

Presumptive cultures were incubated in a 35°C ± 0.5°C water bath.  At 24 ± 2 hours, presumptive 

cultures were swirled gently and examined for color change (purple to yellow indicating a positive 

reaction). At 48 ± 3 hours, final assessment of color change was performed prior to transfer to the 

confirmation phase.   

From the presumptive LTB media (traditional and enhanced), the three most dilute serial dilutions 

with positive detections were aseptically transferred from LTB broth into confirmatory EC-MUG 

media using a sterile wooden stick for FC and E. coli conformational culture analysis.  

Confirmatory cultures were incubated in a 44.5°C ± 0.2°C water bath for 24 ± 2 hours.  FC 

detection was identified by gas buildup within the Durham tube.  E. coli detection was ascertained 

by visual observation of EC-MUG media fluorescence under UVB lighting.   

4.4.1.1 Traditional Presumptive Media 

Quantification of TC was performed according to SM 9221B and EPA Method 1680 (Eaton, 1995; 

EPA, 2006).  LTB (Difco, Sparks, MD) was supplemented with 0.01 g/L of bromocresol purple 

(Sigma Aldrich Co., St. Louis, MO) for colorimetric analysis of TC as described in SM 9221B.   

4.4.1.2 Enhanced Presumptive Media 

The traditional presumptive media, as described in Section 4.4.1.1, was augmented with either 
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sodium pyruvate, α-ketoglutaric acid, or catalase for use as the enhanced presumptive media.  

LTB media augmented with either 0.1% sodium pyruvate [Sigma Aldrich] or 0.1% α-ketoglutaric 

acid [Sigma Aldrich]) was sterilized in an autoclave at 121°C, 15 psi for 15 minutes.  Before 

sterilization, the pH was adjusted with 1 M hydrochloric acid (HCl) or 1 M sodium hydroxide 

(NaOH) until a pH of 6.8 was obtained.  The volume of acid or base used to adjust the pH of the 

media was less than 10% of the total volume of solution.  Because of the enzymatic quality of 

catalase, 1000 units/tube catalase, which was filter sterilized using a 0.22 µm sterile filter, was 

aseptically transferred into sterile traditional presumptive media.   

4.4.1.3 Confirmatory Media 

EPA Method 1680 was modified for FC and E. coli quantification using the proposed SM 9921F 

(Eaton, 1995).  EC-MUG media (Difco), which contains the fluorogenic substrate MUG, was used 

in place of the EPA Method 1680 specified EC Media (Difco).  A Durham tube was placed into the 

EC-MUG tubes to enumerate FC as described in SM 9921E (Eaton, 1995).   

4.4.2 Most Probable Number Analysis 

MPN statistics were calculated with the EPA Most Probable Number Calculator (EPA, 1996) with 

a 95% confidence level.  MPN statistics were normalized for moisture content by converting the 

MPN/mL (wet weight) to MPN/g total solids (dry weight) using the percent total solids. 

4.5 Results and Discussion 

Sludge and cake samples were collected from TPAD-1 and cultured using standard LTB media 

and LTB media supplemented with either catalase, sodium pyruvate, or α-ketoglutaric acid.  The 

media supplements were added because they have been shown to degrade peroxide compounds 

(Bloomfield et al., 1998; Mizunoe et al., 1999).  Based on the literature from Bloomfield et al. 
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(1998), it is proposed that peroxide and other oxidative compounds are released when cells are 

stressed.  The following discussion evaluates whether the addition of peroxide scavengers to 

standard culturing media improves the culturability of TC, FC, and E. coli. 

Coliform and E. coli densities for the sludge samples collected at TPAD-1 were cultured on 

standard and enhanced LTB media and the culturing data are presented as Figure 4–1.  Sludge 

samples cultured with traditional media (control) were observed to contain non-detect values for 

TC, FC, and E. coli.  Likewise, neither catalase or α-ketoglutaric acid amended LTB media were 

able to resuscitate target bacteria; the densities for TC, FC, and E. coli were non-detect.  Only the 

sludge sample cultured on sodium pyruvate amended LTB media was observed to have TC and 

FC densities greater than the quantification limit of 102 MPN/g DS.  The density of TC increased 

to greater than 104 MPN/g DS while the FC density increased to 103 MPN/g DS.  Confirmation 

sampling using EC-MUG media did not detect E. coli above the quantification limit of 102 

MPN/g DS. 
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Figure 4–1: Culture results for thermophilic treated sludge from TPAD-1 and cultured on 
traditional and enhanced media (Error bars represent upper and lower 95% confidence 
intervals) 

Coliform and E. coli densities for the cake samples collected at TPAD-1 were cultured on 

standard and enhanced LTB media and the culturing data are presented as Figure 4–2.  Cake 

samples cultured with traditional media (control) were observed to contain TC, FC, and E. coli 

densities of nearly 5 x 103 MPN/g DS.  The addition of catalase to the LTB media yielded 

densities for TC, FC, and E. coli that were comparable to the control cake density of 5 x 103 

MPN/g DS.  LTB media amended with α-ketoglutaric acid yielded the lowest TC, FC, and E. coli 

densities (3 x 103 MPN/g DS).  Only the cake sample cultured on sodium pyruvate amended LTB 

media resulted in an increase in TC, FC, and E. coli densities greater than the control cake.  The 

TC density was 3 x 104 MPN/g DS while the FC and E. coli densities were 104 MPN/g DS. 
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Figure 4–2: Culturing results for thermophilic treated cake from TPAD-1 dewatered by HSC 
and cultured on traditional and enhanced media (error bars represent upper and lower 
95% confidence intervals) 

As depicted in Figure 4–1 and Figure 4–2, the resuscitation of bacteria using enhanced 

presumptive media with catalase and α-ketoglutaric acid had a minimal effect on the culturability 

of E. coli in TPAD-1 wastewater samples.  Sludge samples cultured in sodium pyruvate enhanced 

LTB media yielded the highest densities of bacteria; however, only TC and FC experienced 

regrowth, not E. coli.  The TC density from the sodium pyruvate supplemented LTB media was 

comparable for both cake and sludge samples.  Unlike the sludge samples, cake samples yielded 

quantifiable densities of E. coli.  Marginal difference in TC, FC, and E. coli density were observed 

between the control cake and cake cultured in supplemented LTB media.  Additionally, no TC, 
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enhancements (control sample). The control cake sample had TC, FC, and E. coli densities of 5 x 

103 MPN/g DS. 

Based on these results, sodium pyruvate supplemented LTB media was the only enhanced 

media to produce increases in target bacteria culturability.  This observation that sodium pyruvate 

supplemented media resuscitated target bacteria may indicate that peroxide concentrations in 

solution inhibited bacterial growth as hypothesized by Mizunoe et al. (1999).  Nevertheless, only 

TC and FC, not E. coli, was shown to resuscitate with sodium pyruvate enhanced presumptive 

media.  This research did not identify a reason to explain why E. coli densities were not 

comparable to FC densities.  

4.6 Research Significance 

The application of the media enhancements suggested in Mizunoe et al. (1999) on wastewater 

culturing techniques did not have a comparable effect to the laboratory, pure culture 

experimentation performed by Mizunoe et al. (1999).  Several differences in the execution of this 

experimental method and the Mizunoe et al. (1999) experiments may have caused different 

outcomes.  Because wastewater samples constitute a large consortium of bacteria, the mixed 

bacterial community may have growth requirements different than the E. coli O157 pure culture 

utilized by Mizunoe et al. (1999).  Additionally, Mizunoe et al. (1999) utilized agar plate to culture 

bacteria, the EPA Method 1680 and SM 9221 methods for wastewater samples utilize liquid 

media for the multiple tube fermentation technique.  The change in culture matrix may have 

influenced the results.  Consequently, the resuscitation of E. coli utilizing enhanced media, as 

described by this experiment and Mizunoe et al. (1999), should be investigated further to 

determine if the culturing matrix influences resuscitation.  Direct plating of wastewater samples on 

enhanced nutrient agar plates should be considered in future research efforts. 
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4.7 Conclusions 

Data collected during this experiment indicated the following observations: 

• SI was observed in cake samples after centrifuge dewatering that were greater than the 

Class A requirements for FC density. 

• The sludge sample cultured in sodium pyruvate supplemented media yielded a TC 

density greater than that of the control cake sample. 

• The density of FC from the sludge sample cultured in sodium pyruvate supplemented 

media was comparable to FC densities identified in the control cake samples.   

• E. coli concentrations were not increased by the three media supplements for both cake 

and sludge samples. 

The resuscitation effects promoted by the detoxification of peroxide compounds, as presented by 

Mizunoe et al. (1999), only appeared to be effective in causing the SI of indicator bacteria in 

sludge samples cultured with sodium pyruvate addition.  This experiment identified that TC and 

FC density increased by 1-2 orders of magnitude from non-detect to 104 MPN/g DS and 103 

MPN/g DS, respectively.  Elevated densities of TC, FC, and E. coli in cake samples were also 

observed in sodium pyruvate supplemented media compared to the control cake.  The addition of 

catalase and α-ketoglutaric acid to presumptive media does not appear to encourage the 

resuscitation if VBC bacteria as described by Mizunoe et al. (1999). 
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Chapter 5: Effects of Autoinducer and E. coli Cell-Free 
Supernatant Addition to Standard Culturing Media and 

of Cell Washing Technique to Determine whether 
Quorum Sensing Molecules Promote the Resuscitation 

of VNC Bacteria 

5.1 Introduction 

If the non-culturable hypothesis is correct, several possible reasons could explain why bacteria 

transition from a non-culturable to a culturable state after centrifuge dewatering such as: 

• Removal of inhibiting substances; 

• Release of autoinducers or quorum sensing molecules; 

• Release of other substances that promote growth; 

• Changes in environmental conditions. 

This experiment will expressly study two possible mechanisms for SI: 

1. The release of autoinducers. 

2. The removal of inhibitory substances. 

Although the current understanding of autoinducers is not complete, research has identified 

several different methods bacteria communicate within species and across species (Reading et 

al., 2006).  Additionally, several bacteria have been shown to respond to mammalian chemical 
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signaling molecules (Reading et al., 2006).  Many of these signaling molecules have been 

identified to promote or reduce bacterial growth.  The growth effects caused by signaling 

molecules may allow researchers to control the growth of bacteria in laboratory methods using 

these signaling molecules.  In one regard, the culturability of bacteria is important to correctly 

classify biosolids.  From a culturability standpoint, determining a microbiologic technique which 

causes resuscitation of bacteria will provide accurate quantification of pathogenic indicator 

bacteria, E. coli.  On the other hand, because E. coli can be pathogenic, the resuscitation of 

specifically Enterohemorrhagic E. coli (EHEC) could require changes to regulations for the use of 

biosolids as described by the Part 503 rule.  Because current microbiology techniques lack the 

ability to resuscitate VNC bacteria effectively, the true quantification of indicator bacteria remains 

biased low, if the non-culturable hypothesis is correct.  Low detection capabilities for E. coli and 

other indicator bacteria could potentially pose a direct human health risk for workers handling and 

utilizing biosolids and for residents of nearby land application. 

5.1.1 Cell-to-Cell Signaling Molecules 

Prokaryotic bacteria were once considered to live unicellularly, with only stimulation from 

environmental factors such as the presence of chemicals and physical changes (Reading et al., 

2006).  This simplistic view of prokaryotic life has been dismissed with the discovery of small 

“hormone-like” organic molecules called autoinducers, which allow bacteria to communicate with 

one another (Reading et al., 2006).  These autoinducers provide a cell-to-cell signaling system 

that serves to regulate gene expression based on cell density.  Because autoinducers signal for 

the expression of certain genes based on cell density, autoinducers are considered quorum 

sensing molecules (Reading et al., 2006). 

Early research into quorum sensing molecules first occurred during a study into the regulation of 

bioluminescence in Vibrio fischeri and Vibrio harveyi (Reading et al., 2006).  Since then, many 
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more quorum sensing signaling molecules and genes have been identified (Reading et al., 2006).  

These quorum sensing molecules are divided into three classes.  In Gram-negative bacteria, the 

LuxR/I-type system is utilized for quorum sensing using various AHL molecules.  A peptide 

signaling system (luxS/autoinducer-2 [AI-2]) is utilized by Gram-positive bacteria, and an 

interkingdom signaling system utilizing epinephrine/norepinephrine/ autoinducer-3 (AI-3) has also 

been identified for cross-species signaling (Reading et al., 2006).  The following sections discuss 

the LuxR/I-type signaling system and the epinephrine/norepinephrine/AI-3 signaling system since 

there are applicable for Gram-negative E. coli. 

