
Bucknell University Bucknell University

Bucknell Digital Commons Bucknell Digital Commons

Faculty Conference Papers and Presentations Faculty Scholarship

Summer 2020

Enumerative Branching with Less Repetition Enumerative Branching with Less Repetition

Thiago Serra
Bucknell University, tsa005@bucknell.edu

Follow this and additional works at: https://digitalcommons.bucknell.edu/fac_conf

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Serra, Thiago, "Enumerative Branching with Less Repetition" (2020). Faculty Conference Papers and
Presentations. 58.
https://digitalcommons.bucknell.edu/fac_conf/58

This Conference Paper is brought to you for free and open access by the Faculty Scholarship at Bucknell Digital
Commons. It has been accepted for inclusion in Faculty Conference Papers and Presentations by an authorized
administrator of Bucknell Digital Commons. For more information, please contact dcadmin@bucknell.edu.

https://digitalcommons.bucknell.edu/
https://digitalcommons.bucknell.edu/fac_conf
https://digitalcommons.bucknell.edu/faculty-scholarship
https://digitalcommons.bucknell.edu/fac_conf?utm_source=digitalcommons.bucknell.edu%2Ffac_conf%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.bucknell.edu%2Ffac_conf%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/fac_conf/58?utm_source=digitalcommons.bucknell.edu%2Ffac_conf%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@bucknell.edu

Enumerative Branching with Less Repetition

Thiago Serra

Bucknell University, USA
thiago.serra@bucknell.edu

Abstract. We can compactly represent large sets of solutions for prob-
lems with discrete decision variables by using decision diagrams. With
them, we can efficiently identify optimal solutions for different objective
functions. In fact, a decision diagram naturally arises from the branch-
and-bound tree that we could use to enumerate these solutions if we
merge nodes from which the same solutions are obtained on the remain-
ing variables. However, we would like to avoid the repetitive work of find-
ing the same solutions from branching on different nodes at the same level
of that tree. Instead, we would like to explore just one of these equiva-
lent nodes and then infer that the same solutions would have been found
if we explored other nodes. In this work, we show how to identify such
equivalences — and thus directly construct a reduced decision diagram
— in integer programs where the left-hand sides of all constraints consist
of additively separable functions. First, we extend an existing result re-
garding problems with a single linear constraint and integer coefficients.
Second, we show necessary conditions with which we can isolate a single
explored node as the only candidate to be equivalent to each unexplored
node in problems with multiple constraints. Third, we present a suffi-
cient condition that confirms if such a pair of nodes is indeed equivalent,
and we demonstrate how to induce that condition through preprocessing.
Finally, we report computational results on integer linear programming
problems from the MIPLIB benchmark. Our approach often constructs
smaller decision diagrams faster and with less branching.

Keywords: Branch-and-Bound ·Decision Diagrams ·Depth-First Search
· Integer Programming · Solution Enumeration.

1 Introduction

The enumeration of near-optimal solutions is a feature that is present in com-
mercial MILP solvers such as CPLEX [33] and Gurobi [26] as well as algebraic
modelling environments such as GAMS [25]. This feature is important because
some users need to qualitatively compare the solutions of a mathematical model.
However, those solutions are often a small set collected along the way towards
solving for the optimal solution, as in Gurobi [26]. While the option for complete
enumeration exists in CPLEX, it comes with the following observation [33]:

Beware, however, that, even for small models, the number of possible
solutions is likely to be huge. Consequently, enumerating all of them will
take time and consume a large quantity of memory.

2 T. Serra

In fact, the problem of enumerating integer solutions is #P-complete [49, 50].

In practice, the enumeration of solutions has been an extension of the same
methods used for optimization. When searching for an optimal solution of a
problem with linear constraints and integer variables, the first step is often to
solve a relaxation of this problem: a linear program in which we ignore that the
variables should have integer values [18]. If the resulting solution has fractional
values for some of the variables, then we may resort to branching : exploring two
or more subproblems in which we fix or restrict the domain of these variables to
exclude their corresponding fractional values. We can ignore some of the resulting
subproblems if they are provably suboptimal, for which reason this process is
known as branch-and-bound [36]. However, if we are interested in enumerating
some or all the solutions, then we may need to keep branching even if no value
is fractional. In such a case, we continue while the domains of the variables have
multiple values, the relaxation remains feasible, and the objective function value
is within a desired optimality gap. That is the case of the one-tree approach [19],
which has been used to populate the solution pool of the CPLEX solver [32].

The branch-and-bound process is often represented by a directed tree, the
branch-and-bound tree, in which a root node r corresponds to the problem of
interest and the children of each node are the subproblems defined by branching.
If we branch by assigning the value of one decision variable at a time to each
possible value, then a path from the root to a leaf defining a feasible subproblem
corresponds to a set of assignments leading to a unique solution. Such explicit
representation of the solution set emerging from branch-and-bound, which may
reach an exponential number of nodes with respect to the number of variables,
could be naturally transformed into a decision diagram by merging the leaves of
the tree as a single terminal node t [44]. Likewise, we can merge any other nodes
from which the same solutions are obtained on the remaining variables while
preserving a correspondence between solutions of the problem and r–t paths in
the diagram. That results in a representation that is substantially more compact
and, in some cases, can have less nodes than the number of solutions represented.
If every path assigns a value to every variable, then we can find optimal solutions
for varied linear objective functions by assigning the corresponding weights to
the arcs and computing a minimum weight r–t path, which is usually faster than
resolving the problem with different objective functions [44].

Figure 1 illustrates these different graphic representations for the solutions of
inequality 2x1 − 2x2 − 3x3 ≤ −1 on a vector of binary variables x ∈ {0, 1}3: (a)
is a tree in which every path from the root to a different leaf assigns a distinct
set of values to the variables; (b) is the decision diagram produced by merging
the leaves of the tree; and (c) is a decision diagram in which we merge the three
nodes in (b) from which the only arc towards t corresponds to x3 = 1. We use
thin arcs for assignments of value 0 and bold arcs for assignments of value 1. In
the example, we always assign a value to variable x1 first, then to variable x2,
and finally to variable x3. When the same order of variables is used in every r–t
path, then nodes at the same arc-distance from r define a layer with the same
selector variable for the next assignment, and we say that we have an ordered

Enumerative Branching with Less Repetition 3

t
x1 = 0 1

...

...

...

..t...

...

...

...

t...

...

...

...

x2 = 0 1 0 1

t...

...

...

t...

...

...

...

t...

...

...

t...

...

...

x3 = 1 0 1 1 1

t t t t t
(a)

tr...

...

...

..t...

...

...

...

t...

...

...

...t..

..

..

t..

..

..

...

..

t...

...

