
Bucknell University
Bucknell Digital Commons

Master’s Theses Student Theses

2011

Development of a Humanoid Robot Arm for Use
in Urban Environments
Brenton Noll
Bucknell University

Follow this and additional works at: https://digitalcommons.bucknell.edu/masters_theses

Part of the Mechanical Engineering Commons

This Masters Thesis is brought to you for free and open access by the Student Theses at Bucknell Digital Commons. It has been accepted for inclusion in
Master’s Theses by an authorized administrator of Bucknell Digital Commons. For more information, please contact dcadmin@bucknell.edu.

Recommended Citation
Noll, Brenton, "Development of a Humanoid Robot Arm for Use in Urban Environments" (2011). Master’s Theses. 35.
https://digitalcommons.bucknell.edu/masters_theses/35

https://digitalcommons.bucknell.edu?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/masters_theses?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/student_theses?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/masters_theses?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/masters_theses/35?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@bucknell.edu

I, Brenton A. Noll, do grant permission for my thesis to be copied.

2

4

5

Acknowledgements

 The first person I’d like to thank is my father, Jeff Noll. Since the beginning of

my undergrad at Penn State, and through all of my Masters at Bucknell, he’s been there

to support me and help me with difficult decisions and push me when I was faced with

tough challenges.

 I’d also like to thank my advisor, Steve Shooter. I’ve learned a lot throughout my

the time I’ve been at Bucknell. I’d like to thank him for giving me a chance to work on

great, interesting, and fun projects. I’d also like to thank him for introducing me to a

topic that I’ve really grown to love and that is robotics. I don’t think I would’ve wanted

any other thesis topic than the one I had, working on a humanoid robotic arm.

 I’d like to thank a couple other people that have been a great help throughout the

development of the Bucknell Robotic Arm. Those people would be Jason Geist, Jeff

Gum, Nick Oren, Phillip Diefenderfer, and Eric Lynn, all of whom helped with the

design, controls and electrical of the Bucknell Robotic Arm and were a significant part of

the arm being a success.

 I’d like to thank Tim Baker for machining a large majority of the parts for the arm

and teaching me a lot of machining along the way.

 Lastly, I’d like to thank Professor Charles Kim and Dean Keith Buffinton for

being two of my committee members and giving me great advice and suggestions along

the way for the Bucknell Robotic Arm.

6

Table of Contents

Abstract ... 1

1.0 Introduction .. 2

1.1 Project Goal ... 3

1.2 Literature Review ... 4

Robot Arms .. 9

Robot Hands... 12

Humanoid Robots .. 14

1.3 Thesis Goals and Organization .. 18

2.0 Design Objectives and Specifications 20

2.1 Objective Tree .. 20

Develop .. 20

Humanoid Arm .. 22

Operations .. 24

Urban Environment .. 25

2.2 Operational Scenarios .. 25

2.3 Measureable Specifications ... 27

Robot Arm ... 28

Robot Hand .. 29

3.0 Design Process .. 31

3.1 Design Requirements and Specifications ... 31

3.2 Robot Arm Simulation ... 33

3.3 Arm Alternatives and an Evaluation of Each ... 40

3.4 Detailed Design of the Arm ... 46

Joint and Link Material Selection .. 46

Gear Reduction and Motor Selection ... 48

Joint Design – Lower Case .. 50

Joint Design- Upper Case .. 54

7

Wrist Differences ... 58

Shoulder Differences ... 59

The Passive Wrist Joint .. 62

Arm Brackets ... 64

4.0 Controls ... 71

4.1 The Control Board ... 72

4.2 The Amplifiers ... 74

4.3 Initial Motor Testing .. 76

4.4 C Code and DLL .. 77

4.5 Java and Yobotics SCS .. 79

5.0 Testing Results.. 82

5.1 Test #1 – Number of DOF’s .. 84

5.2 Test #2 – Position Accuracy of the End Effector ... 86

5.3 Test #3 – Max Joint Speed ... 87

5.4 Test #4 – Total Arm Length ... 88

5.5 Test #5 – Max Arm Weight ... 88

5.6 Test #6 – Max Load Fully Outstretched .. 89

5.7 Test #7 – Max Load-to-Weight Ratio .. 90

5.8 Test #8 – Opening a Door .. 91

6.0 Realization .. 93

6.1 Realization – Design Objectives and Specifications .. 93

6.2 Realization – Design Process ... 93

6.3 Realization – Controls .. 95

6.4 Realization – Testing ... 96

7.0 Future Modifications and Lessons Learned 98

8.0 Conclusion ... 101

References ... 102

Appendices .. 105

8

Appendix A: Simulation Code ... 105

Appendix B: Carbon Fiber Tube Deflection Analysis ... 118

Appendix C: Motor Selection .. 119

Appendix D: Angular Contact Bearing Calculations ... 120

Appendix E: X Type Bearing Calculations.. 122

Appendix F: Joint Torque and Bracket Force Table .. 123

Appendix G: Shoulder Joint Drawings .. 125

Appendix H: Elbow Joint Drawings .. 144

Appendix I: Wrist Joint Drawings ... 160

Appendix J: Bracket Drawings .. 177

Appendix K: Bill of Materials ... 187

A: Shoulder Joint Parts .. 187

B: Elbow Joint Parts ... 188

C: Wrist Joint Parts .. 189

D: Bracket Parts ... 190

E: Electronic Parts .. 190

Appendix L: BHRA Wiring Diagram .. 191

Appendix M: Motor Control C Code ... 192

Appendix N: DLL Compiled C Code .. 196

A: motor_ArmMotor .. 196

B: motor_ArmMotorController.. 198

Appendix O: Java and Yobotics SCS Control Code .. 199

A: MoveArm .. 199

B: ArmMotor ... 205

Appendix P: Blue Printed Shoulder Drawings .. 213

Appendix Q: Blue Printed Elbow Drawings .. 225

Appendix R: Blue Printed Wrist Drawings.. 237

9

List of Tables
Table 1: Bucknell Humanoid Robot Arm Design Specifications ... 32

Table 2: Torque and Power Values Found from Yobotics SCS ... 37

Table 3: SCS to Working Model Torque and Power Comparison .. 39

Table 4: Comparison Table for All Considered Layout ... 45

Table 5: Torque and Power Values Found from Yobotics SCS ... 48

Table 6: Comparison Table for All CSD’s Considered .. 49

Table 7: Torque, Speed, Reduced Torque and Speed, and Power Values from Chosen Motors 50

Table 8: Joint Radial and Axial Loads and the Loads Supported by the Angular Contact Bearings

for the Harmonic Drive Case .. 53

Table 9: CSD Thrust on Motor Case Bearings and the Selected Bearing Support Values 56

Table 10: Design Specifications ... 82

Table 11: Test Procedures for Bucknell Humanoid Robot Arm ... 83

Table 12: Design Specification Test Results for the Bucknell Humanoid Robot Arm 84

List of Figures

Figure 1: Bucknell / IHMC Walking Biped [5] .. 3

Figure 2: GM workers aided in door assembly [7] ... 6

Figure 3: GM spot weld assembly line [8] .. 6

Figure 4: Foster-Miller Talon SWORDS [9] .. 6

Figure 5: General Atomics MQ-1 Predator in flight [10] ... 6

Figure 6: Humanoid Robot Arm Venn Diagram .. 8

Figure 7: Robosoft RobuArm [12] .. 9

Figure 8: Barrett WAM arm [13] .. 10

Figure 9: Festo AIRICS arm [15] ... 10

Figure 10: DEKA Prosthetic arm [6] .. 11

Figure 11: SCHUNK Dexterous Hand [18] .. 12

Figure 12: Shadow C5 [19] ... 13

Figure 13: NASA Robonaut 2 [21] ... 14

Figure 14: DLR Rollin' Justin [24] ... 15

Figure 15: Boston Dynamics Big Dog [26] .. 16

Figure 16: Boston Dynamic PETMAN [28] ... 17

Figure 17: Honda Asimo [29] ... 17

Figure 18: Development Tree ... 19

Figure 19: Main Objective Tree .. 20

Figure 20: Research Tree .. 21

Figure 21: Design Tree ... 22

Figure 22: Fabricate Tree .. 22

Figure 23: State of the Art Tree .. 23

Figure 24: Capabilities Tree .. 23

Figure 25: Characteristics Tree ... 24

10

Figure 26: Urban Environment Characteristics Tree .. 25

Figure 27: Layout Option 1 ... 35

Figure 28: Layout Option 2 ... 35

Figure 29: Layout Option 3 ... 35

Figure 30: Layout Option 4 ... 35

Figure 31: Simulation Model .. 35

Figure 32: Solidworks Model ... 36

Figure 33: Yobotics SCS Model ... 36

Figure 34: Yobotics SCS showing Torque Curves ... 38

Figure 35: Working Model Analysis .. 39

Figure 36: Cable Drive Differential Layout .. 41

Figure 37: Bevel Gear Differential Layout ... 43

Figure 38: Frameless Motor with Harmonic Drive Layout .. 44

Figure 39: Detailed Cross Section of Elbow Joint .. 51

Figure 40: CSD 17 Harmonic Drive Model .. 52

Figure 41: Lower Case of Elbow Joint ... 52

Figure 42: Case with Harmonic Drive Installed Top View .. 53

Figure 43: Case with Bearings Installed Bottom View ... 53

Figure 44: Cross Section of Lower Case. Harmonic Drive, Bearings, and Output Included...................... 54

Figure 45: Solidworks Model of Elbow Motor ... 54

Figure 46: Solidworks Model of Upper Case with Motor Installed .. 54

Figure 47: Oldham Coupler with Wave Generator and Rotor Installed ... 55

Figure 48: Oldham Coupler with Bearing Placement Shown ... 56

Figure 49: Cross Section of Elbow Upper Case ... 56

Figure 50: Cross Section of Assembled Elbow Joint .. 57

Figure 51: Final Assembled Elbow Joint .. 58

Figure 52: Assembled Model of the Elbow Joint ... 58

Figure 53: Cross Section of Wrist Joint Model ... 59

Figure 54: Fully Assembled Solidworks Model ... 59

Figure 55: Wrist Joint Attached at to Link Bracket .. 59

Figure 56: Shoulder Joint - Encoder Position ... 60

Figure 57: Shoulder Joint - Pass Through ... 61

Figure 58: Final Assembled Shoulder Joint .. 62

Figure 59: Solidworks Model of Passive Wrist .. 63

Figure 60: Passive Wrist Joint .. 64

Figure 61: Shoulder Bracket 1 (Top Left) .. 65

Figure 62: Deflection Results for Shoulder Bracket 1 .. 66

Figure 63: Shoulder Bracket 2 (Left) .. 66

Figure 64: Deflection Results for Shoulder Bracket 2 .. 67

Figure 65: Elbow Bracket Attached to the Arm ... 68

Figure 66: Deflection Results for Elbow Bracket ... 69

Figure 67: Wrist Bracket Attached Between the Wrist and Elbow .. 69

11

Figure 68: Deflection Results for Wrist Bracket .. 70

Figure 69: System Diagram .. 71

Figure 70: PCI Card in the Control System .. 72

Figure 71: Prodigy PCI card [32] .. 74

Figure 72: Amplifier Position in System Diagram ... 75

Figure 73: Advanced Motion Control Amplifier .. 76

Figure 74: C Code in the System Diagram ... 79

Figure 75: Yobotics SCS and Java in the System Diagram .. 80

Figure 76: Bucknell Humanoid Robot Arm DOF's .. 85

Figure 77: Bucknell Humanoid Robot Arm Accuracy Test.. 87

Figure 78: Arm Measurement ... 88

Figure 79: Arm Max Weight Test ... 89

Figure 80: Outstretched Strength Test .. 90

Figure 81: Successful Opening of a Door ... 92

1

Abstract

 The Bucknell Humanoid Robot Arm project was developed in order to

provide a lightweight robotic arm for the IHMC / Bucknell University bipedal robot that

will provide a means of manipulation and facilitate operations in urban environments.

The resulting fabricated arm described in this thesis weighs only 13 pounds, and is

capable of holding 11 pounds fully outstretched, lifting objects such as tools, and it can

open doors. It is also capable of being easily integrated with the IHMC / Bucknell

University biped.

This thesis provides an introduction to robots themselves, discusses the goals of

the Bucknell Humanoid Robot Arm project, provides a background on some of the

existing robots, and shows how the Bucknell Humanoid Robot Arm fits in with the

studies that have been completed. After reading these studies, important items such as

design trees and operational scenarios were completed. The completion of these items

led to measurable specifications and later the design requirements and specifications.

A significant contribution of this thesis to the robotics discipline involves the

design of the actuator itself. The arm uses of individual, lightweight, compactly designed

actuators to achieve desired capabilities and performance requirements. Many iterations

were completed to get to the final design of each actuator. After completing the actuators,

the design of the intermediate links and brackets was finalized. Completion of the design

led to the development of a complex controls system which used a combination of C

language and Java.

2

1.0 Introduction

 The world is quickly becoming more technologically advanced. It is beginning to

rely more and more on robots to complete both simple and complicated tasks. The tasks

these robots complete seem to be endless and can be seen in many fields such as

manufacturing, military, police, and healthcare among others. [1]

 Humanoid robots (robots with the combination of arms, legs and heads) are being

further developed to be introduced into the world. They may not be fully incorporated

into the everyday lives of humans, but particular fields will soon see a boost in humanoid

robotics [2]. It seems like most will be used in military, police, and scientific studies or

in situations where a robot can take the place of a human, eliminating the threat of putting

a human into a hazardous environment. For example, bomb squads use robots to remove

bombs from buildings and the military uses robots to search cars for Improvised

Explosive Devices (IED). The main purpose of these robots is to allow a human, from a

remote location, to control the robot. With this control, they’ll be able to move the robot

around and complete tasks using the vision platform and manipulators. The use of tele-

operation in robotics is not a must but robots such as these take advantage of it.

 The humans’ ability to use its arms and hands to manipulate an object is

extremely important in everyday life. The ability to mimic this ability is especially

difficult when using robotics. Being able to grasp a piece of food firmly without crushing

it, or simply to pick up a pencil and hold it properly are simple tasks for a human, but are

rather difficult with a robot due to the lack of sensory inputs. Of course these senses can

be mimicked with electronics, but it also increases the complexity of the robot.

3

1.1 Project Goal

 The Humanoid Robot Arm project was developed in conjunction with the

Bucknell University / Institute for Human and Machine Cognition (IHMC) Walking

Bipedal Robot project. Figure 1 shows the biped.

Figure 1: Bucknell / IHMC Walking Biped [5]

The overall goal of the Bucknell / IHMC Walking Bipedal Robot project was to

develop a two legged walking robot that will be able to maneuver through complex urban

environments where wheeled robots cannot [3] [4]. Being that urban environments were

4

created for humans, the Bipedal Robot will be better suited, like a human, for the tasks it

will encounter. Opening and walking through doors or fitting through tight spaces

would be a rather difficult task for a wheeled robot to complete due to its bulkiness and

lack of “agility”.

The current biped has 12 degrees of freedom. Each leg has three at the hip, one

at the knee, and two at the ankle. Each of these joints is powered by SEA’s (Series

Elastic Actuators). The biped has ability to walk slowly and is controlled by complex

control algorithms that also act as a fall recovery or rebalance system [5]. In the future

these algorithms, as well as the robot, will be refined to be more efficient and more robust

[4]. The biped also uses a capture point system in order to know where to step next. This

system also aids the balance recovery system [5].

 Additional humanoid parts have been developed. A new foot design, which

incorporated pressure sensors, was created in 2009 by a senior design group at Bucknell

University. The foot was further developed to reduce the weight and improve the

functionality of the design. Another part that was developed was the head, or vision

platform, by another Bucknell University senior design group in 2010. The Humanoid

Robot Arm is another addition to the Bipedal Robot platform. The arm will allow for the

biped to complete small tasks such as open doors and move objects to complete an

overall objective.

1.2 Literature Review

 As stated before, robots are being used all over in industry, military, and

healthcare. Robots are being developed to eliminate threats to humans, make jobs easier

5

and in some special cases they are being integrated onto the human body for personal use

[1][6]. This section discusses the many uses of robots starting with basic designs and

ending with robots that are most related to the Bucknell Humanoid Robot Arm Project.

 Starting with possibly the most simple are manufacturing robots. Robots being

used to pick and place items have been used widely in manufacturing for 4 or 5 decades

[1]. In manufacturing of cars, robots are used in almost every aspect of their assembly

[1]. Robots can be more precise and accurate than humans as well. Jobs that could be

done by humans, like machining of parts, are also being replaced by robots to increase

job efficiency, part reliability and repeatability [1].

 Robots are also being used to aid workers in assembly of cars. In order to move

fully assembled items, like dash boards, workers use robots to move the dash boards into

the car. Without the robot, the dash would have to be assembled inside the car where

there is less space. With the robot, workers can assemble it outside where there is plenty.

Being able to move the fully assembled dash directly into the car greatly reduces the

amount of time and labor needed to complete that particular task. Figure 2 and Figure 3

show jobs similar to those discussed which involve robots. Robots improve product

quality, reduce time and labor costs, and boost overall manufacturer profitability by

incorporating the efficiencies associated with utilizing machines versus human labor.

6

Figure 2: GM workers aided in door assembly

[7]

Figure 3: GM spot weld assembly line [8]

 Other robots are used to eliminate the threat of bombs and can be used in

situations where humans can’t be present, such as an area that has a chemical or nuclear

threat. The military calls these robots Unmanned Ground Vehicles (UGV) and are

similar to a remote control race car. All input is given by a human from a remote

location. Figure 4 shows a Foster-Miller Talon SWORDS UGV robot. It is able to travel

in urban environments and has the ability to have weapons attached to it and has been

used in Iraq and Afghanistan wars [9].

Figure 4: Foster-Miller Talon SWORDS

[9]

Figure 5: General Atomics MQ-1 Predator in flight

[10]

7

 Robots are not only being used on the ground but in the air as well in the form of

Unmanned Aerial Vehicles (UAV). For example, the General Atomics MQ-1 Predator,

shown in Figure 5, is used to scout areas for enemy threats while at the same time,

eliminating the possibility of a pilot being injured or killed. The MQ-1 Predator can view,

engage, and fire missiles at a ground target all by the control of a human at a safe location.

UAV are being used widely in Afghanistan and Iraq to eliminate enemy threats as well as

inform ground troops of an enemy presence. [10]

 All of these robots show the significance of the Humanoid Robot Arm project.

Their similarities will help set a base for what technology is available and what steps are

being taken to further develop robots. The Humanoid Robotic Arm project will use these

developments, attempt to take them further, and hopefully improve them.

 Figure 6 shows several aspects of robots that will be discussed and how they

relate to the development of the Humanoid Robot Arm.

8

Figure 6: Humanoid Robot Arm Venn Diagram

9

Robot Arms

 The development of robotic arms has been increasing due to improvements in the

items used to create them. Improvements in things such as actuators and motors are

allowing robotic arms to become lighter and more powerful [2] [11]. Innovations in

sensors such as tactile sensors and force feedback are putting robotic arms one step closer

to the abilities of a human arm [2]. Many arms exist on the market right now, but only a

few will be discussed in the next section.

 The first robotic arm discussed is the Robosoft RobuArm shown in Figure 7. The

RobuArm was developed by Robosoft and was intended to be put on mobile devices.

Robosoft also develops a gripper that can be attached to the arm for gripping of items.

Compared to its weight of 88 pounds, the robot has a very low payload of 5.5 pounds. It

has a very simple design with only three servos and three brushless motors [12]. The

RobuArm is commercially available.