5.1.1.1 The LuxR/I-type Signaling System 

In Gram-negative bacteria, the LuxI-type proteins produce AHL autoinducers which in turn 

activate LuxR to increase gene expression.  Escherichia coli, a Gram-negative bacteria, contains 

a LuxR homolog, SdiA (Wang, 1991), but does not contain a luxI gene that is capable of 

synthesizing AHLs (Swift, 1999; Michael, 2001).  The SdiA receptor, according to Houdt et al. 

(2006), is capable of responding to synthetic AHL molecules.  Specifically, Houdt et al. (2006) 

investigated the use of synthetic N-hexanoyl-L-Homoserine lactone (C6-HSL) and 3-oxo-N-

hexanoyl-L-Homoserine lactone (3-oxo-C6-HSL), the most widespread AHLs, in effecting 

promoter expression in E. coli MG1655.  In addition to the C6-HSLs, with or without an oxo group 

in the 3-position, Yao et al. (2006) found that SdiA also recognizes and folds when N-octanoyl-L-

Homoserine lactone (C8-HSL) and 3-oxo-N-octanoyl-L-Homoserine lactone (3-oxo-C8-HSL) are 

present.  The folding process is necessary for the SdiA receptor to recognize quorum sensing 

molecules.   

Because SdiA is capable of detecting various AHLs and utilizing these signaling molecules as 

switches for its folding, the E. coli SdiA protein is a LuxR-type quorum sensing molecule that is 

used to detect the presence of other bacterial species (Yao et al., 2006).  When the sdiA gene 
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was encoded on a plasmid and overexpressed in E. coli, the ftsQAZ gene for cell division was 

activated and further improved when AHL was added (Houdt et al., 2006).  This implies that the 

addition of AHLs may promote the cell division required for regrowth.   

5.1.1.2 The Epinephrine/Norepinephrine/AI-3 System and EHEC 

In 1982, following an outbreak of an Enterohemorrhagic E. coli (EHEC) strain in the United 

States, the public health community recognized that EHEC was a significant problem within the 

food industry (WHO, 2005).  Unlike most E. coli, a bacterium commonly found in the gut of 

humans and warm-blooded animals, strains of EHEC can cause severe foodborne illnesses 

(WHO, 2005).  EHEC serotype O157:H7 has been identified as one of the most important 

serotypes with regard to public health concerns (WHO, 2005).  In humans, EHEC O157:H7 

infection typically results in abdominal cramps and diarrhea but can quickly progress to bloody 

diarrhea and the life-threatening hemolytic uremic syndrome (HUS) (WHO, 2005). The typical 

incubation period for EHEC infection is 3-4 days with recovery taking 10 days typically.  Of 

patients with EHEC infection, an estimated 10% will develop HUS and 3-5% will die. 

Physiologically, EHEC causes the formation of lesions on intestinal epithelial cells in a process 

termed attaching and effacing (AE), which results from the destruction of the intestinal microvilli 

and the production of Shiga toxins (Sperandio et al., 2003).  Genes associated with the AE lesion 

are encoded by a chromosomal pathogenicity island known as the locus of enterocyte effacement 

(LEE) (Sperandio et al., 2003; Walters et al., 2006).  The 41 genes associated with the LEE are 

organized into 5 operons and have been demonstrated to be responsive to quorum sensing 

signaling (Sperandio et al., 2003; Reading et al., 2006; Walters et al., 2006).   

The AI-3 quorum sensing signal has been shown to activate transcription of the LEE type III 

secretion system, which is responsible for extensive cytoskeletal rearrangements resulting in AE 

lesions (Walters et al., 2006).  AI-3 is able to activate the LEE-encoded regulator (Ler), which is 
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the first gene encoded on LEE1, and causes the activation of the LEE genes (Walters et al., 

2006; Reading et al., 2006).  Cross talk between AI-3 and the mammalian hormones epinephrine 

and norepinephrine have been observed to regulate LEE1 (Sperandio et al., 2003).  

Consequently, the AI-3 quorum sensing signals can be substituted by epinephrine and 

norepinephrine and still activate the Ler in EHEC. 

5.1.2 Resuscitation of VNC Bacteria by Autoinducer Addition 

The majority of research into the effects of autoinducer addition have been performed with pure 

cultures under laboratory control conditions.  Valle et al. (2004), however, published a study 

whereby the bacteria population of an industrial wastewater facility was well characterized 

through molecular and microbiological techniques and AHLs were added to fresh sludge samples 

from the aerobic continuous flow reactors.  The wastewater facility, designed to degrade phenolic 

cocktails generated by steel coking ovens, sporadically loses biological activity thus preventing 

the degradation of phenolic compounds.  Although the industrial wastewater facility studied does 

not possess high concentrations of E. coli, the application of AHLs in mixed environmental 

cultures is important to this research.  According to Valle et al. (2004), AHL-mediated gene 

expression was found to return non-phenolic culturing conditions to normal.  Specifically, the 

addition of C6-HSL and 3-oxo-C6-HSL, both AHLs, were found to shift the predominance from 

non-phenol assimilating bacteria (i.e., Thiobacillus and Acidobacteria) to phenol degrading 

bacteria (i.e., Thauera, Acidovorax, and Rhodopseudomonas genera).  The influence of AHL 

regulated gene expressions appears to be the most likely hypothesis to support the shift in 

bacterial population (Valle et al., 2004).  Because AHLs were capable of initiating a regulatory 

pathway that promoted one phenotype over another, AHL-mediated gene expression likely 

initiated cell-to-cell signaling which changed the composition and function of the mixed bacteria 

culture. 
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Multiple studies have found that quorum sensing in E. coli is essential for regulating culturability 

based on both cell density and metabolic potential of the environment (Lyte et al., 1996; Surette 

et al., 1998; Reissbrodt et al., 2002; Valle et al., 2004).  These studies reference both the AHL 

and norepinephrine quorum sensing pathways.  For E. coli, which does not produce a known 

AHL, the ability to interpret signaling molecules from other bacteria provide E. coli with 

information about cell density and nutrients available in the environment.  Surette et al. (1998) 

identified that possible quorum sensing signals exist from E. coli which are degraded before 

stationary phase and indicate that low a cell density bacterial population is beneficial for E. coli 

growth.  This may be important for pathogenic E. coli because dispersion is necessary for 

greatest pathogenicity; therefore, stationary phase growth will not be beneficial to pathogenic E. 

coli attempting to infect as much area as possible.  Likewise, signaling molecules produced within 

nutrient-rich environments could communicate to nearby cells that a favorable environment exists 

and that reproduction is possible.  The presence of pathogenic E. coli and a nutrient-rich 

environment could therefore promote exponential growth of bacteria because of cell-to-cell 

signaling molecules.   

Because the presence of the AHLs and autoinducers may provide a switch for the resuscitation of 

VNC bacteria, it is possible that the shear forces associated with HSC could release these 

compounds which result in the SI of FC and E. coli.  As discussed by Surette et al. (1998), 

quorum sensing signals may increase the growth of E. coli when high nutrient levels and low cell 

densities are present which are theorized to be possible after HSC dewatering.  As discussed in 

Chapter 7, the shear forces produced during HSC dewatering break up floc particles thus 

increasing the surface area for growth and possibly increasing the cell density, as discussed by 

Qi et al. (2004), and releasing nutrients that promote growth as presented by Higgins et al. 

(2006).  Therefore, the shearing process may result in the release of AHLs and autoinducers from 

bacterial cells signaling for increased growth.  The release of these signaling molecules may 

explain the SI phenomena. 
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5.1.3 Resuscitation of VNC Bacteria by Cell Washing Detoxification Technique 

The SI phenomenon describes the increase in FC and E. coli density that occur immediately after 

centrifuge dewatering.  One possible explanation for the depressed FC and E. coli density in 

sludge samples immediately before centrifuge dewatering is the presence of cellular toxins in 

solution.  Research into copper toxicity was described by Grey et al. (2001) who identified that 

cellular toxicity to copper induced the VNC state in E. coli.  In their experiment, Grey et al. (2001) 

amended LB plates with varying concentrations of copper sulfate (0 to 25 mM) and incubated 

mid- to late-exponential-stage E. coli strains ED8739 and ES80 on the plates for 2 days at 37°C. 

Using live/dead analysis, Grey et al. (2001) identified that even though no colonies were detected 

on the LB plates amended with 6 and 25 mM copper sulfate plates, significant concentrations of 

viable E. coli cells persisted, which is an indication for the presence of VNC cells.  However, as 

discussed in Section 2.1, live/dead analysis is not a conclusive test when VNC bacteria may be 

present since VNC bacteria have low concentrations of rRNA which presents biased low results 

using the FISH methodology.  To determine if the cells had entered the VNC state or died from 

the toxic levels of copper, Grey et al. (2001) investigated whether a cell washing technique could 

be used to detoxify the cellular environment and resuscitate VNC cells.  To perform the cell 

washing technique, Grey et al. (2001) membrane filtered suspended E. coli and washed the cells 

with 3 to 5 volumes of 500 μM EDTA before resuspending the cells in the original volume of 0.9% 

NaCl.  The cell washing technique described by Grey et al. (2001) successfully resuscitated E. 

coli that were subjected to copper toxicity.  Culturability was able to be restored within two weeks 

of loss of culturability using the cell washing technique (Grey et al., 2001). 

Similar studies have been performed using cell washing techniques to detoxify cellular 

environments which were exposed to saline stress, chlorination, heat stress, and oxidative stress 

(Ohtomo et al., 2001; Oliver et al., 2005b; Dukan et al., 1997).  Ohtomo et al. (2001) harvested 

saline stressed E. coli cells by membrane filtration and washed with two volumes of PBS (which 
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contained 0.9% NaCl).  Chlorine stressed E. coli cells were centrifuged (14,000 xg for 5 minutes) 

into a pellet before being resuspended in PBS (Oliver et al., 2001).  Research by Dukan et al. 

(1997) on the resuscitation of chlorine stressed E. coli in PBS indicated that significant 

populations of VNC cells could be resuscitated after 1 day of incubation in PBS.  The chlorine 

stressed cells were pelleted by centrifugation (3,000 xg for 10 minutes at 4°C) before being 

washed twice with 50 mM phosphate buffer (pH 7.1) and resuspended in the original volume of 

phosphate buffer (Dukan et al., 1997).  In each case, the researchers observed a resuscitation of 

VNC E. coli cells when washed and resuspended in a PBS. 

5.2 Research Need 

Research needs to be performed to evaluate the effect of AHLs and norepinephrine addition on 

the resuscitation of FC and E. coli in wastewater samples.  Since E. coli does not produce an 

AHL of its own, AHL molecules which are known to bind to the E. coli protein receptor (SdiA) 

should be studied.  The norepinephrine pathway should be studied in a similar fashion to the AHL 

pathway. 

Additionally, inhibitory effects from mixed quorum sensing molecules or other inhibitory 

compounds like copper may further promote the VNC state.  Research should be performed to 

determine if quorum sensing molecules can be diluted from wastewater samples, thus removing 

potential inhibitory effects resulting in resuscitation. 

5.3 Research Objective 

Quorum sensing molecules are one possible mechanism promoting the VNC state.  In this 

experiment, known autoinducer molecules were added to presumptive media to enhance SCM.  

The resuscitation effects on VNC bacteria present in Class A digested sludge and dewatered 
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cake samples were determined.  It is hypothesized that the addition of autoinducer molecules to 

culture media will promote resuscitation in FC and E. coli populations.  This experiment aims to 

determine if quorum sensing molecules are effective in reversing the non-culturability of VNC 

bacteria.   

Alternatively, this experiment investigates whether quorum sensing molecules or other inhibitory 

substances may play an inhibitory role on cellular growth.  A cell washing technique was 

employed to determine if inhibitory quorum sensing molecules hinder the resuscitation of VNC 

bacteria. 

5.4 Methods and Procedures 

Class A sludge and cake were provided by the TPAD-1 wastewater facility.  Samples were 

shipped on ice by overnight FedEx shipment and were stored at 4°C prior to the start of the 

experiment which commenced on same day as sample receipt.  Multiple tube fermentation 

culturing techniques were performed on the sludge and cake using both traditional and enhanced 

presumptive media as described herein.  Total percent solids analysis of the sludge and cake 

samples was performed by SM 2540B. 