...

t..

..

..t
t

(b)

tr [−1,−1]...

...

...

..t [−2,−1]...

...

...

...

t[−3,−3]..

..

..

..t [0,+∞)...

...

...

...

...

t [−3,−1]...

...

...t
t
[0,+∞)

(c)

Fig. 1. (a) Tree representing the solutions of {x ∈ {0, 1}3 : 2x1 − 2x2 − 3x3 ≤ −1}.
(b) Decision diagram from merging the leaf nodes. (c) Reduced decision diagram with
interval of equivalent right-hand side values for the inequality on each node.

decision diagram. In fact, Figure 1 (c) has the smallest ordered decision diagram
for that sequence of variable selectors, and we call it a reduced decision diagram.

In this paper, we discuss how to compare the formulation of subproblems
involving one or more inequalities to determine the equivalence of branch-and-
bound nodes, and hence directly construct reduced decision diagrams.

1.1 Contribution

We generalize prior work on identifying equivalent subproblems with a single
inequality [6, 1, 2] and introduce a variant for the case of multiple inequalities.
First, we show how to compute the interval of equivalent Right-Hand Side (RHS)
values for any inequality on finite domains with additively separable Left-Hand
Side (LHS) and fractional RHS. Second, we discuss why the same idea cannot be
directly applied to problems with multiple inequalities. In that case, we show how
to eliminate candidates for equivalence among the explored nodes in such a way
that we are left with at most one potentially equivalent node. Finally, we present
a sufficient condition achievable by bottom-up preprocessing to determine if such
a remaining node is indeed equivalent.

2 Decision Diagrams

A decision diagram is a directed acyclic graph with root node r. Arcs leaving
each node denote assignments to a variable, which we denote its selector variable.
If the variables can only take two possible values, the diagram is binary. If the
variables can take more values, the diagram is multi-valued. When representing

4 T. Serra

only feasible solutions, there is one terminal node t and each solution is mapped
to an r–t path. Otherwise, there are two terminal nodes T and F , with feasible
solutions corresponding to r–T paths and infeasible solutions to r–F paths. We
say that nodes at the same distance (in arcs) from the root node r are in the
same layer of the diagram. The sets of paths from a given node u toward t (or
T) define the solution set of that node. Nodes have the same state if those sets
coincide. A diagram is reduced if no two nodes have the same state. A diagram
is ordered if all nodes in each layer have the same selector variable.

Bryant [14] has shown that we can efficiently reduce a decision diagram
through a single bottom-up pass by identifying and merging nodes with equiva-
lent sets of assignments on the remaining variables.

Two factors may help us obtain smaller decision diagrams. First, equiva-
lences are intuitively more frequent in ordered decision diagrams. In such a
case, all nodes in each layer have solution sets defined on the same set of vari-
ables, which is a necessary condition to merge such nodes. Second, it is easier
to identify equivalences if the problem is defined by inequalities in which the
Left-Hand Side (LHS) is an additively separable function. A function f(x) on
an n-dimensional vector of variables x is additively separable if we can decom-
pose it as f(x) =

∑n
i=1 fi(xi), i.e., a sum of univariate functions on each of

those variables. In such a case, all the nodes in a given layer define subprob-
lems with inequalities having the same LHS. For example, if we have a problem
{x :

∑n
i=1 fi(xi) ≤ ρ}, then each node obtained by assigning a distinct value x̄1

to variable x1 defines a subproblem {x :
∑n

i=2 fi(xi) ≤ ρ− f1(x̄1)} on the same
n− 1 variables and with the same LHS for the inequality.

Following those conditions, we can anticipate that two nodes have the same
solutions if their subproblems have inequalities with the same Right-Hand Side
(RHS) values. In such a case, we can save time if we just branch on one of
those nodes to enumerate its solutions and then merge it with the second node.
For example, in the problem of Figure 1 we obtain the same subproblem {x3 ∈
{0, 1} : −3x3 ≤ −1} with assignments x1 = 0 and x2 = 0 or x1 = 1 and x2 = 1.

More generally, we say that two subproblems have equivalent formulations if
they have the same solutions, even if the formulations are different. For exam-
ple, in Figure 1 we obtain subproblem {x3 ∈ {0, 1} : −3x3 ≤ −3} by assigning
x1 = 1 and x2 = 0, which has the same solution set as the previously mentioned
assignments leading to {x3 ∈ {0, 1} : −3x3 ≤ −1}. A method to compute such
equivalent RHS values for nodes in the same layer of ordered decision diagrams
representing a linear inequality with integer coefficients has been independently
proposed twice on binary domains [1, 6] and later extended to multi-valued do-
mains [2]. This method is based on search for all the solutions for some nodes
and then inferring if a new node would have the same solutions as one of those
nodes. We will use the following definition for those previous nodes.

Definition 1 (Explored node). A node is said to be explored if all the solu-
tions for the subproblem rooted at that node are known.

Once a node has been explored, we can compute the minimum RHS value
that would produce the same solutions and the minimum RHS value, if any, that

Enumerative Branching with Less Repetition 5

would produce more solutions. In Figure 1 (c), the interval of equivalent integer
values for the RHS of the inequalities on the remaining variables is shown next
to each node. For example, in the penultimate layer we have the intervals of RHS
values for −3x3 as LHS, which includes [−3,−1] for the node that is reached by
the three assignments to x1 and x2 that we discussed previously.

However, we cannot directly apply the same method to problems with mul-
tiple inequalities and expect to find all the nodes that are equivalent. For ex-
ample, in Figure 2 we have three equivalent formulations for the solution set
{(0, 0), (0, 1), (1, 0)}. The inequality with LHS 5x1 + 4x2 has equivalent RHS
values in [5, 8]. The inequality with LHS 6x1 + 10x2 has equivalent RHS values
in [10, 15]. But there are equivalent RHS values beyond [5, 8] × [10, 15]: if the
RHS of only one inequality is made larger, such as in the first two examples of
Figure 2, the other inequality prevents the inclusion of solution (1, 1). In other
words, not every inequality needs to separate every infeasible solution.

Fig. 2. Equivalent formulations in which the inequalities have the same functions in
the Left-Hand Side (LHS) but different values in the Right-Hand Side (RHS).

3 Related Work

Put in context, our work may also improve exhaustive search. Even in cases
where the goal is not to construct a decision diagram for the set of solutions, the
characterization of a state for the nodes of the corresponding decision diagram
based on their solution sets can be exploited to avoid redundant work during
the branch-and-bound process.

