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Abstract.  We report our exploratory research of psychomotor task training in 
intelligent tutoring systems (ITSs) that are generally limited to tutoring in the 
desktop learning environment where the learner acquires cognitively oriented 
knowledge and skills. It is necessary to support computer-guided training in a 
psychomotor task domain that is beyond the desktop environment. In this study, 
we seek to extend the current capability of GIFT (Generalized Intelligent Frame-
work for Tutoring) to address these psychomotor task training needs. Our ap-
proach is to utilize heterogeneous sensor data to identify physical motions 
through acceleration data from a smartphone and to monitor respiratory activity 
through a BioHarness, while interacting with GIFT simultaneously. We also uti-
lize a computational model to better understand the learner and domain. We focus 
on a precision-required psychomotor task (i.e., golf putting) and create a series 
of courses in GIFT that instruct how to do putting with tactical breathing. We 
report our implementation of a physio-cognitive model that can account for the 
process of psychomotor skill development, the GIFT extension, and a pilot study 
that uses the extension. The physio-cognitive model is based on the ACT-R/Φ 
architecture to model and predict the process of learning, and how it can be used 
for improving the fundamental understanding of the domain and learner model. 
Our study contributes to the use of cognitive modeling with physiological con-
straints to support adaptive training of psychomotor tasks in ITSs. 

Keywords: Psychomotor tasks, skill learning, learner modeling, GIFT, ACT-
R/Φ, Tactical breathing 

1 Introduction 

In the past, computer-based systems for training have shown to impact learning in 
several tasks, including procedural troubleshooting tasks [e.g., 1], mathematics and 
physics problem-solving tasks [e.g., 2, 3, 4], and others [e.g., 5].  These tasks are not 
highly related to psychomotor tasks. Psychomotor skill development would benefit 
from a type of training that is beyond the desktop environment. [6, 7].   
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1.1 Significance of the Work 

The goal of training is to transfer the initial knowledge and skill set to a procedural 
form in a later stage, which is called proceduralization in ACT-R [Adaptive Control of 
Thought-Rational, 8] and chunking in other theories [9]. Moving the skill set to a later 
stage in an optimal way is a challenge, which entails high inter-dependence with train-
ing effectiveness.  

When it comes to training, we can consider assessment of learning and performance 
[10] in the theory of learning stages [e.g., 11].  But, the computational understanding is 
limited, and it is necessary to simultaneously consider cognitive states (e.g., attention), 
physical activities (e.g., walking, hitting, climbing, etc.), and physiological states (e.g., 
heart rate and respiratory rate), while the learner is achieving the goal of training. The 
current ITSs mostly do not address this issue—e.g., ITSs do not account for physiolog-
ical responses that are affected by the cognitive learning process. The training of skill 
and resulting mastery can be improved with finer grain learner and domain models 
based on an understanding of cognitive, physical and physiological factors.   

To address this issue, it is necessary to extend the learner and domain modeling ca-
pacity.  For example, the learner would need to acquire a physiological control skill 
(i.e., slow breathing) to improve accuracy in a golf putting task.  Thus, we seek to im-
prove the learner and domain modeling capacity based on the ACT-R/Φ architecture. 
We also seek to incorporate sensors in GIFT for improved assessment in a psychomotor 
task that is completed beyond the desktop.   

 
1.2 Outlines of the Study 

In this paper, we report our implementation of a physio-cognitive model of golf put-
ting in ACT-R/Φ [12, 13], and that is based on the previous cognitive task analysis [12-
14]. Next, we introduce a study environment where the learner takes a GIFT (General-
ized Intelligent Framework for Tutoring) course of tactical breathing and practices a 
series of putting trials. We test sensors and their incorporation into GIFT to better assess 
the learner’s psychomotor performance while the learner interacts with GIFT. We run 
a pilot study, measuring a participant’s physiological states and physical motions. The 
offline analysis of the data tells us what further learning analytics is needed to improve 
the capability. We conclude the paper with a discussion of the lessons learned from our 
exploration and the suggestions for further development toward the mobile GIFT.   