5.4.1 Multiple Tube Fermentation Culturing Technique 

Sample preparation, serial dilutions, and culturing methods were conducted in accordance with 

SM 9221B and EPA Method 1680.  Sludge samples (30.0 ± 0.1 mL) and biosolid pellet (cake) 

samples (30.0 ± 0.1 g) were homogenized with 270 mL sterile PBS dilution water (1:10 dilution) in 

a sterile blender for 2 minutes (EPA Method 1680).  As described in Section 5.4.1.1, the biosolids 

pellet was generated by cell washing to remove inhibitory substances.  Serial dilutions (1:10) 

were prepared for liquid and solid samples.  One milliliter of each serial dilution was aseptically 

transferred into 10 mL sterile LTB media (traditional and enhanced).  Five replicate tubes were 
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inoculated for each dilution.  Presumptive cultures were incubated in a 35°C ± 0.5°C water bath.  

At 24 ± 2 hours, presumptive cultures were swirled gently and examined for color change (purple 

to yellow indicating a positive reaction). At 48 ± 3 hours, final assessment of color change was 

performed prior to transfer to the confirmation phase.   

From the presumptive LTB media (traditional and enhanced), the three most dilute serial dilutions 

with positive detections were aseptically transferred from LTB broth into confirmatory EC-MUG 

media using a sterile wooden stick for FC and E. coli conformational culture analysis.  

Confirmatory cultures were incubated in a 44.5°C ± 0.2°C water bath for 24 ± 2 hours.  FC 

detection was identified by gas buildup within the Durham tube.  E. coli detection was ascertained 

by visual observation of EC-MUG media fluorescence under UVB lighting.   

5.4.1.1 Detoxification of Inhibitory Agents (Cell Washing) 

Liquid sludge samples (30.0 ± 0.1 mL) were centrifuged at 14,000 xg for 5 minutes using a 

tabletop mini-centrifuge.  The supernatant was removed, and the biosolids pellet was re-

suspended to a total volume of 30.0 ± 0.1 mL with sterile PBS dilution water (1:10 dilution) using 

a tabletop vortex mixer.  The re-suspended pellet was then re-centrifuged at 14,000 xg for 5 

minutes using a tabletop mini-centrifuge.  The supernatant was removed, and the biosolids pellet 

was again re-suspended suspended to a total volume of 30.0 ± 0.1 mL with sterile PBS dilution 

water using a tabletop vortex mixer.   

5.4.1.2 Traditional Presumptive Media 

Quantification of TC was performed according to SM 9221B and EPA Method 1680 (Eaton, 1995; 

EPA, 2005a).  LTB (Difco, Sparks, MD) was supplemented with 0.01 g/L of bromocresol purple 

(Sigma Aldrich Co., St. Louis, MO) for colorimetric analysis of TC as described in SM 9221B.   
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5.4.1.3 Enhanced Presumptive Media 

The traditional presumptive media, as described in Section 5.4.1.2, was augmented with C6-HSL, 

3-oxo-C8-HSL, or norepinephrine for use as the enhanced presumptive media.  Because of the 

enzymatic qualities of C6-HSL, 3-oxo-C8-HSL, and norepinephrine, these supplements were 

dissolved into a stock solution (2.5 mM) prior to filter sterilized using a 0.22 µm sterile filter and 

aseptic transfer (200 μL) into sterile traditional presumptive media. A final concentration for each 

supplement in LTB media was 50 μM. 

LTB presumptive media augmented with 5 g / 300 mL bentonite was sterilized in an autoclave at 

121°C, 15 psi for 15 minutes.  The LTB-bentonite slurry was mixed prior to autoclaving and 

transferred into each tube.  The LTB-bentonite slurry was mixed during the transfer process to 

minimize variations in slurry density. 

E. coli supernatant additive was prepared by inoculating LTB media with E. coli (ATCC# 25922) 

and culturing at 35°C ± 0.5°C.  E. coli growth phase was monitored by optical density 

measurements at 600 nm every 30 minutes until exponential growth phase was encountered.  E. 

coli supernatant was generated from E. coli cultures prior to lag phase.  E. coli supernatant was 

generated using a tabletop mini-centrifuge (14,000 xg for 5 minutes) prior to filter sterilization 

using a 0.22 µm sterile filter.  A 1 mL aliquot of E. coli supernatant was added to sterile LTB 

media aseptically. 

5.4.1.4 Confirmatory Media 

EPA Method 1680 was modified for FC and E. coli quantification using the proposed SM 9921F 

(Eaton, 1995).  EC-MUG media (Difco), which contains the fluorogenic substrate MUG, was used 

in place of the EPA Method 1680 specified EC Media (Difco).  A durham tube was placed into the 

EC-MUG tubes to enumerate FC as described in SM 9921E (Eaton, 1995).   
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5.4.2 Most Probable Number Analysis 

MPN statistics were calculated with the EPA Most Probable Number Calculator (EPA, 1996) with 

a 95% confidence level.  MPN statistics were normalized for moisture content by converting the 

MPN/mL (wet weight) to MPN/g total solids (dry weight) using the percent total solids. 

5.5 Results and Discussion 

Sludge samples from TPAD-1 were cultured in LTB presumptive media with 50 μM C6-HSL, 50 

μM 3-oxo-C8-HSL, or 50 μM norepinephrine.  TPAD-1 sludge samples were prepared using both 

the cell washing technique and without.  The culturing data for both washed and unwashed cells 

is presented as Figure 5–1.   

The non-amended LTB media served as the control for the experiment.  A control was prepared 

with both washed and unwashed cells so that the resuscitation of VNC bacteria could be 

evaluated.  Unfortunatley, after 48 hours (2 days) of incubation, none of the sludge samples 

cultured in enhanced (50 μM C6-HSL, 50 μM 3-oxo-C8-HSL, or 50 μM norepinephrine) and 

traditional LTB media for both washed and unwashed cells produced a change color.  This lack of 

color change in the presumptive media is an indication for the absence of TC (the non-detect 

value was 6 MPN/g DS).  However, after continuing the incubation for 6 days, LTB media did 

produce a color change which indicated the presence of TC. According to EPA Method 1680, the 

color change in LTB media for TC detection is supposed to occur within 48 ± 3 hours of 

incubation.  Therefore, the usability of the data produced in this experiment should be qualified 

since the incubation time was longer than EPA Method 1680 allows. 
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Figure 5–1: Thermally treated sludge (TPAD-1) prepared with and without a cell washing 
technique and cultured on autoinducer supplemented media (Error bars represent upper 
and lower 95% confidence intervals) 

As depicted in Figure 5–1, the results for the presence of TC after 6 days of incubation in 

traditional and enhanced presumptive media (i.e., C6-HSL, 3-oxo-C8-HSL, and norepinephrine 

amendments) did not reveal differences in the density of TC when compared to the different 

media enhancements (as determined at the 95% confidence interval).  Also, the TC densities for 

washed and unwashed cultures in each media enhancement were not significantly different (as 

determined at the 95% confidence interval).  The TC densities for each of the presumptive media 

types were approximately 100 MPN/g DS.  Confirmational phase sampling did not yield FC or E. 
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coli detections for either the traditional or enhanced media and for both washed and unwashed 

cells (the non-detect value was 6 MPN/g DS). 

The observation that TC density did not increase after performing the cell washing technique may 

indicate that inhibitory substances were not removed and that resuscitation of VNC bacteria did 

not occur.  However, in previous investigations at TPAD-1, the resuscitation of TC, FC, and E. 

coli occurs regularly after HSC dewatering as discussed in Section 2.5.1.  Sludge samples were 

observed to have non-dectect densities of TC, FC, and E. coli, which are similar to the 48 hour 

incubation results from this experiment.  Cake samples collected after HSC dewatering contained 

detectable densities of FC and E. coli above the Class A biosolids limit.  Unfortunately, no cake 

samples were cultured as a part of this experiment with autoinducer addition and cell washing 

techniques.  Nonetheless, the reactivation of non-culturable FC and E. coli in TPAD-1 sludge 

samples after HSC dewatering is a regular occurrence.   

5.6 Research Significance 

As described in literature, the addition of autoinducers to bacteria cultures may resuscitate non-

culturable bacteria (Valle et al., 2004).  However, in this experiment, the autoinducers C6-HSL, 

3-oxo-C8-HSL, and norepinephrine that were supplemented to the presumptive LTB media were 

unable to promote TC, FC and E. coli resuscitation.  The autoinducers were added to nutrient 

media in an effort to stimulate metabolic activity thus promoting bacteria population growth.  

Because the addition of autoinducers did not affect the TC, FC, or E. coli density, the addition of 

autoinducers alone does not appear to be sufficient to promote the resuscitation of VNC bacteria. 

This experiment also tested whether a cell washing technique, described by Grey et al. (2001), 

could be used to resuscitate E. coli in a mixed culture.  Although not statistically different at the 

95% confidence interval, the TC density of washed cells was numerically greater than the TC 
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density of unwashed cells, typically 0.5 orders of magnitude greater.  In this experiment, the 

resuscitation of potential VNC bacteria with the use of the cell washing technique was not able to 

reproduce the 2 order of magnitude increase described Grey et al. (2001) when compared to the 

unwashed cell cultures.  The cell washing technique was not able to resuscitate FC and E. coli 

densities above the detection threshold, which indicates that cell washing alone may not be able 

to promote cellular resuscitation.  

5.7 Conclusions 

Data collected during the quorum sensing experiment indicated the following observations: 

• The inclusion of autoinducer compounds into presumptive culture media did not promote 

the resuscitation of thermally treated FC and E. coli.   

• Cell washing did not have an observable change in the culturability of TC, which was also 

observed in Chapter 6. 

• The delayed culturability of TC may indicate that both the cell washing technique and 

autoinducer addition produced additional stresses on cells which diminished culturability. 

Based on the experimental findings, the addition of autoinducer molecules to culturing media did 

not promote the resuscitation of FC and E. coli.  Additionally, the cell washing technique was not 

effective in promoting the resuscitation of FC and E. coli.  Because DNA data was not collected 

using qPCR at TPAD-1, the anticipated E. coli density is unknown.  Additional research should be 

performed to determine if the addition of C6-HSL, 3-oxo-C8-HSL and norepinephrine promoted 

the non-culturable state or if the biosolids samples lacked detectable E. coli.  A more rigorous 

experiment that evaluates E. coli density by SCM and qPCR should be performed to expand the 

data at TPAD-1.  
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Chapter 6: Investigation of Cell Washing, Adsorption 
Techniques, and E. coli Cell-Free Supernatant Addition 
on the Detoxification of Inhibitory Substances and the 

Resuscitation of VNC Bacteria  

6.1 Introduction 

One possible mechanism that could explain the increases in E. coli after centrifuge dewatering is 

the removal of inhibitory compounds such as quorum sensing molecules or some other 

unidentified substance.  Quorum sensing molecules are produced by bacteria to relay information 

to other bacteria about environmental stresses and nutrient availability.  Traditional culturing 

methods, which are selective for a single group of bacteria, may not effectively enumerate target 

bacterial populations because wastewater samples contain a mixture of bacteria, a mixture of 

chemical signaling molecules, and antagonistic growth factors as well as inhibitors in solutions. 

For E. coli, the specific autoinducer used to provide cell-to-cell signaling has not been identified 

(Weichart et al., 2001; Reading et al., 2006).  Nevertheless, cell-to-cell signaling molecules have 

been identified for other bacterial species which may be recognized by E. coli (Reading et al., 

2006; Houdt et al., 2006; Yao et al., 2006; Weichart et al., 2001).  The referenced literature 

indicated that signaling molecules can both promote cellular growth or restrict it.  These signaling 

molecules have been identified to be extracellular and to diffuse freely through aqueous media.  

Because growth in aqueous media is common, Weichart et al. (2001) performed research to 

determine if cell-free supernatant extracts from bacterial cultures could promote resuscitation.  

Weichart et al. (2001) identified that cell-free supernatant from E. coli cultures both induced 

certain E. coli genes and inhibited growth in E. coli and other microorganism populations.  This 

mixed observation did not conclusively determine if cell-free supernatants were able to promote 

the resuscitation of non-culturable bacteria. 
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Additional research was conducted to evaluate if cell-free supernatant collected from growth 

phase bacterial cultures could promote the resuscitation of VNC bacteria (Panutdaporn et al., 

2006; Kaprelyants et al., 1994; Weichart et al., 2001).  This research was important because the 

culturability of bacteria is assumed to be related to the presence of quorum sensing molecules.  

Growth phase bacterial cultures are assumed to not be controlled or inhibited by quorum sensing 

molecules since the bacterial population continuously increases until a population threshold is 

reached, the environment becomes toxic from waste products, or nutrients become scarce.  

Experimentation by Panutdaporn et al. (2006) identified that VNC bacteria can be effectively 

resuscitated when cultured with cell-free supernatants generated from growth phase bacterial 

cultures.  The specification of growth phase cell-free supernatants appeared to be a significant 

criterion for promoting resuscitation. 

Wastewater samples typically contain stationary phase bacterial populations.  Weichart et al. 