Figure 7: Robosoft RobuArm [12]

 The Barrett WAM, shown in Figure 8, comes in two styles, one with four DOF

(degrees of freedom) and the other with seven DOF. Both have very high dexterity and

10

have a position repeatability of .3mm and .6mm respectively. It uses brushless motors

along with a high speed, zero backlash cable drive system. With the hand attached it is

able to grip and hold items weighing nearly nine pounds [13] [14]. Like the RobuArm,

the Barrett WAM is also commercially available.

Figure 8: Barrett WAM arm [13]

Figure 9: Festo AIRICS arm [15]

 Possibly the most human-like arms created would be the Festo Airics arm, Figure

9, and the DEKA Arm. The Festo Airics arm was developed to show how mechatronics

and human anatomy can be combined. It uses Piezo proportional valves and 30 air

11

muscles along with a human-like skeleton to control all of its movement. The Airics arm

is also able to write as well as grip items. It is also shown in its videos lifting a small

dumbbell [15].

 The DEKA arm (DEKA is derived by using the first two letters of its founders

full name Dean Kamen) shown in Figure 10, is a state of the art prosthetic arm built by

DARPA (Defense Advanced Research Projects Agency) and DEKA under the lead of

Dean Kamen [6] [16].

Figure 10: DEKA Prosthetic arm [6]

The arm was sponsored by the Pentagon and Department of Defense to develop a

prosthetic arm for wounded soldiers coming home from the wars in Iraq and Afghanistan.

When designing the arm, cost was not a concern. The DEKA team only used the best in

materials, motors, actuators, sensors etc when making the arm [6] [16]. The result was an

almost humanlike arm. For testing, patients were chosen to try the prosthetic arm. These

patients were equipped with the prosthetic arms and had the sensors for the arm attached

to their bodies. Electric signals sent to arm muscle nerve endings were detected by these

sensors in order to control the DEKA arm [6]. After the sensors were connected to the

12

correct muscle nerves, the patient could simply think about moving their arm and the

prosthetic would move. A man that hadn’t fed himself for many years was able to pick

up a bowl and spoon and feed himself [6]. The DEKA arm compares so closely to the

movement of a human arm and hand that it has 18 DOF’s and a human has 22 DOF’s.

This made motor choice, circuitry and controls a very difficult area for the DEKA

research group but the results of the DEKA prosthetic arm seem to be very promising for

use in the future.

Robot Hands

 Related to robotic arms are robotic hands. They make it possible for the arm to be

able to manipulate an object. The SCHUNK hand, shown in Figure 11, is a three

fingered robotic hand that has tactile sensors built into the finger tips and mid phalange.

Figure 11: SCHUNK Dexterous Hand [18]

The three finger design allows the hand to hold many shapes like rectangles,

spheres, cylinders and disks [17]. The hand weighs approximately 4.3 pounds. Although

13

not very human-like, the SCHUNK hand could be used a lot on a robotic arm for

everyday activities [17].

Figure 12: Shadow C5 [19]

 The Shadow C5 hand, shown in Figure 12, is a five fingered robotic hand that has

17 degrees of freedom. Each finger has 3 DOF and the thumb has 5 DOF [19]. The hand

is made up of many different materials including steel, aluminum, acetyl, and

polycarbonate. The entire hand is moved by 20 motors which are connected to each joint

of the hand. The Shadow C5 hand also has many sensors which include force and

position. The C5 hand is very complex and weighs about 9 pounds.

14

Humanoid Robots

 Most recently, advances in robots that mimic the upper torso of humans have been

created [20]. This group and the following humanoid robot group are most closely

related to the Humanoid Robot Arm project because they have humanoid arms.

Figure 13: NASA Robonaut 2 [21]

 NASAs’ Robonaut 2, Figure 13, is a humanoid robot used to aid astronauts in

completing tasks outside of the shuttle and was developed specifically to be used in outer

space. It has humanlike movement as well as humanlike strength [22]. Its hand has very

high dexterity and can outperform a human hand when in a bulky space suit [23].

Despite having many motors in the arm and hand, 17 in total, the Robonaut arm is very

light weight compared to other robotic arms of its size weighing in at 21 pounds [22].

The hand is able to grip tools and use them to complete tasks like repairs on a shuttle and

the arm aids in lifting heavy items. Robonaut is controlled by an astronaut from a remote

location using telepresence controls.

15

 DLRs’ Rollin’ Justin, shown in Figure 14, is also a humanoid robot. Based on a 4

wheeled platform, Justin has the ability to carry objects as well as manipulate them with

its hands [24] [25].

Figure 14: DLR Rollin' Justin [24]

Justin was developed to show the advances being made in robot arm control,

particularly bi-arm control. Each arm has a creative design which keeps all the axes of

the motors, like in a human, in line, making the controls system easier to program and

control [25]. One arm weighs approximately 30 pounds and can hold slightly more than

its own weight when moving slowly. At high speeds, the arm is able to move 15 pounds

of weight. Justin also has a head which has a vision system incorporated [25]. This

vision system allows for the interaction with objects and humans.

 Other advances are being made in robots that walk. Boston Dynamics’ Big Dog,

shown in Figure 15, was developed to carry heavy equipment for military personnel and

allows soldiers to carry more essential items [26].

16

Figure 15: Boston Dynamics Big Dog [26]

Big Dog is a 4 legged robot with a rather large load capacity of approximately

150 kg (330 lb) [26]. It is able to walk up and down hills and over complicated terrain

like rocks and snow covered hills. It also has push and fall recovery which is

demonstrated beautifully in a video shot by Boston Dynamics where Big Dog walks over

ice and is able to recover after falling to a knee. (Shown at approximately 53 seconds:

http://www.bostondynamics.com/dist/BigDog.wmv)

 A newer approach to robots is becoming more popular. Bipedal robots are being

created to mimic the walking and running abilities of a human [2]. Boston Dynamics has

created a bipedal walking robot called PETMAN, Figure 16. Although tethered, it is able

to walk and run [27].

17

Figure 16: Boston Dynamic PETMAN [28]

Figure 17: Honda Asimo [29]

 A more interesting bipedal humanoid robot is the Honda ASIMO, Figure 17. It is

able to run, walk, dance, move up and down steps, and more [29] [30]. Bucknell

University and IHMC have created a bipedal humanoid robot and are continuing to

improve its design.

18

1.3 Thesis Goals and Organization

 The goal of the Bucknell Humanoid Robot Arm project was to develop a

lightweight and compact humanoid robot arm to facilitate operations in an urban

environment. The arm will be used with the IHMC Bucknell bipedal walking robot

project. After successful completion of the robot arm, it will be able to accomplish

predetermined tasks. Some example scenarios in which the robot arm will be able to

operate within are discussed in Section 2.2 – Operational Scenarios.

 The organization of this project was broken down into multiple areas of

development. First was the literature review which consisted of researching existing

robotic arms and robotic hands as well as existing technologies such as motors, actuators,

transmission systems etc.

 After completing the research, the initial design began. This consisted of coming

up with multiple designs and weighing them against each other to find the design that

best fits the needs of the robot. The overall arm design was broken down into individual

joints. Each was made to be modular to allow them to be removed or replaced easily and

leave the possibility of them being used on other robot platforms. Full drawings of each

part of the arm were created using CAD software. These individual parts were then put

into assembly drawings in order to eliminate any problems, such as clearance issues, that

may be present.

 After the drawings were completed, fabrication began. All off the shelf items,

including motors, fasteners, wiring etc, were ordered. Then, the custom parts created

19

during the design process were made in the Bucknell PDL. After all custom parts were

made and other items were ordered, the robot arm was assembled and tested.

 The testing process consisted of seeing whether or not the robot met the

predetermined specifications and criteria discussed in Section 2.3 – Measureable

Specifications. Figure 18 shows a tree of the process and order of how all of these steps

were completed. Having this diagram gave a clear path for completion of the Bucknell

Humanoid Robot Arm.

Figure 18: Development Tree

20

2.0 Design Objectives and Specifications

Before the design Bucknell Humanoid Robot Arm could begin, the overall

objectives of the design had to be specified. By using things such as objective trees and

operational scenarios, measurable specifications could be specified.

2.1 Objective Tree

 The Humanoid Arm Project had many steps towards its completion. An objective

tree was created in order to better understand the process of how it will be completed

while at the same time obtain some measurable specifications for the robot arm itself.

These various areas are shown by the tree in Figure 19.

Figure 19: Main Objective Tree

Develop

 The first area is the development stage of the Bucknell Humanoid Robot Arm.

The development area is broken down in to various other areas. One of which is research.

Shown by Figure 20, time was spent exploring existing robots and other technology to

find what is the state of the art. The pros and cons of each were taken and compared. By

comparing these pros and cons a design path was created for the Bucknell Humanoid

Robot Arm.

21

Figure 20: Research Tree

 The Design portion of the development was broken down into the arm and hand.

This allowed for a modular design of each part. The hand was designed by one of the

2011 Bucknell Mechanical Engineering Senior Design Teams. All information

mentioned below was used in the development of the hand. Figure 21 shows the many

parts that had to be designed. Three dimensional drawings were created to help visualize

the full assembly while at the same time try to eliminate and problems before fabrication

began.

22

Figure 21: Design Tree

 Fabrication, shown in Figure 22, was broken down into budget, custom parts and

ordered parts. The custom parts were those that were created in the design portion of the

development. Ordered parts included things such as motors, actuators, wiring, controller,

fasteners, etc.

Figure 22: Fabricate Tree

Humanoid Arm

 The State of the Art portion of the Humanoid Arm, shown in Figure 23, was

dependent on the final design. When the final design was determined, the best parts were

23

chosen. This helped the project demonstrate the use of state-of-the-art parts and

technology as well as contribute to the development of these parts and the uses they may

have.

Figure 23: State of the Art Tree

 The capabilities of the Bucknell Humanoid Robot Arm and Hand had a couple

specified capabilities. Shown by Figure 24, the complete arm would be able to lift, grip,

and manipulate objects. These items included tools and other similar objects.

Figure 24: Capabilities Tree

 Shown by Figure 25, the robot was broken down to show what the characteristics

of the robot would be. The robot will be humanlike with and arm and a hand. Both the

arm and hand are modular which means both are easily removed or attached. This also

means they will have a bracket that will allow them to be attached to other arms or

platforms.

24

Figure 25: Characteristics Tree

 The hand will have a thumb and two to four fingers. These fingers will have to

have motors or be actuated in some way. The thumb will be the same. The arm will

have a modular shoulder that will connect to the biped body via a bracket. The electrical

system will be based near the top of the arm in order to eliminate and unnecessary

moments on the arm.

Operations

 The operations of the Bucknell Humanoid Robot Arm will be discussed more in

depth in Section 2.2– Operational Scenarios.

25

Urban Environment

 The biped robot will be used in urban environments, so it is only appropriate to

place the Bucknell Humanoid Robot Arm in the same environment. An urban

environment has a dense human population like in a city. A city has buildings with

people, stairways, doorways, furniture etc. that the robot will be faced with. The

Bucknell Humanoid Robot Arm had to be able to handle these types of obstacles. The

characteristics tree is shown in Figure 26.

Figure 26: Urban Environment Characteristics Tree

2.2 Operational Scenarios

 There are many scenarios in which a robot can be used. As a start to this

particular project, the Bucknell Humanoid Robot Arm would be usable in some situations,

later described, that a human would face. The scenarios described below are not the only

scenarios the arm would be faced with, but rather a short list of examples. These

scenarios were later used to define the design-measurable specifications such as motor

torques, load capacity, wrist torque, and hand grip force.

Scenario #1 - Robot Must Retrieve a Box from the Second Floor of an Office Building

26

 The building is in an urban environment. Inside the building are obstacles such as

doors, tables, stairs etc. These obstacles must be passed by the robot in order retrieve the

box on the second floor.

 The robot enters the building by opening the main door. Opening the door is

aided by its visual system as well as its robotic arm and hand. Entering the building, the

robot enters a hallway. After moving down the hallway it travels to another door in which

it has to open. Aided by its arm and hand, the robot opens the door. The robot travels up

the stairs, and if needed, uses its arm to aid in balancing by holding the railing. It reaches

the top of the steps and opens a third door, again aided by its arm and hand. Entering a

second hallway, the robot meets a new obstacle. A cart has been left in the hallway and

needs to be moved. The robot uses its arm and hand to grab and push the cart out of the

way. It continues down the hall to the office where the box is located. The robot opens

yet another door to enter the office. Inside, the robot finds a table with several boxes on

it. The robot grabs each box to identify the proper box. After finding the correct box, the

robot continues out the office door, down the steps, and exits out the front door.

Scenario #2 – Robot Must Retrieve a Small Explosive Device from Inside a One Floor

House

 The house is in a rural environment. The robot must travel past obstacles found in

most houses to retrieve the explosive device. The device is located in a bedroom at the

rear of the house. The robot is being used as a bomb squad aid.

 The robot enters the house by opening the front door using his arm and hand. He

enters the living room of the small house and is faced with chairs and a couch. It makes

27

it way past these obstacles being sure to recognize and avoid them. The robot moves

down a narrow hallway towards a bedroom door and opens it using its arm and hand.

 Inside the room is a bed. The robot walks around the bed, again recognizing is

presence as well as avoiding contact with it. On the opposite side of the bed the device

sits on a stand. The robot uses its arm and hand to pick up the small device. From there,

the robot moves outside bypassing all previous obstacles. All humans are clear from the

area as this eliminates the threat of possible injury. The robot places the device in an

explosive container. The bomb squad moves in to remove the explosive container.

Scenario #3 – Robot is Used to Retrieve a Series of Wrenches

 The robot is expected to be able to recognize, pick up, and deliver a series of tools

to a human.

 The robot is helping a human with getting tools. The human requests a 1/2”

wrench. The robot moves to the tool box, grabs the handle, and pulls open the drawer.

Inside are a group of labeled wrenches. The robot looks for the 1/2” wrench and finds it.

He grabs the wrench with his hand and shuts the drawer. The wrench is then delivered to

the human. The same process is taken for three more wrenches of various sizes: open

tool box, find wrench, grab with hand, close drawer, and deliver to the human.

2.3 Measureable Specifications

 The operational scenarios show many actions and movements the robot arm needs

to be able to complete. Being able to grip, push, pull, move, and manipulate are all very

important attributes the robot arm must possess. From the scenarios, different

28

measurable aspects were found. Below are the specifications the robot arm and hand

were supposed to meet.

Robot Arm

 Most of the movement the robot arm will be doing will be used to push, pull, and

lift. From Scenario #1 and Scenario #2, the robot is expected to open a door. Testing

was completed, using a spring scale, to find a common pulling force to open a door.

Each door had the spring scale attached to its handle and was pulled. The highest force

seen was recorded. All pulling forces were similar and found to be between nine and

eleven pounds (40 to 49 N).

 Scenario #1 and Scenario #2 also required the robot to pick up an object. Due to

most tools weighing no more than a one or two pounds at the most, a payload of five

pounds was found to be an acceptable amount of weight. Compared to the amount of

force required to pull a door open, the final payload looked likely to be higher than five

pounds.

 Scenario #3 offers a different obstacle. The robot is expected to open a tool chest

drawer. Testing was done, again using a spring scale, and the results showed a pushing

and pulling force of ten pounds (45 N) for a large tool chest drawer. A desk drawer was

also tested and the result was 3.5 pounds (15.75 N). Another obstacle confronted was

lifting wrenches. Testing of various tools, including a hammer, vise grips, large crescent

wrench, 7/8” wrench, and a large screwdriver, was also conducted. The weights of these

tools, in the same order, are as follows: two pounds (9 N), one pound (4.5 N), one pound

(4.5 N), ¾ pound (3 N), and ½ pound (2 N). All the tools are very light and are minimal

29

compared to the forces needed to open a door. All of these forces are minimum forces

needed to complete a task. A factor of safety will be implemented to ensure these tasks

are completed.

Robot Hand

 Similar to the arm, the scenarios previously discussed in Section 2.2 allowed

conclusions to be drawn about the specifications the robot hand should be able to meet.

Scenario #1 and Scenario #2 helped decide the wrist torque specification. Testing found

that a torque of 2 ft-lb (2.8 Nm) was needed to rotate a door knob in order to open it.

Using a lever arm of a known length attached to the door handle, a spring scale was

attached and the force required to fully rotate the handle was recorded. This force and

known length were then used to calculate the torque required to open the door knob or

handle.

 The last thing that needs to be discussed, which not only involves the hand but the

arm as well, is the motion to open a door. Because the robot, at this point, will only have

one arm, the motion to open a door with one arm is rather complicated. When a human

opens a door with one arm, the door handle is twisted, and the door is in essence thrown

back towards them. This throw allows for just enough time to get the hand to the other

side to prevent it from shutting. This complex motion seems to be elementary for a

human but for a robot could prove to be rather hard to mimic.

 With the design objectives and specifications specified, the design of the Bucknell

Humanoid Robot Arm began. The values found in the Measurable Specifications section

30

were used throughout the entire design process to find things such as the power and

torque at each joint of the arm.

31

3.0 Design Process

The process gone through in order to select a proper or optimum design for any

robot can be very extensive. In the case of the Bucknell Humanoid Robot Arm,

balancing strength requirements and maneuverability with the requirement of a

lightweight robot arm posed many challenges. Design requirements along with design

specifications had to be determined before any other steps could be taken.

A simulation was created using a simple arm design that would give a basis for

the final arm, which is discussed in the following sections. This simulation gave results

for torque and power outputs for each joints motor and in turn allowed for the proper

selection of motors. With these numbers in hand, several ideas for arm layouts were

developed. From there, a final design was chosen, designed, and refined.

3.1 Design Requirements and Specifications

In order for the robot arm to be considered successful it would have to meet the

chosen requirements and specifications set by both the IHMC and Bucknell University

robotics teams. These requirements and specifications were refined using the Operational

Scenarios discussed in Section 3.2. The requirements that were set forth are as follows.

The robot arm must:

- Be able to open a door

o This is important for use in urban environments. Every urban

environment has doors and the robot will most definitely come across

a door and therefore should be able to open one.

32

- Be able to lift small objects such as tools, boxes, etc

o This is also an important requirement. The robot needs to be able to

lift objects in order to complete tasks such as those discussed in the

operational scenarios.

- Be as lightweight as possible

o The robot arms’ whole basis is built around weight. Compared to if it

were heavier, being lightweight would allow the arm to use less power

while at the same time lower the power requirements of the main torso.

- Look humanlike

o The arm will be put onto a humanoid robot which was built to

resemble a human torso and legs. Therefore it would only be

appropriate for the arm to also look humanlike.

Table 1 below shows the design specifications.

Table 1: Bucknell Humanoid Robot Arm Design Specifications

Design Specifications

Specification Desired Value Justification

DOF 4 4 DOF would allow the arm to move to almost any

position desired. The joints would have to be in

the correct orientation in order to achieve this.

More DOF would allow the arm to move to more

positions but would also increase the overall

weight of the arm.

Position

Accuracy @ the

end effector

<1” This number was chosen by looking at an object,

closing one’s eyes and then reaching for the object.

From the results, it was shown that a person can

still effectively grab the object without any

problem. With the high resolution encoders

available, this number should be highly achievable.

33

Max Speed @

each joint

7.5 RPM This number was chosen by timing how long it

took to reach out, grab and object, and return to the

previous position. Also, it was chosen by timing

the amount of time it took to rotate from beside the

leg to above the head.

Total Length 22.75 in Length of a human arm outstretched from shoulder

to wrist for an average male being 5’9”. [31]

Max Weight <15 lb The average human arm weighs approximately 8

lb. Being that the BHRA will be made of

materials such as aluminum and carbon fiber it will

be relatively light until motor and gears are added

which include materials such as steel and copper.

