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Abstract

In 1983, M. van den Berg made his Fundamental Gap Conjecture about the
difference between the first two Dirichlet eigenvalues (the fundamental gap) of
any convex domain in the Euclidean plane. Recently, progress has been made
in the case where the domains are polygons and, in particular, triangles. We
examine the conjecture for triangles in hyperbolic geometry, though we seck an
for an upper bound for the fundamental gap rather than a lower bound. The
Dirichlet eigenvalues of most polygons, including arbitrary hyperbolic triangles,
cannot be caleulated explicitly. However, the eigenvalues of disks are generally
known. We take advantage of this fact by calculating the eigenvalues of the
disks whose boundaries are the inscribed and circumscribed eircles for a given
triangle. We can relate the eigenvalues of these two disks to the eigenvalues of
the triangle through domain monotonicity. Then, using 2 relationship between
the eigenvalﬁes of Euclidean and hyperbolic disks, an upper bound for the first
eigenvalue of a Euclidean disk, and a lower bound for the first eigenvalue of a
hyperbolic disk, we find an upper bound for the fundamental gap for hyperbolic
triangles. We search for a nicer expression for the upper bound by examining

the calculated upper bound numerically, leading to the following conjecture.

Conjecture: Let T° be any hyperbolic triangle with angles between 0 and 3
radians, an inscribed circle of radius r;, and suppose that there exists a circum-
scribed circle of T'. If A denotes the Dirichlet eigenvalues of T, then

2 . .
Ag—Af§1&2(;) . (0.1)
I




1 Introduction

Every bounded region in the plaﬁe can eagily be thought of as a drum head that
can vibrate up and down. The boundaries of these so-called drum heads are
fixed; that is, only the interior of the drum heads can move up and down. As a
result, every such region has a set of frequencies at which it vibrates naturally
based on the shape of the surface. This concept has been studied extensively
in two directions: finding the frequencies at which a specific drum head can
vibrate and the inverse problem of determining the shape of the drum based
on knowledge of the frequencies. Both problems have been considered for some
time. Attention was brought to the latter problem in 1966 by Mark Kac [12],
who asked the simple question “Can one hear the shape of a drum?” The answer
was shown to be no by Carolyn Gordon, David Webb, and Scott Wolpert in 1992
-[9], [10]. They showed that two differently shaped drums could vibrate at the
same set of natural frequencies and so Would be indistinguishable simply by
sound. However, we will be more interested in the former problem: given a
" drum head, can we determine the frequencies at which it can vibrate? While
determining every such frequency would be ideal, it is likely an unrealistic goal.
Regardless of other qualities of the frequencies, we must be able to order them
from lowest to highest. As such, it is natural to investigate them in order from
lowest to highest. In particular, we are interested in the difference between the
first two frequenciés at which triangular drum heads can vibrate. This area has
been studied before and we begin with a presentation of the previous work and

further motivation.




2 The Fundamental Gap

In order to investigate the frequencies at which triangular drums can vibrate,
we need to set some initial mathematical framework. We first define the drum
* heads and the vibrational frequencies in explicit mathematical terms. We then
give the recent progress that has been made towards finding these frequencies
and why the difference between the first two frequencies is of interest. Finally,

we sumrmarize our main goals and outline the methods used herein.

2.1 The Conj eéture

In 1983, M. van den Berg made a conjecture about the difference between the
first two natural frequencies at which a drum can vibrate [20]. This conjecture,
now called the Fundamental Gap Conjecture, motivates the remainder of our
discussion and so we must define it in precise terms, which requires several
definitions. First, we must explicitly define what we are considering as a drum
head. This refers to any convex domain in the standard Euclidean plane. A
convexr domain ‘is a region of the plane that has the property that for any two
points inside the domain, the line connecting the two points is also contained
within the domain. Figure 1 shows two convex domains and one non-convex
domain. Every convex domain has a digmeter which is the greatest distance
between any two points on the boundary of the domain, e.g. a diagonal of a.
square. The diameter is a general measurement of the size of the domain.
Next, we must also define the natural frequencies mentioned. They are
the eigenvalues of an operator acting on smooth functions on the domain. For
brevity, we simply refer to these as the eigenvalues of the domain throughout the
our discussion. More specifically, the frequencies are the Dirichlet eigenvalues

of the domain. The Dirichlet eigenvalues of a convex domain 2 are the values
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Convex Convex Not Convex

Figure 1: The domains shown in (a) and (b) are convex, while the domain in
(c} does not satisfy the condiion to be convex.

" of A for which the following is satisfied for some unknown function u{z,y):

Au+riue = 0in

ulgn = 0, (2.1)

where A is the Lapldce operator defined as

&y 5%
Ay=— + —, 2.2
U= 52 + Hy> - @2
and u|aq is the function u restricted to the boundary of ©2. There are infinitely
many solutions Az, Az, ... to (2.1) and by convention we order them in ascending
order, so that 0 < A; < Ay < ... — oo. Then the fundamental gap for &

is defined to be As — A;. With these two definitions, we can now state the

Fundamental Gap Conjecture.