(2001) observed that quorum sensing molecules from bacteria in the stationary phase have an 

inhibitory effect on cellular growth.  These growth antagonists are likely present in wastewater 

biosolids.  During the dewatering of biosolids by HSC, inhibitory substances could be removed 

which result in the resuscitation of VNC bacteria.  This could explain the SI phenomena observed 

at full-scale thermophilic treatment processes. 

6.2 Research Needs 

Research needs to be performed to determine if antagonistic growth factors exist in wastewater 

biosolids that promote the non-culturable state and thus cause SCMs to undercount FC and E. 

coli populations.  To determine if quorum sensing molecules or other antagonistic growth factors 

have a toxicity effect on bacterial growth, thus promoting the VNC state, detoxification techniques 

need to be investigated to evaluate if toxicants can be removed from wastewater samples.  In 

addition to investigating the removal of toxicants, the addition E. coli growth phase cell-free 
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supernatant extract, which has promoted resuscitation in pure cultures, needs to be investigated 

in wastewater samples.   

6.3 Research Objective 

In this experiment, the culturability of bacteria was evaluated with two different presumptive 

media supplements and a cell washing technique to detoxify inhibitory agents.  Each of the three 

experimental processes tested a different hypothesis.  The two media supplements to be utilized 

were bentonite and cell-free exponential growth phase E. coli supernatant.  Specifically, these 

compounds were added to presumptive phase media to evaluate their impact on the culturability 

of E. coli.  The addition of cell-free exponential growth phase E. coli supernatant to presumptive 

media tested the hypothesis that growth phase quorum sensing molecules, other than those 

AHLs tested in Chapter 5, can resuscitate VNC bacteria.  Bentonite was added to presumptive 

media to determine if inhibitory agents will sorb to the bentonite instead of being removed by cell 

washing, which was a proposed method for diluting inhibitory agents.  This research hypothesizes 

that bentonite is effective in removing inhibitory agents from wastewater cultures which inhibit 

cellular growth.  In addition to supplementing presumptive media with various constituents, the 

cell washing protocol, which was discussed in Chapter 5, was used to evaluate if toxins can be 

removed prior to presumptive phase culturing. 

6.4 Methods and Procedures 

Class B, mesophically treated sludge was provided by the Los Angeles County Sanitation 

Districts (LACSD) Joint Water Pollution Control Plant (JWPCP).  Samples were shipped on ice by 

overnight FedEx shipment.  MPN analysis was performed on the sludge using both traditional and 

enhanced presumptive media as described herein.  The method for detoxification of inhibitory 

substances is also discussed herein.  Total percent solids analysis of the sludge and cake 
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samples was performed by Standard Method (SM) 2540B. 

6.4.1 Multiple Tube Fermentation Culturing Technique 

Sample preparation, serial dilutions, and culturing methods were conducted in accordance with 

SM 9221B and EPA Method 1680.  Sludge samples (30.0 ± 0.1 mL) and biosolid pellet (cake) 

samples (30.0 ± 0.1 g) were homogenized with 270 mL sterile PBS dilution water (1:10 dilution) in 

a sterile blender for 2 minutes (EPA Method 1680).  As described in Section 5.4.1.1, the biosolids 

pellet was generated by cell washing to remove inhibitory substances.  Serial dilutions (1:10) 

were prepared for liquid and solid samples.  One milliliter of each serial dilution was aseptically 

transferred into 10 mL sterile LTB media (traditional and enhanced).  Five replicate tubes were 

inoculated for each dilution.  Presumptive cultures were incubated in a 35°C ± 0.5°C water bath.  

At 24 ± 2 hours, presumptive cultures were swirled gently and examined for color change (purple 

to yellow indicating a positive reaction). At 48 ± 3 hours, final assessment of color change was 

performed prior to transfer to the confirmation phase.   

From the presumptive LTB media (traditional and enhanced), the three most dilute serial dilutions 

with positive detections were aseptically transferred from LTB broth into confirmatory EC-MUG 

media using a sterile wooden stick for FC and E. coli conformational culture analysis.  

Confirmatory cultures were incubated in a 44.5°C ± 0.2°C water bath for 24 ± 2 hours.  FC 

detection was identified by gas buildup within the durham tube.  E. coli detection was ascertained 

by visual observation of EC-MUG media fluorescence under UVB lighting.   

6.4.1.1 Detoxification of Inhibitory Agents (Cell Washing) 

Liquid sludge samples (30.0 ± 0.1 mL) were centrifuged at 14,000 xg for 5 minutes using a 

tabletop mini-centrifuge.  The supernatant was removed, and the biosolids pellet was re-

suspended to a total volume of 30.0 ± 0.1 mL with sterile PBS dilution water (1:10 dilution) using 
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a tabletop vortex mixer.  The re-suspended pellet was then re-centrifuged at 14,000 xg for 5 

minutes using a tabletop mini-centrifuge.  The supernatant was removed, and the biosolids pellet 

was again re-suspended suspended to a total volume of 30.0 ± 0.1 mL with sterile PBS dilution 

water using a tabletop vortex mixer.   

6.4.1.2 Traditional Presumptive Media 

Quantification of TC was performed according to SM 9221B and EPA Method 1680 (Eaton, 1995; 

EPA, 2006).  LTB (Difco, Sparks, MD) was supplemented with 0.01 g/L of bromocresol purple 

(Sigma Aldrich Co., St. Louis, MO) for colorimetric analysis of TC as described in SM 9221B.   

6.4.1.3 Enhanced Presumptive Media 

The traditional presumptive media, as described in Section 4.4.1.1, was augmented with 

combinations of bentonite and E. coli supernatant for use as the enhanced presumptive media.  

LTB presumptive media augmented with 5 g / 300 mL bentonite was sterilized in an autoclave at 

121°C, 15 psi for 15 minutes.   

E. coli supernatant additive was prepared by inoculating LTB media with E. coli (ATCC# 25922) 

and culturing at 35°C ± 0.5°C.  E. coli growth phase was monitored by optical density 

measurements at 600 nm every 30 minutes until exponential growth phase was encountered.  E. 

coli supernatant was generated from E. coli cultures prior to lag phase. Positive cultures were not 

transferred to EC-MUG media because a pure culture of E. coli was used initially.  E. coli 

supernatant was generated using a tabletop mini-centrifuge (14,000 xg for 5 minutes) prior to 

filter sterilization using a 0.45 µm sterile filter.  A 1 mL aliquot of E. coli supernatant was added to 

sterile LTB media aseptically. 
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6.4.1.4 Confirmatory Media 

EPA Method 1680 was modified for FC and E. coli quantification using the proposed SM 9921F 

(Eaton, 1995).  EC-MUG media (Difco), which contains the fluorogenic substrate MUG, was used 

in place of the EPA Method 1680 specified EC Media (Difco).  A Durham tube was placed into the 

EC-MUG tubes to enumerate FC as described in SM 9921E (Eaton, 1995).   

6.4.2 Most Probable Number Analysis 

MPN statistics were calculated with the EPA Most Probable Number Calculator (EPA, 1996) with 

a 95% confidence level.  MPN statistics were normalized for moisture content by converting the 

MPN/mL (wet weight) to MPN/g total solids (dry weight) using the percent total solids. 

6.5 Results and Discussion 

Thermally treated sludge from LACSD was cultured in LTB presumptive media (control) and 

enhanced LTB presumptive media containing combinations of bentonite, and E. coli supernatant.  

The cell washing procedure was performed on sludge samples prior to culturing in LTB 

presumptive media and E. coli supernatant enhanced LTB presumptive media.  Figure 6–1 

presents the culturing results for this experiment. 

The TC, FC, and E. coli density for the unwashed control sludge was 104 MPN/g DS.  The 

washed sludge samples had a TC density (2 x 103 MPN/g DS) that was less than the unwashed 

control sludge.  Confirmatory culturing for FC and E. coli was not performed for the washed 

sludge sample because washing negatively influenced TC density. 
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Figure 6–1: Bacterial culturability enhancements for Class B sludge samples from LACSD 
(Error bars represent upper and lower 95% confidence intervals) 

Presumptive media supplemented with E. coli supernatant had a TC density of 6 x 103 MPN/g DS 

which was similar to the control sludge.  Sludge samples that were cell washed and cultured on 

media supplemented with E. coli supernatant had a TC density of 3 x 103 MPN/g DS which was 

less than the TC density for the unwashed sludge.  Neither the washed or unwashed samples 

cultured in E. coli supernatant supplemented presumptive media were transferred to EC-MUG 

media for the conformational phase since the TC density was less than the unwashed control. 

Unwashed cells cultured in presumptive media supplemented with bentonite had TC densities 
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similar to the unwashed control sludge.  The increase in TC density ranged from 2 x 104 

MPN/g DS in media only supplemented with bentonite to 4 x 104 MPN/g DS in media 

supplemented with bentonite and E. coli supernatant.  Confirmation samples indicated that the 

FC and E. coli density were similar to densities of the unwashed control sludge; the results were 

not statistically different at a 95% confidence interval.  Based on these results, the use of 

bentonite does not appear to increase the culturability of bacteria in sludge samples.  Therefore, 

the hypothesis that bentonite would sorb inhibitors within the sludge was not supported by these 

culture results.  

The washing of cells also did not increase the TC density which would indicate possible bacteria 

resuscitation.  Instead, cell washing resulted in lower TC density than the control sludge.  The 

removal of toxins by cell washing may also stress cells thus decreasing their culturability.  In 

addition to removing toxins, necessary quorum sensing molecules may have been removed 

which induce cell growth when nutrients are available and cell density is low. 

6.6 Research Significance 

Research presented by Weichart et al. (2001) and Panutdaporn et al. (2006) demonstrated that 

the addition of growth phase cell-free E. coli supernatant to liquid media effectively resuscitated 

E. coli cells.  The selection of media enhancements that are capable of inducing resuscitation are 

an important approach toward creating a laboratory culturing methodology that accurately 

enumerates VNC bacteria.  In this experiment, growth phase cell-free E. coli supernatant was 

added to liquid media that was inoculated with mixed culture wastewater samples.  Contrary to 

the findings from Weichart et al. (2001) and Panutdaporn et al. (2006), the presumptive media 

enhanced with growth phase cell-free E. coli supernatant was incapable of inducing resuscitation 

and increasing the TC density when compared to the control media.  Without an increase in TC 

density, the density of E. coli would also be less. 
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The removal of toxins and other antagonistic compounds in the wastewater sludge was also 

investigated in this experiment by supplementing bentonite to the presumptive media and by 

utilizing the cell washing technique discussed in Chapter 5.  It was hypothesized that bentonite 

could be used to sorb the toxins and other antagonistic compounds in the sludge that could inhibit 

cellular growth.  The cell washing technique was hypothesized to dilute the toxins and 

antagonistic compounds in the sludge that may inhibit resuscitation.  Unfortunately, neither of 

these approaches were successful at inducing the resuscitation of E. coli.  This experiment 

confirmed that finding in Chapter 5 that the cell washing technique was not a method that was 

capable of inducing resuscitation.  Both the cell washing technique and bentonite addition 

techniques were tested in combination with the addition of growth phase cell-free E. coli 

supernatant.  Each of these experimental trials resulted in TC densities that were comparable at 

the 95% confidence interval.  Therefore, while the removal of toxins may be a necessary 

consideration for the promotion of bacterial resuscitation, without identifying the toxins and 

antagonistic growth factors affecting resuscitation, a specific method for removal cannot be 

determined.  

6.7 Conclusions 

Although conclusions from various journal articles have indicated that the culturability of E. coli 

can be enhanced by the detoxification of inhibitory agents (Weichart et al., 2001; Panutdaporn et 

al., 2006; Kaprelyants et al., 1994), the experiments performed with wastewater samples from 

LACSD did not yield different culturability values of TC when compared to the control.  In this 

research, three techniques were utilized to detoxify cells from inhibitory agents: cell washing, 

exponential growth phase E. coli cell-free supernatant, and bentonite.  Data collected during the 

detoxification of inhibitory substances experiment indicated the following observations: 
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• The cell washing technique utilized in this experiment did not affect the culturability of TC 

when compared to the control, which was consistent with the findings in Chapter 5.  This 

result may indicate that the cell washing technique causes cellular stresses which 

sustained the VNC state.  

