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ABSTRACT 

For virtually all hospitals, utilization rates are a critical managerial indicator of 

efficiency and are determined in part by turnover time.  Turnover time is defined as the 

time elapsed between surgeries, during which the operating room is cleaned and prepared 

for the next surgery.  Lengthier turnover times result in lower utilization rates, thereby 

hindering hospitals’ ability to maximize the numbers of patients that can be attended to.  

In this thesis, we analyze operating room data from a two year period provided by 

Evangelical Community Hospital in Lewisburg, Pennsylvania, to understand the 

variability of the turnover process.  From the recorded data provided, we derive our best 

estimation of turnover time.  Recognizing the importance of being able to properly model 

turnover times in order to improve the accuracy of scheduling, we seek to fit distributions 

to the set of turnover times.  We find that log-normal and log-logistic distributions are 

well-suited to turnover times, although further research must validate this finding.  We 

propose that the choice of distribution depends on the hospital and, as a result, a hospital 

must choose whether to use the log-normal or the log-logistic distribution. 

 

Next, we use statistical tests to identify variables that may potentially influence 

turnover time.  We find that there does not appear to be a correlation between surgery 
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time and turnover time across doctors.  However, there are statistically significant 

differences between the mean turnover times across doctors. 

 

 The final component of our research entails analyzing and explaining the benefits 

of introducing control charts as a quality control mechanism for monitoring turnover 

times in hospitals.  Although widely instituted in other industries, control charts are not 

widely adopted in healthcare environments, despite their potential benefits.  A major 

component of our work is the development of control charts to monitor the stability of 

turnover times.  These charts can be easily instituted in hospitals to reduce the variability 

of turnover times. 

 

Overall, our analysis uses operations research techniques to analyze turnover 

times and identify manners for improvement in lowering the mean turnover time and the 

variability in turnover times.  We provide valuable insight into a component of the 

surgery process that has received little attention, but can significantly affect utilization 

rates in hospitals.  Most critically, an ability to more accurately predict turnover times 

and a better understanding of the sources of variability can result in improved scheduling 

and heightened hospital staff and patient satisfaction.  We hope that our findings can 

apply to many other hospital settings. 
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1.0  INTRODUCTION 

The downtime between surgeries is referred to as turnover time.  Essentially, this 

is the amount of time spent between surgeries, in order to clean and sterilize the room, 

prepare the next surgery, and so on.  The scheduling of surgeries is dependent upon 

surgery times and turnover times, both of which are variable.  By analyzing turnover time 

and identifying ways of controlling its variability, it could be possible to better schedule 

surgeries, thereby increasing hospitals’ overall utilization rates of their operating rooms. 

 

This research falls under the realm of healthcare operations, a field that is 

attracting increased attention from operations researchers.  The objective of this thesis is 

to propose answers to some previously unanswered questions dealing with turnover time 

in operating rooms.  Some of these questions are: What theoretical distribution best 

describes the turnover process?  Is there a relationship between the doctor who performs 

the surgery and the turnover time?  Does the turnover process exhibit non-random 

variability than can be eliminated through better quality control mechanisms?  Is there a 

correlation between the surgery type and the length of turnover?  In this thesis, we will 

closely examine the variables effecting turnover times, seeking ways to cause a reduction 
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in the median turnover time and reduce the variance of times, with an understanding that 

such reductions would be beneficial to many hospitals. 

 

Due in large part to the increased financial pressures many hospitals are facing, 

they are scrutinizing their processes and welcoming suggestions for ways to improve 

efficiency without compromising effectiveness.  Evangelical Community Hospital in 

Lewisburg, Pennsylvania is a non-profit hospital that is just one of the many hospitals 

finding itself with decreasing operating margins and, therefore, in a position where it 

would benefit from operations research being used to identify manners of improving its 

practices. 

 

The inspiration for this study was derived from several sources.  The real 

expressed need of Evangelical Community Hospital was something I decided to research 

as I have an interest in the healthcare field and, in particular, an interest in the application 

of operations research methods in a hospital setting that was initially sparked by some of 

the models studied in my Decision Sciences coursework.  My desire to play even a small 

role in advancing the health care industry was further fueled by the insight into surgery 

and hospital environments offered by surgeon and author Atul Gawande (2002, 2008, 

2009). 

 

The objective of our study is to identify inefficiencies and propose enhancements 

to the current process, from the scheduling of surgery appointments until the operating 
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room has been cleaned and prepped for the next surgery, which would lead to minimizing 

the turnover time between surgeries, thus potentially reducing the overtime operating 

costs, which could lead to significant cost savings.  Another important consequence 

would be that, as the turnover process is kept in control, more operating room capacity 

can be available, which would lead to an increase in the number of surgeries performed, 

thus raising the overall service level of the hospital. 

 

This study is based upon deidentified data from Evangelical Community Hospital 

of historical records of surgeries performed during the two year period from February 

2008-January 2010.  By studying the implications of operating room scheduling on 

turnover times at this hospital, conclusions can be drawn that should benefit other 

hospitals as well. 

 

Our first major contribution is the statistical analysis of fitting turnover times, 

which has not previously been addressed in the literature.  In addition, another major 

contribution of this work is the development of a quality control chart to monitor turnover 

variability.  Control charts have been previously used in manufacturing processes, but not 

in hospital environments.  The unique dimensions of hospitals require focus on 

operations research explicitly devoted to hospitals and the issues they face on a daily 

basis.  The amount of money being earmarked for health care is rapidly increasing, 

demanding an improvement in the efficient use of resources. 
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This thesis is organized as follows.  In Section 2.0, we present an overview of the 

related literature.  Next, we explain the model and design of this empirical study.  The 

subsequent sections detail the statistical findings and the quality control mechanisms we 

developed.  Finally, we present the conclusions derived from our research and offer 

suggestions for how to utilize them to improve health care efficiency and better 

understand the variables underlying turnover time. 
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2.0  LITERATURE REVIEW 

There currently exists a vast body of literature covering topics related to our study 

such as the modeling of surgery times, scheduling approaches, the introduction of 

technology in hospitals, the effects of long turnover times, and quality control in 

healthcare. 

 

Appointment scheduling is the science and art of trying to match supply 

(healthcare provider and equipment/resource availability) with demand (patients requiring 

care).  Gupta and Denton (2008) detail the challenges with healthcare appointment 

scheduling, focusing on opportunities to apply operations research techniques to improve 

the methods currently utilized.  They outline the necessity to incorporate such techniques 

as the rising cost of healthcare puts pressure on healthcare providers to improve 

efficiency.  Furthermore, they emphasize that efficiency and timely care, which are largely 

affected by appointment scheduling, are major determinants in a patient’s satisfaction with 

the care she receives.  Strum et al. (1999) define underutilization and overutilization, 

stating that they are important indicators of operational efficiency and the accuracy of a 

surgical schedule.  If a surgical case begins and ends within the budgeted operating block 

time, it is classified as budgeted utilization, while unused budgeted time is considered 
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underutilization.  Cases beginning or ending outside of the budgeted block time are 

classified as overutilization.  Working to create a schedule with maximum budgeted 

utilization can have significant cost savings. 

 

Over time many scheduling systems have developed, all seeking to improve upon 

existing systems.  For example, Mount Sinai Hospital used integer programming to devise 

a schedule in which each department is allocated certain blocks of time on specific days, 

which they then have the responsibility of apportioning out to different surgeries (Blake 

and Donald 2002).  LaGanga and Lawrence (2007) looked at the viability of applying a 

practice common in other industries with perishable products, such as the airline industry, 

to a healthcare environment.  They researched the implications of overbooking surgeries 

in order to account for no-show patients (patients who fail to arrive for scheduled 

appointments).  The conclusion was that overbooking (scheduling more appointments than 

are able to be accommodated) improved productivity and patient access, but also increased 

patient waiting time and overtime costs.  Overall, the benefit of overbooking is most 

pronounced in hospitals with large numbers of patients, high no-show rates, and low 

service variability, although there are benefits to the practice even in settings in which 

these criteria do not apply. 

 

When creating a surgery schedule, it is imperative that it is designed so that delays 

are minimized.  A patient requiring surgery may face two types of waiting: [1] indirect 

waiting time, which is the time elapsed from the moment a patient requests an 
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appointment and the time that an appointment is scheduled for; and [2] direct waiting 

time, which is the time elapse between a patient’s appointment time and the time that she 

is seen by a healthcare provider.  Murray and Berwick (2003) focus on ways to minimize 

delays for patients, thereby improving overall efficiency.  Gupta and Denton (2008) also 

explain that access rules play a major role in determining the length of indirect and direct 

waiting times, as healthcare providers commonly have to deal with unscheduled 

appointments due to emergencies. 

 

Surgery times are inherently variable, but an understanding of the variability 

allows for better scheduling of surgeries.  Therefore, attention has been directed at how to 

best model surgery times.  Empirical studies have demonstrated that surgery times are best 

modeled using a log-normal distribution.  For example, Strum, May, and Vargas (2000) 

illustrated that the log-normal model is superior to the normal model for large sets of 

surgery times.  Consequently, the practice of estimating surgery times based on a log-

normal model has been widely adopted.  A log-normal distribution has positive support 

and positive skewedness, which seems apt to surgery times, in which a select few cases 

may take much longer than average. 

 

Other studies examined turnover times, recognizing the role that prolonged 

turnovers can play in reducing surgeon satisfaction (Dexter, Epstein, et al. 2005).  Using 

operating room data, they identified turnovers greater than fifteen minutes beyond the 

mean turnover time.  The authors were able to successfully devise manners of estimating 
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the percentage of turnover times that are prolonged and at what times of day they occur.  

These results can in turn be given to managers, who can benefit from them by targeting 

their efforts to specific times of the day that have the largest percentages of greater than 

average turnover times.  This study also laid out many of the standards for evaluating 

turnover times, such as excluding from the analysis turnover times greater than three 

standard deviations beyond the mean for benchmarking purposes. 

 

A team of doctors researched whether there are in fact measurable benefits to 

reducing turnover times (Dexter, Abouleish, et al. 2003).  They recognized that, in 

addition to quantitative benefits, there are qualitative benefits, including improved job 

satisfaction among healthcare personnel and improved patient satisfaction.  Yet, their 

research centered on using information system data to measure the quantitative benefits.  

Reducing mean turnover time anywhere from three minutes to nineteen minutes was 

shown to cause a 0.8% to 4.0% reduction in staffing costs.  As hospitals increasingly look 

for ways to cut costs, this research illustrates that reducing turnover times can be a 

valuable place to begin. 

 

As mentioned, there has been the widespread belief that longer turnover times 

reduce hospital employee satisfaction.  Yet, a recent study shows that surgeons’ 

perceptions of turnover times are not accurately correlated with actual turnover times 

(Masursky, et al. 2011).  Instead, ingrained opinions, such as attitude about the hospital 

facility and about the activity of the teams responsible for turnover, are believed to 
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influence surgeons’ perceptions of turnover times.  In general, surgeons tend to 

overestimate the percentage of longer than average turnovers that occur. 

 

Wright, Roche, and Khoury (2010) studied an initiative to improve timely starts in 

an operating room.  Recognizing the importance of improving efficiency in operating 

rooms, they evaluated a strategy that strove to improve efficiency by increasing 

utilization.  They identified the most common reasons for delays, which were lack of 

preparedness of patients and surgeons and anesthesiologists being unavailable.  Then, they 

implemented a strategy which resulted in the occurrence of on-time surgical starts 

increasing from approximately six percent to sixty percent over the course of nine months.  

Their approach involved several initiatives and they did lament on the high resistance to 

change or efforts at improvement in hospital settings, and in operating rooms in particular. 