Comparing to other robotic arms, some of which

are very heavy, 15 pounds was a reasonable weight

to try to achieve. [31]

Max Load

Outstretched

5 lb Most tools, which include heavier tools like

hammers, weigh no more than 5 pounds. This

seemed like an achievable weight as well as a

reasonable weight to be able to lift.

Max Load-to-

Weight ratio

0.33 Comparable to other robotic arms on the market.

(See Literature Review: Robot Arms)

With all of the design requirements and specifications set, further development of

the arm was able to occur.

3.2 Robot Arm Simulation

Before making the simulation model, several layouts were discussed to decide

which would be the best layout for the robot arm. These models can be seen in Figures

27, 28, 29 and, 30. Discussions were conducted among the team about how many DOF

would be needed and if adding more would be beneficial to the robot arm. Adding more

DOF would increase the arms ability to reach certain points, but in the end would add

34

more weight to the arm. By creating a model that was more closely related to the final

design, the simulation would be more accurate.

Figure 27 shows the simplest layout of all, Layout 1. It is a 3 DOF arm with two

points of rotation at the shoulder and one at the elbow. After exploring this design, it was

found that this layout would not provide enough motion for the arm to reach the needed

points physically or in the correct orientation. It was eliminated from the possible layouts.

Figure 28 and 29, Layouts 2 and 3, were very similar in their designs. Layout 2

has all of the joints rotated 90 degrees to each other starting at the shoulder while Layout

3 has all of them rotated 90 degrees to each other except for the elbow joint being in the

same plane as the joint before it. Although both layouts had 4 DOF, one more than

Layout 1, neither of them created the desired motion nor did they look very human-like

because the arm had to move to strange positions to reach certain points.

Layout 4, Figure 30, is basically Layout 1 with a rotation added to the mid upper

arm. With this DOF added, it not only looked human-like, but also created the desired

motion needed to complete the previously discussed operational scenarios. This was the

chosen layout for the simulation model. Further refinement was done to make the arm

more efficient and look more human-like. The final simulation layout can be seen in

Figure 31. The final layout created two important positives compared to the other layouts.

It allowed the shoulder motors, 3 DOF, to be at the top of the arm. Using hand

calculations, this reduced the motor requirements substantially because there would not

be the extra moment from motors being further out from the shoulder. Instead, it would

only be lifting the elbow joint and the mass at the end of the arm.

35

Figure 27: Layout Option 1

Figure 28: Layout Option 2

Figure 29: Layout Option 3

Figure 30: Layout Option 4

Figure 31: Simulation Model

With the base model created, the simulation of the Bucknell Humanoid Robot

Arm was created using Yobotics Simulation Construction Set (SCS), which was

36

developed by several members at IHMC. Many robotic simulation software programs

exist such as Microsoft Simulation Studio, RoboLogix, and Webots but because Bucknell

was working with IHMC to develop the Bucknell Humanoid Robot Arm and SCS was

used to develop M2V2, Yobotics SCS seemed like a good simulation software package to

use. Yobotics SCS is a Java based program that allows for very accurate robotic

simulations to be created and torque, power, and motion analysis to be done.

First, Yobotics SCS was used to get a basic simulation model. This was done by

using link lengths from the Solidworks model, shown in Figure 32, created to get a basis

for the rest of the simulation. The joints and links were created with masses larger than

the estimated final masses to get a good starting point for finding motor masses. The

Yobotics SCS model can be seen in Figure 33.

Figure 32: Solidworks Model

Figure 33: Yobotics SCS Model

Using Yobotics SCS, torque and power values for each link were obtained. To

get these values, much iteration was done. These iterations started at the elbow and

worked their way up to the shoulder. While creating the simulation coding, erratic

behavior was observed while the arm was moving. Torque and power numbers were

37

very high and would oscillate when the desired position was reached even with very high

PID (Proportional, Integral, Differential) gain values. It was discovered that gravity

compensation had to be built into the simulation code for the arm. Gravity compensation

was then built into the code and the erratic behavior was eliminated giving smoother

torque and power curves. With the simulation working properly, it was believed that

solid numbers could be obtained from it. The simulation code can be found in Appendix

A: Simulation Code, as well as in the Bucknell Urban Robots netspace.

(P:\UrbanRobots\private\Nick's Summer Work\Simulations\ArmFirstAttempt\Arm1\src\

armstuff)

Each joint had a requirement of moving at 7.5 RPM which allowed the simulation

to find power values. With that in mind, motors that met the requirements for torque,

speed, and power were selected. Using motor masses in the simulation, the torque

requirements of the joints were recalculated. The final required values for torque, speed,

and power are shown in Table 2: Torque and Power Values Found from Yobotics SCS.

Table 2: Torque and Power Values Found from Yobotics SCS

Joint Torque Required Speed Required Power Required

Shoulder (3) 41 Nm (32 ft-lb) .78 rad (7.5 RPM) 42 W

Elbow 16 Nm (12 ft-lb) .78 rad (7.5 RPM) 21 W

Wrist 5 Nm (1.5 ft-lb) .78 rad (7.5 RPM) 6 W

38

Figure 34 shows a screenshot of the Yobotics SCS software and torque graphs of

each joint.

Figure 34: Yobotics SCS showing Torque Curves

In parallel to SCS, Working Model was used to check the numbers that were

calculated by the simulation. This was done to ensure the numbers were accurate. In

Working Model, the lever arm was given a velocity to reach and torque and power values

were obtained. An example can be seen in Figure 35. Comparing the numbers from each

program, it was found that the values calculated using SCS matched those found in

Working Model. These numbers were checked again by changing masses in the

39

simulation as well as Working Model and similar numbers, again, were found between

the programs verifying the accuracy of the simulation.

Figure 35: Working Model Analysis

Table 3: SCS to Working Model Torque and Power Comparison

Joint Torque SCS Torque WM Power SCS Power WM

Shoulder (3) 41 Nm ~ 40 Nm 42 W ~ 42 W

Elbow 16 Nm ~ 15 Nm 21 W ~ 20 W

Wrist 5 Nm ~ 5 Nm 6 W ~ 6 W

After validating the simulation, motor and gearing options were researched. This

was done in order to obtain estimated joint masses for use in the simulation. By using

these masses in SCS, more accurate joint torque and power requirements were found

which further refined the arm design. When the motors and gearing were chosen, a factor

of safety (FOS) of 1.5 was applied to ensure the joints had ample power and torque.

Along with the FOS of 1.5 was an artificial FOS that could be found in the oversized link

masses in the Solidworks model. This process was done over and over until “optimum”

torque and power values, values that changed minimally after arm refinements, were

found.

40

3.3 Arm Alternatives and an Evaluation of Each

The requirements of the arm state that a lightweight arm, which weighs less than

15 pounds, is to be built with max load-to-weight ratio of at least 0.3 and have the ability

to lift five pounds fully outstretched. All of these requirements put a lot of emphasis on

weight. Anything that could be done to cut weight had to be done. In order to find the

best arm design and joint layout, multiple options had to be explored for the Bucknell

Humanoid Robot Arm.

Each layout was compared to determine the overall size of the largest joint, which

is the shoulder, by creating initial Solidworks models. Each model included appropriate

motor selections as well as the gear train and any other items that would be needed such

as cables and bevel gears. Each had their problems and design issues, all of which will

be discussed in the following paragraphs.

The first of three options, shown in Figure 36, was a cable drive differential

system. This layout was considered because the motors could be kept towards the top of

the arm. It was believed that this would reduce motor power and torque requirements

which in turn would lower the motor size and weight.

41

Figure 36: Cable Drive Differential Layout

The cable drive system was not necessarily the heaviest of the layouts but the

bulkiness would lend a lot to its high final weight. The bulkiness also presented the

problem of maneuverability. With the overall volume of the joints being very large, it

would limit the arms movement and in turn limit the arm’s workspace. At a minimum,

the drum size would have to be four inches in diameter due to the bending radius

requirements of the cable that would have to be used. The drums would also require a

significant height, close to five inches, in order to get proper winding of the cable. This

size comes from the two differently sized cable drums that would have to be used to

42

ensure proper winding. This bulkiness doesn’t include the multiple steps in gearing that

would be needed to obtain the required torque and power at the joints.

The complexity and maintenance of the cable drive system is high. The need for

cable readjustment would become very burdensome and high maintenance on an urban

robot is not a desired attribute. Although bulky, the cable drive layout would put the

motors near the base, or shoulder, of the arm which would reduce the moment the

shoulder joints would see. Having a lower moment would allow for the use of smaller

less powerful motors in the shoulder and possibly other joints. After creating a

Solidworks model, it was found that the decreased moment was not obtained due to the

joints being bulky and heavy.

The second of three options, shown in Figure 37, was a bevel gear differential

system. Similar to the cable drive system, this layout was also considered because the

motors could be kept towards the top of the arm and lower the weight of the motors.

Like the cable drive system, complex two DOF joints could be made by rotating the

motors in the same direction to move the joint up or down, or in opposite directions to

obtain a twisting motion. It was believed this option could be very light weight and

compact due its layout.

43

Figure 37: Bevel Gear Differential Layout

After creating a Solidworks model, it was found that this layout would be

extraordinarily heavy compared to the other alternatives simply due to the weight of

bevel gears. The bevel gears that would be used for this layout would be close to 1.5

pounds, or more, a piece and would cause the weight of the arm to be high. This was

found with steel gears which were the only gears that had the strength to handle the

torque requirements of the arm. One joint alone would weigh over six pounds and in the

end, two joints nearly twelve pounds just in bevel gears. More weight would be added by

motors that would also have to be larger in order to lift the heavier joints. This puts the

44

weight of the arm well over the target weight of 15 pounds and would make that

requirement unattainable.

The third alternative, shown in Figure 38, was the frameless motor with harmonic

drive gear layout. This layout was discussed because of three main points. It would

eliminate unneeded weight found in the steel casing of a framed motor (motor can be

built into an aluminum joint frame), the motors had very high torques compared to

brushed frames motors, the harmonic drives allowed for a single low backlash gear

reduction, and the design would be compact.

Figure 38: Frameless Motor with Harmonic Drive Layout

 Again, the weight of the arm was very important. Eliminating the steel case and

being able to have the motor physically built into the joints reduced the weight and

45

overall volume of the joint. The motor and harmonic drive combined a high torque motor

with a single gear reduction which reduced inefficiencies. Because harmonic drives have

“zero” backlash, which is defined by Harmonic Drive Inc. as 1.5 arc minutes, or less that

allows for better end effector accuracy compared to other gear heads.

After modeling a single joint, the heaviest joint would weigh approximately 1.4

pounds. With 5 DOF’s, this would be around 7 pounds for all 5 joints (less than ½ the

goal weight of 15 pounds). Of course, the lower joints would be smaller and would

weigh less due to the power requirements being less and less material being needed to

encase the motor. Also, the harmonic gears have zero backlash. This will reduce play in

the joints making the end effector more accurate.

After exploring the options, each was evaluated. Shown in Table 4, the frameless

motors with harmonic drives is the best fit for the requirements of the Bucknell

Humanoid Robot Arm. It would be lighter and take up less space than the other two

layouts that were considered. The only disadvantage to using this layout would be cost.

Even though it has a higher cost, it is a tradeoff that had to be taken in order to keep the

arm as light weight and compact as possible.

Table 4: Comparison Table for All Considered Layout

Layout Backlash

Weight Volume Design

Difficulty

Cost Maintenance

1 Harmonic

Drives

Low to

none

Light Small Easy High Low

2 Cable

Drive Diff.

Low Med. Large Very

Difficult
Low High

3 Bevel

Gear Diff.

High Heavy Large Med. Med. Med.

46

Although the disadvantages of this layout are small, some still exist. The main

disadvantage was the machining and assembly time. Because the frameless motors have

no outer shell, cases need to be machined into the joints rather than bolt hole patterns

being drilled and the motors attached. This is a very complex task but can be done if

extreme care is taken when machining the parts. Along with this machining, the motors

and harmonic drives have to be concentric. Again, extreme care must be taken when

machining the parts for the motor and harmonic drive alignment. With the alternatives

compared and evaluated, the “Frameless Motor and Harmonic Drive” design was chosen

because of its ability to be made into a lightweight and compact design.

3.4 Detailed Design of the Arm

As part of the design process, there were many things that had to be decided upon.

For example, joint material, link connection material, what gear reduction would be used,

what motors would be used, etc. Answering all of these questions would determine how

the layout of the arm would move forward. From there, each joint, their internals, and

brackets were designed.

Joint and Link Material Selection

Titanium and aluminum were two lightweight materials discussed for the joint

and links of the Bucknell Humanoid Robot Arm. Titanium is a very strong material and

is also very light. Its high tendency to deflect could cause problems if it were to be used

for joint connection brackets where deflection can cause inaccuracies at the end effector.

Titanium is also very expensive. Making a mistake during machining or in the design

47

phase of the arm would prove to be very costly. Great care must be taken when

machining titanium. A large supply of sharp tooling must be kept readily available. This

lowers the chances of galling. Due to titanium’s ductility, very rigid machine setups must

be used to reduce deflection of the piece being machined. A lot of cutting lubricants

along with low feed rates and high cutting speeds must be used when machining titanium.

Aluminum is a very light material as well. Compared to titanium, deflection is not

as much of a concern unless under very high loads. Aluminum is also very cheap

compared to titanium; almost 1/8 the price of titanium. This would be less costly if a

mistake were made during the machining process. Aluminum is very forgiving when

machining. An amateur with little experience can successfully machine aluminum with

very little trouble. The strength-to-weight ratio is not nearly as high as titanium but this

can be outweighed by the cost and the difficulty of machining it. With all things

considered, aluminum was chosen for the main material of the Bucknell Humanoid Robot

Arm.

The next consideration was the material used in the links of the arm. Aluminum

was given great consideration because it would be used in the rest of the arm but it would

be impractical to use it due to the amount of material required. Carbon fiber was also

considered. Carbon fiber not only gives an increased esthetic appeal, but also gives the

lightweight strength needed for the links. A 1” tube was found to result in a 0.007”

deflection over 24” of span with 5 pounds at the end. The analysis for this can be found

in Appendix B: Carbon Fiber Tube Deflection Analysis. The links would be much

48

shorter than this and the deflection could become nearly negligible. Carbon fiber was the

best choice for the links and therefore was chosen.

Gear Reduction and Motor Selection

Because the frameless motor and harmonic drive layout was chosen for the

Bucknell Humanoid Robot Arm, the next step was to find the proper harmonic drive for

each joint. Table 5 shows the torque requirements at each joint found using Yobotics

SCS. This table was the basis for each harmonic drive choice as well as the motor choice.

The values for torque and power were calculated during the simulation phase of the

design.

Table 5: Torque and Power Values Found from Yobotics SCS

Joint Torque Required Speed Required Power Required

Shoulder (3) 41 Nm (32 ft-lb) .78 rad (7.5 RPM) 42 W

Elbow 16 Nm (12 ft-lb) .78 rad (7.5 RPM) 21 W

Wrist 5 Nm (1.5 ft-lb) .78 rad (7.5 RPM) 6 W

The harmonic drives, which were purchased from Harmonic Drive Inc, were

relatively easy to pick because the required torque output was known. Looking at the

specification sheet for the harmonic drives and finding the appropriate drive was very

easy. Because the joints would often be hitting peak torque at startup, it was decided to

use the “Repeated Torque Limit” column. An abridged version of the harmonic drives

torque limits are shown in Table 6.

49

Table 6: Comparison Table for All CSD’s Considered

CSD Size Limit for Repeated Peak Torque

50:1 100:1 160:1

20 (Shoulder) 39 Nm 57 Nm 64 Nm

17 (Elbow) 23 Nm 37 Nm

14 (Wrist) 12 Nm 19 Nm

With the results from Table 6, the motor choice became easier. Brushless motors

were selected because they are more efficient for their weight compared to brushed

motors. This is due to their ability to produce more torque. Less power is wasted due to

spark, and the brushes do not have to be replaced because they do not exist. When the

search for frameless brushless DC motors was conducted, a provider with a wide variety

of motor sizes was desired. The provider that was found was Emoteq.

Looking at Table 5, the required torque after reduction can be seen. In order to

make calculations simpler and have ample strength in the harmonic drives, a 100:1 gear

reduction was chosen. This allowed for lower torque values out of the motors, and

because most of the speeds of the motors were very high, this gear reduction put the

output speeds at a very reasonable value. With the gear reduction “variable” taken out of

the equation, the motor selection became very easy. Table 7 shows that with the chosen

gear reduction and motor choice, all of the required torques and speeds were met.

50

Table 7: Torque, Speed, Reduced Torque and Speed, and Power Values from Chosen Motors

Motor HT2000 (Shoulder) HT1500 (Elbow) HT1000 (Wrist)

Torque 0.48 Nm 0.21 Nm 0.09 Nm

Speed 3986 RPM 7301 RPM 8580 RPM

Reduced Torque 48 Nm 21 Nm 9 Nm

Required Torque 41 Nm 16 Nm 5 Nm

Reduced Speed 39.86 RPM 73.01 RPM 85.80 RPM

Required Speed 7.5 RPM 7.5 RPM 7.5 RPM

Power 48 W 31 W 11 W

Required Power 42 W 21 W 6 W

These motors in particular were chosen not only because they theoretically met

the required torques and speeds, but were also the lightest available. All of the motors

were predicted to be a little overpowered but at the same time lighter than the motors that

were closer to the required values. This was a great tradeoff considering one of the

requirements was to build a robotic arm with a max load-to-weight ratio of 0.33. The

motors listed in Table 7 were the final choices for the Bucknell Humanoid Robot Arm.

The tables used to select the motors are located in Appendix C: Motor Selection.

Joint Design – Lower Case

Each joint in the Bucknell Humanoid Robot Arm are very similar in design due to

frameless motors and harmonic drives being used. All joints were made to fit these two

items and any remaining support was developed to fit around them. This allowed for

very compact and lightweight joints to be created. In order to fully describe each joint

design, the elbow joint will be discussed first. Any major differences in the shoulder

joints and wrist joint will be described later in this section. Figure 39 below shows a

cross section of the elbow joint with all of the components labeled.

51

Figure 39: Detailed Cross Section of Elbow Joint

When creating the design for each joint, Solidworks was used to accurately create

the 3D models as well as the 2D machine drawings. The first step in creating the elbow

joint was creating a lower housing for the harmonic drive. Harmonic Drive Inc. has

specified on their data sheets that certain areas require additional clearance space around

the harmonic drive. These specifications can be found in the Harmonic Drive CSD Data

Sheets: “Cup Type Component Sets & Housed Units”. Figure 40 shows the model of the

elbow joint harmonic drive – CSD 17. This was used to properly design a lower case

shown in Figure 41.

52

Figure 40: CSD 17 Harmonic Drive Model

Figure 41: Lower Case of Elbow Joint

Supporting axial and radial loads on the harmonic drive was the next concern.

Eliminating parts as well as weight was a very high priority, so angular contact bearings

were used in order to manage both axial and radial loads. By increasing the angle of

contact on the bearing race, more axial loads can be supported. This higher angle

decreases the radial load support so the angle has to be selected to fit the application. To

achieve this angle, a spacer must be placed between one of the races and the mounting

surface.

In the Bucknell Humanoid Robot Arm, greater support was gained by combining

two angular contact bearings and the required angle was more easily obtained by

sandwiching the spacer between the two outer races of both bearings. The calculations

used to select the proper bearings for each joint can be seen in Appendix D: Angular

Contact Bearing Calculations. Table 8 shows the bearings, Kaydon Angular Contact

Bearings, that were selected for each joint as well as the loads they would withstand and

need to support. Lastly, Figure 42 and Figure 43 show the lower case with the harmonic

drive and bearings installed.