Beyond the case in which all RHS values are the same, prior work on identi-
fying equivalent branch-and-bound nodes has focused on detecting inequalities
that are always satisfied. One example is the detection of unrestricted subtrees,
in which any assignment to the remaining variables is feasible [3]. The same
principle was later used to ignore all unrestricted inequalities and only compare
the RHS values of inequalities that separate at least one solution [44]. That
can be particularly helpful with set covering constraints, in which it suffices to
have one variable assigned to 1. This line of work relies on computing the mini-
mum RHS value after which each inequality does not separate any solution, and

6 T. Serra

therefore any RHS value larger than that is deemed equivalent. For example, in
Figure 1 (c) the first node in the penultimate layer allows both possible values to
x3, which for the LHS −3x3 implies a RHS of 0 or more. In constrast to [44], the
present paper aims to identify all nodes that can be merged during the top-down
construction of a decision diagram corresponding to an ILP formulation. Hence,
we also compare different RHS values that exclude at least one solution.

While the search effort may decrease, it can still be substantial and depend
on other factors. First, the size of a reduced decision diagram for a single con-
straint can be exponential on the number of variables for any order of variable
selectors [30]. Second, finding a better order of variable selectors for binary deci-
sion diagrams is NP-complete [13], hence implying that it is NP-hard to find an
order of variable selections that minimizes the size of the decision diagram [22,
6]. Nevertheless, some ordering heuristics have been found to work well in prac-
tice [6, 7], while strong bounds for the size of the decision diagrams according
to the ordering of variable selectors have been shown for certain classes of prob-
lems [28]. In other cases, a convenient order may be deduced from the context
of the problem. For example, by identifying a temporal relationship among the
decision variables, such as in sequencing and scheduling problems [17, 42].

A related approach consists of analyzing dominance relations among branch-
and-bound nodes [35, 31]. When exploring a node u, we may wonder if there is
another node v that can be reached by fixing the same variables with different
values such that (i) the assignments leading to v are preferable according to
the objective function; and (ii) v defines a relaxation of the subproblem defined
by u, in which case all solutions that can be found by exploring u can also be
found by exploring v [24, 23, 16]. If such a node v exists and we only want to
find an optimal solution, then we can safely prune the subtree rooted at u and
only explore the subtree rooted at v. However, such an approach is not fully
compatible with enumerating solutions because the subproblems on u and v
may not have the same set of solutions. Furthermore, a change in the objective
function could make the discarded node u preferable to node v in applications of
reoptimization. Finally, finding such a node v may entail solving an optimization
problem on the variables that are fixed to reach node u, and thus it only pays
off closer to the root node because not many variables have been assigned yet.

In contrast, our approach pays off closer to the bottom of the decision diagram
representation. For a node at distance k from r, there are at most 2k states if
all variables have binary domains, which are the distinct assignments to the first

k variables. For a node at distance k from t, there are at most 22
k − 1 states,

which are the non-empty sets of solutions for the last k variables. Hence, we
should generally expect that equivalences occur more often when the number of
top-down states exceeds the number of bottom-up states.

In the context of integer linear programming, a small set of solutions is often
obtained through the application of inequalities separating previous solutions [5,
15]. Recent work has also focused on the generation of a diverse set of solu-
tions [20, 48, 41], and there are also methods to obtain exact upper bounds [34]
and probabilistic lower bounds [46] on the size of the solution set.

Enumerative Branching with Less Repetition 7

Decision diagrams and some extensions have also been widely used to solve
combinatorial optimization problems [4, 43, 29, 40, 8, 9, 38, 53, 51, 52, 47], and more
recently stochastic [27, 37, 45] and nonlinear optimization problems [10, 21].

4 Prior Result

We begin our analysis with a prior result about the direct construction of re-
duced decision diagrams, which concerns the decision diagram rooted at a node
v and defined by an inequality of the form a1x1 + . . .+ anxn ≤ a0 with integer
coefficients and each decision variable xi having a discrete domain of the form
{0, 1, . . . , di}. For such a node v and each of the other nodes in the decision
diagram, we want to compute a corresponding interval [β, γ] or [β,∞), where β
is the smallest integer RHS value that could replace a0 and still yield the same
solutions. Similarly, γ is the largest integer RHS value that would still yield the
same solutions, and γ only exists if at least one solution is infeasible. We recur-
sively compute such intervals after exploring a node and all of its descendants.

Theorem 1 (Ab́ıo & Stuckey1 [2]). Let M be the multi-valued decision dia-
gram of a linear integer constraint a1x1 + . . .+ anxn ≤ a0. Then, the following
holds:

– The interval of the true node T is [0,∞).
– The interval of the false node F is (−∞,−1].
– Let v be a node with selector variable xi and children {v0, v1, . . . , vdi

}. Let
[βj , γj] be the interval of vj. Then, the interval of v is [β, γ], with β =
max

{
βs + sai | s ∈ {0, . . . , di}

}
, γ = min

{
γs + sai | s ∈ {0, . . . , di}

}
.

The interval of the explored nodes can then be compared with the RHS of the
inequalities defining each of the unexplored nodes in the same layer to identify
equivalences. In order to fully avoid redundant work, the branch-and-bound
algorithm should perform a depth-first search (DFS), where the unexplored node
with fewer unfixed variables is explored next. In such a case, we do not risk
branching on two nodes that would later be found to have the same state.

In this paper, we consider decision diagrams with a single terminal node t,
hence disregarding infeasible solutions and nodes in which roughly β = −∞.

5 The Case of One Inequality

In this section, we discuss how Theorem 1 can be further generalized when
applied to a single inequality. Our contribution is evidencing that the sequence
of work culminating in the result by Ab́ıo and Stuckey [2] can be extended to
account for the case of linear inequalities with fractional coefficients, and to the
slightly more general case of inequalities involving additively separable functions.

1 Following the recommendation of one of the anonymous reviewers, there is small
correction in comparison to [2]: we use s ∈ {0, . . . , di} instead of 0 ≤ s ≤ di.

8 T. Serra

We begin with an intuitive argument for generalizing that result for the
case of fractional RHS values. In the interval [β, γ] used in Theorem 1, both
β and γ are integer values corresponding to the smallest and largest integer
RHS values defining the same solutions for the inequality. If the LHS coefficients
and the decision variables are integer, then it follows that any right-hand side
value larger than γ but smaller than γ + 1 would also define the same solutions.
Hence, [β, γ+1) is the maximal interval of equivalent right-hand side values if we
allow a fractional right-hand side. Now the upper end value γ+ 1 is the smallest
RHS value yielding a proper superset of solutions. Furthermore, with such half-
closed intervals, both ends may also become fractional if the LHS coefficients are
fractional and assigning a variable changes the RHS by a fractional amount.