 

A pair of doctors built a study predicated on the hypothesis that operating room 

turnover time can be decreased by looking closely at the tasks that routinely occur in an 

operating room and identifying ways to minimize inefficiencies (Cendán and Good 2006).  

They looked at the work flow and tasks for each integral member of the operating room 

team and then redrew each individual’s work flow diagram to eliminate many 

inefficiencies.  Furthermore, they paid careful attention to discovering moments in the 

process that would be improved by briefly adding the assistance of an additional person.  

Once these changes were implemented in a tertiary care center the turnover time decreased 
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from a mean of 43.7 minutes to 27.7 minutes, allowing for the mean caseload to increase 

from 1.78 to 2.34 per day. 

 

Rather than focusing on improving existing processes, some researchers have 

focused on analyzing whether there are benefits to instituting parallel processing in 

operating rooms (Friedman, et al. 2006).  Most hospitals currently utilize a system in 

which patients progress through the hospital in a sequential fashion, beginning with check-

in and culminating with recovery.  A study at Massachusetts General Hospital was 

designed to analyze the benefits of using a parallel processing system, in which an 

operating room team can work on two patients simultaneously by allowing overlap in the 

steps (such as one patient being administered anesthesia while another is being moved to 

recovery).  By implementing parallel processing, turnover time and induction time were 

shortened, thereby improving operating room efficiency and allowing for an increase in 

the number of cases per day.  Furthermore, this was accomplished without significantly 

increasing costs.  Similarly, Marjamaa et al. (2009) demonstrated that parallel workflow 

models were superior to the traditional sequential ones.  All four parallel processing 

scenarios analyzed yielded reduced nonoperative time.  Another team conducted an 

empirical study looking at the benefits of implementing parallel processing for solely 

anesthesia induction (Sokolovic, et al. 2002).  The study was designed to determine if an 

increase in anesthesia staff to allow for induction of anesthesia before the previous 

surgical case ended would lead to increased efficiency.  The results were affirmative, with 
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the practice corresponding to significantly decreased time between cases as the next 

patient had already received anesthesia prior to the conclusion of the preceding surgery. 

 

Harders et al. (2006) also looked at the potential benefits of process redesign, 

finding similar results.  They used a multidisciplinary approach to attempt to lower 

nonoperative time, which accounts for a large portion of time in operating rooms.  They 

found process-related delays to be common and, therefore, worked to eliminate them, 

significantly reducing turnover time. 

 

Overdyk et al. (1998) looked more comprehensively at various ways of improving 

operating room efficiency.  They began by analyzing data on delays and the causes of the 

delays.  Next, they implemented plans to minimize delays, which consisted primarily of 

operating room efficiency awareness education and personal accountability measures.  

Lastly, Overdyk et al. measured the results of their efforts to improve efficiency and found 

rather favorable results: first case of the day start time became earlier; surgeons, 

anesthesiologists, and residents were unavailable much less often; and turnover time 

decreased by an average of sixteen minutes. 

 

Stepaniak et al. (2010) investigated the effects of scheduling similar cases 

consecutively and using a fixed operating room team.  The results indicated that there 

were potential benefits to this as preparation and turnover times decreased significantly.  
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Furthermore, for simple surgeries, procedure times even decreased; however, this effect 

was not noticed with complex types of surgeries. 

 

Adams et al. (2004) also tried to identify ways of decreasing turnover time, which 

was supported by surgeons, anesthesiologists, and hospital staff.  Their efforts focused on 

using six sigma initiatives to ultimately lead to process redesign.  Their application of six 

sigma principles yielded a 32% decrease in the mean patient turnaround time, coupled 

with a 15% decrease in the standard deviation.  Similarly, the mean surgeon turnaround 

time was reduced 32% and the standard deviation was lowered 15%.  The authors 

concluded that the decreased turnover times would allow for at least an additional eleven 

general surgery cases to be added per month, helping the hospital to sustain an operating 

margin.  Perhaps equally as important, physicians and patients indicated much higher 

satisfaction with the process and there was a 95% increase in reported teamwork among 

operating room staff. 

 

A study was done to quantify the staffing costs incurred as a result of longer-than-

average surgery times (Abouleish, et al. 2004).  Usually the additional revenue generated 

by longer surgeries is not enough to offset the staffing costs.  The researchers looked at the 

net staffing costs faced by anesthesiology departments when cases are longer than 

expected and determined that the costs can be very large, with the exact figure depending 

on compensation levels and payer mix. 
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One of the primary reasons for research on manners to improve hospital 

effectiveness and efficiency is the mounting financial pressures facing hospitals.  At Texas 

Children’s Hospitals, the introduction of health-care optimization technology helped 

improved the hospital’s financial situation, allowing them to provide better care (Born, et 

al. 2004).  While the technology was designed to optimize contracts with insurers, there 

are plans to implement similar technology for different purposes as the results have 

demonstrated the enormous potential benefits of utilizing optimization technology in 

hospital settings. 

 

Trying to also harness the benefits of technology, a study focused on the 

implications of utilizing information systems to predict surgery durations (Dexter and 

Macario 1996).  The most accurate estimates were derived from a model that combined 

the estimates of commercial scheduling software and surgeons’ estimates, with the 

inclusion of patient data shown to have no impact.  However, even this model did not 

produce significantly better time predictions than either the scheduling software or the 

surgeons’ estimates alone, with predictions being only twelve to eighteen percent more 

accurate. 

 

A computer simulation was done to evaluate the feasibility of fitting in an 

additional surgical case per day if efforts were taken to make small decreases in the length 

of each case (Dexter and Macario 1999).  The simulation showed that decreasing the 

duration of cases throughout the day would be unlikely to result in sufficient additional 
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available time to schedule another surgery.  As a result, Dexter and Macario suggest that a 

better approach may be to optimize the scheduling of surgeries.  Wright and colleagues 

(2010) do point out, however, that even if not enough time is gained to fit in an additional 

case, ending the day earlier could potentially reduce staffing costs as it may reduce the 

amount of overtime paid. 

 

A major component of our research is understanding how quality control measures 

can benefit hospitals in regards to reducing turnover time.  While quality control has been 

studied outside the healthcare realm, there is also a vast body of literature examining the 

role that it can play in healthcare settings.  Seim, Andersen, and Sandberg (2006) 

evaluated the speed with which statistical process control detected reductions in 

nonoperative time (defined as “the sum of all time spent not performing surgery”) when a 

surgeon performed successive operations in the same room.  Furthermore, they analyzed 

its ability to detect small changes, and concluded that statistical process control is a 

valuable tool for hospitals as it was able to detect small changes over an extended period 

of time and was able to detect changes quickly.  They mention the importance of having 

such a tool for detecting both desired and undesired effects, particularly when hospitals 

are facing enormous financial pressure.  The method they used was to monitor changes 

following the introduction of a new process, thereby evaluating whether the process 

change had the desired effect.  To analyze whether variations were due to chance, in 

which case the system would be considered stable, or were due to nonrandom assignable 

causes, in which case the system would be considered unstable, Seim, Andersen, and 
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Sandberg evaluated the data collected using Western Electric rules.  Western Electric rules 

are one manner of detecting whether a system is out of control using standard statistical 

process control tools, like control charts. 

 

The study and findings presented in the following chapters will hopefully further 

the research that has already been done to improve operating room processes and will 

introduce new ideas regarding how focus on turnover times can have advantageous 

results for hospitals.  The statistical analysis of turnover times and introduction of a 

quality control tool for identifying non-systematic changes in mean turnover time begin 

to fill a critical void in the existing body of literature. 
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3.0  TURNOVER DATA ANALYSIS 

3.1 INTRODUCTION 

The first step of this empirical study was to analyze the data provided by 

Evangelical Community Hospital.  The data were scrubbed, sorted, and analyzed to test 

for correlations between doctors and turnover times and to test what distribution best fits 

the data.  The data consisted of deidentified Evangelical Community Hospital patient 

files with records of surgical cases from February 2008 to January 2010.  The files 

contain data regarding the surgeon, the operating room, the beginning surgery time 

(defined as “wheels in,” or the time a patient is brought into the operating room), and the 

ending surgery time (defined as “wheels out,” or the time a patient is removed from the 

operating room).  The turnover time interval is not explicitly measured by the hospital at 

this time. 

 

Turnover time was defined as the amount of time elapsed between completion of 

one surgery (“wheels out”) and the beginning of the next surgery (“wheels in”) in the 

same operating room.  Essentially, it is the nonoperative time between surgical cases 

during which the operating room is cleaned and prepared for the next patient.  The below 



 24 

figure depicts our definition of turnover.  Please note that some researchers include 

anesthesia in their definitions of turnover time.  As we did not have data on anesthesia 

times this is not included in our definition of turnover. 

 

 

 

 Unfortunately, because Evangelical Community Hospital does not keep detailed 

records that include true turnover time, we were forced to estimate the turnover times.  

The time elapsed between surgeries may in fact be due to many factors (doctors or nurses 

arriving late, delays with patient preparation, etc.).  However, we have no way of 

accounting for these factors. 

 

To begin the data analysis, the data first had to be prepared and standardized so 

that a variety of statistical analysis tools could be applied to draw conclusions.  This 

began with consolidating the data into one large file with a consistent format.  The data 

 

Surgery i 
 

Cleaning 
 

Prepping 
 

  Surgery i+1 

anesthesia 

turnover time 

Figure 1. Turnover time identification 

anesthesia 
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originally received was in multiple files and was not recorded in a consistent manner.  

Furthermore, the data had to be cleaned by removing duplicate or incomplete records and 

correcting misspellings of surgeon’s names.  In order to calculate and subsequently be 

able to analyze the turnover times, we sorted the records first by date.  Then, the data was 

sorted by operating room and, finally, by start time of the surgery.  The result was a 

comprehensive list of surgeries in chronological order by operating room. 

 

At the conclusion of this process, the data was organized and we were prepared to 

calculate turnover time.  Yet, there were important factors to consider.  First, due to the 

poor record keeping there were many cases that had incomplete data.  If the ending time 

of the previous surgery or the starting time of the current surgery was not recorded, a 

turnover time could not be calculated and this data point had to be removed.  Next, a 

turnover time could only be calculated when the operating room for the previous surgery 

was the same as that for the current surgery.  Given these parameters, we created a list of 

turnover times for applicable cases.  The result was a set of 3360 turnover times 

calculated in minutes from the given time of day surgery start and end times.  This data 

set was reduced to 3346 by eliminating turnover times for doctors who had fewer than 

five turnover times as we considered these samples to be too small.  If we had 

information regarding the procedures, or types of surgeries, we would separate the data 

by this variable.  However, in the absence of this data, we have chosen to separate the 

turnover times by doctor.  As doctors tend to focus on specific types of surgeries 

(particularly in a community hospital like Evangelical Hospital), it is our best 
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approximation for surgery types.  When the doctors with fewer than five surgeries are 

eliminated, there are 34 doctors with turnover times remaining in the data set remaining. 

 

In order to arrive at the final data set on which our statistical analysis is based, we 

did one final step, which was to account for outliers.  We considered two approaches - 

removing outliers and setting outliers to a determined maximum turnover time.  After 

researching both methods, we opted for the former.  We believed it was important to 

adjust our data set to account for the outliers as the circumstances of these cases may be 

such that there was indeed scheduled to be a break between surgical cases (nonsequential 

case scheduling) and, therefore, the turnover times are not reflective of the actual time 

required to clean and prepare the operating rooms (Dexter, Epstein, et al. 2005).  

However, we believed that capping, or setting all prolonged turnover times to a 

maximum, would result in an inaccurate cluster of turnover times at that maximum point, 

thereby distorting distribution fit tests. 