53

Table 8: Joint Radial and Axial Loads and the Loads Supported by the Angular Contact

Bearings for the Harmonic Drive Case

Bearing Joint

Radial

Joint

Thrust

Radial

Support

Thrust

Support

Shoulder (KAA20AR0) 61 lb 17 lb 405 lb 960 lb

Elbow (KAA15AG0) 50 lb 12 lb 238 lb 560 lb

Wrist (KAA10AG0) 70 lb 11 lb 194 lb 450 lb

Figure 42: Case with Harmonic Drive

Installed Top View

Figure 43: Case with Bearings Installed

Bottom View

Completing the joint design creating parts that coupled the harmonic drive to the

bearings while also creating an output boss for either a bracket or the previously mention

carbon fiber tubing. After all pieces were assembled, proper bolt patterns were specified

to hold the harmonic drive and bearings in place. This can be seen in the cross section

view in Figure 44. Also, note the two flanges with holes in them on the outside of the

harmonic case. This is where the shoulder to elbow bracket attaches.

54

Figure 44: Cross Section of Lower Case. Harmonic Drive, Bearings, and Output Included

Joint Design- Upper Case

The next step was to design the upper case which houses the motor. Like the

harmonic drive, the manufacturer has specified clearances and tolerances that the motor

must be kept within. Figure 45 shows the model of the motor. From this model, like the

harmonic drive model, a basic model of the outer case was created, shown in Figure 46.

Figure 45: Solidworks Model of Elbow Motor

Figure 46: Solidworks Model of Upper Case

with Motor Installed

After encasing the motor it had to be connected to the harmonic drive. At first it

was thought that a direct shaft between the motor and harmonic drive would work, but

after reading the Harmonic Drive Inc. specification sheet, it was found that a coupling

55

was recommended due to the harmonic drives natural wave motion while spinning. This

wave motion was accommodated by using an Oldham coupler in all of the joints. By

incorporating the motor shaft into the coupler it was hoped that any inefficiencies in the

coupling would be reduced. Figure 47 shows the Oldham coupler design along with the

CSD wave generator and rotor in place.

Figure 47: Oldham Coupler with Wave Generator and Rotor Installed

Just like the harmonic drive, the motor rotor had to be supported. This was done

again using bearings. For this support, the shoulder and elbow joints all used Kaydon X

type bearings while the wrist used regular radial bearings at the base of the shaft. To

support the top of the shaft, all of the joints used radial bearings. Harmonic drives

produce thrust when accelerating as well as decelerating, which was a larger concern than

the radial load of the motor. The Kaydon X type bearings were able to support the radial

and thrust loads produced by the larger CSD 20 and CSD 17 harmonic drives. The

calculations for the Kaydon X type bearings can be found in Appendix E: X Type

Bearing Calculations.

56

Table 9: CSD Thrust on Motor Case Bearings and the Selected Bearing Support Values

Bearing CSD Thrust Force Thrust Support

Shoulder 1 KAA10XL0 34 lb 370 lb

Shoulder 2 KAA10XL0 27 lb 370 lb

Shoulder 3 KAA10XL0 23 lb 370 lb

Elbow KAA10XL0 14 lb 370 lb

Wrist SSR-1458 10 lb 81 lb

For the wrist, a smaller diameter radial bearing was chosen that was capable of

supporting the thrust produced by the smaller CSD 14 harmonic drive. Figure 48 shows

the placement of the bearings. A final section view of the entire upper case is shown in

Figure 49. All lower shaft bearings were placed in their own personal cases to ensure

proper location and add support from the upper case.

Figure 48: Oldham Coupler with Bearing

Placement Shown

Figure 49: Cross Section of Elbow Upper Case

After both the upper and lower cases were designed, they were combined to

complete the final housing. With the housings put together, it can be seen in Figure 50

that the rotor shaft and harmonic drive are fully supported. This support was extremely

important considering the motors are able to spin at speeds between 4,000 and 8,000

RPM. Along with the speed, the strong attraction between the rotor and stator could have

caused the rotor shaft to wobble and possibly cause the rotor to hit the stator if the

57

alignment wasn’t proper. This proper alignment of the motor and harmonic drive

allowed for a smooth first time start up of the motor. Figure 51 and Figure 52 compare

the final physical part to the final Solidworks model.

Figure 50: Cross Section of Assembled Elbow Joint

58

Figure 51: Final Assembled Elbow Joint

Figure 52: Assembled Model of the Elbow

Joint

Wrist Differences

Like the elbow joint, the wrist design went through the same process of creating

the lower harmonic case and the upper motor case. The main differences in the wrist are

how the lower motor bearing is held in place, the location of the support bracket for the

link, and of course, it being smaller in size than the elbow. Shown in Figure 53, it can be

seen that the wrist has the same layout as the elbow.

Figure 54 shows the fully assembled model. Due to limited space in the motor

housing, the lower motor bearing support is fastened from the outside of the housing,

unlike the elbow joint. This not only allowed for a more compact design but also some

weight reduction. Lastly, the link bracket is located on the motor housing. The bracket

design is similar to the elbow, just in a different location. Figure 55 shows how the

motor housing attaches to the elbow-wrist bracket.

59

Figure 53: Cross Section of Wrist Joint Model

Figure 54: Fully Assembled Solidworks Model

Figure 55: Wrist Joint Attached at to Link Bracket

Shoulder Differences

Out of all of the joints the shoulder was the most complex, and although the

largest, was the most compact. Much of the design was focused on finding a way to put

the encoder inside the housing as well as find a way to run wires up the center of the joint.

60

Again, the shoulder went through the same process as the wrist and elbow to design the

housings around the motor and the harmonic drive.

The first step after designing housings around the motor and harmonic drive was

trying to fit the encoder inside the assembly, rather than having it on the exterior similar

to the elbow and wrist joints. Having the encoder inside allowed for the shoulder joint to

be compact and more aesthetically appealing while keeping the encoder safe. In order to

fit the encoder into the upper housing, the housing had to be made about 0.50 inches

taller than it would have been if the encoder would have been placed outside of the

housing. A taller housing was a reasonable tradeoff for keeping the delicate encoder

wheel safe. The encoder layout and design can be seen in Figure 56 where the encoder

reader is in red and the encoder wheel is in green.

Figure 56: Shoulder Joint - Encoder Position

After fitting the encoder inside the housing, the next step was making

accommodations for wires to pass up the center of the joints. Again, this would not only

61

protect the wires, but make the arm more aesthetically appealing. Shown in Figure 57,

the items colored in orange were all made hollow through the center to allow for wires to

pass through them. Making the parts hollow also made the parts lighter, which added to

the overall goal of the project of making the arm as light as possible. The final assembly

of the shoulder housing can be seen in Figure 58. Notice the quick disconnect connector

for the encoder on the left of the motor housing.

Figure 57: Shoulder Joint - Pass Through

62

Figure 58: Final Assembled Shoulder Joint

The Passive Wrist Joint

 The last joint to be designed was the passive wrist joint. A human arm and hand

are connected by a flexible wrist that bends during certain situations. The Bucknell

Humanoid Robot Arm is no different. A passive wrist was designed to aid in flexing the

wrist when the arm picks up objects or most importantly when the arm opens a door. To

obtain this flex, a torsion spring was used inside of the connection bracket between the

arm and hand. Also, a positive stop design was implemented to only allow the joint to

rotate between zero and 90 degrees. This design can be seen in Figure 59.

63

Figure 59: Solidworks Model of Passive Wrist

Using a simple torsion spring calculation for ten pounds, the force required to

open a door, and a deflection of 90 degrees, it was found that a spring with a constant of

23.5 inch-pounds was needed. The closest available spring constant, without going over,

was 22.5. This spring was selected and used in the passive wrist. Figure 60 shows the

final wrist assembled.

64

Figure 60: Passive Wrist Joint

Arm Brackets

 The Bucknell Humanoid Robot Arm has to be as sturdy and rigid as possible to

eliminate any deflection. Any large amount of deflection would cause the hand to be in

an improper position. With that said, the brackets of the arm, which are also made with

7075 aluminum like the motor and harmonic housings, have to be as sturdy as possible,

while also being as lightweight as possible. To ensure that all of the brackets were strong

enough, FEA analysis was conducted on each. The forces used on each bracket were

calculated using the table found in Appendix F: Joint Torque and Bracket Force Table.

When testing, a factor of safety of 3 was used. This number was chosen to account for

65

dynamic and static loads on the brackets as well additional weight the arm may or may

not be able to hold. Also, with this FOS of 3, all FEA performed on the brackets

represent a worst case loading scenario.

 The first bracket analyzed was shoulder bracket one. This bracket holds all of the

weight of the arm. Shoulder bracket one can be seen in Figure 61.

Figure 61: Shoulder Bracket 1 (Top Left)

Any deflection in this bracket would result in a large positioning inaccuracy at the

hand. Figure 62 shows the deflection plot by applying 39 lb on the bracket at the surfaces

since this is where the bracket would be held. The resultant deflection was 0.0011 inches.

This deflection occurred at the farthest point of the bracket, the circled area in red of

Figure 62, and would only be present if a large amount of force was applied to the arm.

Also, rigidity would also be increased once the motor housing was attached to the bracket.

Less than 2 thousandths of an inch was an acceptable amount of deflection with a factor

of safety of 3.

66

Figure 62: Deflection Results for Shoulder Bracket 1

The next bracket was shoulder bracket two. This bracket also had to hold a lot of

weight, approximately 11 pounds, and could cause inaccuracies in the hand position if a

large amount of deflection was present in the bracket. Shoulder bracket two can be seen

in Figure 63.

Figure 63: Shoulder Bracket 2 (Left)

67

A force of 33 lb was applied to the arm which resulted in a deflection of 0.001324

inches. Similar to bracket one, less than two thousandths was found at the very end of

the bracket. Again, the rigidity would increase with the attachment of the shoulder motor

housing. Figure 64 shows the deflection plot. This bracket has the output built into it

similar to the first shoulder bracket, but offset, which aligned all of the joints in a straight

line. The main portion of the bracket has the same shape as bracket one, but is extended

at the bottom (bottom left of Figure 64).

Figure 64: Deflection Results for Shoulder Bracket 2

68

The bracket that connected the shoulder to the elbow was a different design than

the previous two discussed. It has flanges that fit into the elbow joints harmonic drive

case and a boss for the carbon fiber tube. Figure 65 shows the elbow bracket.

Figure 65: Elbow Bracket Attached to the Arm

Applied to the elbow bracket was 28 lb, which resulted in a maximum deflection

of 0.0007 inches. This is a completely negligible amount of deflection and was an

acceptable amount. The flange thickness could have been reduced, but due to how

important bracket rigidity was, it was left at the initial thickness. Figure 66 shows the

deflection plot for the elbow bracket. This bracket also served as an amplifier mount for

the elbow. This bracket can be seen protruding from the bracket on the left of Figure 66,

and on the right of Figure 65 where the amplifier can be seen. For the pins in this bracket,

5/32” pins were used. A simple sheer calculation was conducted on these pins and the

diameter selected was found to be acceptable.

69

Figure 66: Deflection Results for Elbow Bracket

The final bracket analyzed was the wrist bracket. This bracket was the most

problematic due to its long length and small width. Being that its shape is similar to a

pillar, it has a tendency to bend when a small load is applied, such as one pound. Figure

67 shows the wrist bracket.

Figure 67: Wrist Bracket Attached Between the Wrist and Elbow

70

Strengthening the bracket and minimizing this tendency was the number one task

when designing the bracket, although, keeping it as lightweight as possible was also very

important. To do this a ladder design was put down the side of the bracket. Compared to

just having a solid brace on the side, this truss design strengthened it while also

eliminating some weight. The force applied to the wrist bracket was 24 lb, which

resulted in a deflection of 0.0004 inches at the very end of the bracket. Figure 68 shows

the deflection plot of the wrist bracket.

Figure 68: Deflection Results for Wrist Bracket

Throughout the entire design process an emphasis was put on weight and size to

meet the requirement of making a lightweight and compact arm. All of the parts of the

Bucknell Humanoid Robot Arm went through many iterations to ensure this requirement

was met.

71

4.0 Controls

The control system for the Bucknell Humanoid Robot Arm is very complex and

required many steps to complete the main task of being compatible with the Biped. Not

many control boards support Java, which is the programming language of choice at

IHMC, so steps had to be taken to make the motors work with Java. The system diagram

shown in Figure 69 shows the various pieces of the control system needed to control the

motion of the Bucknell Humanoid Robot Arm.

Figure 69: System Diagram

72

4.1 The Control Board

Because the arm uses brushless DC motors, the first step was to purchase a

brushless motor control board. The motor control board must:

- Be compatible with brushless DC motors

- Be available in a PC-104 version to be compatible with the Biped

- Control multiple motors

After finding many different cards, the one that met all of the requirements was

the PMD Prodigy Control board. Figure 70 shows the PCI integration point on the

system diagram.

Figure 70: PCI Card in the Control System

73

In order to ease the testing process, Prodigy PCI cards were purchased. This

allowed for all testing and initial startup to be completed from a PC. Any fine tuning and

tweaking of the controls would be minimal when they were transferred over to the PC-

104. Because the Prodigy card doesn’t have any amplifiers built into it, these had to be

bought as well. The amplifiers will be discussed in the following section 4.2 - The

Amplifiers.

The PMD Prodigy controller uses feedback loop data given by encoders to put the

motor in the proper position. It also uses a PID control system to properly move the

motor at a desired velocity and acceleration, while optimizing response, steady state error,

and overshoot. The Prodigy control card serves as the interface between the software

code and the arm hardware.

In order to control the motors, code must be written using programming

languages such as C or Visual Basic. Using these programming languages, things such as

PID gains, motion paths, and homing positions can be set, among other things. Using

these other programming languages allowed for a more customizable control system

compared to scripts made available by PMD’s control software, Pro-Motion. The PMD

Prodigy control board is shown in Figure 71.

74

Figure 71: Prodigy PCI card [32]

4.2 The Amplifiers

 The PMD Prodigy card has no built in amplifiers, so external amplifiers had to be

purchased. This proved to be more complex than initially thought. Small powerful

amplifiers were very hard to find but eventually an amplifier that met specified

requirements was found. Those requirements are as follows.

The amplifier must:

- Be 48 V compatible

- Be able to put out at least 8 A continuous (shoulder motor continuous current)

- Be compatible with brushless motors

- Be as lightweight as possible

- Be as small as possible

The amplifier that was chosen was an Advanced Motion Control AZBE20A8.

The amplifiers position in the system diagram is shown in Figure 72.

75

Figure 72: Amplifier Position in System Diagram

Not only is this amplifier compatible with brushless motors, it also has a wide

range of supported voltages ranging from 10V to 80V which meets the 48V requirement.

This amplifier was also the smallest amplifier that was found. Another bonus found

when buying this amplifier is that it commutates the motors itself and only requires an

analog signal from the Prodigy board. These amplifiers are able to take the analog signal

and by adjusting potentiometers on the amplifier, the motors direction can be balanced or

centered to prevent any motion offset. Having met all of the requirements, this amplifier

was bought and used for all joints in the arm. The amplifier is shown in Figure 73.

76

Figure 73: Advanced Motion Control Amplifier

Due to the small size of the amplifiers, 2” by 2.5”, they were able to be mounted

on the arm local to each joint. This reduced the number of wires that had to be run up the

arm to the control board because all of the wires from the motor were run directly to the

amplifiers. The remaining wires were analog signal wires, which were small gauge, and

four wires for power and ground. The other option of remotely mounting the amplifiers

would have resulted in 8 additional wires, per motor, having to be run up the arm.

4.3 Initial Motor Testing

 After choosing the control board and amplifiers, testing on the individual motors

was completed. This was done prior to assembly of the arm to prove the motors would

run properly. Using the PMD GUI (graphical user interface), called Pro-Motion, each

motor was tested to make sure they moved properly. Pro-Motion is a C based GUI that

77

allows for PID and trajectory control of the motors. Pro-Motion is also a very reliable

program that can be used to debug then entire control system.

Each motor was connected individually without the harmonic drive to ensure any

problems that may have occurred were not due to the harmonic drive. During this time,

the amplifiers and the PID gains were tuned to their respective actuators to allow for

smoother operation.

After each motor ran properly by itself, their respective harmonic drives were

attached and further testing was completed. With the harmonic drives attached, further

PID control tuning occurred to smooth out any problems due to the load the harmonic

drive put on the motor. For example, the shoulder motors would oscillate with a high

frequency until the PID gains were adjusted. Later, testing was completed with the arm

assembled. This testing will be discussed in the upcoming section, 5.0- Testing Results.

4.4 C Code and DLL

The Prodigy PCI card that was chosen for the Bucknell Humanoid Robot Arm can

be controlled using either C or Visual Basic. The decision was made to use C because it

can be used more effectively over a larger range of operating systems such as Windows

and Linux. With the programming language chosen, the initial control code could be

written. This code was written by Phillip Diefenderfer, a member of the Bucknell Urban

Robotics team.

 The first step was writing a simple program that would move the motors and

communicate with the encoders. After many modifications were made to the example

code provided by PMD, proper communication with the encoders was established and the

78

motors moved. Along with a PID controller, the acceleration, velocity, and position were

added to the C code. All of these values were obtained from the testing previously

conducted using Pro-Motion, and the position was selected by the user. The motors were

now controllable through the written C code.

 Similar to the Pro-Motion GUI, each motor was tested individually using the now

modifiable C code. After all problems were eliminated the harmonic drives were

connected and tested. This verified that the motors would work properly with the C code.

 The next step was finding a way to communicate with Yobotics SCS through Java.

In order to be able to control the motors from Java and Yobotics SCS, a decision was

made to create a DLL or Dynamically Linked Library. Using this DLL, Java and

Yobotics SCS could use the C code that interfaced with the motor controls. The DLL

compiles two header files that can be found in Appendix N: DLL Compiled C Code.

 This DLL was created using the JNI or Java Native Interface, which creates

functions in Java called native methods. Java is able to execute the C functions inside the

DLL that drive the motors by calling the native methods. From there, the Java simulation

program written for Yobotics SCS was altered to work with the DLL and make the

motors move. Figure 74 shows where the C Code and DLL fit into the system diagram.

79

Figure 74: C Code in the System Diagram

4.5 Java and Yobotics SCS

 The same program used to simulate the robot arms movement, Yobotics SCS, can

also be used to move the actuators of the arm. The Java control code was written by

Phillip Diefenderfer and the Java simulation code was written by Nicholas Oren, both

members of the Bucknell Urban Robotics team. With further refinement of the Java

controls, Yobotics SCS could control the arm and also have the simulation move along

with it. The same kinematic equation used in the Yobotics SCS program can also be used

outside of Yobotics SCS to control the arm as well by simply eliminating the Yobotics

80

SCS portion of the code. This allows the use of Java, without out the clutter of Yobotics

SCS. The integration point of the Yobotics SCS and the Java code is shown in Figure 75.

Figure 75: Yobotics SCS and Java in the System Diagram

 To create a connection to the DLL, Java files were created called objects. One

object file was created to represent the motors and another created to represent the

Prodigy PCI cards. These objects provided the connection needed between Yobotics

SCS virtual motors and the physical motors on the Bucknell Humanoid Robot Arm.

Functions could then be called in these object files to set the velocity, acceleration, and

the PID gain values. Other functions were also written to command the motor to a

specified position or angle.