• The exponential growth phase E. coli cell-free supernatant was not able to stimulate 

cellular growth.  Suspected quorum sensing molecules may not be present in E. coli cell-

free supernatant as hypothesized 

• Bentonite was not effective in sorbing contaminants which may inhibit cellular growth.   
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Chapter 7: Effects of Shear Forces and Storage on the 
Sudden Increase and Regrowth of Fecal Coliforms and 

E. coli in Mesophilic Digested Biosolids 

7.1 Introduction 

Biosolids dewatering is an important component to any solids treatment system because of the 

cost associated with solids disposal.  The major expenses associated with solids disposal are 

dewatering, hauling, and disposal.  To minimize these expenses, solids treatment processes are 

designed to minimize the moisture content of wastewater solids.  As discussed in Section 1.2, two 

of the most common dewatering technologies are belt filter presses and centrifuges, especially 

HSC, which are typically capable of producing 12-20% solids and 22-30% solids, respectively 

(Reynolds et al., 1996).  Although dewatering technologies adequately remove moisture from 

biosolids, recent literature indicates that these same processes may be responsible for the SI and 

regrowth of bacteria (Cheung et al., 2003; Monteleone et al., 2004; Qi et al., 2004; Higgins et al., 

2006). Shear effects have been cited as a possible reason for the regrowth and possibly SI of FC 

and E. coli (Cheung et al., 2003; Monteleone et al., 2004; Qi et al., 2004).  The following provides 

a discussion about the experimental findings related to regrowth and shear from these 

researchers.   

Cheung et al. (2003) identified that the E. coli density in mesophilically digested sludge increased 

after HSC.  This experiment was significant because feed and dewatered samples were analyzed 

in triplicate for statistical verification.  The increase between the E. coli density in the feed and 

dewatered cake was 2.17 log10 units.  Additionally, laboratory homogenization techniques were 

investigated to determine if the shear effects could be replicated in the laboratory by shaking with 

glass beads at 300 rotations per minute (rpm) for 5 minutes, sonification at 50 kilohertz (kHz) for 
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2 minutes, and stomaching (a kneading procedure) at 230 rpm for 2 or 4 minutes.  Of these 

homogenization techniques, only increasing the stomaching time from 2 minutes to 4 minutes 

increased E. coli densities in feed solutions by 0.5 log10 units.  The conclusions presented by 

Cheung et al. (2003) indicated that shear effects promote the SI of E. coli in full-scale HSC, but 

these shear forces could not be effectively reproduced in the laboratory using standard 

homogenization techniques. 

Monteleone et al. (2004) conducted experiments with mesophilically digested biosolids from 

treatment plants utilizing belt filter press technology and HSC.  The four treatment plants utilizing 

HSC dewatering technology yielded increases in E. coli density in dewatered cake compared to 

the feed.  The utility that dewatered biosolids with a belt filter press measured decreases in E. coli 

density in dewatered cake compared to the feed.  Since E. coli densities only increased at sites 

with HSC dewatering, the SI phenomena is suspected to be related to the shear forces induced 

during centrifugation.  Subsequent research by Monteleone et al. (2004) observed that batch 

laboratory centrifugation over a range of 500 to 2,500 xg did not promote the SI phenomena.  

Similar to Cheung et al. (2003), the Monteleone et al. (2004) experiment was unable to replicate 

the shear force effects in the laboratory using a laboratory-scale centrifuge. 

In another experiment examining mesophilic digested biosolids at four treatment plants, Qi et al. 

(2004) investigated the changes in FC density before and after different dewatering technologies.  

One plant operated a belt filter press, low solids centrifugation (LSC), and HSC in parallel which 

allowed for comparative analysis of different dewatering technologies with the same feed.  

Increases in FC density were observed immediately after LSC and HSC and additional regrowth 

of FC was observed after 24 hours of storage.  No increase in FC density was observed after belt 

filter press dewatering either immediately or after 24 hours of storage.  At a second plant, pre- 

and post-centrifugation samples were collected from a mesophilically digested biosolids over a 

period of 8 days during one month.  Increases in FC density were observed on seven of the eight 
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days; of these increases, three were statistically significant above the 95% confidence interval 

compared to the feed.  The experiment conducted at the second plant was repeated at another 

facility utilizing centrifuge dewatering of anaerobically digested, polymer-conditioned biosolids.  

The cake samples at this third plant had FC densities that were less than that of the feed, 

although the decrease was not statistically significant.  Lastly, a fourth plant that generated LSC 

and HSC cakes from two different mesophilically digested biosolids reported statistically higher 

FC density than the feed.  Samples at the fourth plant were also stored prior to culture analysis; 

these samples indicated that FC regrowth occurred.  Based on the conclusions from Qi et al. 

(2004), SI and regrowth are a common observation for centrifuge dewatered sludges that are 

mesophilically digested. 

Qi et. al (2004) also suggested that the intensive shearing forces associated with centrifugation 

may be a reason for the increased enumeration of FC.  Qi et al. (2004) suggested that shearing 

forces were responsible for the breakup of flocs which would increase the surface area where 

bacteria could culture.  Upon testing this hypothesis with a kitchen blender (maximum speed for 3 

minutes at room temperature [25°C]), Qi et al. noted that the blended and unblended samples 

contained the same concentration of FC.  Microscopy of the blended and unblended samples 

identified that the blending process produced smaller floc sizes.  Nevertheless, the blending of 

digester feed sludge did not result in higher FC enumeration compared to unblended feed sludge 

(Qi et al., 2004).  Therefore, similar to Cheung et al. (2003) and Monteleone et al. (2004), 

laboratory methods of shear could not replicate what happens during centrifuge dewatering. 

A recent study published by Flemming et al. (2009) collected culture data from six utilities in 

Ontario, Canada to evaluate the risk associated with various pathogens.  Each wastewater 

treatment plant operated mesophilic anaerobic digesters that utilized either centrifuge dewatering 

technologies, belt filter presses, or a combination of both.  The FC and E. coli data collected by 

SCM in this experiment is important because the sample population size was great enough to 
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perform a statistical analysis.  Only 2 of the 4 utilities utilizing HSC dewatering were observed to 

have a statistically significant SI phenomenon (p<0.05), but this reactivation was not determined 

to be significant since the density increase was less than 1-log.  At three of the utilities, regrowth 

was found to be a statically significant phenomenon (p<0.05) after 2-3 days of cake storage; two 

of these utilities utilized HSC dewatering technologies while the third utility utilized a combination 

of BFP and LSC dewatering.  Since another utility utilizing BFP dewatering alone did not induce 

regrowth, it is assumed that the shear forces imparted to the sludge by LSC dewatering induced 

regrowth.  

Shear during centrifuge dewatering likely occurs during two phases – the liquid and cake phases.  

The first is the shear that occurs during the nearly instantaneous acceleration of the sludge and 

polymer mix from 0 to up to 3000 rpm as it enters the centrifuge.  The second type of shear is 

imparted to the cake directly due to the scrolling of the cake up the bowl while the cake is being 

pressed against the bowl under high pressure from the centrifugal forces.  Additional shear is 

imparted to the cake as it is decelerated and extruded out of the centrifuge.  The laboratory 

methods include shearing of both the liquid phase (sludge and polymer) as wells as the cake. 

7.2 Research Needs 

Research needs to be performed to determine alternate laboratory methods that are able to 

promote regrowth of VNC bacteria in sludges.  We hypothesize that the shear imparted to the 

solids during centrifuge dewatering releases bioavailable material that supports regrowth.  

However, research have shown that laboratory methods including blending, stomaching, 

sonification, and lab centrifugation did not replicate the SI or regrowth phenomena during HSC 

dewatering.  Additional laboratory techniques need to be investigated for pre-treatment of 

wastewater samples prior to SCM.  Specifically, research needs to examine the centrifugal, screw 

conveyance, and dewatering forces present in HSC.  The literature presented only examined 
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centrifugal, screw conveyance, and dewatering forces independently.  Additional research is 

required to evaluate if centrifugation in combination with shear during dewatering promotes the 

resuscitation and regrowth of bacteria during SCM. 

7.3 Research Objectives 

The objectives of this experiment were to determine the effects that the laboratory shearing 

methods had on the regrowth phenomena from mesophilic treated sludge.  More specifically, 

these experiments investigated: 

• Using a novel laboratory shearing method to replicate the shear forces from HSC 

dewatering and screw conveyance present during full-scale centrifuge dewatering 

processes. 

• Storage of cake samples after laboratory shearing and dewatering to identify if the 

laboratory method produces a comparable regrowth of indicator bacteria to full-scale 

HSC dewatering processes. 

• Performing the novel laboratory shearing method on stored sludge samples to conclude if 

the regrowth phenomena occurs after indicator bacteria densities have decreased by 2-3 

orders of magnitude. 

To accomplish these objectives, a series of three experiments were performed.  In the 

experiments, mesophilic digested sludge was collected from the Meso-2 and Meso-3 plants and 

was dewatered in a laboratory technique hypothesized to mimic full-scale HSC.  The laboratory 

produced cake samples were compared to full-scale cake samples.  The full-scale sludge and 

cake and laboratory dewatered cake were then incubated for up to 13 days.  The culturability of 

TC, FC, and E. coli were determined daily to observe whether the SI or regrowth phenomena 
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occurred.  The final experiment investigated whether sludge with diminished FC and E. coli 

concentrations, which occurred after 6 days of incubation, could be sheared and dewatered to 

promote SI or regrowth.  This research hypothesized that increasing amounts of shear force 

caused greater amounts of regrowth through the release of biodegradable materials. The 

individual experimental designs for these three experiments are discussed in the following 

sections.   

7.3.1 Regrowth Experiment with Meso-2 Samples (Event 1) 

Cake and sludge was provided by Meso-2 and received on June 21, 2006.  Sludge samples were 

dewatered according to the laboratory shear/dewatering technique for comparison to control cake 

samples.  Increasing amounts of laboratory shearing was used to determine the consequence of 

shear forces on regrowth. 

7.3.2 Regrowth Experiment with Meso-3 Samples (Event 2) 

Sludge was provided by Meso-3 and received on June 27, 2006.  Event 2 utilized sludge from a 

different wastewater treatment plant to determine if regrowth effects hypothesized to occur from 

the laboratory shear/dewatering technique could be replicated using another sludge source.  

Laboratory shearing was performed at increasing amounts to determine the consequence of 

shear forces on resuscitation.  Unfortunately, laboratory generated cake could not be compared 

to full-scale treatment plant cake samples (no cake samples were provided from Meso-3). 

7.3.3 Regrowth Experiment with Meso-2 Samples (Event 3) 

Cake and sludge was provided by Meso-2 and received on July 19, 2006.  Similar to Event 1, 

Event 3 utilized sludge from the same wastewater treatment plant to determine if resuscitation 

and regrowth effects hypothesized to occur from the laboratory shear/dewatering technique could 

be replicated.  However, in this case the sludge was allowed to incubate at 35°C for 6 days prior 
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to performing laboratory dewatering.  After 6 days, the FC and E. coli densities had decreased to 

less than 102 MPN/g DS.  The aged sludge was then utilized to determine if resuscitation effects 

hypothesized to occur from the laboratory shear/dewatering technique could be used to 

resuscitate non-culturable bacteria.  Increasing levels of laboratory shearing was imparted to the 

cake to determine the consequence of shear forces on regrowth.  

7.4 Methods and Procedures 

Class B sludge and cake were provided by the Meso-2 and Meso-3 plants.  Samples were 

shipped on ice by overnight FedEx shipment and were stored at 4°C prior to the start of the 

experiment which commenced on the same day as sample receipt.  MPN analysis was performed 

on the sludge and cake using traditional presumptive media as described herein.  Total percent 

solids analysis of the sludge and cake samples was performed by SM 2540B. 

7.4.1 Laboratory Dewatering and Shearing 

A laboratory method was developed to simulate the shear in a high solids centrifuge.  

Homogenized sludge was conditioned using a high shear mixing with the plant-specific polymer 

provided by each wastewater treatment facility.  The optimum polymer dose (OPD) was 

determined before conditioning the bulk of the sludge, as described in Section 7.4.1.2.  Once 

conditioned, the sludge was batch centrifuged at 3,000 xg for 10 minutes at 20ºC, as described in 

Section 7.4.1.3.  The dewatered pellets, which were now considered to be the cake, were then 

combined and sheared using a sterilized Kitchen-Aid® Food Grinder on high power, as described 

in Section 7.4.1.4.  Additional shearing was performed by grinding the cake multiple times with 

the Kitchen-Aid® Food Grinder.  The amount of shearing was denoted by the number of passes 

through the grinder.  Bacterial quantification of the grinded, dewatered cake was assessed using 

MPN analysis as discussed in Section 7.4.2.  
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7.4.1.1 Biosolids Incubation 

Biosolids were incubated at 35ºC for 14 days to observe bacterial growth patterns.  Incubation 

occurred in a thermostatically controlled room without sample agitation.  