 

Prior to adjusting the outliers, the mean of the turnover times was 𝜇 = 41.70 

minutes and the standard deviation was 𝜎 = 40.37 minutes.  We followed standard 

practice and eliminated all turnover times greater than the mean plus three standard 

deviations, calculated to be 162.81 minutes.  Chebyshev’s Theorem states that at least 

1 − 1
𝑘2

 (where 𝑘 = number of standard deviations) of a data set must lie between the 

mean and positive or negative 𝑘 standard deviations.  Since we chose 𝑘 = 3, at least 
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88.89% of all values of our data set lie within three standard deviations of the mean, 

which is the portion of the data set that we retained. 

 

 
In other words, any turnover time that exceeded 163 minutes was removed from 

the data set.  This led to the removal of seventy more turnover times (just over two 

percent of all data points).  The summary statistics about the turnover data are provided in 

the table below. 

 

Table 1. Turnover data summary statistics 

N 3276 

µ 37.50 

σ 27.44 

Median 28.00 

Minimum 1.00 

Maximum 162.00 

Range 161.00 
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The histogram presented below exhibits the characteristics of the data. 

 

 
 

Figure 2. Turnover data histogram 

 

This figure suggests the turnover times are skewed, which led us to analyze 

whether the data fit a skewed distribution with positive support, like the log-normal or the 

log-logistic distribution.  Our analysis of this follows in Section 3.2. 
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3.2 DISTRIBUTION ANALYSIS 

The distribution analysis component of our research entailed testing our 

hypothesis that a log-normal or log-logistic curve was better suited to turnover times than 

a normal curve.  Demonstrating what distribution best represents turnover times could be 

beneficial for better estimating turnover times, resulting in more accurate scheduling and 

opportunities to reduce costs, improve utilizations, and identify potential outliers (Strum, 

May and Vargas 2000).  Log-normal and log-logistic distributions are both skewed to the 

right with positive support.  A random variable with log-normal distribution has the 

property that by taking the logarithm of it we obtain a normal distribution.  If the data set 

fits a log-logistic distribution, then the logarithm of the data set fits a logistic distribution.  

A log-normal distribution differs from a log-logistic distribution in that a log-logistic 

distribution has a heavier tail. 

 

Let 𝑁(𝜇,𝜎2) be a normal distribution, with 𝜇 representing the mean and 𝜎2 being 

the variance, and let 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝜇, 𝑠) be a logistic distribution with mean 𝜇 and variance 

𝜋2

3
(𝑠2).  Both distributions have no skewness as shown in the graph below, which depicts 

a standard normal distribution, 𝑁(0,1) and a standard logistic distribution, 

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(0,1). 
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Figure 3. Standard normal and standard log-normal distributions 

 

By taking the anti-logarithm of all values, a normal distribution is transformed 

into a log-normal distribution and a logistic distribution is transformed into a log-logistic 

distribution.  The resulting log-normal distribution has a mean and a variance described 

by the following equations: 

𝑚 = 𝑒𝜇+
𝜎2
2  

𝑠.𝑑.2 = �𝑒𝜎2 − 1�𝑒2𝜇+𝜎2 

 

The resulting log-logistic distribution has a mean and a variance given by the following 

equations: 

𝑚 =

𝛼
𝛽 (𝜋)

sin 𝜋𝛽
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𝑠. 𝑑.2 = 𝛼2 �
2𝛽

sin 2𝛽
−

𝛽2

sin2𝛽
� , for 𝛽 > 2 

 where 
  𝛼 = scale parameter 
  𝛽 = shape parameter. 

 

The log-normal distribution will be referred to as 𝐿𝑜𝑔𝑁(𝜇,𝜎), with the parameters 

referring to the underlying normal distribution, while the log-logistic distribution will be 

referred to as 𝐿𝐿(𝛼,𝛽).  For a standard log-normal distribution 𝑚 = √𝑒 and 𝑠.𝑑.2 =

(𝑒 − 1)𝑒; for a standard log-logistic distribution both the mean and the variance are 

undefined.  A standard log-normal distribution and a standard log-logistic distribution are 

presented below. 

 

 

Figure 4. Standard log-normal and standard log-logistic distributions 
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 There are four main parameters used to characterize probability distributions: 

mean, variance, skewness, and kurtosis.  Kurtosis is a description of the shape of the 

curve.  Higher kurtosis indicates that more of the variance of a data set is attributable to 

extreme deviations, which is seen visibly by higher peaks and heavier tails.  Distributions 

with these attributes are referred to as leptokurtic, whereas distributions with shorter 

peaks are referred to as platokurtic.  Kurtosis is a differentiating feature between the log-

normal and log-logistic distributions.  The normal distribution is platokurtic; on the other 

hand, the logistic distribution is leptokurtic.  The implications of kurtosis on the fit of a 

log-normal versus a log-logistic distribution deal primarily with the tails.  The log-

logistic distribution will fit better if there is greater skewness due to the heavier tails, 

while the log-normal will prove to be a better fit if the opposite is true. 

 

Another way to study these distributions is to examine their two density functions: 

the probability density function (pdf), usually denoted by 𝑓(𝑥), and the cumulative 

density function (cdf), usually denoted by 𝐹(𝑥).  For a normal distribution these two 

functions are as follows: 

𝑓(𝑥) =
1

√2𝜋𝜎2
𝑒−

(𝑥−𝜇)2
2𝜎2  

𝐹(𝑥) =  
1
2
�1 + erf �

𝑥 − 𝜇
√2𝜎2

�� 

where 
 erf(𝑥) = 2

√𝜋
∫ 𝑒−𝑡2𝑥
0 𝑑𝑡. 
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On the other hand, the density functions for a log-normal distribution are: 

𝑓(𝑥) =
1

𝑥√2𝜋𝜎2
𝑒−

(ln𝑥−𝜇)2
2𝜎2  

𝐹(𝑥) =
1
2

+  
1
2

erf �
ln𝑥 − 𝜇
√2𝜎2

� 

 

For a logistic function the density functions are: 

𝑓(𝑥) =
𝑒
−(𝑥−𝜇)

𝑠

𝑠 �1 + 𝑒
−(𝑥−𝜇)

𝑠 �
2 

𝐹(𝑥) =
1

1 + 𝑒
−(𝑥−𝜇)

𝑠
 

 

Finally, the density functions for a log-logistic function are: 

𝑓(𝑥) =
�𝛽𝛼� �

𝑥
𝛼�

𝛽−1

�1 + �𝑥𝛼�
𝛽
�
2 

𝐹(𝑥) =
1

1 + �𝑥𝛼�
−𝛽 

 

 Given the skewedness of log-normal and log-logistic distributions, we believed 

that they may be apt to describe turnover times since there are often a small number of 

cases that take much longer than average, thereby increasing the median turnover time.  
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We tested this hypothesis using graphical methods and statistical tests conducted on our 

turnover time data. 

3.3 RESEARCH MODEL 

In order to determine the curve that best fit our sample of turnover times we setup 

a hypothesis test.  The null hypothesis, denoted by H0, is the theory put forth for testing.  

The alternative hypothesis, denoted by Ha, is what would be adopted if the null 

hypothesis were rejected.  The null and alternative hypotheses must be mutually 

exclusive (if one occurs, the other cannot) and collectively exhaustive (together the two 

hypotheses encompass all possible situations).  In our experimental design the null and 

alternative hypotheses were as follows: 

 

𝐻0: the turnover times fit a log-normal/log-logistic distribution 

𝐻𝑎: the turnover times do not fit a log-normal/log-logistic distribution 

 

Once these hypotheses are constructed, there are four possible scenarios that can result 

from our testing as depicted below. 
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Figure 5. Possible hypothesis testing results 

 

A Type I error, or 𝛼, is more serious than a Type II error, or 𝛽.  In the case of our setup, 

this corresponds to an erroneous rejection of a log-normal or log-logistic distribution 

(when compared to a normal distribution).  Experimental setup can be adjusted to alter 

the probabilities of 𝛼 and 𝛽 occurring.  However, when one is lowered, the other 

decreases.  Therefore, minimizing 𝛼 will result in an increase in 𝛽.  A confidence level 

must be determined, from which 𝛼 is then calculated (as 𝛼 = 100 − confidence level), or 

𝛼 is fixed and the confidence level becomes 100 − 𝛼. 

 

 In order to test our null hypothesis of a log-normal fit, we used the Shapiro-Wilk 

goodness-of-fit test, which tests whether data fit a normal distribution.  Given the 

property that a logarithmic transformation of log-normal data yields a normal 

distribution, we took the logarithm of each turnover time and used this as our data set.  

The Shapiro-Wilk test for normality was chosen as it has been shown to be superior to 

many other similar tests (such as Kolmogorov-Smirnov or Anderson-Darling) in regards 
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to sensitivity in detecting non-normality, particularly with large sample sizes (Shapiro, 

Wilk and Chen 1968).  The Shapiro-Wilk statistic, denoted by 𝑊, is calculated using the 

following equation: 

𝑊 =
�∑ 𝑎𝑖𝑥(𝑖)

𝑛
𝑖=1 �

2

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

 

where  
  �̅� = sample mean 

 𝑥(𝑖) = order statistics �𝑥(1) < 𝑥(2) < 𝑥(𝑛)� 
 𝑎𝑖 = coefficients determined from covariance matrix of ordered statistics. 

 

If the computed 𝑊statistic exceeds a tabulated critical value, then 𝐻0 must be rejected.  

Additionally, a 𝑃 value corresponding to the computed 𝑊 score can be determined and 

compared to the chosen 𝛼.  If the 𝑃 value is less than 𝛼 then 𝐻0 is rejected. 

 

 Similarly, to test the fit of a log-logistic fit, given that the Shapiro-Wilk test can 

only be used to test for normality, we employed the Anderson-Darling goodness-of-fit 

test (Shapiro, Wilk and Chen 1968).  This test results in the Cramér-von Mises statistic, 

or 𝑊𝐶𝑀, which is calculated as follows: 

𝑊𝐶𝑀 = 𝑛�
�𝐹𝑛(𝑥) − 𝐹(𝑥)�

2

𝐹(𝑥)�1 − 𝐹(𝑥)�

1

0
𝑑𝐹(𝑥) 

 where 
  𝐹𝑛(𝑥) = the empirical distribution function (cdf). 
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Just as with the 𝑊 statistic, if the computed 𝑊𝐶𝑀 exceeds a tabulated critical value, 𝐻𝑜 

should be rejected.  A 𝑃 value corresponding to the 𝑊𝐶𝑀 score can also be determined, 

which is another mechanism for determining if 𝐻𝑜 should be rejected. 

 

Our 𝑃 value results are shown in the following tables, with a large 𝑃 value 

indicating acceptance of the null hypothesis.  Following the design of the Strum, May, 

and Vargas study (2000), we decided to differentiate between small (n < 30), medium (30 

≤ n ≤ 100), and large (n > 100) cases. 

 

Table 2. Shapiro-Wilk goodness-of-fit P values for the log-normal model 

Category P < 0.01 0.01 ≤ P < 0.10 P ≥ 0.10 Row Totals 

     

Small (n < 30) 0 (0.00%) 1 (2.94%) 5 (14.71%) 6 (17.65%) 

Medium (30 ≤ n ≤ 100) 9 (26.47%) 1 (2.94%) 2 (5.88%) 12 (35.29%) 

Large (n > 100) 16 (47.06%) 0 (0.00%) 0 (0.00%) 16 (47.06%) 

Column Totals 25 (73.53%) 2 (5.88%) 7 (20.59%) 34 (100.00%) 
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Table 3. Anderson-Darling goodness-of-fit P values for the log-logistic model 

Category P < 0.01 0.01 ≤ P < 0.10 P ≥ 0.10 Row Totals 

     

Small (n < 30) 0 (0.00%) 2 (5.88%) 4 (11.76%) 6 (17.65%) 

Medium (30 ≤ n ≤ 100) 7 (20.59%) 3 (8.82%) 2 (5.88%) 12 (35.29%) 

Large (n > 100) 16 (47.06%) 0 (0.00%) 0 (0.00%) 16 (47.06%) 

Column Totals 23 (67.65%) 5 (14.71%) 6 (17.65%) 34 (100.00%) 

 

Although these P values do not indicate a strong fit to log-normal or log-logistic 

distributions, they must be interpreted in conjunction with graphical tools such as 

histograms and probability plots, as the turnover times are distorted by our estimations. 