81

This same set up allowed Yobotics SCS to control the motors by sending them to

certain positions pulled from the simulation program. These values were then transferred

to the motors through the DLL. All of this together creates a more user-friendly system

of controls for someone that understands C and Java. The Java Yobotics SCS control

code can be found in Appendix O: Java and Yobotics SCS Control Code.

82

5.0 Testing Results

Testing was the one task that brought everything together and showed whether all

the design specifications and requirements were met. Looking back at the design

requirements and specifications, listed below and in Table 8 respectively, tests were

developed to evaluate each requirement and specification.

- Be able to open a door

- Be able to lift small objects such as tools, boxes, etc

- Be as lightweight as possible

- Look humanlike

Table 10: Design Specifications

Design Specifications

Specification Desired Value

DOF 4

Position Accuracy @ the end effector Less than 1”

Max Speed @ each joint 7.5 RPM

Total Length 22 ¾ in

Max Weight <15 lb

Max Load Outstretched 5 lb

Max Load-to-Weight ratio 0.33

Open a Door Can Open Door

 Each test, beforehand, was created to ensure that the proper procedure was

followed and records of each test were taken. Step-by-step procedures were produced

along with the materials required to perform those tests. Table 9 shows these test

procedures and materials needed for each test. The lifting of objects was incorporated

into the max load test. Whether or not the arm looks humanlike was a matter of opinion

and the majority agreed the arm look humanlike.

83

Table 11: Test Procedures for Bucknell Humanoid Robot Arm

Test # Specification Procedure Required Materials

1 DOF 1. Count degrees of freedom. The

DOF associated with the wrist

is passive.

2. If DOF is > 4, condition is met

N/A

2 Position

Accuracy @

the end

effector

1. Place a whiteboard 15 in. from

the base of the arm. Place a

marker in the hand

2. Set the arm at a known position

such that the marker marks a

spot on the whiteboard.

3. Send the arm to another

position that does not make

contact with the white board.

4. Send the arm back to the initial

position.

5. Repeat motion 5 times.

6. If marks are within 1 in. of the

original, the condition is met.

1. Whiteboard

2. Marker

3. Caliper

3 Max Speed @

each joint

1. Mark a point on a joint.

2. Set the motor to maximum

rotation.

3. Time how long it takes to make

¼ or ½ rotation. (dependent on

rotational space of joint)

4. If rotation is > 7.5 RPM,

condition is met.

1. Marker

2. Stopwatch

4 Total Length 1. Put the arm out at full

extension.

2. Measure length with a

measuring tape.

3. If length around 22.75 in,

condition is met

1. Measuring tape

5 Max Weight 1. Place entire assembly (hand

and arm) on scale

2. If weight is <15 lb, condition is

met.

1. Scale

6 Max Load

Outstretched

1. Set the arm at full extension,

hand in closed position.

2. Place spring scale on end of

arm.

1. Spring Scale

84

3. Pull until arm begins to sag.

4. If greater than 5 lb, condition is

met.

7 Max Load-to-

Weight ratio

1. Divide the max load

outstretched value by the

weight of the assembly.

2. If less than 0.33, condition is

met

N/A

8 Open a Door 1. Place hand on door handle.

2. Power arm and pull door open.

3. If door opens, condition is met.

1. Door

 After completion of each test, it was shown that the Bucknell Humanoid Robot

Arm either met or exceeded the expectations of the design. The results from each test are

shown in Table 10.

Table 12: Design Specification Test Results for the Bucknell Humanoid Robot Arm

Design Specification Test Results

Specification Desired Value Value Reached

DOF 4 5 power + 1 passive

Position Accuracy @ the end

effector

<1”

0.75”

Max Speed @ each joint 7.5 RPM 9.4 RPM

Total Length 22.75 in Approximately 22.75 in

Max Weight <15 lb 13.25 lb

Max Load Outstretched 5 lb 11 lb

Max Load-to-Weight ratio 0.33 0.83

Open a Door Can Open Door Opened un-sprung door successfully

5.1 Test #1 – Number of DOF’s

 The number of degrees of freedom was very important because it ultimately

decided how many positions in space the robot is able to reach. At the start of the project,

the arm was thought to only need 4 DOF. This number of DOF’s would allow the arm to

reach many points in space. Later, it was realized that more dexterity in the arm was

85

needed, in particular twist of the forearm and of the wrist. The Bucknell Humanoid

Robot Arm ended up having 5 DOF’s in total plus 1 passive DOF at the wrist in which a

spring was used to allow for flex. With a total of 6 DOF’s, the Bucknell Humanoid

Robot Arm passed the requirement of having 4 or more DOF’s. Figure 76 clearly shows

each DOF including the passive joint at the wrist connection to the hand.

Figure 76: Bucknell Humanoid Robot Arm DOF's

86

5.2 Test #2 – Position Accuracy of the End Effector

 The next test was to test the accuracy of the arm. Before the test began, a marker

was attached to the arm using tape and nylon straps. The arm was then moved from its

starting point to a predetermined position. This position was marked on a dry erase board

that was placed in front of the arm. To prevent the board from moving the wheels on the

board were locked. This was repeated a total of five times, and the distance between the

farthest two points was measured. The resulting distance was 0.75 inches, which is

below the required value of one inch, so the Bucknell Humanoid Robot Arm met its

requirement of less than one inch. Figure 77 shows a snapshot from the test video which

can be seen on YouTube. (http://www.youtube.com/watch?v=wotx8j6vAWY)

87

Figure 77: Bucknell Humanoid Robot Arm Accuracy Test

5.3 Test #3 – Max Joint Speed

 Because the arm had to move at a relatively brisk speed, it was thought that 7.5

RPM was a relatively good speed. It allowed the arm to complete tasks in a timely

manner but wasn’t so slow that tasks took a long time to complete. It is also a safe speed

to test at. Being that this was the first revision of the arm, having an overly fast arm was

not needed. Testing the joint speed was very easy. Each joint had 2 points marked at

certain limits in the joint motion. These points specified a certain angle. With this angle

known, each joints rotation was timed. With these 2 values, the RPM values for each

88

joint were found. All joints met or exceeded the 7.5 RPM value with the arm fully

extended. With the elbow folded up to the upper arm, the shoulder joints were able to

achieve an RPM value of 9.4 RPM. The requirement of 7.5 RPM at each joint was met

by the Bucknell Humanoid Robot Arm.

5.4 Test #4 – Total Arm Length

 Similar to the DOF test, this was a simple test to conduct. With the arm fully

outstretched, the arm measured approximately 22.75 inches to the wrist. Therefore, the

arm met the requirement of measuring 22.75 inches from shoulder to wrist. Figure 78

shows the arm being measured from shoulder to wrist.

Figure 78: Arm Measurement

5.5 Test #5 – Max Arm Weight

 Keeping the arm as light as possible was one of the most important tasks of the

entire project. Compared to other arms reviewed in the section 1.2 - Literature Review,

89

the Bucknell Humanoid Robot Arm’s requirement of weighing less than 15 pounds was

extreme compared to other arms. Most of the other arms weighed more than 20 pounds.

Being able to complete tasks similar to the other reviewed robot arms, at a lower weight,

would have been a great outcome of the project. After completely assembling the arm, it

was placed on a scale. Including the hand, the arm weighed 13.25 pounds. Because this

is a little over 1.5 pounds lighter than the required weight, the Bucknell Humanoid Robot

Arm met its requirement of weighing less than 15 pounds. Figure 79 shows the arm

being weighed.

Figure 79: Arm Max Weight Test

5.6 Test #6 – Max Load Fully Outstretched

 Having a test that proved the calculations and design work done on the arm was

also very crucial. This number provided a solid support to the design of the arm. When

testing the max load of the arm, the arm’s initial test was to hold 5 pounds fully

90

outstretched. The arm did this with little struggle. Because this was one of the first tests

completed, the amount of weight was not increased until the remaining tests were

completed. Figure 80 shows the arm during the first strength test. Video of this test can

be found on YouTube. (http://www.youtube.com/watch?v=4dbtwkQ5nGo)

Figure 80: Outstretched Strength Test

After completion of the other tests, more weight was applied. The arm was set to

a fully outstretched position. A spring scale was attached to the hand and weight was

gradually applied until the arm began to drop. The amount of weight that was held

before the arm began to sag was a little over 11 pounds. The arm met and exceeded its

requirement of holding 5pounds fully outstretched.

5.7 Test #7 – Max Load-to-Weight Ratio

 The max load-to-weight ratio requirement was also a very simple test to conduct.

Taking the values of the max load fully outstretched weight and the weight of the arm

91

and dividing them a value was found. It was decided that the arm should be able to lift

1/3 of its weight or have a max load-to-weight ratio of 0.33. After finding the fully

outstretched strength weight, 11.00 lb, and the arm’s weight, 13.25lb, the max load-to-

weight ratio came out to 0.83. With this number exceeding the required max load-to-

weight ratio of 0.33, the Bucknell Humanoid Robot Arm met its max load-to-weight ratio

requirement.

5.8 Test #8 – Opening a Door

The only test that the arm did not succeed at was opening a door with a return

damper system, but did successfully open a normal door without any struggle. With the

power supply system used during testing, the arm was limited to 5 A per motor. The

shoulder motors are rated at 8 A and this increase in current may provide enough torque

to open the door.

This test was the most important task to the project because the arm would be put

into urban environments where doors would be a regularly introduced obstacle. This was

also the most complex of all the tasks expected to be completed by the Bucknell

Humanoid Robot Arm. Figure 81 shows the arm successfully opening the normal door.

Video of the Bucknell Humanoid Robot Arm opening a door can be found on YouTube.

(http://www.youtube.com/watch?v=8_ilCur-am4)

92

Figure 81: Successful Opening of a Door

Having completed the all of the tests and meeting all of the requirements, the arm

could be considered a success. This success can be contributed to a lot of things, but

most of it is due to the amount time spent making the arm as lightweight and compact as

possible.

93

6.0 Realization

As with any project, there are many things learned along the way. The most

important thing is evaluating what worked and what did not. This section will look at

each step in the creation of the Bucknell Humanoid Robot Arm.

6.1 Realization – Design Objectives and Specifications

The design objectives and specifications portion was broken down into various

sections to better describe what was expected of the arm. The first thing used was the

Objective Tree. The Objective Tree worked well because it gave a great understanding

of how the arm would be developed and also gave a route to finding design specifications.

These design specifications were easily found due to the very fine detail the Objective

Tree provided.

With the development of the Objective Tree came Operational Scenarios. The

Operational Scenarios gave great insight into different environments such as office

buildings or homes, and objects the robot arm may come in contact with, such as tools or

doors. Knowing these environments and objects led to great information such as

measureable specifications. These provided values like the amount of force needed to

open a door. Knowing all of this information created a solid base for the design of the

arm.

6.2 Realization – Design Process

The design process took the most time out of everything. The first step, which

was probably the most crucial was coming up with an initial design and finding the

94

torque, speed, and power values of each joint. By doing this, a great base was established

for the future arm designs and the final arm design. Using the initial design, a simulation

program was developed to find the previously mentioned values. These were then

compared to other programs values and hand calculations which showed that the

simulation program worked well and was a success.

Having a good simulation program allowed the solid modeling, motor selection,

and gear train selection to begin. Exploring various designs and comparing the

advantages and disadvantages of each made for a final design selection that was a

compact and lightweight design. This lightweight and compact design was further

lightened and made more compact by many iterations of the design, which in the end

took more time but made for a solid design.

The method used for selecting the motors and gear train also worked well. By

considering the different gear reductions available and combining them with appropriate

motors, the required torque and speed values were obtained. Having these parts specified

led to the design of the joints of the arm.

 The individual joint designs were broken down, and depending on the size of the

motors and harmonic drives, were designed with minor differences. These differences

helped make each actuator lighter and more compact by only using the amount of

material necessary and taking advantage of available space like the hollow portion inside

of the shoulder joint. This is part of the reason why the arm ended up being lighter than

required.

95

 After completion of the joint designs, the brackets that connect them were created.

Each bracket was specifically made to fit the joints properly and when put under load,

deflect as little as possible. These brackets were then analyzed using FEA and showed

very little deflection, less than two thousandths of an inch. The arm was then assembled

using Solidworks to get the proper link lengths and overall arm length of 22.75 inches.

All of these things combined created a good final design.

 There are random times when certain actuators will stall or bind when running.

Because the actuators run flawlessly otherwise, one explanation is mechanical problems

due to the machining not being precise enough. The motors and harmonic drives are

drastically affected by any small amount of misalignment. So any machining problems

will cause the motors to run improperly. Another explanation may be a motor that is

intermittently bad. For example, one of the halls may be sensing part of the time and

causing a problem off and on.

6.3 Realization – Controls

The controls portion of the Bucknell Humanoid Robot Arm project worked, but

was one of the most complex parts of the project due to everything having to be

compatible with the Biped. The control cards were selected and by using the PMD GUI,

the actuators were able to be moved. This was a big jump in the development of the

controls because none of the actuators had been run previously.

Independent of the PMD GUI, C Code was written to control the motors. This

was also a success and a good starting point to getting the motors running in Java and

Yobotics SCS. With the C Code, a DLL was made. This DLL allowed the Java control

96

code to communicate with the control card. Using Java, the DLL successfully ran and

the actuators were controllable.

With a successful Java application, a control system was written using Java. This

control code was also successful after many iterations.

6.4 Realization – Testing

As shown in Section 5.0 – Testing Results, the arm met or exceeded most of its

requirement except for one which was open a spring damped door. All other

requirements were met.

The first requirement of having four or more DOF’s was verified by counting the

number of actuators plus the passive wrist joint which gave six DOF’s all together.

Next the accuracy test was completed. This was successfully completed by

attaching a marker to the arm and placing a dry erase board in front of the arm. The arm

successfully moved from point A to point B five consecutive times, resulting in an

accuracy distance of 0.75 inches.

The next two tests were both simply done. The total length of the arm was

measured using a tape measure along the length of the arm. The weight was done by

weighing the arm on a digital scale as well as a spring scale. The resulting values,

approximately 22.75 inches and 13.25 pounds, met the specified requirements.

The fully outstretched load test was also successful. The arm was set to a fully

outstretched position and weight was added until the arm began to drop. This test worked

out well and the resulting weight was 11 pounds which doubled the specified requirement

of holding five pounds.

97

The max-load-to-weight test was also a success due to the arm being lightweight

and lifting double the amount for which it was designed. The end result was a max load-

to-weight ratio of 0.83.

Lastly, and probably the most important test was opening a door. Setting the arm

in front of a door, the arm was placed on the door handle. The first try was with a spring

dampened door. The arm struggled a bit when trying to open the door, which was

conducted three times. After unsuccessfully opening the spring dampened door, the arm

was moved to a normal un-damped door. After placing the arm on the door handle, the

arm opened the normal door twice which was considered a success.

98

7.0 Future Modifications and Lessons Learned

Overall, the Bucknell Humanoid Robot Arm project was a success. But, with any

project, modifications can always be made to make it better whether those changes are

made to the current model or the future version. The first thing that can be done with the

Bucknell Humanoid Robot Arm in the future is have the parts outsourced to a

professional machine shop that has better, more precise equipment than the Bucknell

PDL. This will ensure all the parts are made as they were designed. By having precision

machined parts, one of the most complicated parts, the Oldham coupler, could be

eliminated from the design. The Oldham coupler could be a large source of power loss in

the arm, and eliminating it could further improve the test results.

An Oldham coupler can be very efficient, about 90% efficient, but if the parts

aren’t made correctly the efficiency will drop. Shown in the blue printed drawings in

Appendices P, Q, and R, the Oldham couplers are the most inaccurate parts. The

inaccuracy of the parts ranges from three thousandths to two hundredths. With these

combined inaccuracies the mating tolerances are high, close to twenty five thousandths

which is beyond the required one thousandth of an inch.

A lot of time was spent creating the housings for the motors and harmonic drives.

Using framed motors and framed harmonic drives may be an option worth exploring.

Since the requirement of having a 15 pound arm was exceeded by nearly 1.5 pounds the

added weight of the framed motors and harmonic drives may not put the arm over the

desired weight. With these parts being assembled with high precision, the previously

mentioned machined parts could be eliminated. The only parts that would have to be

99

machined would be the connection brackets and the intermediate parts to connect the

motors to the harmonic drives.

The next thing that can be changed is making the overly strong parts, such as the

arm brackets, lighter. This would reduce the weight of the parts as well as the overall

weight of the arm. The parts could be analyzed with a FOS of two rather than three,

which would make them weaker but still have acceptable deflection values of less than

two thousandths. Though this is a consideration, the weight saved by making the

brackets lighter may not be a considerable enough amount to be worth the time spent

doing it.

The wrist and elbow motor housings could also be changed. Like the shoulder

joints, they could have press-out pin slots added to them to ease motor removal. This

would protect the motors from being heated in order to melt the adhesive holding them in.

The wiring on the Bucknell Humanoid Robot Arm was cluttered and could be

reorganized and made more manageable. For example, quick disconnects could be used

everywhere there is a wire termination. Some of the places they could be used are on the

motors, encoders, and at the breakout box. This would make for safer more robust

connections.

A continuation of the wiring redesign would be sending the encoder wires directly

to the amplifiers. This would reduce the number of wires being sent up the arm by a total

of 23 wires, which would reduce the wiring clutter. Lastly, another addition should be

limit switches. These would allow for the arm to be homed electronically rather than the

arm being manually set to a home position.

100

All of these changes combined would make the arm design better. It would allow

for easier assembly and disassembly, possibly increase the efficiency of the actuators, as

well as improve the test results which are already great.

101

8.0 Conclusion

Robotics is a rapidly growing discipline that is spread throughout a vast number

of fields. Shown in the literature review, there are many robots that serve various

purposes, and each was built using state-of-the-art standards. The Bucknell Humanoid

Robot Arm project used these robots as models. With that said, the Humanoid Robot

Arm could be of great significance to the robotics field. Like the other great robots in the

field, it also used state-of-the-art technology and parts. By using this technology and

these parts, a lightweight, compact, five DOF robot arm was built, and was able to

successfully meet all of its design requirements and specifications. The only task it was

not able to complete was opening a spring loaded door, but it was successful at opening

an un-damped door. Although this task was not completed, and many challenges were

introduced during the development of the Bucknell Humanoid Robot Arm, overall the

project was a success.

102

References

[1] Lisa Nocks, The Robot: The Life and Story of a Technology, Westport Connecticut,

2007.

[2] Kristina Grifantini, The Year in Robotics. Technology Review, Cambridge MA, 2009.

http://www.technologyreview.com/computing/24231/page1/

[3] Advanced UGV Mobility & Coordination in Joint Urban/Littoral Environments.

Bipedal Research Results, Pensacola FL, 2010.

[4] UGV Mobility & Coordination in Joint Urban/Littoral Environments. Bipedal

Development Proposal, Pensacola FL, 2010.

[5] Jerry Pratt and Ben Krupp, Design of bipedal walking robot, Institute of Human and

Machine Cognition, Pensacola FL, 2008

[6] Emily Singer, Patients Test an Advanced Prosthetic Arm. Technology Review,

Cambridge MA, 2009. http://www.technologyreview.com/blog/editors/22730/

[7] Greg Keenan, Boost in Production Puts General Motors on Road to Recovery. The

Globe and Mail, Toronto ON, Canada, August 2009.

http://www.theglobeandmail.com/globe-investor/boost-in-production-puts-

general-motors-on-road-to-recovery/article1256445/

[8] Jürgen Hirsch, Arno Aryus, Peter Drossert, Franz Bültmann, Ortwin Hahn, Thomas

Wiese, Hartmut Janssen, Marc Ryckeboer, Christian Eisenbeis, aluMATTER.

RSW in Automotive Industry, Liverpool United Kingdom, 2009.