7.4.1.2 Conditioning 

The sludge was conditioned using cationic polymer provided by the plant.  One liter of solids was 

placed in a baffled reactor, and polymer was added to the solution. The sludge was mixed at a 

predefined mixing intensity and time, to achieve a given energy input or shear, the Gt value, 

where “G” is the velocity gradient in reciprocal seconds and “t” is the time of mixing in seconds.  

The typical Gt value used for these experiments was 100,000 which has been shown to be an 

equivalent shear associated with high solids centrifugation (Higgins et al., 2006b; Murthy et al., 

2004).  After mixing, the capillary suction time (CST) was measured. This process was repeated 

with varying polymer dosages until the OPD was obtained, as measured by the polymer dose that 

produces the minimum CST. 

7.4.1.3 Dewatering 

The conditioned sludge was placed in sterile 250 mL Nalgene bottles and dewatered using a 

laboratory centrifuge at 3000 xg, for 10 minutes. After centrifuging, the supernatant was removed, 

and the cake was combined from the different tubes. Typically, about 200-300 g of wet cake were 

generated, with solids contents between 17 - 20%.  This cake was then pressed using a 

laboratory scale belt filter press (Phipps and Bird). In order to maintain sterility during the 

dewatering procedure, the pellet was placed inside sterile absorbent pads while a pressure of 250 

pound-foot was exerted on the pellet for 2 minutes to achieve cake solids in the range of 25-30% 

which is typical for full-scale centrifuges. 
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7.4.1.4 Processing 

The wet cake samples were processed to simulate the high shear experienced in the full-scale 

centrifuge due to scrolling of the cake in the centrifuge. The cake was processed through a meat-

grinder apparatus that pushes the cake forward using a scroll-conveyor, followed by extrusion 

through a small opening at the end of the conveyor.  This meat grinder is an attachment on a 

KitchenAid® mixer.  All equipment was sterilized by autoclaving or boiling for 15 minutes prior to 

use in the HSC process.  Different amounts of shear were achieved by passing the cake through 

the grinder multiple times, either 5 or 10 passes through the grinder.  These laboratory generated 

cakes are labeled as Bucknell University (BU) 0 Pass Cake (control without grinding), BU 5 Pass 

Cake, and BU 10 Pass cake.  After processing, the cake samples were analyzed for FC and E. 

coli as described in Section 7.4.2.   

7.4.2 Multiple Tube Fermentation Culturing Technique 

Sample preparation, serial dilutions, and culturing methods were conducted in accordance with 

SM 9221B and EPA Method 1680.  Sludge samples (30.0 ± 0.1 mL) and cake samples (30.0 ± 

0.1 g) were homogenized with 270 mL sterile PBS dilution water (1:10 dilution) in a sterile blender 

for 2 minutes (EPA Method 1680).  Serial dilutions (1:10) were prepared for liquid and solid 

samples.  One milliliter of each serial dilution was aseptically transferred into 10 mL sterile LTB 

media (traditional and enhanced).  Five replicate tubes were inoculated for each dilution.  

Presumptive cultures were incubated in a 35°C ± 0.5°C water bath.  At 24 ± 2 hours, presumptive 

cultures were swirled gently and examined for color change (purple to yellow indicating a positive 

reaction). At 48 ± 3 hours, final assessment of color change was performed prior to transfer to the 

confirmation phase.   

From the presumptive LTB media (traditional and enhanced), the three most dilute serial dilutions 

with positive detections were aseptically transferred from LTB broth into confirmatory EC-MUG 
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media using a sterile wooden stick for FC and E. coli conformational culture analysis.  

Confirmatory cultures were incubated in a 44.5°C ± 0.2°C water bath for 24 ± 2 hours.  FC 

detection was identified by gas buildup within the Durham tube.  E. coli detection was ascertained 

by visual observation of EC-MUG media fluorescence under UVB lighting.   

7.4.2.1 Traditional Presumptive Media 

Quantification of TC was performed according to SM 9221B and EPA Method 1680 (Eaton, 1995; 

EPA, 2005).  LTB (Difco, Sparks, MD) was supplemented with 0.01 g/L of bromocresol purple 

(Sigma Aldrich Co., St. Louis, MO) for colorimetric analysis of TC as described in SM 9221B.   

7.4.2.2 Confirmatory Media 

EPA Method 1680 was modified for FC and E. coli quantification using the proposed SM 9921F 

(Eaton, 1995).  EC-MUG media (Difco), which contains the fluorogenic substrate MUG, was used 

in place of the EPA Method 1680 specified EC Media (Difco).  A Durham tube was placed into the 

EC-MUG tubes to enumerate FC as described in SM 9921E (Eaton, 1995).   

7.4.3 Most Probable Number Analysis 

MPN statistics were calculated with the EPA Most Probable Number Calculator (EPA, 1996) with 

a 95% confidence level.  MPN statistics were normalized for moisture content by converting the 

MPN/mL (wet weight) to MPN/g total solids (dry weight) using the percent total solids. 

7.5 Results and Discussion 

Sludge and cake samples from the Meso-2 and Meso-3 plants were collected according to the 

methods and procedures presented in Section 7.4.  Sludge and cake samples were collected 

from the Meso-2 and Meso-3 plants in June and July 2006.  Sludge was dewatered and sheared 
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(grinded) prior to incubation at 35°C.  The data presented includes dewatered and sheared cake 

samples with 0 passes, 5 passes, and 10 passes through the Kitchen-Aide® grinder. The 

dewatered and sheared cake samples are also discussed in relation to the digested sludge and 

centrifuged cake from the facility. 

7.5.1 Regrowth Experiment with Meso-2 Samples (Event 1) 

Culturing results for sludge and cake samples collected from full-scale digester and HSC at 

Meso-2 are presented in Figure 7–1 for TC, Figure 7–2 for FC, and Figure 7–3 for E. coli density.  

The samples from the digester and the initial cake sample had TC, FC, and E. coli densities less 

than the Class B biosolids requirements.  In addition, no SI was observed which is defined as the 

increase immediately after dewatering (cake versus sludge).  This is consistent with previous 

testing that showed SI does not typically occur with mesophilic processes. 
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Figure 7–1: Total coliform results for Meso-2 cake and sludge samples (Event 1) 

During cake storage, regrowth and die-off was observed.  The TC densities in cake samples were 

initially observed at nearly 105 MPN/g DS and increased to 106 MPN/g DS within the first 48 

hours before the population declined to 104 MPN/g DS on day 7. The Meso-2 cake samples had 

similar values for FC and E. coli density and showed a similar regrowth and die-off pattern.  
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Figure 7–2: Fecal coliform results for Meso-2 cake and sludge samples (Event 1) 

In comparison, the TC, FC, and E. coli densities in the Meso-2 liquid (undewatered) sludge 

continuously decreased during storage.  During the 7 day sampling period, the TC density in the 

sludge sample decreased from nearly 105 to 101 MPN/g DS.  The FC and E. coli densities in 

sludge samples were similar to the TC densities and showed a similar decrease during storage 

(see Figure 7–2 and Figure 7–3).  
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The regrowth curve of the cake fits the signature for FC and E. coli increases when biosolids are 

dewatered by HSC.  First, the FC and E. coli densities in cake samples increase to a peak within 

24 to 48 hours.  Then, the FC and E. coli densities decrease during further storage. 
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Figure 7–3: E. coli results for Meso-2 cake and sludge samples (Event 1) 

In addition to sampling the Meso-2 sludge and cake samples directly, the liquid sludge was 

dewatered using the laboratory shearing method as discussed in Section 7.4.1. Culturing data 

results for the laboratory generated cake samples are presented in Figure 7–4 for E. coli.  TC and 
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FC data has been omitted since the data trends and values are consistent with the data 

presented for E. coli.  The E. coli results from the full-scale HSC cake (Meso-2 cake) are also 

shown on Figure 7–4 for comparison. 
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Figure 7–4: E. coli results for Meso-2 lab dewatering and shearing (Event 1) 

The E. coli density immediately after laboratory shearing and dewatering (day 0) for the three 

laboratory generated cakes was comparable to the initial Meso-2 sludge sample.  Therefore, the 

laboratory shearing technique does not appear to promote the SI phenomena.  The BU 5 Pass 
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Cake and BU 10 Pass Cake closely follow the trend for the Meso-2 cake sample (Figure 7–4).  

The E. coli density in the BU 0 Pass Cake averaged 104 MPN/g DS and ranged between 102 to 

104 MPN/g DS.  The E. coli density for the BU 5 Pass Cake and BU 10 Pass Cake increased 

from 104 to 107 MPN/g DS within the first 48 hours.  After peaking at 107 MPN/g DS, the E. coli 

density declined to 103 MPN/g DS on day 7.  The E. coli density of the BU 5 Pass Cake and BU 

10 Pass Cake were about an order of magnitude greater than the Meso-2 cake sample on days 1 

and 2, which was also greater than the limit for Class B biosolids.  Overall, the laboratory 

dewatering/shearing technique was able to produce a cake that had a similar regrowth pattern as 

the full-scale HSC cake. 

Previous research had failed to develop a laboratory method to replicate the full-scale regrowth 

phenomena (Cheung et al., 2003; Monteleone et al., 2004; Qi et al., 2004).  In this experiment, 

laboratory shear forces were introduced to Meso-2 sludge samples through the sludge 

conditioning and dewatering technique described in Section 7.4.1.  Shear forces were measured 

by Gt value during conditioning and by the number of passes through a Kitchen Aide® Grinder.  

This laboratory procedure was utilized to generate laboratory dewatered cakes with various levels 

of shear.  This research differed from previous efforts by including the shear effects of the 

conditioning process representing the sudden acceleration increase during centrifugation and of 

the grinding process representing the cake scrolling. 

The BU 0 Pass Cake, which was the control sample for the sludge conditioning process, did not 

demonstrate the regrowth phenomena; although, the steady decline observed with sludges did 

not occur but rather the density remained relatively constant during the 7 days of storage.  The 

BU 5 Pass and BU 10 Pass Cakes, which were generated by grinding the conditioned sludge to 

varying amounts, were observed to have E. coli density increases greater than the full-scale cake 

samples.  This elevated regrowth of E. coli is a unique occurrence that has not been described 

previously in literature.  Therefore the effects of this laboratory shearing procedure appear to 
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promote the regrowth of E. coli in a quantitative fashion that closely matches the full-scale cake 

produced from HSC.  Specifically, it appears that the grinder shearing step, which mimics the 

scroll shear of the HSC, is key to the regrowth phenomena.  Additionally, increasing amounts of 

grinding passes appears to be more effective in promoting the regrowth phenomena.   

7.5.2 Regrowth Experiment with Meso-3 samples (Event 2) 

A similar experiment was performed on a sample from the Meso-3 digester to confirm that 

sludges prepared with the laboratory shearing method developed regrowth of FC and E. coli. 

Culturing data collected during the Meso-3 lab dewatering and shearing experiment (June 28, 

2006) is presented in Figure 7–5 for E. coli.  TC and FC data has been omitted since the data 

trends and values are consistent with the data presented for E. coli.  The storage of the Meso-3 

sludge sample resulted in a decrease in the E. coli densities.  Over the course of 7 days, the E. 

coli density in the sludge sample decreased from 104 to 102 MPN/g DS.  This is similar to the 

results for Meso-2 presented in Section 7.5.1. 

Three laboratory prepared cake samples, designated as BU 0 Pass Cake, BU 5 Pass Cake, and 

BU 10 Pass Cake, were generated by the dewatering process discussed in Section 7.4.1.  From 

these three cake samples, two diverse data sets appear.  The E. coli density for the BU 0 Pass 

Cake increased relatively slowly from 103 to 105 MPN/g DS over the 7 day period.  The BU 0 

Pass Cake prepared from Meso-3 liquid sludge had an order of magnitude increase in E. coli 

density after 7 days of storage (see Figure 7–5).  The BU 0 Pass Cake prepared from Meso-2 

liquid sludge did not have an increase in E. coli density after 7 days of storage (see Figure 7–4).  