 

 The following histograms show visually the fit of log-normal and log-logistic 

distributions to our data set. 
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Figure 6. Histogram of turnover data with log-normal distribution fit 

 

 

Figure 7. Histogram of turnover data with log-logistic distribution fit 
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 Another graphical tool further illustrating the close fit of the turnover times to a 

log-normal or log-logistic model is probability plots.  In a probability plot, the data set is 

plotted against its theoretical distribution and goodness-of-fit is shown by the plotted data 

being clustered along a straight line.  The following probability plots show, by doctor, 

how well the turnover time data corresponds to the two distributions. 
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Figure 8. Probability plots by doctor for log-normal distribution 
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Figure 9. Probability plots by doctor for log-logistic distribution 
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 Each plot should be interpreted separately to understand the fit by doctor of 

turnover times to a log-normal or log-logistic distribution.  As mentioned, a good fit is 

shown by data points being clustered along the middle straight line.  The outer lines are 

95% confidence bands; in other words, if all data points fall within these two lines, there 

is 95% certainty that the data fit the distribution well. 

3.4 CORRELATIONS 

In continuing our analysis of turnover times, we looked to identify whether 

certain variables are correlated to turnover time duration.  Based on the data that we had, 

we tested for correlations between length of surgery and length of turnover time and for 

differences between doctors with respect to the length of turnover time. 

 

We began by analyzing, for each doctor, whether there was a correlation between 

surgery time (calculated as the difference between the ending surgery time and the 

beginning surgery time) and turnover time for our data set.  As we did not have 

information on the type of surgery for each record, we grouped and analyzed the data by 

doctor.  Thus, essentially the doctor was used as a proxy for the type of surgery given that 

doctors generally focus on a specific type of surgery.  We chose to analyze this potential 

correlation due to the thought that longer surgeries may be messier, and, therefore, 

require more cleanup time.  The regression tests were set up with the following 

hypotheses: 
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𝐻0: there is no correlation between turnover time and surgery time 

𝐻𝑎: there is a positive correlation between turnover time and surgery time. 

 

The results of this hypothesis test are presented in the following table. 
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Table 4. Surgery time and turnover time correlations by doctor 

Doctor (represented by 
surgery type) 

  𝒏 Pearson Correlation 
Coefficient 

𝑷 value 

Breast/Thoracic Surgeon 63 0.176 0.084 
General Surgeon 1 60 0.098 0.227 
General Surgeon 2 97 0.026 0.398 
General Surgeon 3 166 -0.008 0.46 
General Surgeon 4 189 -0.015 0.421 
General Surgeon 5 128 0.031 0.363 
General Surgeon 6 178 -0.088 0.121 
General Surgeon 7 80 0.211* 0.03 
Neurosurgeon 124 -0.029 0.374 
Obstetrician/Gynecologist 1 115 0.017 0.43 
Obstetrician/Gynecologist 2 182 0.023 0.379 
Obstetrician/Gynecologist 3 135 0.145* 0.047 
Obstetrician/Gynecologist 4 153 0.013 0.438 
Obstetrician/Gynecologist 5 99 0.08 0.216 
Obstetrician/Gynecologist 6 146 -0.057 0.247 
Ophthalmologist 1 6 0.872* 0.012 
Ophthalmologist 2 5 -0.472 0.211 
Ophthalmologist 3 48 -0.098 0.254 
Otolaryngologist 1 124 0.034 0.354 
Otolaryngologist 2 48 0.196 0.091 
Orthopaedist 1 69 -0.035 0.387 
Orthopaedist 2 169 0.03 0.349 
Orthopaedist 3 129 -0.216* 0.007 
Orthopaedist 4 65 0.085 0.249 
Orthopaedist 5 130 -0.029 0.37 
Orthopaedist 6 65 -0.077 0.271 
Orthopaedist 7 76 0.122 0.147 
Pediatric Dentist 1 10 0.086 0.406 
Pediatric Dentist 2 33 -0.039 0.414 
Plastic/Reconstructive Surgeon 8 -0.077 0.428 
Podiatrist 1 10 -0.385 0.136 
Podiatrist 2 5 -0.134 0.415 
Urologist 1 184 0.02 0.396 
Urologist 2 177 -0.02 0.396 
*Indicates that the correlation is significant at the 0.05 level. 
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The results indicate that there does not appear to be a correlation between surgery time 

and turnover time across doctors, so the null hypothesis cannot be rejected.  We 

conjecture that there might be two main explanations for this lack of correlation.  First, 

even if longer surgeries are messier, staff may clean up throughout the process so that the 

chances of infection during surgery are minimized. This results in no extra cleanup being 

required after the completion of the surgery.  Second, our surgery time includes 

anesthesia time, which may vary, thereby distorting the length of surgery data and not 

having it represent what we want it to.  For the four doctors for whom a significant 

correlation does exist, we would recommend further investigation to see why this 

correlation is significant.  From a modeling perspective, the insight is that it is reasonably 

safe to model turnover duration as being independent of the surgery length. 

 

The next analysis we conducted was to identify if there were significant 

differences in the mean turnover times of various doctors.  Our null and alternative 

hypotheses were the following: 

 

𝐻0: there is no significant difference in the mean turnover time of the doctors 

𝐻𝑎: there is a significant difference in the mean turnover time of at least one doctor. 

 

The data is represented on the following probability plot and histogram. 
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Figure 10. Probability plot of mean logarithm of turnover times 

 

  

Figure 11. Histogram of logarithm of turnover times 
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A one-way analysis of variance (ANOVA) was used to test for turnover time 

differences among the 34 doctors. We found that turnover times differed significantly 

across these 34 categories, 𝐹(33,3242) = 13.14, 𝑝 < 0.001.  Consequently, we rejected 

the null hypothesis.  Furthermore, using Tukey pairwise comparisons, we were able to 

identify which pairs of doctors exhibited significantly different average turnover times.  

The following table indicates groupings for each doctor, where doctors not sharing a 

group have significantly different mean turnover times. 
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Table 5. Tukey pairwise comparisons of mean turnover time by doctor 

Doctor (represented by 
surgery type) 

n Mean Turnover 
Time (minutes) 

Standard 
Deviation 
(minutes) 

Tukey 
Method 
Grouping 

Podiatrist 1 10 56.5 40.2 A B 
Plastic/Reconstructive Surgeon 8 55.12 45.5 A B C 
Pediatric Dentist 1 10 54.7 40.16 A B C 
Orthopaedist 3 129 53.92 27.4 A 
Orthopaedist 2 169 52.62 25.85 A 
General Surgeon 7 80 52.57 34.97 A B 
Orthopaedist 1 69 45.78 23.67 A B C 
Orthopaedist 6 65 42.83 25.5 A B C 
General Surgeon 6 178 40.66 30.43     B C 
Ophthalmologist 1 6 39.67 38.58 A B C 
General Surgeon 4 189 39.65 28.14     B C 
Orthopaedist 5 130 39.52 28.01     B C 
General Surgeon 2 97 39.2 31.25     B C 
Ophthalmologist 3 48 38.44 29.51     B C 
Obstetrician/Gynecologist 5 99 38.01 26.9     B C 
Breast/Thoracic Surgeon 63 37.68 27.34     B C 
Otolaryngologist 2 48 37.46 25.61     B C 
Orthopaedist 7 76 36.51 24.38     B C 
Obstetrician/Gynecologist 4 153 36.29 27.56     B C 
General Surgeon 5 128 36 30.46     B C 
Neurosurgeon 124 35.26 26.27     B C 
General Surgeon 3 166 35.23 26.07     B C 
Urologist 1 184 34.79 29.46     B C D 
Otolaryngologist 1 124 34.44 25.7     B C 
Urologist 2 177 32.37 26.46     B C D 
Podiatrist 2 5 31.2 17.36 A B C D 
Obstetrician/Gynecologist 6 146 30.8 25.72     B C D 
Obstetrician/Gynecologist 2 182 30.49 24.04     B C D 
Obstetrician/Gynecologist 1 115 30.31 20.73     B C D 
General Surgeon 1 60 30.03 18.1     B C D 
Orthopaedist 4 65 29.11 21.41     B C D 
Obstetrician/Gynecologist 3 135 28.9 13.1     B C D 
Pediatric Dentist 2 33 22.27 5.94        C D 
Ophthalmologist 2 5 8.6 3.13            D 
Mean turnover times are significantly different between doctors who do not share a letter. 
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The boxplot shown below graphically depicts the numerical turnover times for 

each doctor.  Overlap in the boxed regions (lower quartile to upper quartile of turnover 

times) between doctors indicates that there is no significant difference in mean turnover 

time.  However, when there is not overlap, it represents a significant discrepancy in mean 

turnover time. 
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Figure 12. Boxplot of turnover time logarithm by doctor 
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3.5 CONCLUSIONS 

Ideally, we would have had the actual turnover time data and would not have had 

to estimate turnover times.  However, given that sufficient data is not recorded by 

Evangelical Community Hospital, it was necessary to make such estimations.  

Consequently, part of our statistical analysis must be based on graphical methods, so that 

we are not relying solely on quantitative measures.  The graphical representations of 

distribution fits overlaid on histograms of the turnover time data and the probability plots 

reveal that there appears to be a good fit of turnover times to log-normal and log-logistic 

distributions. 

 

Because our turnover time estimations likely include time that is not true turnover 

time (such as staff late arrivals or idle time) as mentioned, our turnover times are 

overestimated, which is a bias that we must recognize in interpreting our results.  A log-

logistic distribution has heavier tails than a log-normal distribution, so although our 

analysis appears to demonstrate that a log-logistic distribution fits better than a log-

normal distribution, this may not be the case when analyzing true turnover time (with idle 

time removed).  Both log-normal and log-logistic distributions satisfy the skewed 

distribution of turnover times.  We conjecture that the variability in the number of 

procedures performed by a hospital effects which distribution is better.  A log-normal 

distribution seems better suited to a hospital that routinely performs many different types 

of surgeries, whereas a log-logistic distribution is more apt to be the best fit at hospitals 
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that perform a limited number of procedures, such as specialty hospitals.  Thus, given 

that there are reasons to prefer different distributions in different settings and given that 

we are making conclusions based on turnover time estimations, we have elected to 

conclude that both distributions should be considered good fits and have not determined 

which is better.  We would advise that hospitals apply the distribution that better fits the 

offerings of the hospital, as outlined above. 

 

We would recommend that hospitals continue to develop better methods for data 

recording.  Many hospitals have begun to record more useful data, but Evangelical 

Community Hospital and others fail to record data that allows turnover time to be 

separated from idle time. 

 

In analyzing correlations between various variables and turnover time, we 

determined that surgery time does not seem to influence turnover time across doctors.  

Yet, we discovered that there are doctors whose mean turnover time is statistically 

significant from other doctors.  These findings shed light on variables potentially 

affecting turnover time. 

 

 Based on these results, we will show in Chapter 4.0 how to use quality control 

measures to improve turnover times. 
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4.0  CONTROL CHARTS IN HEALTHCARE SETTINGS 

4.1 INTRODUCTION 

The next component of our research focuses on developing a mechanism to 

monitor whether the turnover process is in control.  If the turnover process is kept in 

control, more operating room capacity can be available, which would lead to an increase 

in the number of surgeries performed, thus raising the overall service level of the 

hospital.  Furthermore, it could help monitor and reduce variability, which hopefully 

would have potential cost savings. 