2 Learning and Assessment  

2.1 Learning in the Psychomotor Task Domain 

A golf putting task consists of subtask skills of: (a) cognitive skills including “judge 
the line of the ball”, “check with hand and grip postures”, (b) a physiological control 
skill including “slow breathing”, and (c) physical actions including “walking to the 
ball” and “hitting the ball”. These elements are interdependently connected to produce 
a precision-required performance [14].  
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Interestingly, it has been reported that there is a functional relationship between at-
tentional control and psychomotor performance [e.g., 15, 16]. Particularly, skill levels 
(from a novice to an expert) are related to attentional resources (i.e., step-by-step exe-
cution of skill components vs. proceduralized performance). In addition, it has been 
reported that a physiological change (e.g., respiratory and heart rate) is related to psy-
chomotor performance [17]. Therefore, it can be argued that physiological and cogni-
tive factors are functionally interrelated with psychomotor performance, and an ad-
vanced understanding of such factors is highly necessary to improve the precision-re-
quired performance in a psychomotor task.   

It also has been reported that heart rates are related to degradation of psychomotor 
performance—i.e., around 115 beats per minute (bpm), fine motor skills begin to dete-
riorate, and complex psychomotor skills are degraded around 145 bpm, and gross motor 
skills (e.g., running) start to break down above 175 bpm [17, pp. 31]. As a training 
strategy, a tactical breathing skill (e.g., slow breathing) is used to address such perfor-
mance degradation under pressure [e.g., 17]. Furthermore, it is reported that tactical 
breathing and mental imagery training might mitigate negative effects of stress for po-
lice officers [18], and stress management training with tactical breathing is effective in 
reducing stress in soldiers [e.g., 19]. Thus, it is worth exploring a skill acquisition ap-
proach that can reduce and delink memory from a physiological arousal through the 
physiological control of tactical breathing.  

2.2 Assessment with Sensors in the Psychomotor Task Domain 

Based on the previous marksmanship study [20], we extend GIFT to use an accel-
erometer in a smartphone, which supports monitoring motions during the physical prac-
tice session in GIFT. We exploit the heterogeneous sensor data from an accelerometer 
in a smartphone and from a BioHarness to measure respiratory rates simultaneously.  

Assessing and instructing the learner beyond the desktop environment would require 
tools be portable and mobile. These days, there is a stream of research about mobile 
health with pervasive technology, seeking to enable IoTs (Internet of Things) with em-
bedded microprocessors to identify health related human factors [e.g., 21, 22]. A 
smartphone features various sensors including an accelerometer, a magnetometer, a gy-
roscope, and a barometer, and can be useful to better assess the learner state while they 
are interacting with an ITS beyond the desktop environment. These sensors can be used 
to discern user activity to determine the learner's skill level [e.g., 23, 24] and to  provide 
contextual change, for example location, which may also be used to alter content [e.g., 
25].  

The current study focuses on connecting GIFT with an Android smartphone. We 
utilize acceleration data that is considered as the time rate of velocity change in terms 
of magnitude or direction. These acceleration data can provide motion analysis of golf 
swing [e.g., 26], and have been actively used to monitor animal behavior [e.g., 27].  
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3 The Model 

In this section, we introduce our physio-cognitive model. Also, it is explained how 
the model can be used to extend the domain and learner modeling capability in ITSs.   

3.1 Extending the Domain and Learner Modeling in ITSs 

The domain model is referred to as a repository of knowledge and skills that are 
being taught. It indicates the scope of the subject matter to be taught to the learner, the 
sequences of the topics for instruction, and a sequence of interdependent learning ob-
jectives [28]. The learner model, as a subset of the domain model, specifies how the 
learner acquires knowledge and skills in the domain model. It should be able to account 
for how knowledge and skills are learned through practice.  