In addition, the only reason to represent infeasible solutions is to compute
those upper ends of the RHS intervals. But for each node that has missing arcs
for some values of its selector variable, which if represented would only reach
the terminal F , the corresponding upper end is the sum of the impact of that
assignment with the smallest RHS associated with a solution on the remaining
variables. But as we will see next, that value can be calculated by inspection.

In summary, we can ignore infeasible solutions by using a single terminal
node t, lift the integrality of all coefficients, and consequently allow the LHS to
be additively separable. That leads us to the following result:

Theorem 2. Let D be a decision diagram with variable ordering x1, x2, . . . , xn
of f(x) = f1(x1) + . . . + fn(xn) ≤ ρ on finite domains D1 to Dn. Then, the
following holds:

– The interval of the terminal node t is [0,∞).

– Let v be a node with selector variable xi and non-empty multi-set2 of de-
scendants {vj | j ∈ Dv}, Dv ⊆ Di, where vj is reached by an arc denoting
xi = j. Let [βj , γj) be the interval of vj. The interval of v is [β, γ), with

β = max{βj + fi(j) | j ∈ Dv}

and

γ = min
{

min{γj + fi(j) | j ∈ Dv}, min{ξi + fi(j) | j ∈ Di \Dv}
}
,

where

ξi =

n∑
l=i+1

min{fl(d) | d ∈ Dl}.

Since we can prove a stronger result regarding the lower end β, which also
applies to the case of multiple inequalities that will be discussed in Section 6,
we split the proof of Theorem 2 into two lemmas.

2 We use a multi-set because two nodes might be connected through multiple arcs for
different variable assignments.

Enumerative Branching with Less Repetition 9

Lemma 1. Let D be a decision diagram with variable ordering x1, x2, . . . , xn of
{(x1, x2, . . . , xn) ∈ D1 ×D2 × . . . Dn|fk(x) = fk1 (x1) + . . . + fkn(xn) ≤ ρk ∀k =
1, . . . ,m}. Then, computing βk for each inequality fk(x) ≤ ρk as in Theorem 2
yields the smallest RHS not affecting the set of solutions satisfying all inequalities
on each node.

Proof. We proceed by induction on the layers, starting from the bottom. The
base case holds since 0 ≤ ρk is only valid if ρk ≥ βk = 0 for each inequality
k at the terminal node t. Now suppose, for contradiction, that Lemma 1 holds
for the n− i bottom layers of D and not for the one above. Hence, there would
be a node v with selector variable xi such that v has the same solutions if we
replace the RHS of the k-th inequality with some δ < βk ≤ ρk, thereby obtaining∑n

l=i f
k
l (xl) ≤ δ. Let j ∈ arg max{βk

j + fki (j) | j ∈ Dv}, i.e., vj would be one

of the children maximizing the expression with which we calculate βk in the
statement of Lemma 1 and βk

j is the smallest RHS value not affecting the set of
solutions of vj with respect to the k-th inequality. Consequently, node vj would
have the same solutions if the k-th inequality for vj becomes

∑n
l=i+1 f

k
l (xl) ≤

δ−fi(j). However, βk
j = βk−fki (j) > δ−fki (j), and we have a contradiction since

by induction hypothesis any value smaller than βk
j would yield proper subset of

the solution set of vj . �

Lemma 2. Computing γ for one inequality as in Theorem 2 yields the smallest
RHS value that would yield a proper superset of the solutions of node v.

Proof. We proceed by induction on the layers, starting from the bottom. The
base case holds since the terminal node t has a set with one empty solution and
we denote γ = +∞.

By induction hypothesis, we assume that Lemma 2 holds for the n− i lower
layers of D, and we show next that it consequently holds for the i-th layer of D.

For any node v in the i-th layer with interval [β, γ) for a finite γ such that∑n
l=i fl(xl) ≤ γ, let j ∈ arg min

{
min{γj + fi(j) | j ∈ Dv},min{ξi + fi(j) | j ∈

Di \ Dv}
}

. If (I) j ∈ arg min{γj + fi(j) | j ∈ Dv}, then there is a child node

vj that minimizes the expression with which we calculate γ in the statement of
Lemma 2. By induction hypothesis, that implies that there is a solution that
is not feasible for node vj and such that

∑n
l=i+1 fl(x̄j) = γj . Consequently,

solution (x̄i = j, x̄i+1, . . . , x̄n) is not feasible for node v and
∑n

l=i fl(x̄j) = γ. If
(II) j ∈ arg min{ξi+fi(j) | j ∈ Di \Dv}, then γ = fi(j)+ξi and node v does not
have any solution in which xi = j. Consequently, there is an infeasible solution
(x̄i = j, x̄i+1, . . . , x̄n) such that

∑n
l=i+1 fl(x̄j) = ξi and

∑n
l=i+1 fl(x̄j) = γ. In

either case, a RHS of γ yields a proper superset of the solutions of v. Furthermore,
a smaller RHS value yielding a proper superset of the solutions of v would either
contradict the choice of j in (I) if there is at least one solution of v such that
xi = j or in (II) if there is no solution of v such that xi = j. �

We are now able to prove the main result of this section.

10 T. Serra

Proof (Theorem 2). Lemma 1 implies that β is the smallest RHS value yielding
the same solution set as v and Lemma 2 implies that γ is the smallest RHS value
yielding at least one more solution than node v. Since there is a single inequality,
then a RHS of γ yields a proper superset of the solutions of v. �

6 The Case of Multiple Inequalities

For variables x1 to xn with finite domains D1 to Dn, we now consider construct-
ing a decision diagram for a problem defined by m inequalities in the following
form:

f i(x) = f i1(x1) + . . .+ f in(xn) ≤ ρi ∀i = 1, . . . ,m

We will exploit the fact that we still can apply Lemma 1 to a problem with
multiple inequalities. Theorem 2 is not as helpful because the equivalent upper
ends for one inequality may depend on the RHS values of other inequalities.
That prevents us from immediately identifying if two nodes are equivalent by
comparing the intervals of the explored node with the RHS values of the un-
explored node. Nevertheless, we can characterize and distinguish nodes having
different solution sets by their lower ends as in Lemma 1. We show that such
comparison is enough to exclude all but one of the explored nodes as potentially
equivalent, to which we describe a sufficient condition to guarantee equivalence.

6.1 Necessary Conditions

With multiple inequalities, we cannot simply use the intervals of RHS values as-
sociated with each of the inequalities independently. We have previously observed
that with the example in Figure 2, which we now revisit with half-closed inter-
vals. For the inequality with LHS 5x1 +4x2, the solution set {(0, 0), (0, 1), (1, 0)}
corresponds to RHS values in [5,9). For the inequality with LHS 6x1+10x2, that
same solution set corresponds to RHS values in [10,16). Hence, [5, 9) × [10, 16)
defines a valid combination of RHS values yielding the same solutions. However,
we can relax one inequality if the other still separates the remaining infeasi-
ble solution (1, 1). Consequently, the solution set is actually characterized by
following combination of RHS values: [5, 9)× [10,+∞) ∪ [5,+∞)× [10, 16).