 

Although quality control charts have been developed to monitor process 

variability for manufacturing processes, this study serves as the first to provide a 

framework for instituting a quality control chart in a healthcare setting.  A control chart is 

a tool widely used in quality control, designed to ensure that the process variability stays 

within specified limits (Krajewski, Ritzman and Malhotra 2010). 

 

 Our efforts were focused on designing an easy to implement control chart that 

would trace the turnover process using standard spreadsheet software.  The purpose was 
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to detect abnormal behavior early, so that remedial actions could be considered to bring 

the process back on track.  We chose to monitor the turnover process using control charts 

as they are the preferred mechanism for continuously monitoring processes (McClave, 

Benson and Sincich 2008).  A process is considered out of control if it exhibits variation 

that is non-random (even an in control process has variation, but it is of a random nature). 

 

 A control chart is developed using three values: (1) the centerline, which reflects 

the mean of the measured variable; (2) the upper control limit (UCL), which is a specified 

number of standard deviations above the mean; and (3) the lower control limit (LCL), 

which is a specified number of standard deviations below the mean.  A typical value for 

this multiplier is three, resulting in UCL and LCL commonly referred to as the three-

sigma limits.  Under this choice, the Type I error probability (that a point falls beyond 

this region due to non-random causes) would be 0.0027.  In the case of turnover time, 

lower is better, so the LCL is not as important as the UCL, but we still include the LCL 

as it is important to identify when there is systematic lowering of turnover time so that it 

can be replicated in the future. 

 

 In order to be able to accurately assess process variability, two control charts are 

usually constructed when the studied variable can be measured: an �̅�-chart and an 𝑅-

chart.  An �̅�-chart plots sample means and is used to identify changes in the process 

mean.  On the other hand, an 𝑅-chart plots sample ranges and is therefore used to detect 

overall changes in process variation.  Both charts are constructed using centerlines, 
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UCLs, and LCLs, but the data plotted differs.  On the control charts, data are grouped 

into and plotted by a fixed sample size.  The 𝑅-chart should first be analyzed to 

determine if the process variability is stable.  If this chart indicates that it is, the �̅�-chart is 

next examined to ensure that the process mean is stable.  If either chart reveals that the 

process is not in statistical control, it becomes critical to diagnose the causes of variation.  

If both charts agree that the process mean and process variation are in control, then the 

process can simply continue to be monitored. 

 

 The following formulas are used to compute the control limits for an 𝑅-chart: 

UCL𝑅 = 𝐷4𝑅� 

LCL𝑅 = 𝐷3𝑅� 

 where 
  𝑅� = center line of the control chart 
  𝐷3, 𝐷4 = constants that depend on the sample size. 
 
 For the �̅�-chart, the control limits are computed as follows: 
 

UCL�̅� = �̿� + 𝐴2𝑅� 
 

LCL�̅� = �̿� − 𝐴2𝑅� 
 
 where 
  �̿� = center line of the control chart 
  𝐴2 = constant that depends on the sample size. 
 
 
 The constants for both types of control charts are provided in the table below for 

normal and for logistic distributions.  Traditionally, the control chart constants assume an 

underlying normal distribution of the process; however, this is not always the case.  In 
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particular, our data suggests a possible (log)-logistic distribution, in which case different 

constants should be used.  In their paper, Tadikamalla, Banciu, and Popescu (2008) 

derive better control chart constants for non-normal processes, which we utilize for the 

logistic distribution. 

 

Table 6. Constants for control charts for normal and logistic process distributions 

  Normal Distribution 
𝑛 

Logistic Distribution 
𝐴2 𝐷3 𝐷4 𝐷3 𝐷4 

2 1.880 0.000 3.267 0.002 4.717 

3 

4 

5 

6 

7 

8 

9 

10 

1.023 

0.729 

0.577 

0.483 

0.419 

0.373 

0.337 

0.308 

0.000 

0.000 

0.000 

0.000 

0.076 

0.136 

0.184 

0.223 

2.575 

2.282 

2.115 

2.004 

1.924 

1.864 

1.816 

1.777 

0.039 

0.099 

0.156 

0.204 

0.243 

0.276 

0.303 

0.326 

3.515 

3.066 

2.821 

2.663 

2.550 

2.465 

2.398 

2.343 

 
 

4.2 DEVELOPMENT METHODOLOGY 

Given the potential cost and service benefits of instituting control charts, we 

worked to create informative, easy to adopt charts.  The charts are designed to be easily 

updated and easily read to determine whether or not the system is in control. 
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To analyze the stability of the turnover time process, we use the Western Electric 

rules.  These rules are designed to identify non-random changes detected by patterns in 

the data points.  The rules are constructed by dividing a control chart into zones based on 

standard deviations from the centerline as depicted in the figure below. 

 

 

Figure 13. Control chart zones 

 

The following table lists the Western Electric rules. 
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Table 7. Western Electric control chart rules 

Western Electric Rules 
One or more points > +/- three standard deviations 

Eight consecutive points increasing or decreasing 

Fourteen points alternating up and down 

Two out of three consecutive points ≥ +/- two standard deviations on one side of centerline 

Four out of five points ≥ +/- one standard deviation on one side of centerline 

Eight consecutive points on one side of centerline 

 

Our control charts, created within Excel using VBA macros, identify when these 

rules are met.  Furthermore, the control charts allow for the sample size to be adjusted.  In 

other words, each data point represents the mean of a specified number of consecutive 

data points, which can be altered.  When the charts are updated, using an easy-to-find 

button, the new surgery data is plotted.  The VBA code is provided in the Appendix. 

 

Given the ease of use of this tool, the enormous benefits it can have, and its 

accessibility via standard spreadsheet software, we believe that its adoption by the 

hospital is a simple proposition.  Recognizing the impact that it can have, we hope that it 

will spark the adoption of quality control charts in other hospital settings. 
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4.3 IMPLEMENTATION 

Our spreadsheet with control charts contains three charts: an �̅�-chart, an 𝑅-chart 

for a log-normal distribution, and an 𝑅-chart for a log-logistic distribution.  Depending on 

the hospital and the distribution that better models the hospital’s turnover times, the 

appropriate 𝑅-chart can be used in conjunction with the �̅�-chart. 

 

 Presented next are screenshots of the control charts we developed for use by 

Evangelical Community Hospital. 
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Figure 14. Control charts screenshot 
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The process stability check indicators show that the process is out of control.  

When the indicator is blue, the �̅�-chart is the source of the issue, whereas red text 

indicates that the 𝑅-chart is the source of the issue.  Since there are both blue and red 

indicators, the process mean and process variation are both out of control.  In other 

words, there is non-random variation of the turnover time mean and variation.  The 

implication is that the hospital must work to identify the sources of variation and take 

measures to stabilize the process. 

4.4 CONCLUSIONS 

The control charts offer a practical, visible way of monitoring turnover time 

variability and shifts in average turnover time.  As the control charts are based in standard 

spreadsheet software, they are easy to implement in hospitals.  The Western Electric rules 

show whether the process spread and mean are stable or not.  If the turnover times are out 

of control statistically, the hospital can act quickly to identify factors contributing to this 

and take action to bring the process back under control.  Quality control is important for 

ensuring hospital productivity, staff satisfaction, and patient satisfaction and, therefore, is 

important to focus on. 

 

Control charts have been successfully implemented in a variety of fields and we 

believe that healthcare environments should be the next to adopt the useful quality 

control tool.  Not only will the charts help hospitals to identify problems sooner so that 
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they can be addressed earlier, but they will also give hospitals a clear way of monitoring 

the success of any steps taken to reduce average turnover time. 
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5.0  CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

Overall, our work is designed to expand upon the current body of literature on 

hospital effectiveness by analyzing turnover time, a critical component often overlooked.  

Turnover time is vastly important as lengthier surgery turnover times lead to lower 

utilization rates and it directly affects scheduling accuracy.  Using data provided by 

Evangelical Community Hospital, we modeled turnover times, analyzed the factors 

potentially affecting turnover time length, and designed control charts to monitor the 

variability of turnover times. 

 

 Being able to accurately predict turnover times allows for better scheduling, in 

turn improving hospital efficiency and effectiveness.  Thus, our research was designed to 

identify a distribution that fit turnover times.  As outlined, we concluded that the log-

normal and log-logistic distributions both appear to be good fits for turnover time.  

Further research will hopefully build upon this finding by confirming the variables that 

dictate which distribution is a better fit for a given hospital. 

 

 We also sought to identify variables correlated to longer than average turnover 

times in order to identify factors that may affect turnover time length.  Our research 
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showed that there was not a correlation between length of surgery and length of turnover 

across doctors.  When the mean turnover times of the doctors were compared, there did 

exist statistical differences.  Therefore, we suggest continued research of the role, if any, 

a doctor plays in determining turnover time. 

 

 Turnover times are inherently variable, but efforts need to be directed at 

stabilizing the times.  In order to monitor process variability, we designed control charts, 

a widely used quality control mechanism in other fields, for hospital settings.  The control 

charts allow individual hospitals, such as Evangelical Community Hospital, to identify 

when turnover times are varying due to non-random causes so that remedial action can be 

taken. 

 

 We believe that the development of applicable control charts, identification of 

distributions to model turnover times, and analysis of variables potentially correlated to 

turnover time are important contributions in working to improve hospital effectiveness.  

As the pressure on hospitals to improve effectiveness in order to boost profitability 

mounts, tools and findings such as these become critical. 

 

 We hope that hospitals that do not already do so will begin to keep more accurate 

time records so that turnover time can be clearly identified and further studied.  Next 

steps will then entail encouraging implementation of control charts in hospital settings, 
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further researching the variables affecting turnover times, and improving scheduling 

methods to correspond to findings about turnover times. 
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APPENDIX A 

SOURCE CODE FOR THE CONTROL CHARTS EXCEL SHEET 

Public Sub cmdUpdateCC_Click() 
'These are the arrays that store the control chart constants (2 for R-
chart, 2 for x-bar chart) 
Dim D3() As Variant, D4() As Variant, D3LL() As Variant, D4LL() As 
Variant, A2() As Variant, A3() As Variant 
 
Dim checkOne As Boolean 
Dim checkTwo As Boolean 
Dim checkThree As Boolean 
Dim checkFour As Boolean 
Dim checkFive As Boolean 
Dim checkSix As Boolean 
Dim checkSeven As Boolean 
 
Dim checkConsecutive As Boolean, blnTrendUp As Boolean, blnTrendDown As 
Boolean 
 
Dim sngSampleMean As Single, sngSampleRange As Single 
Dim sngTempMin As Single, sngTempMax As Single 
Dim AvgDataSeries() As Single, RangeDataSeries() As Single 
Dim intIndex As Integer 
Dim sngRLCL As Single, sngRUCL As Single, sngRCenter As Single 
Dim sngRLCL_LL As Single, sngRUCL_LL As Single 
Dim sngxLCL As Single, sngxUCL As Single, sngxCenter As Single 
Dim rngTurnoverTime As Range, rngTemp As Range 
Dim rngOriginalTimes As Range 
Dim intSampleSize As Integer, intSizeOfData As Integer, intCounter As 
Integer 
Dim intNumPoints As Integer 
Dim i As Integer, j As Integer 
 