[9] Kelly Rose, EOD/LIC Technologies: Weaponized Bot Rolls into Battle. The

Guardian, Washington DC, 2007, p. 17-19.

[10] General Atomics, Predator. Predator, Poway, CA 2010.

http://www.ga-asi.com/products/aircraft/predator.php

[11] Richard Besser and Jay Shaylor, Bionic Fingers Point to Future of Digit

Replacement. ABC News Internet Ventures. New York NY, 2009.

http://abcnews.go.com/GMA/OnCall/bionic-fingers-point-future-digit-

replacement/story?id=9326947

[12] Robosoft, robuARM – S6.2 6 DOF anthromorphic arm for mobile platforms.

Advanced Robotics Solutions and Modules. Bidart France, 2006.

103

[13] Barrett Technology Inc, WAM Arm Specifications. WAM Arm, Cambridge MA,

2010.

[14] Barrett Technology Inc, WAM Arm Features and Benefits. WAM Arm, Cambridge

MA, 2010.

[15] Festo, New Opportunities in Mechatronics and Bionics. Airics Arm, Denkendorf

Germany, 2010.

[16] Denise Schrier Cetta, The Pentagons Bionic Arm. CBS News: 60 Minutes, New

York NY, 2009.

http://www.cbsnews.com/stories/2009/04/10/60minutes/main4935509.shtml

[17] Schunk, Schunk Dexterous Hand. Schunk Dexterous Hand, Morrisville NC, 2010.

[18] Schunk, Schunk Dexterous Hand. Robotic Hands SDH, Morrisville NC, 2010.

http://www.schunk-modular-robotics.com/left-navigation/service-

robotics/components/actuators/robotic-hands/sdh.html

[19] Shadow Robot Company, Shadow Dexterous Hand C6M. Technical Specifications,

London England, 2009.

[20] Brittany Sauser, A Giant Leap for Humanoid Kind. Technology Review, Cambridge

MA, 2010. http://www.technologyreview.com/computing/24523/page1/

[21] Catey Hill, New GM, NASA Robot called Robonaut 2, R2, works on cars – and in

space, NY Daily News, New York, New York, February 2010.

http://www.nydailynews.com/money/2010/02/05/2010-02-

05_photos_new_gm_nasa_robot_works_on_cars__and_in_space.html

[22] National Aeronautics and Space Administration, Arms. Robonaut 1, Houston TX

2008.

[23] National Aeronautics and Space Administration, Hands. Robonaut 1, Houston TX

2008.

[24] Christoph Borst, Thomas Wimb¨ock, Florian Schmidt, Matthias Fuchs, Bernhard

Brunner, Franziska Zacharias, Paolo Robuffo Giordano, Rainer Konietschke,

Wolfgang Sepp, Stefan Fuchs, Christian Rink, Alin Albu-Sch¨affer, and Gerd

Hirzinger, Rollin’ Justin - Mobile Platform with Variable Base. 2009 IEEE

International Conference on Robotics and Automation, Wessling Germany, May

2009.

104

[25] M. Fuchs, Ch. Borst, P. Robuffo Giordano, A. Baumann, E. Kraemer, J. Langwald,

R. Gruber, N. Seitz, G. Plank, K. Kunze, R. Burger, F. Schmidt, T. Wimboeck

and G. Hirzinger, Rollin’ Justin – Design considerations and realization of a

mobile platform for a humanoid upper body, 2009 IEEE International Conference

on Robotics and Automation, Oberpfaffenhofen Germany, May 2010.

[26] Marc Raibert, Kevin Blankespoor, Gabriel Nelson, Rob Playter and the BigDog

Team, BigDog, the Rough-Terrain Quaduped Robot, Waltham MA, 2008.

[27] Boston Dymanics, PETMAN – BigDog Gets a Big Brother, Waltham MA, 2009.

[28] Thomas Ricker, Boston Dynamics PETMAN predicts the future of man as pet. Engadget.com,

October 2009. http://www.engadget.com/2009/10/27/boston-dynamics-petman-predicts-a-

future-of-man-as-pet-video/

[29] Honda, ASIMO. History of Asimo, Torrance CA, 2010.

http://asimo.honda.com/AsimoHistory.aspx

[30] Honda, ASIMO. Specifications, Torrance CA, 2010.

http://asimo.honda.com/AsimoSpecs.aspx

[31] Ibrahim, Abu Osman, Usman, Kadri, 3
rd

 Kuala Lumpur International Conference

on Biomedical Engineering 2006, Kuala Lumpur, Malaysia, December 2006.

[32] Performance Motion Devices, Inc., Motion Control Documentation,Lincoln

Massechussettes, 2010. http://www.pmdcorp.com/advanced-motion-control/pci-

motion-card.cfm

105

Appendices

Appendix A: Simulation Code

package armstuff;

import com.yobotics.simulationconstructionset.*;

import java.util.Scanner;

import java.util.StringTokenizer;

import java.io.*;

public class ArmController implements RobotController

{

 private MotorTest motor;

 private YoVariable tau_joint1, tau_joint2, tau_joint3, tau_joint4, tau_joint5,

 q_joint1, q_joint2, q_joint3, q_joint4, q_joint5,

 qd_joint1, qd_joint2, qd_joint3, qd_joint4, qd_joint5,

 qdd_joint1, qdd_joint2, qdd_joint3, qdd_joint4, time;

 private double tau1 , tau2, tau3, tau4,

 power1, power2, power3, power4,

 Kp1=20, Kd1 =25, Mul1 = .325/50*2.4,

 Kp2 = 20, Kd2=9, Mul2 = 12.5/50,

 Kp3 = 2.2, Kd3 = .8, Mul3 = 1.1,

 Kp4 = 2, Kd4 = .7, Mul4 = 4,

 theta1=0, theta2=0, theta3=0, theta4=0,

 thetaC1 = 0, thetaC2=0, thetaC3=0, thetaC4=0,

 d1 =0, d2=0, d3=0, d4=0, Tmax12 = 30, Tmax34 =

30, pmax = 50,

 x = 5, y = 10, z =12, t_final = 1,

 tolerance = .2, divisions = 100;

 /*Kp1=22*2, Kd1 =9/5, Mul1 = .0325/2,

 Kp2 = 22, Kd2=9/5, Mul2 = 1.25/2,

 Kp3 = 22; Kd3 = 9/2.5; Mul3 = 0.0325/4;

 Kp4 = 13; Kd4 = 3; Mul4 = .40/4; */

 /*Kp3 = 20; Kd3 = 13; Mul3 = .325/50;

 Kp4 = 11; Kd4 = 1.5; Mul4 = 4.0/50;*/

 private final YoVariableRegistry registry = new

YoVariableRegistry("ArmController");

 public ArmController(ArmRobot state)

 {

 motor = new MotorTest();

 motor.setup();

 /*gets the current state of the robots joint1 values

 q_joint1 is the position of the joint

106

 qd_joint1 is the velocity of joint

 tau_joint1 is the torque at the joint

 to access or change the value of the joint use the .val extension*/

 q_joint1 = state.getVariable("q_joint1");

 qd_joint1 = state.getVariable("qd_joint1");

 qdd_joint1 = state.getVariable("qdd_joint1");

 tau_joint1 = state.getVariable("tau_joint1");

 q_joint2 = state.getVariable("q_joint2");

 qd_joint2 = state.getVariable("qd_joint2");

 qdd_joint2 = state.getVariable("qdd_joint2");

 tau_joint2 = state.getVariable("tau_joint2");

 q_joint3 = state.getVariable("q_joint3");

 qd_joint3 = state.getVariable("qd_joint3");

 qdd_joint3 = state.getVariable("qdd_joint3");

 tau_joint3 = state.getVariable("tau_joint3");

 q_joint4 = state.getVariable("q_joint4");

 qd_joint4 = state.getVariable("qd_joint4");

 qdd_joint4 = state.getVariable("qdd_joint4");

 tau_joint4 = state.getVariable("tau_joint4");

 q_joint5 = state.getVariable("q_joint5");

 qd_joint5 = state.getVariable("qd_joint5");

 tau_joint5 = state.getVariable("tau_joint5");

 time = state.getVariable("t");

 }

 public void doControl()

 {

 double w_noload = 9620, t_stall = .268, gear_ratio=100; //t_stall in mNm and

w_noload in rpm

 if(time.val == 0)

 {

 boolean check = false;

 double minAngle2 = 80;//in degrees

 double minAngle4 = 45;//in degrees

 theta1 = q_joint1.val;

 theta2 = q_joint2.val;

 theta3 = q_joint3.val;

 theta4 = q_joint4.val;

107

 while((theta1 <= q_joint1.val+2*Math.PI)&&((check == false)))

 {

 //increments theta1

 theta1 = theta1 + 2*Math.PI/divisions;

 while((theta2 <= q_joint2.val+2*Math.PI)&&(check == false))

 {

 theta2 = theta2 + 2*Math.PI/divisions;

 while((theta3 <= q_joint3.val+2*Math.PI)&&(check ==

false))

 {

 theta3 = theta3 + 2*Math.PI/divisions;

 while((theta4 <= q_joint4.val+2*Math.PI)&&(check ==

false))

 {

 theta4 = theta4 + 2*Math.PI/divisions;

 System.out.println("elbow updated"); //

===

=============== double C1 =

Math.cos(theta1), S1 = Math.sin(theta1),

 C2 = Math.cos(theta2), S2 =

Math.sin(theta2),

 C3 = Math.cos(theta3), S3 =

Math.sin(theta3),

 C4 = Math.cos(theta4), S4 =

Math.sin(theta4),

 L1 = 3, L2 = 4.75, L3 = 5, L4 = 10;

 double currentX = -L2*C1*S2 - L3*C1*S2 + L4*(-C1*C4*S2 - (C1*C2*C3 -

S1*S3)*S4),

 currentY = -L2*S1*S2 - L3*S1*S2 + L4*(-C4*S1*S2 - (C2*C3*S1 +

C1*S3)*S4),

 currentZ = L1 + L2*C2 + L3*C2 + L4*(C2*C4 - C3*S2*S4);

if((currentX - tolerance < x)&&(x < currentX+tolerance))

 {

 f((currentY - tolerance < y)&&(y < currentY+tolerance))

 {

 if((currentZ - tolerance < z)&&(z < currentZ+tolerance))

 {

if((theta2 <= (180-minAngle2)*Math.PI/180)||(theta2 >=

(180+minAngle2)*Math.PI/180))

 {

if((theta4 <= (180-minAngle4)*Math.PI/180)||(theta4 >=

(180+minAngle4)*Math.PI/180))

 {

 FileOutputStream fout;

108

 try

 {

 fout = new FileOutputStream ("thetas.txt");

theta1 = -Math.PI/2;

theta2 = -Math.PI/2;

theta3 = -Math.PI/2;

theta4 = -Math.PI/2;*/

 new PrintStream(fout).println (theta1 + " " + theta2 + " " + theta3 + " " + theta4);

fout.close();

 }

 catch (IOException e)

 {

 System.err.println ("Unable to write to file");

 System.exit(-1);

 }

 thetaC1 = theta1;

 thetaC2 = theta2;

 thetaC3 = theta3;

 thetaC4 = theta4;

 check = true;

 }

 }

 }

 }

 }

 }

 //reset theta 4, for next loop

 theta4 = q_joint4.val;

 }

 //reset theta 3, for next loop

 theta3 = q_joint3.val;

 }

 //reset theta 2, for next loop

 theta2 = q_joint2.val;

 }

 if(check == false)

 {

 System.out.println("No Solutions Exist");

 }

 else

 {

 FileInputStream fin;

 try

 {

109

 fin = new FileInputStream ("thetas.txt");

String readin = new DataInputStream(fin).readLine();

StringTokenizer st = new StringTokenizer(readin, " ");

 String t1 = st.nextToken();

 String t2 = st.nextToken();

 String t3 = st.nextToken();

 String t4 = st.nextToken();

 thetaC1 = Double.valueOf(t1.trim()).doubleValue();

 thetaC2 = Double.valueOf(t2.trim()).doubleValue();

 thetaC3 = Double.valueOf(t3.trim()).doubleValue();

 thetaC4 = Double.valueOf(t4.trim()).doubleValue();

 }

 catch (IOException e)

 {

 System.err.println ("Unable to read the file");

 System.exit(-1);

 }

 }

 /*if((time.val<t_final)&&(time.val>.5))

 {

 thetaC1 = thetaC1/2*(1-Math.cos(Math.PI*time.val/t_final));

 thetaC2 = thetaC2/2*(1-Math.cos(Math.PI*time.val/t_final));

 thetaC3 = thetaC3/2*(1-Math.cos(Math.PI*time.val/t_final));

 thetaC4 = thetaC4/2*(1-Math.cos(Math.PI*time.val/t_final));

 }*/

 /*

 if(thetaC1 >= 2*Math.PI)

 {

 thetaC1 = thetaC1-2*Math.PI;

 }

 if(thetaC1 < 0)

 {

 thetaC1 = thetaC1+2*Math.PI;

 }

 if(thetaC2 >= 2*Math.PI)

 {

 thetaC2 = thetaC2-2*Math.PI;

 }

 if(thetaC2 < 0)

 {

 thetaC2 = thetaC2+2*Math.PI;

 }

 if(thetaC3 >= 2*Math.PI)

 {

110

 thetaC3 = thetaC3-2*Math.PI;

 }

 if(thetaC3 < 0)

 {

 thetaC3 = thetaC3+2*Math.PI;

 }

 if(thetaC4 >= 2*Math.PI)

 {

 thetaC4 = thetaC4-2*Math.PI;

 }

 if(thetaC4 < 0)

 {

 thetaC4 = thetaC4+2*Math.PI;

 }

 double cur1 = q_joint1.val, cur2 = q_joint2.val, cur3 =

q_joint3.val, cur4 = q_joint4.val;

 if(cur1 >= 2*Math.PI)

 {

 cur1 = cur1-2*Math.PI;

 }

 if(cur1 < 0)

 {

 cur1 = cur1+2*Math.PI;

 }

 if(cur2 >= 2*Math.PI)

 {

 cur2 = cur2-2*Math.PI;

 }

 if(cur2 < 0)

 {

 cur2 = cur2+2*Math.PI;

 }

 if(cur3 >= 2*Math.PI)

 {

 cur3 = cur3-2*Math.PI;

 }

 if(cur3 < 0)

 {

 cur3 = cur3+2*Math.PI;

 }

 if(cur4 >= 2*Math.PI)

 {

 cur4 = cur4-2*Math.PI;

 }

111

 if(cur4 < 0)

 {

 cur4 = cur4+2*Math.PI;

 }

 if(time.val == 0)

 {

 if(thetaC1 > Math.PI)

 {

 if((cur1 < thetaC1)&&(cur1 > Math.PI))

 {

 d1 = 0;

 }

 else

 {

 d1 = 1;

 }

 }

 if(thetaC1 <= Math.PI)

 {

 if((cur1 > thetaC1)&&(cur1 < Math.PI))

 {

 d1 = 1;

 }

 else

 {

 d1 = 0;

 }

 }

 if(thetaC2 > Math.PI)

 {

 if((cur2 < thetaC2)&&(cur2 > Math.PI))

 {

 d2 = 0;

 }

 else

 {

 d2 = 1;

 }

 }

 if(thetaC2 <= Math.PI)

 {

 if((cur2 > thetaC2)&&(cur2 < Math.PI))

 {

 d2 = 1;

112

 }

 else

 {

 d2 = 0;

 }

 }

 if(thetaC3 > Math.PI)

 {

 if((cur3 < thetaC3)&&(cur3 > Math.PI))

 {

 d3 = 0;

 }

 else

 {

 d3 = 1;

 }

 }

 if(thetaC3 <= Math.PI)

 {

 if((cur3 > thetaC3)&&(cur3 < Math.PI))

 {

 d3 = 1;

 }

 else

 {

 d3 = 0;

 }

 }

 if(thetaC4 > Math.PI)

 {

 if((cur4 < thetaC4)&&(cur4 > Math.PI))

 {

 d4 = 0;

 }

 else

 {

 d4 = 1;

 }

 }

 if(thetaC4 <= Math.PI)

 {

 if((cur4 > thetaC4)&&(cur4 < Math.PI))

 {

 d4 = 1;

113

 }

 else

 {

 d4 = 0;

 }

 }

 FileOutputStream fout2;

 try

 {

 fout2 = new FileOutputStream ("dir.txt");

 new PrintStream(fout2).println (d1 + " " + d2 + " " + d3 + " " +

d4);

 fout2.close();

 }

 catch (IOException e)

 {

 System.err.println ("Unable to write to file");

 System.exit(-1);

 }

 }

 FileInputStream fin2;

 try

 {

 fin2 = new FileInputStream ("dir.txt");

 String dirs = new DataInputStream(fin2).readLine();

 StringTokenizer s = new StringTokenizer(dirs, " ");

 String d1s = s.nextToken();

 String d2s = s.nextToken();

 String d3s = s.nextToken();

 String d4s = s.nextToken();

 d1 = Double.valueOf(d1s.trim()).doubleValue();

 d2 = Double.valueOf(d2s.trim()).doubleValue();

 d3 = Double.valueOf(d3s.trim()).doubleValue();

 d4 = Double.valueOf(d4s.trim()).doubleValue();

 }

 catch (IOException e)

 {

 System.err.println ("Unable to write to file");

 System.exit(-1);

 }

 double[] T_Grav = new double[4];

 T_Grav = getGrav(q_joint1.val,q_joint2.val,q_joint3.val,q_joint4.val);

114

 if(d1 == 0)

 {

 tau1=(Kp1*(thetaC1 - q_joint1.val)-

(qd_joint1.val*Kd1))*Mul1 + T_Grav[0];

 }

 if(d1 == 1)

 {

 tau1=(-Kp1*(-thetaC1 + (2*Math.PI+q_joint1.val))-

(qd_joint1.val*Kd1))*Mul1 + T_Grav[0];

 }

 if(d2 == 0)

 {

 tau2=(Kp2*(thetaC2 - q_joint2.val)-(qd_joint2.val*Kd2))*Mul2 +

T_Grav[1];

 }

 if(d2 == 1)

 {

tau2=(-Kp2*(-thetaC2 + 2*Math.PI + q_joint2.val)-(qd_joint2.val*Kd2))*Mul2 +

T_Grav[1];

 }

 if(d3 == 0)

 {

 tau3=(Kp3*(thetaC3 - q_joint3.val)-(qd_joint3.val*Kd3))*Mul3 +

T_Grav[2];

 }

 if(d3 == 1)

 {

tau3=(-Kp3*(-thetaC3 + (2*Math.PI+q_joint3.val))-(qd_joint3.val*Kd3))*Mul3 +

T_Grav[2];

 }

 if(d4 == 0)

 {

tau4=(Kp4*(thetaC4 - q_joint4.val)-(qd_joint4.val*Kd4))*Mul4 + T_Grav[3];

 }

 if(d4 == 1)

 {

tau4=(-Kp4*(-thetaC4 + (2*Math.PI+q_joint4.val))-(qd_joint4.val*Kd4))*Mul4 +

T_Grav[3];

 }

 w_noload = 9620;

 t_stall = .268;

 w_noload = w_noload * 3.14159/30*1/gear_ratio;

 t_stall = t_stall*gear_ratio;

115

 double tlim1= t_stall-t_stall/w_noload*Math.abs(qd_joint1.val),

 tlim2= t_stall-t_stall/w_noload*Math.abs(qd_joint2.val),

 tlim3= t_stall-t_stall/w_noload*Math.abs(qd_joint3.val),

 tlim4= t_stall-t_stall/w_noload*Math.abs(qd_joint4.val);

 if(Math.abs(tlim1) < Math.abs(tau1))