Fundamental Gap Conjecture (M. van den Berg): Let {) be any convex
domain with diameter d and Dirichlet eigenvalues 0 < A1 < Ay < Az < ...,
Then

d? (g — M) = 372 (2.3)

Notice that given any convex domain {2, this conjecture does not tell us

what the first two Dirichlet eigenvalues are and it certainly does not give us the




entire list. However, having information about the fundamental gap of a convex

" domain is useful and this conjecture gives a relatively simple lower bound. In
particular, its greatest strength lies in the fact that knowing the diameter of £ is
enough to find the lower bound. So we have a lower bound for the fundamental
gap determined entirely by a single geometric quantity (the diameter) associated
with a given convex domain.

The other key aspect to note about the Fundamental Gap Conjecture is
that it is a conjecture about every convex domain. In general, two arbitrary.
convex domains have little to nothing in common. Thus prox.fing this conjecture
for every convex domain simultaneously is likely a difficult goal, an assertion
supported by the lack of progress towards a proof in the 27 years since the
conjecture was stated by van den Berg. An alternative approach is to choose a
specific set of convex domains that share some basic properties and work towards
proving the Fundamental Gap Conjecture about that set of domains. This is
the direction which was‘ta.ken recently when progress was made towards proving

the conjecture for polygonal domains and, in particular, trisngular domains.

2.2 Recent Progress

Recent work by Lu and Rowlett [15] focused on proving the Fundamental Gap
Conjecture for polygonal domains. The fundamental gap for Euclidean domains
and, most importantly, polygonal domains is especially interesting because of
its physical significance in many areas. Of particular importance is shape recog-
nition of either surfaces or solids [17]. The eigenvalues can be used as a “Shape-
DNA”, a type of mathematical signature, to help identify any surface or solid.
Having such a signature helps for many tasks, including database retrieval, shape
matching, and even quality assessment. Though knowing the exact eigenvalues

would be ideal, they cannot be found explicitly in general and so information




on the fundamental gap can help fili in .the missing information.

Focusing mostly on triangles, Lu and Rowlett produced numerical evidence
supporting the Fundamental Gap Conjecture for all triangles in the Euclidean
plane. They were also able to prove that the lundamental gap is unbo.unded for
collapsing triangles that have two angles o and 2 satisfying % < % < 1. We will
outline their basic procedure. As mentioned above, calculating the Dirichlet
eigenvalues of a given domain can only be done exblicitly in a handful of cases.
Instead, L.u and Rowlett bounded a given triangle by two circular sectors, which
are pieces of a disk {see Fig. 2) [15]. The Dirichlet eigenvalues of disks, and
therefore circular sectors, can be explicitly calculated. The eigenvalues of sectors
are related to the eigenvalues of the triangle through a property known as do-
main monotonicity. Indeed, let  and £ be two convex domains with Dirichlet
eigenvalues Ay, Ag, -+ - and A7, Ah, -+ respectively. Then domain monotonicity is
 the property that if & < €, then X; > A} for all [. In other words, if one convex
domain £ is contained in another {¥, then the eigenvalues of ) are larger than
the corresponding eigenvalues of ', The results obtained by Lu and Rowlett are

also the start of a general program for proving the conjecture for all polygons.

(a) (b) (€

) _—

Figure 2: The region between the two radii in (a) is a sector of angle §. For
any triangle, we can find the minimal sector containing the triangle (b), and the
maximal sector contained in the triangle (¢). Caleulating the Dirichlet eigen-
values of these two sectors gives us a good estimate of the Dirichlet eigenvalues
of the triangle.




| 2.3 Main Goal

The Fundamental Gap Conjecfure posits an explicit lower bound for the funda-
mental gap for any convex domain in the Euclidean plane. The conjecture does
not give any indication as to whether or not there is an upper bound for the
fundamental gap or what that bound might be if it exists. 'We mentioned that
Lu and Rowlett do examine this issue and discover that the fundamental gap
is unbounded for a certain class of triangles [15]. In 1985, Singer et al. found
an upper bound for the fundamental gap of a slightly different operator [21, p.
230]. The upper bound was given for the fundamental gap for the Schrédinger
operator, which is closely related to the problem given in Eq. (2.1). The eigen-
values of the Schrédinger operator on a convex domain € in R? are the values

A for which

—Au+ Vu = Au,

w=10 on 99, | (2.4)

is satisfied where V is a non-negative function defined on the closure of 2,

denoted €0, and u{x, y} is again an unknown function. In [21], it is shown that

+

&2 4(M —m)
— < | — [
Az—di s (D2 2 ) ’