Dim TestVal(8) As Single 
 
'Initialize the control chart constants arrays 
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D3 = Array(0, 0, 0, 0, 0, 0.076, 0.136, 0.184, 0.223, 0.256, 0.283, 
0.307, 0.328, 0.347, 0.363, 0.378, 0.391, 0.403, 0.415) 
D4 = Array(3.267, 2.574, 2.282, 2.114, 2.004, 1.924, 1.864, 1.816, 
1.777, 1.744, 1.717, 1.693, 1.672, 1.653, 1.637, 1.622, 1.608, 1.597, 
1.585) 
D3LL = Array(0.002, 0.039, 0.099, 0.156, 0.204, 0.243, 0.276, 0.303, 
0.326) 
D4LL = Array(4.717, 3.515, 3.066, 2.821, 2.663, 2.55, 2.465, 2.398, 
2.343) 
A2 = Array(1.882, 1.023, 0.729, 0.577, 0.483, 0.419, 0.373, 0.337, 
0.308, 0.285, 0.266, 0.249, 0.235, 0.223, 0.212, 0.203, 0.194, 0.187, 
0.18) 
A3 = Array(2.659, 1.954, 1.628, 1.427, 1.287, 1.182, 1.099, 1.032, 
0.975, 0.927, 0.886, 0.85, 0.817, 0.789, 0.763, 0.739, 0.718, 0.698, 
0.68) 
 
 
'Compute the sample means and the sample ranges of the turnover data 
(logged) 
'First, assign the entire log(time) column to a range variable. 
Remember that this range may contain zeros that need to be stripped 
later. 
Set rngTurnoverTime = Worksheets("Sheet1").Range("LogTurnoverTimes") 
Set rngOriginalTimes = Worksheets("Sheet1").Range("updatedSeries") 
 
'Get the sample size (default = 5) 
intSampleSize = Worksheets("Control Charts").Range("J35").Value 
 
'Compute the average log(time) for all groups of size intSampleSize 
sngSampleMean = 0 
intCounter = 0 
intIndex = 1 
For Each rngTemp In rngTurnoverTime 
    If rngTemp.Value <> 0 Then 
        sngSampleMean = sngSampleMean + rngTemp.Value 
        intCounter = intCounter + 1 
        If intCounter Mod intSampleSize = 0 Then 
            ReDim Preserve AvgDataSeries(1 To intIndex) 
            sngSampleMean = sngSampleMean / intSampleSize 
            AvgDataSeries(intIndex) = sngSampleMean 
            intIndex = intIndex + 1 
            sngSampleMean = 0 
        End If 
    End If 
Next 
 
'Compute the ranges of log(time) for all groups of size intSampleSize 
sngSampleRange = 0 
sngTempMax = 0 
sngTempMin = 1000 
intCounter = 0 
intIndex = 1 
For Each rngTemp In rngTurnoverTime 
    If rngTemp.Value <> 0 Then 
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        If rngTemp.Value < sngTempMin Then sngTempMin = rngTemp.Value 
        If rngTemp.Value > sngTempMax Then sngTempMax = rngTemp.Value 
        intCounter = intCounter + 1 
        If intCounter Mod intSampleSize = 0 Then 
            ReDim Preserve RangeDataSeries(1 To intIndex) 
            sngSampleRange = sngTempMax - sngTempMin 
            RangeDataSeries(intIndex) = sngSampleRange 
            intIndex = intIndex + 1 
            sngSampleRange = 0 
            sngTempMax = 0 
            sngTempMin = 1000 
        End If 
    End If 
Next 
 
intIndex = intIndex - 1 'This now holds the total number of samples of 
size intSampleSize that we will plot 
 
'At this point, the arrays AvgDataSeries and RangeDataSeries contain 
the grouped data. 
'Now, compute the centerlines (the averages of the values from these 
two arrays). 
sngSampleMean = 0 
sngSampleRange = 0 
For i = 1 To intIndex 
    sngSampleMean = sngSampleMean + AvgDataSeries(i) 
    sngSampleRange = sngSampleRange + RangeDataSeries(i) 
Next i 
sngxCenter = sngSampleMean / intIndex 
sngRCenter = sngSampleRange / intIndex 
 
'Compute the LCL and the UCL for the two charts 
sngxLCL = sngxCenter - A2(intSampleSize - 1) * sngRCenter 
sngxUCL = sngxCenter + A2(intSampleSize - 1) * sngRCenter 
 
sngRLCL = D3(intSampleSize - 1) * sngRCenter 
sngRUCL = D4(intSampleSize - 1) * sngRCenter 
sngRLCL_LL = D3LL(intSampleSize - 1) * sngRCenter 
sngRUCL_LL = D4LL(intSampleSize - 1) * sngRCenter 
 
'Now, the only thing left is plotting the charts! We'll do the R chart 
first. 
 
'Plot the LCL, UCL, centerline, range data 
'We need to create three artificial arrays for the X-axis, LCL and UCL 
(which basically just repeat themselves) 
ReDim XValues(1 To intIndex), LCLArray(1 To intIndex), UCLArray(1 To 
intIndex), CenterlineArray(1 To intIndex), LCL_LLArray(1 To intIndex), 
UCL_LLArray(1 To intIndex) 
 
For i = 1 To intIndex 
    XValues(i) = i 
    LCLArray(i) = sngRLCL 
    LCL_LLArray(i) = sngRLCL_LL 



 69 

    UCLArray(i) = sngRUCL 
    UCL_LLArray(i) = sngRUCL_LL 
    CenterlineArray(i) = sngRCenter 
Next i 
 
With Worksheets("Control Charts") 
    .ChartObjects(1).Activate 
    .ChartObjects(1).Chart.HasTitle = True 
    .ChartObjects(1).Chart.Axes(xlValue).MinimumScale = -1 
    With ActiveChart 
        .ChartTitle.Select 
        Selection.Characters.Text = "R Chart" & vbCrLf & "(Log-Normal 
Process)" 
    '.ChartObjects(1).Select 
        .ChartArea.Select 
        .ChartArea.ClearContents 
         
        .SeriesCollection.NewSeries.Values = RangeDataSeries 
        .SeriesCollection(1).XValues = XValues 
        .SeriesCollection(1).Name = "Range Data (sample = " & 
intSampleSize & ")" 
         
        .SeriesCollection.NewSeries.Values = LCLArray 
        .SeriesCollection(2).XValues = XValues 
        .SeriesCollection(2).Name = "LCL" 
         
        .SeriesCollection.NewSeries.Values = UCLArray 
        .SeriesCollection(3).XValues = XValues 
        .SeriesCollection(3).Name = "UCL" 
         
        .SeriesCollection.NewSeries.Values = CenterlineArray 
        .SeriesCollection(4).XValues = XValues 
        .SeriesCollection(4).Name = "Centerline" 
         
        .SeriesCollection(4).Border.Color = RGB(0, 0, 0) 
        .SeriesCollection(2).Border.Color = RGB(0, 0, 0) 
        .SeriesCollection(3).Border.Color = RGB(0, 0, 0) 
        .SeriesCollection(1).Border.Color = RGB(255, 0, 0) 
         
        .SeriesCollection(1).Border.Weight = xlHairline 
        .SeriesCollection(2).Border.Weight = xlMedium 
        .SeriesCollection(3).Border.Weight = xlMedium 
        .SeriesCollection(4).Border.Weight = xlMedium 
        .SeriesCollection(4).Border.LineStyle = xlDash 
        .SeriesCollection(2).Border.LineStyle = xlDash 
        .SeriesCollection(3).Border.LineStyle = xlDash 
    End With 
End With 
 
With Worksheets("Control Charts") 
    .ChartObjects(3).Activate 
    .ChartObjects(3).Chart.HasTitle = True 
    .ChartObjects(3).Chart.Axes(xlValue).MinimumScale = -1 
    With ActiveChart 
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        .ChartTitle.Select 
        Selection.Characters.Text = "R Chart" & vbCrLf & "(Log-Logistic 
Process)" 
    '.ChartObjects(1).Select 
        .ChartArea.Select 
        .ChartArea.ClearContents 
         
        .SeriesCollection.NewSeries.Values = RangeDataSeries 
        .SeriesCollection(1).XValues = XValues 
        .SeriesCollection(1).Name = "Range Data (sample = " & 
intSampleSize & ")" 
         
        .SeriesCollection.NewSeries.Values = LCL_LLArray 
        .SeriesCollection(2).XValues = XValues 
        .SeriesCollection(2).Name = "LCL" 
         
        .SeriesCollection.NewSeries.Values = UCL_LLArray 
        .SeriesCollection(3).XValues = XValues 
        .SeriesCollection(3).Name = "UCL" 
         
        .SeriesCollection.NewSeries.Values = CenterlineArray 
        .SeriesCollection(4).XValues = XValues 
        .SeriesCollection(4).Name = "Centerline" 
         
        .SeriesCollection(4).Border.Color = RGB(0, 0, 0) 
        .SeriesCollection(2).Border.Color = RGB(0, 0, 0) 
        .SeriesCollection(3).Border.Color = RGB(0, 0, 0) 
        .SeriesCollection(1).Border.Color = RGB(255, 0, 0) 
         
        .SeriesCollection(1).Border.Weight = xlHairline 
        .SeriesCollection(2).Border.Weight = xlMedium 
        .SeriesCollection(3).Border.Weight = xlMedium 
        .SeriesCollection(4).Border.Weight = xlMedium 
        .SeriesCollection(4).Border.LineStyle = xlDash 
        .SeriesCollection(2).Border.LineStyle = xlDash 
        .SeriesCollection(3).Border.LineStyle = xlDash 
    End With 
End With 
 
'Plot the LCL, UCL, centerline, x-bar data 
'We need to create three artificial arrays for the X-axis, LCL and UCL 
(which basically just repeat themselves) 
ReDim XValues(1 To intIndex), LCLArray(1 To intIndex), UCLArray(1 To 
intIndex), CenterlineArray(1 To intIndex) 
 
For i = 1 To intIndex 
    XValues(i) = i 
    LCLArray(i) = sngxLCL 
    UCLArray(i) = sngxUCL 
    CenterlineArray(i) = sngxCenter 
Next i 
 
With Worksheets("Control Charts") 
    .ChartObjects(2).Activate 



 71 

    .ChartObjects(2).Chart.HasTitle = True 
    With ActiveChart 
        .ChartTitle.Select 
        Selection.Characters.Text = "x-bar Chart" 
    '.ChartObjects(2).Select 
        .ChartArea.Select 
        .ChartArea.ClearContents 
         
        .SeriesCollection.NewSeries.Values = AvgDataSeries 
        .SeriesCollection(1).XValues = XValues 
        .SeriesCollection(1).Name = "Average Data (sample = " & 
intSampleSize & ")" 
         
        .SeriesCollection.NewSeries.Values = LCLArray 
        .SeriesCollection(2).XValues = XValues 
        .SeriesCollection(2).Name = "LCL" 
         
        .SeriesCollection.NewSeries.Values = UCLArray 
        .SeriesCollection(3).XValues = XValues 
        .SeriesCollection(3).Name = "UCL" 
         
        .SeriesCollection.NewSeries.Values = CenterlineArray 
        .SeriesCollection(4).XValues = XValues 
        .SeriesCollection(4).Name = "Centerline" 
 
        .SeriesCollection(4).Border.Color = RGB(0, 0, 0) 
        .SeriesCollection(2).Border.Color = RGB(0, 0, 0) 
        .SeriesCollection(3).Border.Color = RGB(0, 0, 0) 
        .SeriesCollection(1).Border.Color = RGB(0, 0, 255) 
         
        .SeriesCollection(1).Border.Weight = xlHairline 
        .SeriesCollection(2).Border.Weight = xlMedium 
        .SeriesCollection(3).Border.Weight = xlMedium 
        .SeriesCollection(4).Border.Weight = xlMedium 
        .SeriesCollection(4).Border.LineStyle = xlDash 
        .SeriesCollection(2).Border.LineStyle = xlDash 
        .SeriesCollection(3).Border.LineStyle = xlDash 
    End With 
End With 
 