Domain and learner models—some are grounded on constraint-based models [e.g., 
29, 30] or others are grounded on production rule-based models [e.g., 31]—have pro-
vided useful information to understand the domain and the relevant task knowledge and 
skills required in that domain. Domain and learner models consist of knowledge com-
ponents which is defined as an acquired unit of cognitive function or structure inferred 
from performance on a set of related tasks [32]. A benefit of such models is that their 
runnable simulations, providing predictions that can be compared with human data. 
However, as noted earlier, the domains that have been considered are mostly limited to 
the cognitive task domain.  

The different domains (e.g., a cognitive, psychomotor, and social domain) would 
affect the way of modeling the domain and learner. In the cognitive domain, one of the 
objectives of the learner would acquire the maximum number of declarative memory 
items that are usually specified in the domain model. In the psychomotor domain, the 
amount of declarative memory items would not be necessarily large, but the learner 
model would need a finer tuned domain model with a computational understanding of 
physiological responses interacting with memory and motor modules.   

For example, the novice learner would acquire knowledge and skills about the put-
ting task, which can be modeled using a rule-based system (e.g., ACT-R); a similar 
rule-based system can be also used (e.g., Soar). The learner would go through cognitive 
processes (e.g., judge the line of the ball) before making an action (hit the ball).  At the 
same time, the learner would control his/her breath to increase accuracy. In seconds, 
the task may be completed. Compared to other cognitive tasks (e.g., solving an algebra 
question), the putting task does not necessarily require a lot of symbolic and explicit 
knowledge components, but it requires a finer granularity of instructions about how to 
successfully coordinate cognitive, physiological, and physical processes.  

3.2 The Physio-cognitive Model 

We have developed a computational model for a psychomotor task. The first model 
[14] produced a simple task time to complete a putting stroke by skill levels, which is 
based on ACT-R [8]. Fig. 1 gives a high-level view of the version of the model where 
roughly 50% of productions use declarative memory (ACT-R retrieval requests) as a 
part of their processing after 5,000 runs (known as 50% expertise, see [33] for a back-
ground on the Herbal/ACT-R compilation mechanism used to develop the initial 
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model); the bottom of Fig. 1 also gives the resulting model (with compiled produc-
tions). 

 
Fig 1. The 50% putting model after 27 rule firing in any given “putt” to 5000 runs with no 
procedural or declarative memory noise to affect the production firing. The red solid-line 
boxes represent rules that include a declarative memory component, while the black dot-

ted-line represents rules that do not use declarative memory. 

 
The physio-cognitive model is based on ACT-R/Φ [12, 13]. We chose to use ACT-

R/Φ as an architecture to build a learner model because it is a hybrid cognitive archi-
tecture with a physiological representation. In addition, ACT-R (of which ACT-R/Φ is 
an extension) has been used to develop cognitive models for tutoring systems [31]. We 
explore the architecture to implement a computational model, which can provide us 
with the details of the psychomotor skill learning process under a physiological con-
straint. Our approach allows more fine-grained and potentially accurate predictions of 
human performance and a better understanding of the learner and domain model that 
can improve the tutoring operations.  

Over time we see the model use the production compilation mechanism (procedur-
alization) to combine several rules and speed up processing. Some rules (e.g., back-
swing) cannot be compiled because they need to represent the physical amount of time 
it takes to complete that physical action. Though proceduralization does combine some 
rules with declarative memory retrieval, some rules with declarative memory compo-
nents remain even after 5,000 simulated practice swings (red, solid-line boxes). This 
tells us two things: (a) the model has not yet fully proceduralized the putting behavior 
process, and (b) the model will remain vulnerable to both procedural and declarative 
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memory noise after many simulated runs. The latter is important as it affects the 
model’s ability to follow the correct steps in as fast time as possible and theoretically 
leaves the possibility for incorrect facts be used to accomplish any task that has an 
explicit declarative memory component. If the model were to get to a point of using 
only compiled rules that do not require declarative memory retrieval, the risk of incor-
rect steps and information is reduced as the only incorrect behavior then would stem 
from an incorrect rule firing. These incorrect steps may arise from noise interference 
with the declarative memory retrieval process. 