Note that the lower ends in β are nevertheless the same. In fact, Lemma 1
implies that we can characterize node states by the smallest RHS value of each
inequality that would yield the same solutions. The key difference is that pushing
any RHS lower than β restricts the solution set, whereas increasing some RHS
to γ or above may not enlarge the solution set if another inequality separates
the solutions that would otherwise be included. Hence, we ignore the upper ends
in what follows and focus on the consequences of Lemma 1.

In what follows, let v be an unexplored node with RHS values ρ1 to ρm

and let v̄ and ¯̄v be explored nodes with lower ends β̄1 to β̄m and ¯̄β1 to ¯̄βm,
respectively.

Corollary 1 (Main necessary condition). Node v is equivalent to node v̄
only if ρk ≥ β̄k for k = 1, . . . ,m.

Enumerative Branching with Less Repetition 11

Proof. Lemma 1 implies that ρk < β̄k for any inequality k would make a solution
of v̄ infeasible for v. Conversely, if ρk ≥ β̄k for k = 1, . . . ,m, then v has at least
the same solutions as v̄, a necessary condition for equivalence. �

Corollary 2 (Dominance elimination). Node v is equivalent to an explored
node v̄ only if no other explored node ¯̄v for which v satisfies the necessary con-
dition has a strictly larger lower end for any of the inequalities, i.e., there is no

such ¯̄v for which
¯̄
βk > β̄k for any k = 1, . . . ,m.

Proof. If two nodes v̄ and ¯̄v have different lower ends for inequality k and they
are such that ¯̄βk > β̄k, then ¯̄v has a solution requiring a larger RHS value on
inequality k to be feasible. Thus, v̄ does not have such a solution. However, if
both v̄ and ¯̄v have a subset of the solutions of node v, then v also has that
solution and thus cannot be equivalent to v̄. �

Corollary 3 (One or none). Node v has at most one explored node satisfying
both the necessary condition and the dominance elimination in a reduced decision
diagram.

Proof. Since the lower ends characterize the state of a node and no two nodes
have the same state in a reduced decision diagram, then any pair of explored
nodes will differ in at least one lower end value. Consequently, no more than one
explored node can satisfy both conditions for node v. �

When multiple nodes meet the necessary condition of having at least as many
solutions as node v, we can eliminate some by dominance. If they differ in the
lower end of some inequality, that implies that node v and one of them have a
solution that the other does not have, hence allowing us to discard the latter. In
fact, explored nodes can eliminate one another in different inequalities. Since no
two nodes have all lower ends matching in a reduced decision diagram, no more
than one node is left as candidate, but possibly none is.

6.2 A Sufficient Condition

From Corollary 3, we are left with at most one explored node v̄ that could be
equivalent to a given unexplored node v. If there is no such node, then the
solution set of v is distinct from all the solution sets of explored nodes in the
layer. Otherwise, the solution set of such node v̄ is different from that of v only
if the solutions of node v are a proper superset of the solutions of v̄. If the layer
has explored nodes corresponding to every possible solution set, then nodes v
and v̄ would be equivalent. However, having all such nodes would be prohibitive.

Alternatively, we can individually consider each of the solutions that could be
missing from v̄. If a given layer has explored nodes containing each one of them,
then node v̄ is always equivalent. We use the following definition for sufficiency:

Definition 2 (Populated layer). A layer is said to be populated if it has ex-
plored nodes corresponding to the minimal solution set containing each of the
solutions on the remaining variables.

12 T. Serra

For a solution x in a populated layer, there is a node vx with lower ends β(x)
corresponding to the tightest RHS values for which x is feasible. In other words,
all the inequalities are active for x when the RHS is replaced with β(x). Node vx
may also have any other solution y such that β(y) ≤ β(x), in which case solution
x is only feasible when y is. Note that we only need O(2k) nodes with distinct

states to populate a layer instead of O(22
k

) to cover all possible states. Figure 3
shows the tightest RHS values associated with each solution for the inequalities
of the problem illustrated in Figure 2. The next result formalizes the condition.

Fig. 3. Smallest (right-hand side) RHS values for which each solution in {0, 1}2 is
feasible for the inequalities with left-hand side (LHS) 5x1 + 4x2 and 6x1 + 10x2.

Theorem 3. Let v belong to a populated layer. If there is a node v̄ satisfying the
necessary condition and the dominance elimination, then node v̄ is equivalent to
v. If no node satisfies the necessary condition, then v has no solution.

Proof. Let us suppose, for contradiction, that there is an explored node v̄ that
satisfies both conditions but is not equivalent to v. In such a case, node v has a
solution x that v̄ does not have. However, a populated layer containing node v
would also contain a node vx corresponding to the lower ends in β(x). Node vx
satisfies the necessary condition since v contains x and hence any solution that
is always feasible when x is feasible. Therefore, either vx is the node left after
both conditions or else v̄ contains all solutions of vx, thereby contradicting that
v has a solution that v̄ does not have.

Now let us suppose, for contradiction, that node v has a solution x but no
explored node satisfies the necessary condition. That would imply that the layer
does not contain a node vx corresponding to β(x), a contradiction. �

One way to guarantee that a layer is populated is through bottom-up gener-
ation of nodes corresponding to the smallest RHS values yielding each solution.

7 Computational Experiments

We evaluated the impact of identifying equivalent search nodes when construct-
ing reduced decision diagrams for integer linear programming problems. The
construction of these diagrams mimics the branch-and-bound tree that emerges

Enumerative Branching with Less Repetition 13

from a mathematical optimization solver as it enumerates the solutions of a
problem, which we captured through callback functions when a solution is found
or a branching decision is about to be made. We use pure 0–1 problems that
are small enough to have a reasonable runtime, since enumerating all solutions
takes much longer than solving the problem to optimality [19].

For each problem, we defined a gap with respect to the optimal value to limit
the enumeration. The gap was chosen as large as possible to either enumerate all
solutions or to avoid a considerable solver slowdown, for example from storing
search nodes in disk. Nevertheless, we tried to push the gap to the largest possible
value since more equivalences can be identified as the solution set gets denser.
All problems are either directly obtained or adapted from MIPLIB [11, 12, 44].
When enumerating near-optimal solutions, we add an inequality to limit the
objective function value. The order of the selector variables follows the indexing
of the decision variables for the corresponding problem. We did not consider the
possibility of changing the order of the selector variables, since any such change
could have an unrelated effect on the number of branches and runtime.