 
'Write the status of the "beyond 3 sigma" rule 
Worksheets("Control Charts").Range("M41").Font.ColorIndex = 1 
Worksheets("Control Charts").Range("M41").Value = "OK" 
Worksheets("Control Charts").Range("N41").Font.ColorIndex = 1 
Worksheets("Control Charts").Range("N41").Value = "OK" 
 
For i = 1 To intIndex 
    If AvgDataSeries(i) >= (sngxCenter + (A2(intSampleSize - 1) * 
sngRCenter)) Then 
        'checkOne = 1 
        'If checkOne = 1 Then 
        Worksheets("Control Charts").Range("M41").Font.ColorIndex = 3 
        Worksheets("Control Charts").Range("M41").Value = "Not OK" 
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        Worksheets("Control Charts").Range("N41").Font.ColorIndex = 3 
        Worksheets("Control Charts").Range("N41").Value = "Not OK" 
        Exit For 
    End If 
Next 
 
For i = 1 To intIndex 
    If AvgDataSeries(i) <= (sngxCenter + (A2(intSampleSize - 1) * 
sngRCenter)) Then 
        'checkOne = 1 
        'If checkOne = 1 Then 
        Worksheets("Control Charts").Range("M41").Font.ColorIndex = 3 
        Worksheets("Control Charts").Range("M41").Value = "Not OK" 
        Worksheets("Control Charts").Range("N41").Font.ColorIndex = 3 
        Worksheets("Control Charts").Range("N41").Value = "Not OK" 
        Exit For 
    End If 
Next 
 
For i = 1 To intIndex 
    If RangeDataSeries(i) >= (D4(intSampleSize - 1) * sngRCenter) Then 
        'checkOne = 1 
        'If checkOne = 1 Then 
        Worksheets("Control Charts").Range("M41").Font.ColorIndex = 5 
        Worksheets("Control Charts").Range("M41").Value = "Not OK" 
        Exit For 
    End If 
    If RangeDataSeries(i) >= (D4LL(intSampleSize - 1) * sngRCenter) 
Then 
        Worksheets("Control Charts").Range("N41").Font.ColorIndex = 5 
        Worksheets("Control Charts").Range("N41").Value = "Not OK" 
        Exit For 
    End If 
Next 
 
For i = 1 To intIndex 
    If RangeDataSeries(i) <= (D3(intSampleSize - 1) * sngRCenter) Then 
        Worksheets("Control Charts").Range("M41").Font.ColorIndex = 5 
        Worksheets("Control Charts").Range("M41").Value = "Not OK" 
        Exit For 
    End If 
    If RangeDataSeries(i) <= (D3LL(intSampleSize - 1) * sngRCenter) 
Then 
        Worksheets("Control Charts").Range("N41").Font.ColorIndex = 5 
        Worksheets("Control Charts").Range("N41").Value = "Not OK" 
        Exit For 
    End If 
Next 
'End the status report on "beyond 3 sigma" rule 
 
'Eight consecutive points on one side of the centerline 
intNumPoints = 1 
Worksheets("Control Charts").Range("M46").Font.ColorIndex = 1 
Worksheets("Control Charts").Range("M46").Value = "OK" 
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Worksheets("Control Charts").Range("N46").Font.ColorIndex = 1 
Worksheets("Control Charts").Range("N46").Value = "OK" 
 
For i = 1 To intIndex 
    If AvgDataSeries(i) < sngxCenter Then 
        TestVal(intNumPoints) = AvgDataSeries(i) 
        intNumPoints = intNumPoints + 1 
        If intNumPoints > 8 Then 
            Worksheets("Control Charts").Range("M46").Font.ColorIndex = 
3 
            Worksheets("Control Charts").Range("M46").Value = "Not OK" 
            Worksheets("Control Charts").Range("N46").Font.ColorIndex = 
3 
            Worksheets("Control Charts").Range("N46").Value = "Not OK" 
            Exit For 
        End If 
    Else 
        intNumPoints = 1 
    End If 
Next 
 
intNumPoints = 1 
For i = 1 To intIndex 
    If AvgDataSeries(i) > sngxCenter Then 
        TestVal(intNumPoints) = AvgDataSeries(i) 
        intNumPoints = intNumPoints + 1 
        If intNumPoints > 8 Then 
            Worksheets("Control Charts").Range("M46").Font.ColorIndex = 
3 
            Worksheets("Control Charts").Range("M46").Value = "Not OK" 
            Worksheets("Control Charts").Range("N46").Font.ColorIndex = 
3 
            Worksheets("Control Charts").Range("N46").Value = "Not OK" 
            Exit For 
        End If 
    Else 
        intNumPoints = 1 
    End If 
Next 
 
intNumPoints = 1 
For i = 1 To intIndex 
    If RangeDataSeries(i) < sngRCenter Then 
        TestVal(intNumPoints) = RangeDataSeries(i) 
        intNumPoints = intNumPoints + 1 
        If intNumPoints > 8 Then 
            Worksheets("Control Charts").Range("M46").Font.ColorIndex = 
5 
            Worksheets("Control Charts").Range("M46").Value = "Not OK" 
            Worksheets("Control Charts").Range("N46").Font.ColorIndex = 
5 
            Worksheets("Control Charts").Range("N46").Value = "Not OK" 
            Exit For 
        End If 



 74 

    Else 
        intNumPoints = 1 
    End If 
Next 
 
intNumPoints = 1 
For i = 1 To intIndex 
    If RangeDataSeries(i) > sngRCenter Then 
        TestVal(intNumPoints) = RangeDataSeries(i) 
        intNumPoints = intNumPoints + 1 
        If intNumPoints > 8 Then 
            Worksheets("Control Charts").Range("M46").Font.ColorIndex = 
5 
            Worksheets("Control Charts").Range("M46").Value = "Not OK" 
            Worksheets("Control Charts").Range("N46").Font.ColorIndex = 
5 
            Worksheets("Control Charts").Range("N46").Value = "Not OK" 
            Exit For 
        End If 
    Else 
        intNumPoints = 1 
    End If 
Next 
'End of the "eight consecutive points on one side of centerline" rule 
  
'"Eight consecutive points increasing or decreasing" rule 
intNumPoints = 1 
Worksheets("Control Charts").Range("M42").Font.ColorIndex = 1 
Worksheets("Control Charts").Range("M42").Value = "OK" 
Worksheets("Control Charts").Range("N42").Font.ColorIndex = 1 
Worksheets("Control Charts").Range("N42").Value = "OK" 
 
For i = 2 To intIndex 
    If RangeDataSeries(i) > RangeDataSeries(i - 1) Then 
        intNumPoints = intNumPoints + 1 
        If intNumPoints >= 8 Then 
            Worksheets("Control Charts").Range("M42").Font.ColorIndex = 
5 
            Worksheets("Control Charts").Range("M42").Value = "Not OK" 
            Worksheets("Control Charts").Range("N42").Font.ColorIndex = 
5 
            Worksheets("Control Charts").Range("N42").Value = "Not OK" 
            Exit For 
        End If 
    Else 
        intNumPoints = 1 
    End If 
Next 
 
intNumPoints = 1 
For i = 2 To intIndex 
    If RangeDataSeries(i) < RangeDataSeries(i - 1) Then 
        intNumPoints = intNumPoints + 1 
        If intNumPoints >= 8 Then 
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            Worksheets("Control Charts").Range("M42").Font.ColorIndex = 
5 
            Worksheets("Control Charts").Range("M42").Value = "Not OK" 
            Worksheets("Control Charts").Range("N42").Font.ColorIndex = 
5 
            Worksheets("Control Charts").Range("N42").Value = "Not OK" 
            Exit For 
        End If 
    Else 
        intNumPoints = 1 
    End If 
Next 
 
intNumPoints = 1 
For i = 2 To intIndex 
    If AvgDataSeries(i) > AvgDataSeries(i - 1) Then 
        intNumPoints = intNumPoints + 1 
        If intNumPoints >= 8 Then 
            Worksheets("Control Charts").Range("M42").Font.ColorIndex = 
3 
            Worksheets("Control Charts").Range("M42").Value = "Not OK" 
            Worksheets("Control Charts").Range("N42").Font.ColorIndex = 
3 
            Worksheets("Control Charts").Range("N42").Value = "Not OK" 
            Exit For 
        End If 
    Else 
        intNumPoints = 1 
    End If 
Next 
 
intNumPoints = 1 
For i = 2 To intIndex 
    If AvgDataSeries(i) < AvgDataSeries(i - 1) Then 
        intNumPoints = intNumPoints + 1 
        If intNumPoints >= 8 Then 
            Worksheets("Control Charts").Range("M42").Font.ColorIndex = 
3 
            Worksheets("Control Charts").Range("M42").Value = "Not OK" 
            Worksheets("Control Charts").Range("N42").Font.ColorIndex = 
3 
            Worksheets("Control Charts").Range("N42").Value = "Not OK" 
            Exit For 
        End If 
    Else 
        intNumPoints = 1 
    End If 
Next 
'End "eight consecutive points increasing or decreasing" rule 
 
'"Fourteen points alternating up and down" rule 
intNumPoints = 1 
blnTrendUp = True 
blnTrendDown = True 
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Worksheets("Control Charts").Range("M43").Font.ColorIndex = 1 
Worksheets("Control Charts").Range("M43").Value = "OK" 
Worksheets("Control Charts").Range("N43").Font.ColorIndex = 1 
Worksheets("Control Charts").Range("N43").Value = "OK" 
 
For i = 2 To intIndex 
    If RangeDataSeries(i) > RangeDataSeries(i - 1) And blnTrendDown 
Then 
        intNumPoints = intNumPoints + 1 
        blnTrendUp = True 
        blnTrendDown = False 
    Else 
        If RangeDataSeries(i) < RangeDataSeries(i - 1) And blnTrendUp 
Then 
            intNumPoints = intNumPoints + 1 
            blnTrendDown = True 
            blnTrendUp = False 
        Else 
            intNumPoints = 1 
            blnTrendUp = True 
            blnTrendDown = True 
        End If 
    End If 
     
    If intNumPoints >= 14 Then 
        Worksheets("Control Charts").Range("M43").Font.ColorIndex = 5 
        Worksheets("Control Charts").Range("M43").Value = "Not OK" 
        Worksheets("Control Charts").Range("N43").Font.ColorIndex = 5 
        Worksheets("Control Charts").Range("N43").Value = "Not OK" 
        Exit For 
    End If 
Next 
 
intNumPoints = 1 
blnTrendUp = True 
blnTrendDown = True 
 
For i = 2 To intIndex 
    If AvgDataSeries(i) > AvgDataSeries(i - 1) And blnTrendDown Then 
        intNumPoints = intNumPoints + 1 
        blnTrendUp = True 
        blnTrendDown = False 
    Else 
        If AvgDataSeries(i) < AvgDataSeries(i - 1) And blnTrendUp Then 
            intNumPoints = intNumPoints + 1 
            blnTrendDown = True 
            blnTrendUp = False 
        Else 
            intNumPoints = 1 
            blnTrendUp = True 
            blnTrendDown = True 
        End If 
    End If 
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    If intNumPoints >= 14 Then 
        Worksheets("Control Charts").Range("M43").Font.ColorIndex = 3 
        Worksheets("Control Charts").Range("M43").Value = "Not OK" 
        Worksheets("Control Charts").Range("N43").Font.ColorIndex = 3 
        Worksheets("Control Charts").Range("N43").Value = "Not OK" 
        Exit For 
    End If 
Next 
'End "Fourteen points alternating up and down" rule 
 
'"2 out of 3 consecutive points at or above 2 standard deviations" rule 
intNumPoints = 1 
Worksheets("Control Charts").Range("M44").Font.ColorIndex = 1 
Worksheets("Control Charts").Range("M44").Value = "OK" 
Worksheets("Control Charts").Range("N44").Font.ColorIndex = 1 
Worksheets("Control Charts").Range("N44").Value = "OK" 
 