SI for E. coli was not encountered on day 0.  The BU 0 Pass Cake was not subjected to shearing 

through the Kitchen-Aide® grinder; however, it was exposed to considerable shear (Gt=100,000) 

during conditioning.  This shear from the conditioning process likely contributes to the regrowth 

observed in the BU 0 Pass Cake. 
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Figure 7–5: E. coli results for Meso-3 lab dewatering and shearing (Event 2) 

The BU 5 Pass Cake and 10 Pass Cake had SI on day 0 where the E. coli densities are 2 to 3 

orders of magnitude higher than the Meso-3 sludge indicating that SI occurs after the laboratory 

dewatering/shearing process.  Based on previous data for Meso-3 sludge and cake samples, SI 

was not common at this utility which uses mesophilic anaerobic digestion prior to HSC 

dewatering. The E. coli density in the BU 5 Pass Cake was 107 MPN/g DS on day 0 remained 

relatively constant during the first 4 days of storage and then decreased to about 104 MPN/g DS 
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on day 7.  In comparison, the BU 10 Pass Cake had 106 MPN/g DS on day 0 that increased to 

108 MPN/g DS on day 1 and decreased after day 1 continuously to 105 MPN/g DS on day 7.   

This experimental data supports the hypothesis that the dewatering process produces an 

increased density of E. coli by the regrowth phenomena.  Additionally, this experiment data also 

identified that the SI phenomena occurred after laboratory shearing and dewatering which was 

not anticipated.  The laboratory shearing technique discussed in Section 7.4.1 was able to 

produce comparable results from both Meso-2 and Meso-3 laboratory generated cakes.  

Increasing amounts of shear result in increased amounts of regrowth.  Additionally, SI was 

observed from laboratory generated cake samples only from Meso-3 immediately after 

generation.  One possible explanation for the increased regrowth with increasing amounts of 

shear was hypothesized by Hendrickson et al. (2004), who suggested that shearing forces were 

responsible for the breakup of flocs which would increase the surface area where bacteria could 

culture.  However, Qi et al. (2004) concluded that the increased surface area caused by floc 

breakup did not result in increased culturability of bacteria.  The release of substrate from within 

floc particles is an alternate explanation.  This alternate hypothesis describes how substrates that 

fuel regrowth are released during floc breakup caused by shear forces.  Higgins et al. (2006b) 

showed that HSC cake had pools of protein and polysaccharides that were bioavailable and 

degraded during cake storage.  A subsequent experiment is discussed in Chapter 8 to further 

investigate the substrate release hypothesis. 

7.5.3 Regrowth Experiment with Meso-2 Samples (Event 3) 

A second sampling event with Meso-2 was performed to further investigate the laboratory 

shearing methods.  Culturing data collected for the full-scale sludge and cake samples are 

presented in Figure 7–6 for E. coli.   
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Figure 7–6: E. coli results for Meso-2 cake and sludge Samples (Event 3) 

TC and FC data has been omitted since the data trends and values are consistent with the data 

presented for E. coli.  The trends are similar to the first sampling event (see Section 7.5.1), where 

the E. coli density for full-scale sludge and cake samples were initially less than the Class B 

biosolids requirements (103 MPN/g DS and 104  MPN/g DS, respectively).  However, after 24 

hours of storage, the cake samples had E. coli densities greater than the Class B biosolids 

requirements (7 x 107 MPN/g DS).  Additionally, sludge samples had E. coli densities that 

increased to nearly 107 MPN/g DS after 24 hours of storage.  It is not known why the elevated E. 
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coli density is present on day 1.  The first sampling event with Meso-2 sludge did not show this 

regrowth of E. coli in sludge samples.  Finally, some SI was observed (1 order of magnitude) in 

the full-scale cake sample, which is defined as the increase immediately after dewatering (cake 

versus sludge).  This is inconsistent with previous testing of Meso-2 biosolids which showed SI 

did not occur. 

The Meso-2 laboratory dewatering and shearing experiment data is presented as Figure 7–7 for 

E. coli densities.  TC and FC data has been omitted since the data trends and values are 

consistent with the data presented for E. coli.  The E. coli density within 24 hours of storage for 

the BU 0 Pass Cake increased by about 3 orders of magnitude to 106 MPN/g DS, which was 

similar to the increase in the full-scale sludge E. coli density.  The E. coli density in the BU 0 Pass 

Cake samples had densities that returned to day 0 levels after a one-day peak on day 1. The BU 

5 Pass Cake and BU 10 Pass Cake increased by about 4 orders of magnitude to 107 MPN/g DS 

within the first 24 hours.  The E. coli density then decreased steadily, although at different rates, 

until day 7.  Therefore, the effect of the laboratory dewatering procedure, with a shearing process 

that mirrors high speed centrifugation, appears to produce cake samples that cause a regrowth in 

E. coli density.  The laboratory shearing process was not effective in reproducing the SI observed 

between the full-scale sludge and cake samples on day 0. 
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Figure 7–7: E. coli results for the Meso-2 lab dewatering and shearing samples (Event 3) 

On day 6 of the experiment, a sample of the stored Meso-2 sludge was dewatered using the 

laboratory shearing process to determine if the regrowth of E. coli in stored sludge samples could 

be stimulated.  The E. coli density for the laboratory dewatered cake that was prepared from the 

stored sludge is presented as Figure 7–8.  The E. coli densities presented for Meso-2 Sludge and 

Cake are the same as presented in Figure 7–6 for days 0, 1, 2, 4, and 7. 
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Figure 7–8 - E. coli results for the Meso-2 storage and lab dewatering and shearing 
samples (Event 3) (open symbols indicate non-detect value) 

After the laboratory shearing and dewatering process, the E. coli densities in the cake increased 

by 3-4 orders of magnitude within 1-2 days of storage.  E. coli densities from the BU 10 Pass 

Cake yielded the highest density of 106 MPN/g DS on day 8.  Between day 10 and 13, the E. coli 

densities for the BU 5 Pass Cake and BU 10 Pass Cake decreased from 105 to 102 MPN/g DS, 

similar to the densities of the Meso-2 sludge prior to the laboratory dewatering process.  These 

increases in E. coli density after the laboratory shearing and dewatering of stored sludge samples 

containing near non-detect E. coli densities indicates that the laboratory dewatering process is 
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effective in causing regrowth similar to full-scale HSC dewatering.  This regrowth may be a 

consequence of bioavailable nutrients being released.  Only regrowth was observed for the cake 

samples dewatered with the laboratory shearing process.  The SI observed in the full-scale HSC 

dewatered cake was not replicated by the laboratory shearing and dewatering process with either 

the initial sludge (day 0) or the stored sludge (day 6). 

7.6 Research Significance 

The literature reviewed for this experiment described various laboratory methods to mimic the 

type of shear imparted to sludge during the HSC process.  As discussed by Cheung et al. (2003), 

shaking, sonification, and stomaching were not able to recreate the SI and regrowth phenomena 

observed by full-scale HSC.  The research presented by Monteleone et al. (2004) was not able to 

demonstrate that the centrifugal g-force imparted by laboratory-scale centrifugation could induce 

the SI and regrowth phenomena. Qi et al. (2004) was not able to promote SI and regrowth by 

imparting mechanical shear with kitchen blender to breakup flocs and create more surface area 

for bacterial growth. 

This experimental procedure investigated two other types of shear imparted during dewatering: 

shear from sludge conditioning with polymer and shear from screw conveyance during the 

dewatering process.  Sludge samples were conditioned with polymer by centrifugation for a set 

time to produce a Gt value of 100,000.  The amount of polymer was determined based on finding 

the OPD based on minimum CST.  The conditioned sludge samples were then dewatered after 

centrifugation using a laboratory-scale belt filter press.  The dewatered cake samples were then 

ground with a Kitchen Aide® Grinder at a varying number of passes to mimic a screw conveyor. 

The results from these experiments with Meso-2 and Meso-3 sludge indicate that, by imparting 

shear based on a measured Gt value and on the number of passes through a grinder, the SI and 
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regrowth phenomena were replicated in the laboratory.  It is important to note that the shear from 

grinding is important for the replication of the SI and regrowth phenomena; without this shear, the 

SI and regrowth phenomena were not observed. This is an important finding because research 

performed to date has been unable to replicate the SI and regrowth phenomena in the laboratory.  

Additionally, increasing the number of times the cake was passed through the grinder produced 

higher densities of FC and E. coli.  In many cases, the laboratory cakes generated by 

conditioning and grinding sludge were able to produce higher FC and E. coli densities when 

compared to the full-scale cakes.   

The experiment using Meso-2 sludge also identified that the conditioning and grinding process 

could be used to induce regrowth of FC and E. coli in stored sludge samples.  As described in 

Chapter 3, the culturability of E. coli decreased to non-detection levels after a week of storage 

while the concentration of DNA remained near constant for a month after storage.  Having a 

laboratory method whereby regrowth can be induced is an important step toward enumerating the 

actual population of live cells. 

7.7 Conclusions 

The regrowth of FC and E. coli has been observed at utilities that use centrifuge dewatering of 

mesophilic sludge.  In this experiment, samples collected from Meso-2 and Meso-3 were 

observed to have similar FC and E. coli regrowth curves during storage.  Sludge samples from 

these utilities were observed to have generally decreasing FC and E. coli densities during storage 

experiments.  Laboratory generated cake samples were prepared by introducing shear during 

laboratory conditioning and cake grinding.  To impart laboratory shear, sludge samples were 

conditioned with polymer for a Gt of 100,000 and grinded with a Kitchen Aide® Grinder with a 

varying number of passes.  These laboratory generated cake samples were capable of 

reproducing the regrowth phenomena, and to some degree the SI phenomenon, observed in the 
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Meso-2 and Meso-3 cake samples.  The conclusions related to the full-scale, laboratory 

generated, and stored cake and sludge samples are discussed herein. 

The following observations were made from the mesophilic sludge and HSC dewatered cake 

samples collected at full-scale utilities: 

• HSC induces the regrowth phenomena in FC and E. coli with peak densities occurring 

within 24-48 hours of dewatering. 

• During the storage of cake samples, the peak E. coli density was typically 2-3 orders of 

magnitude higher than the E. coli density of the digested sludge.   

The following conclusions can be made from the experimental laboratory dewatering process: 

• E. coli densities in laboratory dewatered cakes that included shear imparted to the liquid 

had E. coli densities that were typically 1-2 orders of magnitude higher than the full-scale 

HSC dewatered cake samples and 4-5 orders of magnitude higher than the full-scale 

sludge samples. 

• Sludge samples that were only conditioned and dewatered had lower E. coli density 

trends than the sludge samples there were conditioned, dewatered, and sheared with a 

grinder. 

• Conditioned sludge samples had a 1-2 orders of magnitude increase in E. coli density 

when compared to the full-scale sludge samples. 

• The laboratory dewatering process was successful in producing regrowth of E. coli from 

sludge samples that were stored for 6 days.    
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Chapter 8: Investigating the Use of Coagulants to 
Reduce Regrowth at Full-Scale Wastewater Treatment 

Facilities 

8.1 Introduction 

Many researchers are investigating various aspects of wastewater treatment plant performance to 

improve design specifications and to reduce biosolids disposal cost, bacteria populations, and 

odor generation.  Several researchers have identified that coagulant addition during sludge 

dewatering impacts both odor generation and bacteria population (Erdal et al., 2004; Higgins et 

al., 2006).  Research performed by Erdal et al. (2004) identified that low-level lime dosing could 

control odor and prevent regrowth in FC populations.  Erdal et al. (2004) also observed that lime 

dosing, which maintained a cake pH value below 11, successfully reduced odor generation.  FC 

populations were found to decrease over time without the regrowth phenomena occurring when 

cake pH values were greater than 8.5 (Higgins et al. 2006; Erdal et al., 2004).  

8.1.1 Bacteria Regrowth Controlled by Lime Coagulation  

In the experiment by Erdal et al. (2004), mesophilic digested solids were conditioned with lime 

after HSC but prior to screw conveyance.  Data indicated that liquid lime dosing that ranged from 

3-9% was effective in controlling regrowth over a period of 35 days.  FC densities in cake 

samples were found to decrease immediately with the 7% and 9% dosage rates to levels below 

the Class B biosolids requirement 

Erdal et al. (2004) also investigated the effects on bacteria regrowth that occurred when both lime 

and ferric chloride were added prior to screw conveyance.  Both lime and ferric chloride are 

common additives used to control odor and solids content.  FC density data indicated that 
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regrowth occurred when low doses of lime (3%) and ferric chloride (2%) were utilized.  Once lime 

doses were increased above 5%, bacterial regrowth did not occur.  Although higher doses of lime 

were more effective in controlling FC density, the high doses of lime also caused increased odor. 

From their research, Erdal et al. (2004) was capable of demonstrating that lime and ferric chloride 

coagulants were capable of eliminating the regrowth phenomena in wastewater samples after full-

scale centrifuge dewatering processes.  Their data identified that increases in the pH of biosolids 

had the greatest effect on minimizing bacteria regrowth. 

8.1.2 Substrate Binding Promoted by Aluminum Sulfate Coagulation 

One possible hypothesis that explains the observations from Erdal et al. (2004) was first 

discussed by Dental et al. (1987).  In their research, Dentel et al. (1987) determined that 

aluminum sulfate (alum) salts were able to bind polysaccharides and proteins during simulated 

wastewater coagulation.  This simulation was conducted by coagulating the proteinaceous extract 

from corn and the polysaccharides present in cellulose with alum at varying doses.  Alum 

coagulation was determined to be effective in binding cellulose and proteins at both high and low 

alum doses. 