For each problem, we constructed decision diagrams with preprocessing in
the bottom k layers above the terminal node, where k ∈ {3, 6, 9}. We use k = 0 as
the baseline, which is the case in which we cannot always determine if two nodes
are equivalent by inspecting the RHS. For k > 0, we generated the smallest RHS
values for each feasible solution on the remaining k variables. We created marked
nodes corresponding to each of such RHS vectors, which are explored when first
matched with an unexplored node. Finally, we kept track of the solutions found
before fixing all variables to avoid recounting them at the bottom of the diagram.

However, the number of equivalences that can be identified decays signifi-
cantly as we move further away from the bottom of the decision diagram. Since

the number of possible states for the last k levels is O(22
k

), it is rather expected
that these equivalences will only be identified closer to the bottom — even in
the cases that we can significantly reduce the size of the decision diagram. In
practice, we did not observe significant gains with a value of k larger than 10.

In our experiments, the code is written in C++ (gcc 4.8.4) using CPLEX
Studio 12.8 as a solver and ran in Ubuntu 14.04.4 on a machine with 40 Intel(R)
Xeon(R) CPU E5-2640 v4 @ 2.40GHz processors and 132 GB of RAM.

Table 1 reports the number of branches, runtime, and solutions found for
each problem. We do not report results for stein9 with k = 9 because that
problem has exactly 9 variables. Hence, we exclude the results for stein9 from
the geometric mean in all cases, although we note that the number of branches
and the runtime for stein9 reduced as k increased up to 6. For the rest of the
problems, we found a reduction of over 27.7% in number of branches and 7.7% in
runtimes when comparing the geometric mean of the baseline with the geometric
mean for k = 9. We observed a consistent reduction in the number of branches
for most cases, which is often not offset by the number of corresponding bottom-
up states generated: 15 for k = 3, 127 for k = 6, and 1,023 for k = 9. While
generating these additional nodes in advance is cheaper than branching, the
extra time to check equivalence might explain the lesser impact on runtime.

14 T. Serra

T
a
b
le

1
.

N
u
m

b
er

o
f

b
ra

n
ch

es
a
n
d

ru
n
tim

e
to

co
n
stru

ct
a

d
ecisio

n
d
ia

g
ra

m
th

a
t

en
u
m

era
tes

n
ea

r-o
p
tim

a
l

so
lu

tio
n
s

u
sin

g
th

e
b
a
selin

e
a
p
p
ro

a
ch

a
n
d

b
o
tto

m
-u

p
p
rep

ro
cessin

g
in

th
e

b
o
tto

m
k

lay
ers

fo
r
k
∈
{
3
,6
,9}

to
id

en
tify

eq
u
iva

len
t

n
o
d
es.

B
ra

n
ch

es
R

u
n
tim

e
(s)