For i = 3 To intIndex 
    If RangeDataSeries(i - 2) >= (D4(intSampleSize - 1) * sngRCenter) * 
2 / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i - 1) >= (D4(intSampleSize - 1) * sngRCenter) * 
2 / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i) >= (D4(intSampleSize - 1) * sngRCenter) * 2 / 
3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If intNumPoints >= 2 Then 
        Worksheets("Control Charts").Range("M44").Font.ColorIndex = 5 
        Worksheets("Control Charts").Range("M44").Value = "Not OK" 
        Exit For 
    End If 
    intNumPoints = 1 
Next 
 
intNumPoints = 1 
For i = 3 To intIndex 
    If RangeDataSeries(i - 2) >= (D4LL(intSampleSize - 1) * sngRCenter) 
* 2 / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i - 1) >= (D4LL(intSampleSize - 1) * sngRCenter) 
* 2 / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i) >= (D4LL(intSampleSize - 1) * sngRCenter) * 2 
/ 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If intNumPoints >= 2 Then 
        Worksheets("Control Charts").Range("N44").Font.ColorIndex = 5 
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        Worksheets("Control Charts").Range("N44").Value = "Not OK" 
        Exit For 
    End If 
    intNumPoints = 1 
Next 
 
intNumPoints = 1 
For i = 3 To intIndex 
    If RangeDataSeries(i - 2) <= (D3(intSampleSize - 1) * sngRCenter) * 
2 / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i - 1) <= (D3(intSampleSize - 1) * sngRCenter) * 
2 / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i) <= (D3(intSampleSize - 1) * sngRCenter) * 2 / 
3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If intNumPoints >= 2 Then 
        Worksheets("Control Charts").Range("M44").Font.ColorIndex = 5 
        Worksheets("Control Charts").Range("M44").Value = "Not OK" 
        Exit For 
    End If 
    intNumPoints = 1 
Next 
 
intNumPoints = 1 
For i = 3 To intIndex 
    If RangeDataSeries(i - 2) <= (D3LL(intSampleSize - 1) * sngRCenter) 
* 2 / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i - 1) <= (D3LL(intSampleSize - 1) * sngRCenter) 
* 2 / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i) <= (D3LL(intSampleSize - 1) * sngRCenter) * 2 
/ 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If intNumPoints >= 2 Then 
        Worksheets("Control Charts").Range("N44").Font.ColorIndex = 5 
        Worksheets("Control Charts").Range("N44").Value = "Not OK" 
        Exit For 
    End If 
    intNumPoints = 1 
Next 
 
intNumPoints = 1 
For i = 3 To intIndex 
    If AvgDataSeries(i - 2) >= (sngxCenter + (A2(intSampleSize - 1) * 
sngRCenter)) * 2 / 3 Then 
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        intNumPoints = intNumPoints + 1 
    End If 
    If AvgDataSeries(i - 1) >= (sngxCenter + (A2(intSampleSize - 1) * 
sngRCenter)) * 2 / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If AvgDataSeries(i) >= (sngxCenter + (A2(intSampleSize - 1) * 
sngRCenter)) * 2 / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If intNumPoints >= 2 Then 
        Worksheets("Control Charts").Range("M44").Font.ColorIndex = 3 
        Worksheets("Control Charts").Range("M44").Value = "Not OK" 
        Worksheets("Control Charts").Range("N44").Font.ColorIndex = 3 
        Worksheets("Control Charts").Range("N44").Value = "Not OK" 
        Exit For 
    End If 
    intNumPoints = 1 
Next 
 
intNumPoints = 1 
For i = 3 To intIndex 
    If AvgDataSeries(i - 2) <= (sngxCenter - (A2(intSampleSize - 1) * 
sngRCenter)) * 2 / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If AvgDataSeries(i - 1) <= (sngxCenter - (A2(intSampleSize - 1) * 
sngRCenter)) * 2 / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If AvgDataSeries(i) <= (sngxCenter - (A2(intSampleSize - 1) * 
sngRCenter)) * 2 / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If intNumPoints >= 2 Then 
        Worksheets("Control Charts").Range("M44").Font.ColorIndex = 3 
        Worksheets("Control Charts").Range("M44").Value = "Not OK" 
        Worksheets("Control Charts").Range("N44").Font.ColorIndex = 3 
        Worksheets("Control Charts").Range("N44").Value = "Not OK" 
        Exit For 
    End If 
    intNumPoints = 1 
Next 
'End "2 out of 3 consecutive points at or above 2 standard deviations" 
rule 
 
'"4 out of 5 consecutive points at or above 1 standard deviation" rule 
intNumPoints = 1 
Worksheets("Control Charts").Range("M45").Font.ColorIndex = 1 
Worksheets("Control Charts").Range("M45").Value = "OK" 
Worksheets("Control Charts").Range("N45").Font.ColorIndex = 1 
Worksheets("Control Charts").Range("N45").Value = "OK" 
 
For i = 5 To intIndex 
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    If RangeDataSeries(i - 4) >= (D4(intSampleSize - 1) * sngRCenter) / 
3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i - 3) >= (D4(intSampleSize - 1) * sngRCenter) / 
3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i - 2) >= (D4(intSampleSize - 1) * sngRCenter) / 
3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i - 1) >= (D4(intSampleSize - 1) * sngRCenter) / 
3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i) >= (D4(intSampleSize - 1) * sngRCenter) / 3 
Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If intNumPoints >= 4 Then 
        Worksheets("Control Charts").Range("M45").Font.ColorIndex = 5 
        Worksheets("Control Charts").Range("M45").Value = "Not OK" 
        Exit For 
    End If 
    intNumPoints = 1 
Next 
 
intNumPoints = 1 
For i = 5 To intIndex 
    If RangeDataSeries(i - 4) >= (D4LL(intSampleSize - 1) * sngRCenter) 
/ 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i - 3) >= (D4LL(intSampleSize - 1) * sngRCenter) 
/ 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i - 2) >= (D4LL(intSampleSize - 1) * sngRCenter) 
/ 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i - 1) >= (D4LL(intSampleSize - 1) * sngRCenter) 
/ 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i) >= (D4LL(intSampleSize - 1) * sngRCenter) / 3 
Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If intNumPoints >= 4 Then 
        Worksheets("Control Charts").Range("N45").Font.ColorIndex = 5 
        Worksheets("Control Charts").Range("N45").Value = "Not OK" 
        Exit For 
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    End If 
    intNumPoints = 1 
Next 
 
intNumPoints = 1 
For i = 5 To intIndex 
    If RangeDataSeries(i - 4) <= (D3(intSampleSize - 1) * sngRCenter) / 
3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i - 3) <= (D3(intSampleSize - 1) * sngRCenter) / 
3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i - 2) <= (D3(intSampleSize - 1) * sngRCenter) / 
3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i - 1) <= (D3(intSampleSize - 1) * sngRCenter) / 
3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i) <= (D3(intSampleSize - 1) * sngRCenter) / 3 
Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If intNumPoints >= 4 Then 
        Worksheets("Control Charts").Range("M45").Font.ColorIndex = 5 
        Worksheets("Control Charts").Range("M45").Value = "Not OK" 
        Exit For 
    End If 
    intNumPoints = 1 
Next 
 
intNumPoints = 1 
For i = 5 To intIndex 
    If RangeDataSeries(i - 4) <= (D3LL(intSampleSize - 1) * sngRCenter) 
/ 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i - 3) <= (D3LL(intSampleSize - 1) * sngRCenter) 
/ 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i - 2) <= (D3LL(intSampleSize - 1) * sngRCenter) 
/ 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i - 1) <= (D3LL(intSampleSize - 1) * sngRCenter) 
/ 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If RangeDataSeries(i) <= (D3LL(intSampleSize - 1) * sngRCenter) / 3 
Then 
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        intNumPoints = intNumPoints + 1 
    End If 
    If intNumPoints >= 4 Then 
        Worksheets("Control Charts").Range("N45").Font.ColorIndex = 5 
        Worksheets("Control Charts").Range("N45").Value = "Not OK" 
        Exit For 
    End If 
    intNumPoints = 1 
Next 
 
intNumPoints = 1 
For i = 5 To intIndex 
    If AvgDataSeries(i - 4) >= (sngxCenter + (A2(intSampleSize - 1) * 
sngRCenter)) / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If AvgDataSeries(i - 3) >= (sngxCenter + (A2(intSampleSize - 1) * 
sngRCenter)) / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If AvgDataSeries(i - 2) >= (sngxCenter + (A2(intSampleSize - 1) * 
sngRCenter)) / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If AvgDataSeries(i - 1) >= (sngxCenter + (A2(intSampleSize - 1) * 
sngRCenter)) / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If AvgDataSeries(i) >= (sngxCenter + (A2(intSampleSize - 1) * 
sngRCenter)) / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If intNumPoints >= 4 Then 
        Worksheets("Control Charts").Range("M45").Font.ColorIndex = 3 
        Worksheets("Control Charts").Range("M45").Value = "Not OK" 
        Worksheets("Control Charts").Range("N45").Font.ColorIndex = 3 
        Worksheets("Control Charts").Range("N45").Value = "Not OK" 
        Exit For 
    End If 
    intNumPoints = 1 
Next 
 
intNumPoints = 1 
For i = 5 To intIndex 
    If AvgDataSeries(i - 4) <= (sngxCenter - (A2(intSampleSize - 1) * 
sngRCenter)) / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If AvgDataSeries(i - 3) <= (sngxCenter - (A2(intSampleSize - 1) * 
sngRCenter)) / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If AvgDataSeries(i - 2) <= (sngxCenter - (A2(intSampleSize - 1) * 
sngRCenter)) / 3 Then 



 83 

        intNumPoints = intNumPoints + 1 
    End If 
    If AvgDataSeries(i - 1) <= (sngxCenter - (A2(intSampleSize - 1) * 
sngRCenter)) / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If AvgDataSeries(i) <= (sngxCenter - (A2(intSampleSize - 1) * 
sngRCenter)) / 3 Then 
        intNumPoints = intNumPoints + 1 
    End If 
    If intNumPoints >= 4 Then 
        Worksheets("Control Charts").Range("M45").Font.ColorIndex = 3 
        Worksheets("Control Charts").Range("M45").Value = "Not OK" 
        Worksheets("Control Charts").Range("N45").Font.ColorIndex = 3 
        Worksheets("Control Charts").Range("N45").Value = "Not OK" 
        Exit For 
    End If 
    intNumPoints = 1 
Next 
'End "4 out of 5 consecutive points at or above 1 standard deviation" 
rule 
 
'Display process information 
Worksheets("Control Charts").Range("J50").Value = 
WorksheetFunction.Average(rngOriginalTimes) 
Worksheets("Control Charts").Range("J53").Value = 
WorksheetFunction.StDev(rngOriginalTimes) 
'mean = Application.WorksheetFunction.Average(Range(turnoverTime)) 
'standardDeviation = 
Application.WorksheetFunction.StDev(Range(turnoverTime)) 
'UCL = mean + (3 * standardDeviation) 
'LCL = mean - (3 * standardDeviation) 
 
'For Each cell In Range(turnoverTime) 
'    If cell.Value > UCL Or cell.Value < LCL Then 
'        checkOne = True 
'    End If 
 
 
'If checkOne = False And checkTwo = False And checkThree = False And 
checkFour = False And checkFive = False And checkSix = False Then 
'    result = MsgBox("The process is in control.", vbOKOnly, "Process 
Stability") 
'Else 
'    result = MsgBox("The process is out of control.", vbOKOnly, 
"Process Stability") 
'End If 
End Sub 
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