Computational understanding of the mechanisms will help us design instructions and 
feedback in ITSs. The physio-cognitive model can help explain the functional mecha-
nisms related to behavioral adaptation during different breathing exercises. This model 
also moves us towards explaining how breathing exercises may affect movement 
through long-term learning stages (e.g., [34]). Fig. 2 shows the primary mechanisms of 
interaction between physiological and cognitive parameters (but see [35, 36] for a more 
in-depth discussion of the mechanisms). 

 

 
Fig 2. In ACT-R/Φ, Epinephrine (adrenaline), corticotrophin releasing hormone (CRH), 

and cortisol are physiological variables that combine to modulate arousal, which then 
modulates declarative memory noise. 

 
In the model, the noise in declarative and procedural memory (in ACT-R the :ans 

and :egs parameters, respectively) is modulated by an arousal variable via a piecewise 
function that causes a U-Shaped effect. When arousal is too high or too low, noise is 
added to the subsymbolic memory equations (in ACT-R) that govern a cognitive 
model’s ability to select the correct memory elements to complete a task. Arousal is 
affected by changes in several physiological variables, including epinephrine, cortico-
trophin releasing hormone (CRH), and cortisol. This effect on noise causes several sys-
tematic effects on psychomotor learning, affecting the model’s ability to use the correct 
memory given a context (via noise) and implicitly affects learning, as the learning 
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mechanisms in ACT-R are directly affected by the declarative and procedural memory 
elements used during a task. Thus, learning stages and a model’s ability to move 
through later stages is modulated by arousal. Slow-breathing modulates this affect by 
reducing the effects of stress through its modulation of the balance between the para-
sympathetic and sympathetic systems, and reduction of HPA-axis activation (see [35] 
for a more in-depth background and discussion on the mechanisms that govern this shift 
in the physiological portion of ACT-R/Φ). 

4 The Pilot Study 

We developed a study environment to test our theory-based model and report our 
pilot testing with one participant—the IRB is in preparation based on our pilot testing. 
The study intends to investigate putting performance during slow breathing. In this pilot 
testing, the participant performed 5 putting trials under the regular breathing condition, 
and then performed 5 additional putting trials with slow breathing—i.e., the participant 
breathes in for 4 s, holds still for 4 s, breathes out for 4 s, and holds still for 4 s. 

The Study Environment.  We extended GIFT to incorporate sensor data from an 
accelerometer in a smartphone. The data is relayed through a network connection, while 
the BioHarness sensor measuring respiratory rates relays data through Bluetooth. We 
have authored a series of GIFT courses that teach the tactical breathing technique 
shown in Fig. 3. We tested the study environment and its apparatus and collected pilot 
performance data from one participant.  

A sensor for physiological data collection.  The BioHarness sensor was used to 
measure and collect physiological data--e.g., the respiration rate (breathing rate: breaths 
per min.). A strap sensor measures the differential size of the expansion and contraction 
of the thoracic cavity. The sampling frequency of measuring respiratory activity and 
heart rates are 18 Hz and 250 Hz, respectively. 

 

 
 

Fig 3. The GIFT study environment, showing data streaming from an external sensor af-
ter a domain session generation (an accelerometer in an Android phone).   
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A sensor for physical data collection. An accelerometer in a smartphone was used 
to identify motions during the physical task. Acceleration data has been used to cate-
gorize behavioral changes of an animal, such as resting, walking, jumping, standing, 
foraging [e.g., 27]. It is expected that physical motions in golf putting can be also iden-
tified and categorized. Fig. 3 shows an example acceleration data during the tactical 
breathing and putting. Golf swing and putting motions would consist of five critical 
points including the backswing point, the downswing point, the minimum peak point 
of x, y-axis, the maximum peak point of x, y-axis, and the end point [e.g., 26]. 

 
Testing the Apparatus and Study Environment.  The purpose of data exploration 

is to identify the aforementioned body movements that are directly related to the putting 
task. The dataset shows the acceleration along with the three axes of the smartphone 
movement that is attached to the participant’s left upper arm (x - sideways acceleration 
of the device; y - forward and backward acceleration of the device; and z - acceleration 
up and down).  For the current pilot testing, we manually annotated the start and end of 
breath control and putting performance. Fig. 4 shows the acceleration plot of time frame 
2:30 to 5:30 during the first set of 5 putting trials.  