 {

 if(tau1<0)

 tau1=-Math.abs(tlim1);

 if(tau1>0)

 tau1=Math.abs(tlim1);

 }

 if(Math.abs(tlim2) < Math.abs(tau2))

 {

 if(tau2<0)

 tau2=-Math.abs(tlim2);

 if(tau2>0)

 tau2=Math.abs(tlim2);

 }

 if(Math.abs(tlim3) < Math.abs(tau3))

 {

 if(tau3<0)

 tau3=-Math.abs(tlim3);

 if(tau3>0)

 tau3=Math.abs(tlim3);

 }

 if(Math.abs(tlim4) < Math.abs(tau4))

 {

 if(tau4<0)

 tau4=-Math.abs(tlim4);

 if(tau4>0)

 tau4=Math.abs(tlim4);

 }

 power1 = tau1*qd_joint1.val;

 power2 = tau2*qd_joint2.val;

 power3 = tau3*qd_joint3.val;

 power4 = tau4*qd_joint4.val;

 if(time.val == 0)

 {

 FileOutputStream fout;

 try

 {

 fout = new FileOutputStream ("power.txt");

new PrintStream(fout).println (time.val + " " + power1 + " " + power2 + " " + power3 + "

" + power4 + "\n");

116

 fout.close();

 }

 catch (IOException e)

 {

 System.err.println ("Unable to write to file");

 System.exit(-1);

 }

 }

 else

 {

 File file = new File("power.txt");

 try

 {

 FileWriter writer = new FileWriter(file, true);

writer.write(time.val + " " + power1 + " " + power2 + " " + power3 + " " + power4 +

"\r\n");

 writer.flush();

 writer.close();

 }

 catch (IOException e)

 {

 e.printStackTrace();

 }

 }

 /*

 double[] T_Grav1 = new double[4];

 T_Grav1 =

getGrav(q_joint1.val,q_joint2.val,q_joint3.val,q_joint4.val);

 tau1 = T_Grav1[0];

 tau2= T_Grav1[1];

 tau3 = T_Grav1[2];

 tau4 =T_Grav1[3];*/

 tau_joint1.val= tau1;

 tau_joint2.val= tau2;

 tau_joint3.val= tau3;

 tau_joint4.val= tau4;

 }

 public YoVariableRegistry getYoVariableRegistry()

 {

 return registry;

 }

 public double[] getGrav(double th1, double th2, double th3, double th4)

 {

 double[] tq;

117

 double g = 9.81, m1 = 1.131, m2 = .43091, m3 = .8986, m4 = 4.5962,

 Lcm1 = .04332, Lcm2 = .0531, Lcm3 = .0884, Lcm4

= .222,

 L1 = .0762, L2 = .12065, L3 = .127, L4 = .254;

 double C1 = Math.cos(th1), S1 = Math.sin(th1),

 C2 = Math.cos(th2), S2 = Math.sin(th2),

 C3 = Math.cos(th3), S3 = Math.sin(th3),

 C4 = Math.cos(th4), S4 = Math.sin(th4);

 tq = new double[4];

tq[0] = g*(Lcm4*m4*C1*S3*S4 + S1*((Lcm2*m2 + L2*m3 + Lcm3*m3 + L2*m4 +

L3*m4 + Lcm4*m4*C4)*S2 + Lcm4*m4*C2*C3*S4));

tq[1] = (-g)*C1*(C2*(Lcm2*m2 + L2*m3 + Lcm3*m3 + L2*m4 + L3*m4 +

Lcm4*m4*C4) - Lcm4*m4*C3*S2*S4);

 tq[2] = g*Lcm4*m4*(C3*S1 + C1*C2*S3)*S4;

 tq[3] = g*Lcm4*m4*(C4*S1*S3 + C1*((-C2)*C3*C4 + S2*S4));

 return tq;

 }

}

118

Appendix B: Carbon Fiber Tube Deflection Analysis

Force (F) 5

Moment of Inertia for a

Tube

Pi 3.14

Outside Diameter (OD) 1

MI = (PI*(OD^4 - ID^4))/64

Wall Thickness 0.04

Inside Diameter (ID) 0.92

Deflection for a Hollow Tube

Length (L) 12

Moment of Inertia (MI) 0.01391447

D = (F*L^3)/(3*E*M)

Modulus of Elasticity

(E) 34000000

Deflection (D) 0.006087611 inches

119

Appendix C: Motor Selection

GOOD Shoulder 41 Nm .78 rad/s or 7.5 rpm

Motor

 Voltage Motor Diameter (mm) 50.02

48 HT2000

 P (W) RPM Torque (Nm) 55 or 50 W motor

48 3986 0.480

 Gearhead

 Reduction 1 Tmax Out 1 RPMmax Out 1

 100 48 39.860

Gearhead # CSD-20-100 Tdes RPM_Tdes

Diameter (mm) 41 5.813

Efficiency 1

GOOD Elbow 16 Nm .78 rad/s or 7.5 rpm

Motor

 Voltage Motor Diameter (mm) 20.93333333

48 HT01500

 P (W) RPM Torque (Nm) 20 or 25 W motor

31 7301 0.210

 Gearhead

 Reduction 1 Tmax Out 1 RPMmax Out 1

 100 21 73.010

Gearhead # CSD-17-100 Tdes RPM_Tdes

Diameter (mm) 16 17.383

Efficiency 1

120

GOOD Wrist 2 Nm .78 rad/s or 7.5 rpm

Motor

 Voltage Motor Diameter (mm) 2.616666667

48 HT1000

 P (W) RPM Torque (Nm) 5 W motor

11 8580 0.090

 Gearhead

 Reduction 1 Tmax Out 1 RPMmax Out 1

 100 9 85.800

Gearhead # CSD -14-100 Tdes RPM_Tdes

Diameter (mm) 5 38.133

Efficiency 1

Appendix D: Angular Contact Bearing Calculations

121

 Shoulder1 KAA20AR0

 ft-lb in-lb

a 30

Static

TQ 11.42 137.04

B 6.340191746

d 0.25 lb

D 1.341506351 Fr 60.90666667

Db 2.25 Fa 60.53414533

R 2.263846285 Ft 17.08

 Shoulder2 KAA20AR0

 ft-lb in-lb

a 30 Static 11.42 137.04

122

TQ

B 6.340191746

d 0.25 lb

D 1.341506351 Fr 60.90666667

Db 2.25 Fa 60.53414533

R 2.263846285 Ft 14.98

 Shoulder3 KAA20AR0

 ft-lb in-lb

a 30

Static

TQ 11.42 137.04

B 6.340191746

d 0.25 lb

D 1.341506351 Fr 60.90666667

Db 2.25 Fa 60.53414533

R 2.263846285 Ft 13.28

 Elbow KAA15AG0

 ft-lb in-lb

a 30

Static

TQ 6.97 83.64

B 6.340191746

d 0.1875 lb

D 1.006129763 Fr 49.56444444

Db 1.6875 Fa 49.26129515

R 1.697884713 Ft 12.13

 Wrist KAA10AG0

 ft-lb in-lb

a 30

Static

TQ 6.97 83.64

B 8.972626615

d 0.1875 lb

D 0.756129763 Fr 70.43368421

Db 1.1875 Fa 69.57178477

R 1.202211504 Ft 11.00

Appendix E: X Type Bearing Calculations

123

Shoulder1 KAA10XL0
CSD

20

Shoulder2 KAA10XL0

CSD

20

F 45.53 33.58

F 35.87 26.46

T 39.81

T 30.18

D 0.05

D 0.05

B 5.60

B 5.60

T/D 783.67

T/D 594.10

Shoulder3 KAA10XL0
CSD

20

Elbow KAA10XL0

CSD

17

F 30.24 22.31

F 19.20 14.16

T 24.57

T 12.80

D 0.05

D 0.04

B 5.60

B 4.10

T/D 483.62

T/D 296.40

Wrist KAA10AG0
CDS

14

 F 13.68 10.09

 T 8.08

 D 0.04

 B 2.10

 T/D 227.18

Appendix F: Joint Torque and Bracket Force Table

124

125

Appendix G: Shoulder Joint Drawings

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

Appendix H: Elbow Joint Drawings

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

Appendix I: Wrist Joint Drawings

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

Appendix J: Bracket Drawings

178

179

180

181

182

183

184

185

186

187

Appendix K: Bill of Materials

A: Shoulder Joint Parts

BILL OF MATERIALS: SHOULDER JOINTS (3 TOTAL)

Part Description

Drawing Name / Part

Number Producer Quantity

Shoulder Motor

Housing Outer Housing Machined Part 3

Stator Removal Sleeve Stator Removal Sleeve Machined Part 3

Rotor Shaft Rotor Shaft Machined Part 3

Rotor Disassembly

Ring Rotor Disassembly Shaft Machined Part 3

Oldham Coupler Rotor Oldham Coupler Rotor Side Machined Part 3

X Bearing Clamp X Bearing Clamp Machined Part 3

Quick Disconnect Nut Connecting Nut Machined Part 3

Oldham Coupler

Center Oldham Coupler Machined Part 3

Oldham Coupler WG Oldham Coupler WG end Machined Part 3

Encoder Wheel Clamp Rotor Encoder Clamp Machined Part 3

Shoulder HD Housing HD Side Housing Machined Part 3

Output Bearing

Retainer Bearing Retainer Machined Part 3

Output Bearing

Housing Bearing Housing Machined Part 3

Output Spacer Output Blank Spacer Machined Part 3

Carbon Tube Output Carbon Tube Output Machined Part 1

AC Bearing Shim Bearing Shim Machined Part 3

Shoulder Motor HT02000 Emoteq 3

Shoulder Harmonic

Drive CSD-20-100

Harmonic Drive

Inc. 3

Shoulder Encoder Disk DISK-2-2500-1000-I US Digital 3

Shoulder Encoder

Reader EM1-2-2500 US Digital 3

X Bearing KAA10XL0

Motion Ind.

Kaydon 3

Rotor Bearing SSRI-1634 Alpine Bearing 3

AC Bearings KA025AR0

Motion Ind.

Kaydon 6

Quick Disconnect HR10A-7R-5S Digikey 3

188

B: Elbow Joint Parts

BILL OF MATERIALS: ELBOW JOINT

Part Description

Drawing Name / Part

Number Producer Quantity

Top Bearing / Encoder Cap Cap Machined Part 1

Elbow Motor Housing Elbow Case Top Machined Part 1

X Bearing Housing Motor Bearing Ring Machined Part 1

Top X Bearing Compressor

Motor Bearing

Compressor 2 Machined Part 1

Lower X Bearing

Compressor

Motor Bearing

Compressor Machined Part 1

Rotor Shaft Oldham Rotor Machined Part 1

Oldham Coupler Center Coupler Machined Part 1

Oldham Coupler WG Oldham Coupler WG side Machined Part 1

Output Bearing

Compressor Bearing Compressor Machined Part 1

Elbow HD Housing Elbow Bottom Machined Part 1

Output Top Output Top Machined Part 1

Output Spacer Output Bottom Machined Part 1

AC Bearing Shim Shim Machined Part 1

Elbow Motor HT01500 Emoteq 1

Elbow Harmonic Drive CSD-17-100

Harmonic Drive

Inc. 1

Elbow Encoder E4-360-188-D-D-D-B US Digital 1

X Bearing KAA10XL0

Motion Ind.

Kaydon 1

Rotor Bearing 6455K100 McMaster 1

AC Bearings KAA15G0

Motion Ind.

Kaydon 2

189

C: Wrist Joint Parts

BILL OF MATERIALS: WRIST JOINT

Part Description

Drawing Name / Part

Number Producer Quantity

Top Bearing/Encoder

Cap Wrist Top

Machined

Part 1

Wrist Motor Housing Wrist Top Case

Machined

Part 1

Upper Rotor Bearing

Ring

Shaft Upper Bearing

Compression Ring

Machined

Part 1

Lower Rotor Bearing

Holder Inside Shaft Bearing Holder

Machined

Part 1

Lower Rotor Bearing

Ring

Lower Shaft Bearing

Compression Ring

Machined

Part

Rotor Shaft Motor Coupler Top

Machined

Part 1

Oldham Coupler Center Middle Coupler

Machined

Part 1

Oldham Coupler WG Bottom Part of Coupler

Machined

Part 1

Wrist HD Housing Bottom Case

Machined

Part 1

AC Bearing

Compression Ring

Outer Bearing Compression

Ring

Machined

Part 1

Output Bottom Output Section

Machined

Part 1

Output Carbon Tube

Mount

Inner Bearing Compression

Ring…

Machined

Part 1

AC Bearing Shim Angular Contact Shim

Machined

Part 1

Wrist Motor HT01000 Emoteq 1

Wrist Harmonic Drive CSD-14-100

Harmonic

Drive Inc. 1

Wrist Encoder E4-360-156-D-D-D-B US Digital 1

Lower Rotor Bearing SSRI-1458

Alpine

Bearing 1

Upper Rotor Bearing SSRI-5532

Alpine

Bearing 1

AC Bearings KAA10AG0 Kaydon 2

190

D: Bracket Parts

BILL OF MATERIALS: BRACKETS

Part Description

Drawing Name / Part

Number Producer Quantity

Shoulder Bracket 1 Bracket 1 Machined Part 1

Shoulder Bracket 2 Bracket 2 Machined Part 1

Shoulder to Elbow

Bracket Elbow Shoulder Bracket Machined Part 1

Elbow to Wrist Bracket Elbow Bracket 2 Machined Part 1

Wrist Bracket

Support/Amp Holder

Elbow Wrist Bracket Support

2 Machined Part 1

Wrist Bracket Support Elbow Wrist Bracket Support Machined Part 1

1” x 24” Carbon Tube Braided Carbon Fiber Tube dragonplate.com 1

2” x 24” Carbon Tube Braided Carbon Fiber Tube dragonplate.com 1

E: Electronic Parts

BILL OF MATERIALS: CONTROLS

Part Description

Drawing Name / Part

Number Producer Quantity

Motor Controller - PCI PR9258420CP24IOAD8R PMD Corp 2

Interconnect Module IM-1000 PMD Corp 2

3' 100 Pos. Round

Shielded Cable Cable-1003 PMD Corp 2

Motor Controller - PC-

104 PR8258420CP2.4IOAD8.R PMD Corp 2

3' 50 Pos. Cable for

PC104 Cable-2003 PMD Corp 3

RS232 Serial Cable Cable-4203 PMD Corp 1

Amplifiers AZBE20AB Servos-2-Go 5

Elbow/Wrist Enc

Connectors CA-MIC4-W4-NC US Digital 2

Amp Connector - 10 Pos

Crimp 5x2 609-2374-ND Digikey 5

Amp Connector - 12 Pos

Crimp 6x2 609-2373-ND Digikey 5

Amp Connector - 3 Pos

Crimp 3x1 609-2340-ND Digikey 5

Amp Connector - 3 Pos

Crimp 5x1 609-2338-ND Digikey 5

191

Appendix L: BHRA Wiring Diagram

192

Appendix M: Motor Control C Code

// MotorTest.cpp : Defines the exported functions for the DLL application.

//

#include

"stdafx.h"

#include

"c-motion.h"

#include

"PMDutil.h"

#include

"PMDpci.h"

#include

"PMDconio.h"

#include

"PMDMotorSetup_Magellan.h"

#include

"PMDMB.h"

#include

<jni.h>

#include

<stdlib.h>

#include

<stdio.h>

#include

"MotorTest.h"

PMDAxisHandle hAxis1,hAxis2,hAxis3,hAxis4;

JNIEXPORT jint JNICALL

Java_MotorTest_setup (JNIEnv *, jobject)

{

// TODO insert setup functions here

printf(

"Setup \n");

PMDuint8 ui8major, ui8minor;

PMDuint16 generation, motorType, numberAxes, special, custom, major, minor;

PMDuint16 status;

//PMDint32 position;

if (PMD_NOERROR != PMDSetupAxisInterface_PCI(&hAxis1, PMDAxis1, 1))

{

PMDprintf(

"Board initialization failed\n");

return 1;

}

// use the same transport for Axis#2 because it resides on the same chip

193

// so must use the same interface

PMDCopyAxisInterface(&hAxis2, &hAxis1, PMDAxis2);

PMDCopyAxisInterface(&hAxis3, &hAxis1, PMDAxis3);

PMDCopyAxisInterface(&hAxis4, &hAxis1, PMDAxis4);

if (PMD_NOERROR != PMDChipsetReset(&hAxis1))

{

free(hAxis1.transport_data);

PMDprintf(

"Reset failed\n");

return 1;

}

PMDGetCMotionVersion(&ui8major, &ui8minor);

PMDprintf(

"C-Motion Version %d.%d \n", ui8major, ui8minor);

// just do some easy gets to make sure comms are working

PMDGetVersion(&hAxis1, &generation, &motorType, &numberAxes, &special,

&custom, &major, &minor);

PMDprintf(

"MC%d%d%d%d Version %d.%d\n\n", generation, motorType, numberAxes, custom,

major, minor);

PMDGetEventStatus(&hAxis1, &status);

PMDprintf(

"Axis#1 Event Status: %4X\n",status);

PMDGetEventStatus(&hAxis2, &status);

PMDprintf(

"Axis#2 Event Status: %4X\n",status);

// enable DAC output if output mode is DAC

PMDMBSetDACOutputEnable(&hAxis1, 1);

PMDSetOutputMode(&hAxis1, 0);

// PID controller

===

========

PMDSetPositionLoop (&hAxis1, PMDPositionLoopProportionalGain, 10);

//Max. 32767 // KP

PMDSetPositionLoop (&hAxis1, PMDPositionLoopIntegratorGain, 10);

//Max. 32767 // KI

PMDSetPositionLoop (&hAxis1, PMDPositionLoopIntegratorLimit, 1000);

//Max 2^31 // Ilimit

PMDSetPositionLoop (&hAxis1, PMDPositionLoopDerivativeGain, 10);

//Max. 32767 // KD

PMDSetPositionLoop (&hAxis1, PMDPositionLoopDerivativeTime, 10);

//Max. 32767 // Derivative Time

PMDSetPositionLoop (&hAxis1, PMDPositionLoopOutputGain, 32767);

// Kout

194

// operation mode

===

=========

PMDSetOperatingMode (&hAxis1, 0x0033);

//To enable all the option for this product.