Since dewatering processes commonly utilize coagulants, understanding how these chemicals 

interact with organics in solution is important when discussing the regrowth phenomena.  Dentel 

et al. (1987) concluded that proteins and polysaccharides are bound by coagulants in simulated 

wastewater solutions.  These proteins and polysaccharides are the nutrient sources required for 

bacterial growth.  If these nutrients are bound by coagulants instead of being bioavailable, 

bacterial growth would be reduced.  Erdal et al. (2004) identified that bacterial regrowth was 

diminished when coagulant addition was applied after the centrifuge dewatering processes. 

Therefore, the absence of the regrowth phenomena after centrifugal dewatering and coagulant 

addition as observed by Erdal et al. (2004) can possibly be explained in part by the coagulant 
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binding of nutrients discussed by Dentel et al. (1987); although, the higher pH from lime addition 

likely also contributed.  

8.2 Research Needs 

Coagulation with lime and ferric chloride has been shown to decrease regrowth in wastewater 

samples (Erdal et al., 2004).  Although regrowth was controlled by lime coagulation and pH 

adjustment, the possibility that other coagulants are effective in controlling regrowth by different 

mechanisms is conceivable.  As a coagulant, alum salts have already been shown to bind 

polysaccharides and proteins in simulated wastewater slurries (Dentel et al., 1987).  One possible 

mechanism for controlling regrowth is the binding of nutrients required for bacterial growth to 

coagulants.  No assessments have been conducted to determine if bound substrates, which are 

presumed not to be bioavailable, could restrict the regrowth phenomena by starving bacteria of 

needed nutrients for growth.   

8.3 Research Objectives 

This research investigates a method for inhibiting bacteria regrowth by binding nutrient sources in 

wastewater samples with coagulants during centrifuge dewatering at a full-scale treatment plant.  

Cake and sludge samples were sampled at Meso-2, an anaerobic, mesophilic wastewater 

treatment plant utilizing alum coagulation and HSC.  Regrowth problems after HSC and cake 

storage have been described previously (Section 2.5.5).  Various doses of alum were used during 

full-scale operation to generate cake samples for bacterial analysis by SCM.  This experiment will 

investigate whether alum coagulation effectively binds substrates such that bacteria have less 

nutrients bioavailable which may inhibit regrowth.  If the substrate binding hypothesis is true, alum 

addition should decrease the enumerations of FC and E. coli as cake solids are stored. 
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8.4 Methods and Procedures 

Class B sludge and cake were sampled at Meso-2.  Samples were transported on ice and were 

stored at 4°C prior to the start of the experiment which commenced within 24 hours of sample 

collection.  MPN analysis was performed on the sludge and cake using traditional presumptive 

media as described herein.  Total percent solids analysis of the sludge and cake samples was 

performed by SM 2540B. 

8.4.1 Alum Amendment during High Solids Centrifugation 

Meso-2 incorporated three doses of alum into cake produced by HSC.  Once the HSC was 

operating at normal parameters, control cake and sludge samples were collected.  Next in 

progressive succession, alum cakes containing 0.5%, 2%, and 4% were produced.  Sufficient 

amounts of alum amended cake were generated so that cake exiting the screw conveyor was 

representative of the alum dose.  Samples were collected from each alum dose trial. 

8.4.2 Multiple Tube Fermentation Culturing Technique 

Sample preparation, serial dilutions, and culturing methods were conducted in accordance with 

SM 9221B and EPA Method 1680.  Sludge samples (30.0 ± 0.1 mL) and cake samples (30.0 ± 

0.1 g) were homogenized with 270 mL sterile PBS dilution water (1:10 dilution) in a sterile blender 

for 2 minutes (EPA Method 1680).  Serial dilutions (1:10) were prepared for liquid and solid 

samples.  One milliliter of each serial dilution was aseptically transferred into 10 mL sterile LTB 

media (traditional and enhanced).  Five replicate tubes were inoculated for each dilution.  

Triplicate analysis of each dilution set was performed for statistical analysis.  Presumptive 

cultures were incubated in a 35°C ± 0.5°C water bath.  At 24 ± 2 hours, presumptive cultures 

were swirled gently and examined for color change (purple to yellow indicating a positive 
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reaction). At 48 ± 3 hours, final assessment of color change was performed prior to transfer to the 

confirmation phase.   

From the presumptive LTB media (traditional and enhanced), the three most dilute serial dilutions 

with positive detections were aseptically transferred from LTB broth into confirmatory EC-MUG 

media using a sterile wooden stick for FC and E. coli conformational culture analysis.  

Confirmatory cultures were incubated in a 44.5°C ± 0.2°C water bath for 24 ± 2 hours.  FC 

detection was identified by gas buildup within the Durham tube.  E. coli detection was ascertained 

by visual observation of EC-MUG media fluorescence under UVB lighting.   

8.4.2.1 Traditional Presumptive Media 

Quantification of TC was performed according to SM 9221B and EPA Method 1680 (Eaton, 1995; 

EPA, 2005).  LTB (Difco, Sparks, MD) was supplemented with 0.01 g/L of bromocresol purple 

(Sigma Aldrich Co., St. Louis, MO) for colorimetric analysis of TC as described in SM 9221B.   

8.4.2.2 Confirmatory Media 

EPA Method 1680 was modified for FC and E. coli quantification using the proposed SM 9921F 

(Eaton, 1995).  EC-MUG media (Difco), which contains the fluorogenic substrate MUG, was used 

in place of the EPA Method 1680 specified EC Media (Difco).  A Durham tube was placed into the 

EC-MUG tubes to enumerate FC as described in SM 9921E (Eaton, 1995).   

8.4.3 Most Probable Number Analysis 

MPN statistics were calculated with the EPA Most Probable Number Calculator (EPA, 1996) with 

a 95% confidence level.  MPN statistics were normalized for moisture content by converting the 

MPN/mL (wet weight) to MPN/g total solids (dry weight) using the percent total solids.   
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8.5 Results and Discussion 

Meso-2 cake and sludge samples yielded the same starting concentration for E. coli density as 

determined by SCM (Figure 8–1).  After one day of storage, E. coli density increased from 2 x 104 

to 5 x 106 MPN/g DS, which was characteristic of the regrowth phenomena.  Sludge data was not 

collected after initial sampling since Meso-2 sludge samples have demonstrated consistently a 

decline in FC and E. coli density with time (see Chapter 7).  TC and FC data plots were not 

presented because of the consistency with E. coli density trends.  On day 2, E. coli 

concentrations in Meso-2 cake samples peaked at 107 MPN/g DS.  Between day 2 and day 7, E. 

coli density decreased to 105 MPN/g DS.  As indicated by the Meso-2 cake data, Class B 

requirements were exceeded on day 1 through day 4 of storage. 

E. coli densities for alum amended cake samples are presented in Figure 8–2.  TC and FC data 

plots were not presented because of the consistency with E. coli density trends.  Meso-2 cake 

samples with varying amounts of alum produced consistent starting concentrations, which were 

also consistent with the control cake.  After 2 days of incubation, peak E. coli densities were 

observed, which is indicative of the regrowth phenomena.  Cakes with 0.5% and 2% alum dosing 

produced E. coli densities of 5 x 107 MPN while the control and 4% alum dosed cakes yielded 

enumerations of 107 MPN/g DS.  After day 2, the E. coli density in the control and 4% alum dosed 

cakes decreased below the Class B biosolids requirement.  The E. coli density in the 0.5% alum 

dosed cake declined steadily but not below Class B biosolids requirements.  Conversely, the E. 

coli density in the 2% alum dosed cakes maintained the same E. coli density as the peak 

concentration.   
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Figure 8–1: E. coli results for Meso-2 cake and sludge samples (Error bars represent one 
standard deviation) 
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Figure 8–2: E. coli results for Meso-2 cake produced with varying amounts of alum (Error 
bars represent one standard deviation) 

Although the 4% alum dose appeared to have little effect on regrowth when compared to the 

control, the 0.5% alum dose produced higher densities of E. coli indicative of regrowth.  However, 

the elevated E. coli density in the 0.5% alum dosed cake was not sustained during storage.  The 

2% alum cake appeared to be the optimal dose since the E. coli density increased and was 

sustained until day 7 of storage. 
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8.6 Research Significance 

As discussed by Erdal et al. (2004), the addition of low-level lime dosing after centrifuge 

dewatering was able to control E. coli density during storage.  Based on the findings from Erdal et 

al. (2004), it was hypothesized that coagulants may bind nutrients in solution making them not 

bioavailable.  For this experiment, alum was used during dewatering instead of lime during 

coagulation to determine if FC and E. coli densities could be controlled during storage or if 

regrowth would occur.  The effect of adding alum was not comparable to low-level lime dosing 

because FC and E. coli regrowth occurred.  This contradictory finding implies that not all 

coagulants have the same effect on the regrowth phenomena. The hypothesis that coagulants 

bind substrates thus starving bacteria of needed nutrients for regrowth appears to be more 

complex.  Different coagulants may have yet unknown factors that inhibit or induce the regrowth 

phenomena.  This experiment identified that alum coagulation increased the regrowth of FC and 

E. coli.  From a standpoint of meeting Class B biosolids requirements, alum addition appears to 

promote the regrowth of FC or E. coli, making attainment of Class B requirements more difficult.   

8.7 Conclusions 

The addition of alum to a full-scale centrifugal dewatering process at Meso-2 appears to have a 

negative consequence for meeting the Class B biosolids requirements.  From this experiment, the 

following conclusions can be made: 

• Alum addition does not appear to prevent the regrowth phenomena through the binding 

of nutrient materials. 

• Data illustrated that cake with a 2% alum dose promoted regrowth for 5 days as observed 

by sustained E. coli density. 
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• The 4% alum dose produced E. coli densities with regrowth and die-off trends similar to 

the non-amended cake. 

This experiment does not provide conclusive evidence that substrate binding from alum 

coagulation is not a potential mechanism required to control bacterial resuscitation during 

centrifugal dewatering and biosolids storage.  More research should be conducted to determine if 

substrate binding or some other unknown mechanism is occurring to promote regrowth. 
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Chapter 9: Conclusions 

Conclusions concerning the investigations into enhanced media supplements, detoxification of 

inhibitory agents, the time and temperature relationship for meeting Class A biosolids 

requirements, laboratory shearing methods to promote regrowth are presented in brief: 

• Analysis of the E. coli density by SCM and qPCR indicated that E. coli enumerations are 

significantly undercounted by SCM.  When sampled by qPCR, the concentration of E. coli 

after anaerobic digestion remained 4 orders of magnitude higher than the non-detect 

levels identified by SCM.   

• The SI phenomenon was most prevalent with biosolids generated by anaerobic 

thermophilic digesters and centrifuge dewatering processes. 

• The regrowth phenomena was most frequently observed at utilities utilizing centrifuge 

dewatering processes after either thermophilic or mesophilic anaerobic digestion. 

• Because of the SI and regrowth phenomena, biosolids produced according to the United 

States Environmental Protection Agency time and temperature requirements for Class A 

biosolids demonstrated up to a 5 order of magnitude increase in FC and E. coli 

concentrations after centrifuge dewatering.   

• Culture media, supplemented with catalase, α-ketoglutaric acid, or sodium pyruvate to 

degrade peroxides in biosolids media, did not promoted resuscitation of VNC E. coli.   

• Neither C6-HSL, 3-oxo-C8-HSL, or norepinephrine provided resuscitation effects for VNC 

E. coli. 
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• To remove inhibitory agents and toxicants, a cell washing technique was employed prior 

to performing SCM; however, cell washing may have increased cellular stresses since 

TC densities were diminished compared to control samples.   

• The addition of bentonite and exponential growth phase E. coli cell-free supernatant to 

culturing media was not able to increase culturability of E. coli compared to the control.   

• Fecal coliform and E. coli densities in laboratory prepared cake samples were both 

observed to be an order of magnitude higher than full-scale dewatered cakes.   

• The laboratory-scale conditioning, dewatering, and shearing process was able to induce 

regrowth in FC and E. coli populations that resulted in cell densities in the laboratory 

generated cake samples that were 1-2 orders of magnitude higher than full-scale cake 

samples and 4-5 orders of magnitude higher than full-scale sludge samples. 

• The addition of 2% aluminum sulfate to high solids centrifugation cake produced an 

increased regrowth of FC and E.coli that was sustained for 5 days coli during a full-scale 

experiment.   
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