 

 
Fig. 4.  Acceleration data in the time window ranging from 02:30 to 05:30.  

 
Fig. 5 shows the breathing patterns from the two time frames (breaths per minute). 

The time frame (2:30 to 5:30) corresponds to the putting trials with regular breathing, 
and the time frame (5:30 to 8:30) corresponds to the putting trials with slow breathing. 
The median respiratory rate value with the first and third quantile values for the time 
frame (2:30 to 5:30, regular breathing) is 10.50 [9.00, 13.60], and for the time frame 
(5:30 to 8:30, slow breathing) is 8.70 [6.90, 11.00]. The participant’s goal is to land the 
ball on the target by hitting the ball that is 183 cm away from the target. As a method 
to evaluate the performance of each putting trial, we measured the distance of the ball 
from the target after each trial. After measuring, the ball was removed from the green 
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so that it does not interfere with the subsequent trial. During the regular breathing trials, 
the average distance from the target (post-shot) was 32.8 cm, and during the slow 
breathing, the average distance was 15.4 cm.  

 
Fig 5.  Respiratory activities in the two time frames (regular and slow breathing).   

5 Conclusions and Discussion 

We believe that the computational understanding of potential effects of slow breath-
ing can make a useful contribution to the design of an instruction and feedback in a 
psychomotor tutor. The physio-cognitive model in ACT-R/Φ accounts for the several 
mechanisms of cognitive, physical, and physiological processes that affect human be-
havior. It can strengthen the domain and learner modeling capability because the 
physio-cognitive model is able to inform us of a theory-based instructional strategy in 
ITSs. That is, a representation of arousal in the physio-cognitive model modulates pa-
rameters that are important to learning and performance by influencing threshold and 
noise that are relevant to performance. At any given point of time, a physio-cognitive 
model may (or may not) be able to retrieve a declarative memory element, and to fire a 
production rule. Three stages of learning may be also affected, as arousal modulates 
declarative and procedural memory use during the learning process. Particularly, this 
modulation by arousal is represented in the declarative module through both activation 
values and harvesting of chunks, and in the procedural system through utility values, 
reinforcement learning, and production compilation in the ACT-R/Φ architecture. 
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Based on the different skill level, a physio-cognitive model can predict the process of 
learning, and it can be used to generate adaptive instructional strategies in terms of the 
learning stage.   

Our pilot testing starts to explain the participant’s performance and learning behav-
ior by using the sensor data of physical motions and physiological states. Based on the 
study environment, it is necessary to further collect experimental data and to test the 
ACT-R/Φ theory by comparing data with the physio-cognitive model prediction, and 
to investigate the relationship between slow breathing and performance since the best 
score was observed under the slow breathing condition—the distance from the target 
was 3.6 cm.   

We found that it is also worth utilizing a machine learning technique to assign the 
identified putting motions (backswing, downswing, ball contact, hitting, follow-thor-
ough) to the acceleration data set. A machine learning technique has been used to pro-
cess complex and large accelerometer data to classify and cluster animal behaviors 
[e.g., 27]. For the current pilot testing, we manually annotated the start and end of breath 
control with each putting trial.  It will be necessary to consider how to deal with the 
large set of motion related acceleration data from multiple individuals and from multi-
ple/hierarchical subtasks.   

Though there is much work to be done with the physio-cognitive model, its integra-
tion to be used in GIFT, and the study, we believe the presented work is a positive step 
in developing an adaptive tutor that can determine cognitive state based on a combina-
tion of behavioral and physiological data. As we continue to develop adaptive systems 
for the learner, it will be useful to integrate the context of physiology to determine the 
learner state. This is especially important because we want to reduce maladaptive be-
havior in the warfighter as training continues to include more information to positively 
influence their mind-body state and performance. 
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