// tracking

===

===============

PMDSetPositionErrorLimit(&hAxis1, 65535);

// Should probably use a real position limit value

PMDUpdate(&hAxis1);

// ENCODER INVERSION

//PMDSetSignalSense(&hAxis1, (PMDuint16) 1);

PMDUpdate(&hAxis1);

printf(

"motor should be servo'd. \n");

return 0;

}

JNIEXPORT

void JNICALL

Java_MotorTest_move (JNIEnv *, jobject, jint)

{

// TODO insert motion controls here

printf(

"move \n");

PMDSetProfileMode(&hAxis1, PMDTrapezoidalProfile);

PMDResetEventStatus(&hAxis1, (PMDuint16)~PMDEventMotionCompleteMask);

SetupTrace(&hAxis1, 100);

//bufsize = 100

PMDSetVelocity(&hAxis1, 256000);

PMDSetAcceleration(&hAxis1, 1000);

while (1) {

puts(

"please input a position and velocity: (pos vel) \n");

int pos, vel;

scanf(

"%d%d", &pos, &vel);

puts(

"Moving to: ");

printf(

"%d \n", pos);

if (pos == 1) {

return;

}

195

PMDSetVelocity(&hAxis1, vel);

PMDSetPosition(&hAxis1, pos);

PMDUpdate(&hAxis1);

WaitForEvent(&hAxis1, PMDEventMotionCompleteMask);

}

}

JNIEXPORT

void JNICALL

Java_MotorTest_close (JNIEnv *, jobject)

{

// TODO insert close function here

printf(

"close \n");

PMDHardReset(&hAxis1);

// release motor from servoing

PMDCloseAxisInterface(&hAxis1);

printf(

"Program Terminated. \n");

}

void

InterruptExample(PMDAxisHandle* hAxis)

{

DWORD rc;

PMDResetEventStatus(hAxis, 0);

PMDClearInterrupt(hAxis);

PMDSetInterruptMask(hAxis, PMDEventMotionCompleteMask);

PMDPCI_SetInterruptEvent(hAxis);

PMDSetAcceleration(hAxis, 1000);

PMDSetVelocity(hAxis, 10000);

PMDSetPosition(hAxis, 1000);

PMDUpdate(hAxis);

PMDprintf(

"Waiting for interrupt...\n");

// interrupt should occur once motion is complete

rc = PMDPCI_WaitForInterruptEvent(hAxis, 10000);

// 10sec timeout

switch (rc)

{

case PMD_ERR_OK:

// Interrupt occurred

PMDprintf(

"*Interrupt Received*\n");

break;

case PMD_ERR_Timeout:

196

// ERROR - Timeout waiting for Interrupt Event

PMDprintf(

"*Timeout waiting for interrupt*\n");

break;

case PMD_ERR_Cancelled:

// ERROR - Failed while waiting for interrupt

PMDprintf(

"*ERROR* - Failed while waiting for interrupt\n");

break;

}

}

Appendix N: DLL Compiled C Code

A: motor_ArmMotor

197

/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>

/* Header for class motor_ArmMotor */

#ifndef _Included_motor_ArmMotor

#define _Included_motor_ArmMotor

#ifdef __cplusplus

extern "C" {

#endif

/*

 * Class: motor_ArmMotor

 * Method: moveNative

 * Signature: (IIII)V

 */

JNIEXPORT void JNICALL Java_motor_ArmMotor_moveNative

 (JNIEnv *, jobject, jint, jint, jint, jint);

/*

 * Class: motor_ArmMotor

 * Method: setPosNative

 * Signature: (II)I

 */

JNIEXPORT jint JNICALL Java_motor_ArmMotor_setPosNative

 (JNIEnv *, jobject, jint, jint);

/*

 * Class: motor_ArmMotor

 * Method: setVelNative

 * Signature: (II)I

 */

JNIEXPORT jint JNICALL Java_motor_ArmMotor_setVelNative

 (JNIEnv *, jobject, jint, jint);

/*

 * Class: motor_ArmMotor

 * Method: setAccelNative

 * Signature: (II)I

 */

JNIEXPORT jint JNICALL Java_motor_ArmMotor_setAccelNative

 (JNIEnv *, jobject, jint, jint);

/*

 * Class: motor_ArmMotor

 * Method: setKinematicsNative

198

 * Signature: (IIIIIII)V

 */

JNIEXPORT void JNICALL Java_motor_ArmMotor_setKinematicsNative

 (JNIEnv *, jobject, jint, jint, jint, jint, jint, jint, jint);

/*

 * Class: motor_ArmMotor

 * Method: encoderInversionNative

 * Signature: (I)V

 */

JNIEXPORT void JNICALL Java_motor_ArmMotor_encoderInversionNative

 (JNIEnv *, jobject, jint);

/*

 * Class: motor_ArmMotor

 * Method: homeMotorNative

 * Signature: (II[I)[I

 */

JNIEXPORT jintArray JNICALL Java_motor_ArmMotor_homeMotorNative

 (JNIEnv *, jobject, jint, jint, jintArray);

#ifdef __cplusplus

}

#endif

#endif

B: motor_ArmMotorController

/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>

/* Header for class motor_ArmMotorController */

199

#ifndef _Included_motor_ArmMotorController

#define _Included_motor_ArmMotorController

#ifdef __cplusplus

extern "C" {

#endif

/*

 * Class: motor_ArmMotorController

 * Method: init

 * Signature: ()I

 */

JNIEXPORT jint JNICALL Java_motor_ArmMotorController_init

 (JNIEnv *, jobject);

/*

 * Class: motor_ArmMotorController

 * Method: close

 * Signature: ()V

 */

JNIEXPORT void JNICALL Java_motor_ArmMotorController_close

 (JNIEnv *, jobject);

#ifdef __cplusplus

}

#endif

#endif

Appendix O: Java and Yobotics SCS Control Code

A: MoveArm

/**

 * Philip Diefenderfer

200

 * Bucknell University

 *

 * Jun 21, 2011, 10:09:34 AM

 * Project: Arm3

 * MoveArm.java

 *

 */

package testing;

import java.util.InputMismatchException;

import java.util.NoSuchElementException;

import java.util.Scanner;

import motor.ArmMotor;

import motor.ArmMotorController;

import armstuff.Kinematics;

/**

 * Moves the arm to a position hard coded into the program to test the use of

 * the DLL, Kinematics object, and general motion of the arm.

 *

 * @author Philip Diefenderfer

 */

@SuppressWarnings("unused")

public class MoveArm {

 /**

 * Shoulder 1 of the arm, axis 1

 */

 private static ArmMotor motor1;

 /**

 * Shoulder 2 of the arm, axis 2

 */

 private static ArmMotor motor2;

 /**

 * Shoulder 3 of the arm, axis 3

 */

 private static ArmMotor motor3;

 /**

 * Shoulder 4 of the arm, axis 4

 */

 private static ArmMotor motor4;

 /**

 * Shoulder 5 of the arm, axis 5

 */

201

 private static ArmMotor motor5;

 /**

 * Initializes the motor controllers, sets up the PID controller for each

 * motor and then sends the arm to a position.

 *

 * @param args

 * Unused

 */

 public static void main(String[] args) {

 if (MoveArm.initControls() != 0) {

 System.err.println("Exiting program");

 System.exit(-1);

 }

 MoveArm.initMotors();

 // Scanner keyboard = new Scanner(System.in);

 //

 // boolean flag = false;

 //

 // while (true) {

 // System.out.println("Please Press Enter to Continue...");

 // if (keyboard.nextInt() == 0) {

 // break;

 // } else {

 // if (flag) {

 // MoveArm.gotoEncPos(-90000, 90000, 50000, 20000);

 // flag = false;

 // } else {

 // MoveArm.gotoEncPos(0, 0, 0, 0);

 // flag = true;

 // }

 // }

 // }

 // MoveArm.gotoPos(0, 0, 0);

 // MoveArm.getAndGo();

 // Scanner keyboard = new Scanner(System.in);

 // keyboard.next();

 //

 // motor5.setPos(30000);

 pourDrink();

 System.out.println("Program complete");

 }

 /**

 * Initializes the PCI control boards for the arm.

 *

202

 * @return -1 if the initialization failed

 */

 private static int initControls() {

 ArmMotorController PCI = new ArmMotorController();

 if (PCI.init() != 0) {

 System.err.println("System initialization failed");

 return -1;

 }

 return 0;

 }

 /**

 * Initializes the motors with the characteristics of each and sets up the

 * PID controls for the motors on the arm, then sets the velocity and

 * acceleration for each motor.

 */

 private static void initMotors() {

 motor1 = new ArmMotor(1, "shoulder1", 1000000, false);

 motor2 = new ArmMotor(2, "shoulder2", 1000000, false);

 motor3 = new ArmMotor(3, "shoulder3", 1000000, false);

 motor4 = new ArmMotor(7, "elbow", 144000, true);

 motor5 = new ArmMotor(8, "wrist", 144000, true);

 motor1.setKinematics(20, 26, 500, 16, 10, 10);

 motor2.setKinematics(20, 26, 500, 16, 10, 10);

 motor3.setKinematics(20, 26, 500, 16, 10, 10);

 motor4.setKinematics(10, 10, 1000, 10, 10, 100);

 motor5.setKinematics(10, 10, 1000, 10, 10, 100);

 motor1.setAccel(15000000);

 motor1.setVel(1250000);

 motor2.setAccel(15000000);

 motor2.setVel(1250000);

 motor3.setAccel(15000000);

 motor3.setVel(1250000);

 motor4.setAccel(216000);

 motor4.setVel(180000);

 motor5.setAccel(216000);

 motor5.setVel(180000);

 }

 /**

203

 * Sends the robot arm to the position given in the parameters by

 * calculating the angle each motor needs to achieve in order to reach the

 * position then sends the motors to their respective positions.

 *

 * @param x

 * the x coordinate of the position for the arm to go to

 * @param y

 * the y coordinate of the position for the arm to go to

 * @param z

 * the z coordinate of the position for the arm to go to

 */

 private static void gotoPos(double x, double y, double z) {

 Kinematics arm = new Kinematics();

 double[] thetas = arm.getThetas(x, y, z);

 motor1.setAngle(thetas[0]);

 motor2.setAngle(thetas[1]);

 motor3.setAngle(thetas[2]);

 motor4.setAngle(thetas[3]);

 }

 private static void gotoEncPos(int e1, int e2, int e3, int e4, int e5) {

 motor1.setPos(e1);

 motor2.setPos(e2);

 motor3.setPos(e3);

 motor4.setPos(e4);

 motor5.setPos(e5);

 }

 private static void getAndGo() {

 Scanner keyboard = new Scanner(System.in);

 int num = 0;

 int pos = 0;

 try {

 while (true) {

 System.out.println("Please enter motor number: ");

 num = keyboard.nextInt();

 if (num < 1 || num > 5) {

 break;

 }

 System.out.println("Please enter motor position: ");

 pos = keyboard.nextInt();

 if (num == 1) {

 motor1.setPos(pos);

204

 } else if (num == 2) {

 motor2.setPos(pos);

 } else if (num == 3) {

 motor3.setPos(pos);

 } else if (num == 4) {

 motor4.setPos(pos);

 } else if (num == 5) {

 motor5.setPos(pos);

 } else {

 break;

 }

 }

 } catch (InputMismatchException e) {

 System.exit(0);

 } catch (NoSuchElementException e) {

 System.exit(0);

 }

 }

 private static void pourDrink() {

 try {

 int pos = 0;

 Scanner keyboard = new Scanner(System.in);

 while (true) {

 System.out.println("{Please enter a position");

 pos = keyboard.nextInt();

 if (pos == 1) {

 gotoEncPos(-90000, 90000, 50000, 30000, 0);

 } else if (pos == 2) {

 gotoEncPos(0, 0, 0, 35000, 0);

 } else if (pos == 3) {

 gotoEncPos(-20000, 40000, 0, 30000, -5000);

 } else if (pos == 4) {

 gotoEncPos(-20000, 40000, 0, 30000, 35000);

 } else {

 gotoEncPos(0, 0, 0, 0, 0);

 }

 }

 } catch (Exception e) {

 return;

 }

 }

}

205

B: ArmMotor

package motor;

/**

 * Urban Robotics Arm Controller

 * Created: 4/5/2011

 *

206

 * ArmMotor.java

 *

 * Brent Noll

 * Philip Diefenderfer

 */

/**

 * Controls the individual motors for the arm and allows for the motor to have

 * its position, angle, velocity and acceleration set.

 *

 * @author Philip Diefenderfer

 */

public class ArmMotor {

 private String motorName;

 private int ticksPerRev;

 private int axisNumber;

 private int positiveLimit = 10000000;

 private int negativeLimit = -10000000;

 private int home;

 static {

 System.loadLibrary("ArmMotor");

 }

 /**

 * Creates a Motor with the name for the motor, the number of

 * ticks/revolution for the motor, and whether or not one of the encoders on

 * the motor needs to be inverted to function properly.

 *

 * @param motorName

 * @param ticksPerRev

 */

 public ArmMotor(int axisNumber, String motorName, int ticksPerRev,

 boolean encoderInvert) {

 this.axisNumber = axisNumber;

 this.motorName = motorName;

 this.ticksPerRev = ticksPerRev;

 if (encoderInvert) {

 this.encoderInversion();

 }

 }

 /**

 * Moves the motor to the parameter angle (in radians). Converts the angle

 * to ticks then calls the setPos() Method, same motion restrictions that

 * apply to the setPos method apply to the setAngle method.

207

 * @param angle

 * angle to move to in radians

 * @return the final angle in radians

 */

 public int setAngle(double angle) {

 int ticks = (int) (angle / (2 * Math.PI) * ticksPerRev);

 return (int) (this.setPos(ticks) / ticksPerRev * (2 * Math.PI));

 }

 /*

 * (non-Javadoc)

 *

 * @see java.lang.Object#toString()

 */

 /**

 * Gets the name of the motor, which should be set to the location of the

 * motor on the arm

 *

 * @return the motor's Name

 */

 public String toString() {

 return motorName;

 }

 /**

 * Move the motor to the parameter position at the parameter velocity and

 * acceleration.

 *

 * @param pos

 * the position to move the motor to in encoder ticks

 * @param vel

 * the velocity to move the motor at in ticks/sec

 * @param accel

 * the acceleration of the motor (ticks^2/sec)

 */

 public void move(int pos, int vel, int accel) {

 pos = this.checkLimit(pos);

 this.moveNative(pos, vel, accel, this.axisNumber);

 }

 /**

 * Moves the motor to the parameter position and if the position commanded

 * is outside of the possible range the motor will go to the edge of its

 * range closest to the position.

 *

 * @param pos

 * the position in ticks to move the motor to

208

 * @return the position the motor moved to

 */

 public int setPos(int pos) {

 pos = this.checkLimit(pos);

 return this.setPosNative(pos, this.axisNumber);

 }

 /**

 * Sets the velocity of the motor to the commanded value or less if a limit

 * exists.

 *

 * @param vel

 * the velocity

 * @return the velocity the motor was set at, the limit if the commanded

 * velocity was beyond the limit

 */

 public int setVel(int vel) {

 return this.setVelNative(vel, this.axisNumber);

 }

 /**

 * Sets the acceleration of the motor to the parameter value; will only set

 * the motor to the max acceleration at most if a limit on the acceleration

 * exists

 *

 * @param acc

 * the commanded acceleration

 * @return the acceleration the motor was set to

 */

 public int setAccel(int acc) {

 return this.setAccelNative(acc, this.axisNumber);

 }

 /**

 * @param kP

 * @param kI

 * @param iLimit

 * @param kD

 * @param dTIme

 * @param kOut

 * PID Output Gain (enter %)

 */

 public void setKinematics(int kP, int kI, int iLimit, int kD, int dTIme,

 int kOut) {

209

 int KOut = (int) (kOut * 65535 / 100);

 this.setKinematicsNative(kP, kI, iLimit, kD, dTIme, KOut,

 this.axisNumber);

 }

 /**

 * Homes the motor by finding the end points of rotation then goes to the

 * middle and sets the middle as the zero location.

 */

 public void homeMotor() {

 int[] positions = new int[3];

 positions[0] = 0;

 positions[1] = 0;

 positions[2] = 0;

 positions = this.homeMotorNative(this.axisNumber, this.ticksPerRev,

 positions);

 this.home = positions[1];

 this.negativeLimit = positions[0] - this.home;

 this.positiveLimit = positions[2] - this.home;

 this.home = 0;

 // System.out.println("Home now at: : " + this.home);

 // System.out.println("Positive Limit now at: " + this.posLimit);

 // System.out.println("Negative Limit now at: " + this.negLimit + "\n");

 }

 /**

 * Gets the positive limit of the motor

 *

 * @return the positiveLimit

 */

 public int getPositiveLimit() {

 return this.positiveLimit;

 }

 /**

 * Gets the negitive limit of the motor

 *

 * @return the negativeLimit

 */

 public int getNegativeLimit() {

 return this.negativeLimit;

 }

 /**

210

 * Gets the home position of the motor, should be 0.

 *

 * @return the home position

 */

 public int getHome() {

 return this.home;

 }

 /**

 * Inverts one of the encoders on the motor to allow for motors with

 * different encoder types to be used.

 */

 private void encoderInversion() {

 this.encoderInversionNative(this.axisNumber);

 }

 /**

 * Checks the position passed to the motor against the Limits found during

 * homing, if the position is greater than the positive limit, the positive

 * limit is returned, if the position is less than the negative limit, then

 * the negative limit is returned, else it returns the position passed.

 *

 * @param pos

 * the position to check against the limits

 * @return the nearest possible position

 */

 private int checkLimit(int pos) {

 if (pos > this.positiveLimit) {

 pos = this.positiveLimit;

 System.err.println("Commanded motor position out of range. "

 + "Moving to nearest Limit");

 } else if (pos < this.negativeLimit) {

 pos = this.negativeLimit;

 System.err.println("Commanded motor position out of range. "

 + "Moving to nearest Limit");

 }

 return pos;

 }

 // Native Methods in dll

===

 /**

 * Moves the motor the the position passed in the parameters at the velocity

 * and acceleration that the arguments specified.

 *

 * @param pos

211

 * the position (in ticks) to move the motor to

 * @param vel

 * the velocity (in ticks/sec) to move the motor at

 * @param acc

 * the acceleration for the motor (ticks/sec^2)

 * @param axisNum

 */

 private native void moveNative(int pos, int vel, int acc, int axisNum);

 /**

 * Moves the motor to the parameter position. If motor is stopped by an

 * interrupt or hits a limit and is stopped, this method will return the

 * final position of the robot, else it will return the final position that

 * is equal to the parameter.

 *

 * @param pos

 * the position (in ticks) to move the motor to

 * @param axisNum

 * @return the position the motor was moved to

 */

 private native int setPosNative(int pos, int axisNum);

 /**

 * Sets the velocity of the motor. If the velocity has an upper limit set

 * and the velocity is attempted to be set to a higher velocity, this method

 * will set the velocity to the upper limit

 *

 * @param vel

 * the velocity to set the motor to

 * @param axisNum

 * @return the velocity the motor was set to.

 */

 private native int setVelNative(int vel, int axisNum);

 /**

 * Sets the acceleration of the motor to the parameter. If an upper limit is

 * set on the acceleration and the user attempts to set the acceleration

 * higher than the limit, this method will set the acceleration to the upper

 * limit.

 *

 * @param acc

 * the acceleration to set the motor to

 * @param axisNum

 * @return the acceleration the motor was set to.

 */

 private native int setAccelNative(int acc, int axisNum);

 /**

212

 * Sets the values for the Kinematic equations of the Arm.

 *

 * @param kP

 * @param kI

 * @param iLimit

 * @param kD

 * @param dTIme

 * @param kOut

 * @param axisNum

 */

 private native void setKinematicsNative(int kP, int kI, int iLimit, int kD,

 int dTIme, int kOut, int axisNum);

 /**

 * Inverts one of the encoders on the motor. Only use this method if one of

 * the encoders needs to be inverted.

 *

 * @param axisNum

 * the axis Number of the motor.

 */

 private native void encoderInversionNative(int axisNum);

 /**

 * Homes the motor to its center pocition and resets the encoder count so

 * home is set to the zero mark.

 *

 * @param axisNum

 * the axis number of the motor

 */

 private native int[] homeMotorNative(int axisNum, int ticksPerRev,

 int[] positions);

}

213

Appendix P: Blue Printed Shoulder Drawings

214

215

216

217

218

219

220

221

222

223

224

225

Appendix Q: Blue Printed Elbow Drawings

226

227

228

229

230

231

232

233

234

235

236

237

Appendix R: Blue Printed Wrist Drawings

238

239

240

241

242

	Bucknell University
	Bucknell Digital Commons
	2011

	Development of a Humanoid Robot Arm for Use in Urban Environments
	Brenton Noll
	Recommended Citation

	tmp.1332773644.pdf.al9KN