P
ro

b
lem

V
a
ria

b
les

G
a
p

S
o
lu

tio
n
s

B
a
selin

e
k

=
3

k
=

6
k

=
9

B
a
selin

e
k

=
3

k
=

6
k

=
9

a
ir0

1
7
7
1

5
,4

0
0

1
1
7
,9

9
7

9
,4

0
2
,9

6
7

9
,4

0
3
,0

2
5

9
,3

9
8
,6

9
7

9
,3

9
3
,4

7
5

3
,1

4
2
.1

3
,1

7
8
.8

3
,1

8
8

3
,1

8
4
.4

b
m

2
3

2
7

6
0

2
,1

6
8

1
7
,9

3
1

1
7
,8

7
3

1
7
,5

7
3

1
6
,0

5
4

4
.2

4
4
.1

4
.1

en
ig

m
a

1
0
0

1
4

3
,7

7
2

3
,7

7
2

3
,7

7
2

3
,7

7
2

0
.4

0
.5

0
.5

0
.5

l1
5
2
lav

1
,9

8
9

3
0

3
7
,7

4
1

7
,5

7
6
,3

9
4

7
,5

7
6
,3

9
4

7
,5

7
6
,3

9
4

7
,5

7
6
,3

9
4

7
,9

7
6
.5

9
,2

7
4
.3

9
,3

6
0
.4

8
,0

3
6
.5

lp
4
l

1
,0

8
6

1
0
0

9
1
,6

7
2

6
,6

4
1
,5

0
4

6
,6

4
1
,5

0
4

6
,6

4
1
,5

0
4

6
,6

4
1
,5

0
4

3
,6

3
1
.6

3
,5

3
4
.3

3
,5

1
8
.3

3
,5

5
5

lseu
8
9

3
4
0

6
5
9
,2

0
7

1
2
,9

3
4
,6

9
5

1
2
,9

3
5
,4

1
6

1
2
,8

8
7
,4

3
1

1
2
,6

6
2
,5

9
4

1
4
,2

2
3

1
4
,4

5
5
.3

1
4
,3

6
7
.8

1
4
,1

3
3
.8

m
isc0

1
b

8
2

2
5
0

6
0
0

4
,3

0
2

4
,2

6
4

3
,9

6
3

3
,7

6
0

0
.9

0
.9

0
.7

0
.8

m
isc0

2
b

5
8

1
,5

0
0

1
,1

6
8

3
,9

9
8

3
,9

3
6

3
,5

6
4

3
,1

8
5

0
.8

0
.7

0
.7

0
.6

m
isc0

3
b

1
5
9

1
,6

0
0

4
,3

2
0

7
5
,7

3
0

7
5
,6

5
1

7
4
,3

0
9

7
2
,0

1
9

1
4
.8

1
4
.6

1
4
.1

1
3
.9

m
isc0

7
b

2
5
9

4
0
0

1
6
,2

7
2

8
0
5
,0

1
2

8
0
4
,5

4
5

8
0
1
,2

1
9

7
9
8
,0

6
2

2
4
8
.6

2
3
8
.6

2
3
4
.6

2
2
8
.5

p
0
0
3
3

3
3

2
,2

0
0

1
0
,7

4
6

1
7
,1

7
4

1
6
,3

6
8

1
1
,7

8
3

7
,4

9
8

2
.6

2
.5

2
1
.5

p
0
0
4
0

4
0

7
,2

0
0

5
1
9
,2

1
6

8
5
1
,3

5
6

6
4
5
,7

0
3

3
2
8
,4

1
5

1
4
4
,0

6
6

1
3
8

8
4
.5

4
2
.6

1
9
.1

p
0
2
0
1

2
0
1

6
0
0

8
6
4
,1

2
8

2
7
,6

7
5
,2

6
0

2
7
,6

6
1
,1

1
1

2
7
,5

0
1
,0

2
9

2
7
,1

4
0
,3

6
3

9
,0

1
7
.5

8
,5

6
4
.6

8
,8

6
5

8
,4

1
8
.1

p
0
2
9
1

2
9
1

2
2
1
4

6
8
5
,4

7
2

6
8
5
,4

7
2

6
8
5
,4

7
2

6
8
5
,4

7
2

1
,1

7
4
.8

2
,1

2
4
.4

4
,9

2
6

5
,4

6
9

p
ip

ex
4
8

2
0
0

1
2
,2

6
6

4
7
,4

2
0

4
7
,4

2
0

4
7
,4

2
0

4
7
,4

2
0

9
9
.1

9
9
.1

sen
toy

6
0

2
7
0

6
7
,8

2
0

6
,5

8
7
,5

7
4

6
,5

0
4
,3

2
2

5
,9

1
9
,3

9
6

5
,2

1
9
,6

3
6

8
,0

5
2
.8

7
,7

4
3
.3

7
,0

5
4
.3

6
,7

3
2
.1

stein
9

9
4

1
7
2

1
0
1

7
3

7
3

—
0
.0

5
0
.0

4
0
.0

4
—

stein
1
5

1
5

6
2
,8

0
9

1
,7

3
9

1
,2

3
3

8
4
2

8
4
1

0
.5

0
.3

0
.3

0
.4

stein
2
7

2
7

9
3
6
7
,5

2
5

3
0
1
,4

8
8

2
4
7
,1

6
9

1
1
4
,2

9
0

4
4
,4

9
7

7
9
.2

5
6
.6

5
2
.9

6
1
.9

stein
4
5

4
5

2
7
9
5
,0

6
4

3
,9

7
0
,4

2
4

3
,9

5
5
,6

2
3

3
,8

3
3
,8

6
2

3
,5

7
5
,3

9
9

8
9
6
.9

8
8
2
.4

1
,0

1
4

1
,9

7
3
.9

G
eo

m
etric

m
ea

n
3

2
.9
×

1
0
5

2
.8
×

1
0
5

2
.4
×

1
0
5

2
.1
×

1
0
5

9
7
.0

9
2
.8

9
1
.2

8
9
.5

2
T

h
e

g
eo

m
etric

m
ea

n
ex

clu
d
es

resu
lts

fo
r

stein
9

in
a
ll

co
lu

m
n
s.

Enumerative Branching with Less Repetition 15

8 Conclusion

This paper discussed the connection between redundant work in branch-and-
bound and the direct construction of reduced decision diagrams. In both cases,
such redundancy may manifest as nodes defining equivalent subproblems that
are repetitively explored. That connection is particularly stronger if we want to
generate a pool of feasible or near-optimal solutions of a discrete optimization
problem, which requires substantially more branching than finding an optimal
solution. The enumeration of solutions is a relatively unexplored topic, especially
in integer linear programming. Nevertheless, alternate solutions are important in
practice and generating them in smaller problems is now technically feasible due
to the continuous advances in hardware and algorithms. Furthermore, decision
diagrams provide a compact representation of solution sets, with which we can
more efficiently manipulate to solve the same problem with different objectives.

Our first contribution is a simple but useful extension of prior work on iden-
tifying equivalent problems with a single inequality [6, 1, 2], which can be mainly
useful for integer linear programs with fractional coefficients.

Our second contribution, which we believe is the most important, is the
theoretical distinction between the case of equivalence involving one inequality
and multiple inequalities. For problems defined by inequalities with additively
separable LHS, we have seen that explored nodes can be uniquely identified
by the smallest RHS values yielding the same solutions. When the nodes are
explored in depth-first search, we showed that it is possible to isolate a single
explored node as potentially equivalent to each unexplored node. This fact alone
simplifies considerably the identification of potentially equivalent search nodes.

Our third contribution is a first sufficient condition to confirm the equiva-
lence among such pairs of nodes, which consists of a bottom-up preprocessing
technique based on fixing k among the n variables to branch last. Note that we
can reasonably expect that equivalences will be more frequent if there are fewer
variables left. For k � n, this would only marginally affect the search behavior
and, in fact, our experiments showed a positive impact with small values of k.

For large solution sets, we found some instances in which our approach re-
duced branching and runtime. If the solution set of the decision diagram is not
sufficiently dense, the effectiveness of our method would depend on identify-
ing hidden structure in the problems. One potential example are problems with
variables that produce the same effect when assigned, which has been previously
exploited with orbital branching [39]: if we leave such variables for last in the
decision diagram, we can anticipate that many nodes will have equivalent states.

We believe that there is further room to improve on runtime based on the
reduction on the number of branches. Another topic for future work would be
identifying simpler sufficient conditions for equivalence, which would allow us to
directly construct decision diagrams for much larger problems.

Acknowledgements I would like to thank John Hooker for bringing this topic to
my attention and the anonymous reviewers for their detailed feedback.

16 T. Serra

References

1. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Mayer-
Eichberger, V.: A new look at BDDs for pseudo-boolean constraints. Journal of
Artificial Intelligence Research 45, 443–480 (2012)

2. Ab́ıo, I., Stuckey, P.J.: Encoding linear constraints into SAT. In: Principles and
Practice of Constraint Programming (CP), pp. 75–91 (2014)

3. Achterberg, T., Heinz, S., Koch, T.: Counting solutions of integer programs using
unrestricted subtree detection. In: Integration of Constraint Programming, Artifi-
cial Intelligence, and Operations Research (CPAIOR), pp. 278–282 (2008)

4. Andersen, H., Hadzic, T., Hooker, J., Tiedemann, P.: A constraint store based on
multivalued decision diagrams. In: Principles and Practice of Constraint Program-
ming (CP), pp. 118–132 (2007)

5. Balas, E., Jeroslow, R.G.: Canonical cuts on the unit hypercube. SIAM J. Appl.
Math. 23, 61–69 (1972)

6. Behle, M.: Binary Decision Diagrams and Integer Programming. Ph.D. thesis, Uni-
versität des Saarlandes (2007)

7. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Variable ordering for
the application of bdds to the maximum independent set problem. In: Integra-
tion of Constraint Programming, Artificial Intelligence, and Operations Research
(CPAIOR). pp. 34–49 (2012)

8. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization
with decision diagrams. INFORMS Journal on Computing 28(1), 47–66 (2016)

9. Bergman, D., Cire, A., van Hoeve, W.J., Hooker, J.: Decision Diagrams for Opti-
mization. Springer (2016)

10. Bergman, D., Cire, A.A.: Discrete nonlinear optimization by state-space decompo-
sitions. Management Science 64(10), 4700–4720 (2018)

11. Bixby, R.E., Boyd, E.A., Indovina, R.R.: MIPLIB: A test set of mixed integer
programming problems. SIAM News 25, 16 (1992)

12. Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: An updated mixed
integer programming library: MIPLIB 3.0. Optima 58, 12–15 (1998)

13. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete.
IEEE Transactions on Computers 45(9), 993–1002 (1996)

14. Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

15. Camm, J.D.: ASP, the art and science of practice: A (very) short course in subop-
timization. INFORMS Journal on Applied Analytics 44(4), 428–431 (2014)

16. Chu, G., de la Banda, M.G., Stuckey, P.J.: Exploiting subproblem dominance in
constraint programming. Constraints 17(1), 1–38 (2012)

17. Cire, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing prob-
lems. Operations Research 61(6), 1411–1428 (2013)

18. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Springer (2014)

19. Danna, E., Fenelon, M., Gu, Z., Wunderling, R.: Generating multiple solutions for
mixed integer programming problems. In: Integer Programming and Combinatorial
Optimization (IPCO), pp. 280–294 (2007)

20. Danna, E., Woodruff, D.L.: How to select a small set of diverse solutions to mixed
integer programming problems. Operations Research Letters 37, 255–260 (2009)

21. Davarnia, D., van Hoeve, W.J.: Outer approximation for integer nonlinear pro-
grams via decision diagrams (2018)

Enumerative Branching with Less Repetition 17

22. Ebendt, R., Gunther, W., Drechsler, R.: An improved branch and bound algorithm
for exact bdd minimization. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 22(12), 1657–1663 (2003)

23. Fischetti, M., Salvagnin, D.: Pruning moves. INFORMS Journal on Computing
22(1), 108–119 (2010)

24. Fischetti, M., Toth, P.: A new dominance procedure for combinatorial optimization
problems. Operations Research Letters 7(4), 181–187 (1988)

25. GAMS Software GmbH: Getting a list of best integer solutions of my MIP (2017),
https://support.gams.com/solver:getting a list of best integer solutions of my
mip model, accessed: 2019-11-29

26. Gurobi Optimization, LLC: Finding multiple solutions (2019), https://www.
gurobi.com/documentation/8.1/refman/finding multiple solutions.html, accessed:
2019-11-29

27. Haus, U.U., Michini, C., Laumanns, M.: Scenario aggregation using binary de-
cision diagrams for stochastic programs with endogenous uncertainty. CoRR
abs/1701.04055 (2017)

28. Haus, U.U., Michini, C.: Representations of all solutions of boolean programming
problems. In: International Symposium on Artificial Intelligence and Mathematics
(ISAIM) (2014)

29. Hooker, J.: Decision diagrams and dynamic programming. In: Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research (CPAIOR),
pp. 94–110 (2013)

30. Hosaka, K., Takenaga, Y., Kaneda, T., Yajima, S.: Size of ordered binary decision
diagrams representing threshold functions. Theor. Comput. Sci. 180, 47–60 (1997)

31. Ibaraki, T.: The power of dominance relations in branch-and-bound algorithms.
Journal of the Association for Computing Machinery 24(2), 264–279 (1977)

32. IBM Corp.: IBM ILOG CPLEX Optimization Studio Getting Started with CPLEX
Version 12 Release 8 (2017)

33. IBM Corp.: How to enumerate all solutions (2019), https://www.ibm.com/sup
port/knowledgecenter/SSSA5P 12.9.0/ilog.odms.cplex.help/CPLEX/UsrMan/to
pics/discr optim/soln pool/18 howTo.html, accessed: 2019-11-29

34. Jain, S., Kadioglu, S., Sellmann, M.: Upper bounds on the number of solutions
of binary integer programs. In: Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR) (2010)

35. Kohler, W., Steiglitz, K.: Characterization and theoretical comparison of branch-
and-bound algorithms for permutation problems. Journal of the Association for
Computing Machinery 21(1), 140–156 (1974)

36. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming
problems. Econometrica 28(3), 497–520 (1960)

37. Lozano, L., Smith, J.C.: A binary decision diagram based algorithm for solving a
class of binary two-stage stochastic programs. Mathematical Programming (2018)

38. Morrison, D., Sewell, E., Jacobson, S.: Solving the pricing problem in a branch-and-
price algorithm for graph coloring using zero-suppressed binary decision diagrams.
INFORMS Journal on Computing 28(1), 67–82 (2016)

39. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Mathemat-
ical Programming 126, 147–178 (2011)

40. Perez, G., Régin, J.C.: Efficient operations on MDDs for building constraint pro-
gramming models. In: International Joint Conference on Artificial Intelligence (IJ-
CAI) (2015)

41. Petit, T., Trapp, A.C.: Enriching solutions to combinatorial problems via solution
engineering. INFORMS Journal on Computing 31(3), 429–444 (2019)

18 T. Serra

42. Raghunathan, A., Bergman, D., Hooker, J., Serra, T., Kobori, S.: Seamless multi-
modal transportation scheduling. CoRR abs/1807.09676 (2018)

43. Sanner, S., Uther, W., Delgado, K.V.: Approximate dynamic programming with
affine ADDs. In: AAMAS (2010)

44. Serra, T., Hooker, J.: Compact representation of near-optimal integer programming
solutions. Mathematical Programming (2019)

45. Serra, T., Raghunathan, A., Bergman, D., Hooker, J., Kobori, S.: Last-mile
scheduling under uncertainty. In: Integration of Constraint Programming, Arti-
ficial Intelligence, and Operations Research (CPAIOR), pp. 519–528 (2019)

46. Serra, T., Ramalingam, S.: Empirical bounds on linear regions of deep rectifier
networks. CoRR abs/1810.03370 (2018)

47. Tjandraatmadja, C., van Hoeve, W.J.: Target cuts from relaxed decision diagrams.
INFORMS Journal on Computing 31(2), 285–301 (2019)

48. Trapp, A.C., Konrad, R.A.: Finding diverse optima and near-optima to binary
integer programs. IIE Transactions 47, 1300–1312 (2015)

49. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer
Science 8, 189–201 (1979)

50. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Jour-
nal on Computing 8(3), 410–421 (1979)

51. Verhaeghe, H., Lecoutre, C., Schaus, P.: Compact-MDD: Efficiently filtering
(s)MDD constraints with reversible sparse bit-sets. In: IJCAI (2018)

52. Verhaeghe, H., Lecoutre, C., Schaus, P.: Extending compact-diagram to basic smart
multi-valued variable diagrams. In: CPAIOR (2019)

53. Ye, Z., Say, B., Sanner, S.: Symbolic bucket elimination for piecewise continuous
constrained optimization. In: CPAIOR (2018)

	Enumerative Branching with Less Repetition
	Recommended Citation

	tmp.1617963718.pdf.syvZg