(2.5)
~ where D is the diameter of the largest inscribed ball in £ and M = supg (V) and
m = inf5 (V). However, if we let ¥ be the zero function, we see that Eq. (2.4)
reduces to Eq. (2.1) and M = m = 0. Then an upper bound for the fundamental

gap for convex domains in R? is given by

do— M <8 (%)2. ' (26)




Similar to the Fundamental Gap Conjecture, this upper bound for the funda-
mental gap is only dependent on the size of the domain and, in particular,
the size of the largest ball inside that domain. Instead of further examining
this upper bound, we .look to take the idea of finding an upper bound for the
fundamental gap of a convex domain in a slightly different direction. We con-
sider the Dirichlet eigenvalues of convex domains in hyperbolic geometry and in
particular, the fundamental gap for hyperbolic ﬁriangles. 4

Our approach will be similar in nature to that of Lu and Rowlett. As men-
tioned above, Lu and Rowlett bounded a triangle with two sectors and used
‘domain monotonicity to relate the eigenvalues of the sectors to the eigenvalues
of the triangle. We will use the same technique, but replace sectors with an
inscribed and a circumscribed circle. Then the domain monotonicity will once
again reveal properties of the eigenvalues of the triangles. The main advantage
to circles over sectors here is that while the eigenvalues of sectors are not very
well understood in hyperbolic geometry, there is a reasonable amount of knowl-
edge about the eigenvalues of disks. Using these techniques, we find an upper
bound for the fundamental gap for triangles in hyperbolic geometry, similar to
Eq. (2.6). To begin, we must first understand hyperbolic geometry and how it

differs from the familiar Euclidean setting.

3 Hyperbolic Space

The geometry with which we are all familiar is known as Euclidean geometry.
It is the gebmetry that generally arises in the world around us and so is the
most practical to study. However, it is not the only geometry in which one
can work. There are two other geometries that at first appear to have nothing
in common with Euclidean geometry, but upon further inspection, are actually

quite similar. We begin by exploring the foundations of Euclidean geometry




and then examine how to alter the familiar setting to produce one of the other

two geometries, hyperbolic geometry.

3.1 Axiomatic Geometry

" The general rules of Euclidean geometry are natural to almost every student:

lines intersect at only one point, every triangle has angle sum m radians ete.

While these ideas may seem to be the basis for Euclidean geometry, we can

dig a little deeper to uncover a more basic set of rules. Euclidean geometry

can actually be built from a set of axioms that determine every other property
that we know about our familiar geometry [11, pp. 597-598]. We take many
of these axioms for granted, such as the axiom that if there are three distinct
points lying on the same line then only.one point is between the other two [11,
p. 105]. The Iﬁost important axiom of Euclidean geometry is known as the
parallel postulate. It states that for any line [ and any given point P not on [,

there is exactly one line through P parallel to ! (see Figure 3).

(a)

Original Line

Figure 3: In familiar Fuclidean geometry, the second line in (b} is the only line
parallel to the original line through the given point. This is not the case in other
geometries.

Though this axiom seems natural to those who have become accustomed
to Buclidean geometry, it is actually the axiom upon which all of Euclidean

geometry rests. Without this axiom, for instance, we can use the remaining




axioms to construct a four-sided figure with 3 right angles and one non-right
angle, which is an absurd notion in Euclidean geometry. Tt 'i.;a the paraliel postu-
late that guarantees that the fourth angle must also be a right angle. However,
there is no mathematical reason why we must accept the parallel postulate: we
can build many consistent geometries from the remaining axioms. A geometry
obtained from doing so is known as a neutral geometry. Furthermore, there are
two natural alternatives to the parallel postulate that we may add to a néﬁtral
geomefry that give us two entirely different geometric settings. We consider one
of those alternatives here. We replace the parallel postulate with the following:
for any line I and a given point P not on I, there are at least two lines parallel
to I through P [11, p. 250]. It turns out that this condition implies that for
any ! and P, there are infinitely many lines parallel to ! through P. Adding this
assumption to the axioms of neutral geometry gives us hyperbolic geometry.
This is initially very unintuitive to imagine. However, there is a simple model
“of hyperbolic geometry which demonstrates the unfamiliar condition on parallel

lines. In order to explain the model, we require some preliminary definitions.

3.2 Metrics, Geodesics, and Curvature

Before we can consider our new geometric setting, we need to develop a more
precise language for describing distances and lines in a general geometry. Given
a seb, a metric on that set is a function that describes distances between the
elements of that set [2, p. 328]. In particular, a mefric on a set X is a function

d: X x X — R that satisfies the following properties for all z, v, z € X:
L d(z,y) >0,
2. d(z,y)=0 if and only if T =y,

3. d(z,y) = d(y, =),
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4. diz, z) < d(z,y) + dly, 2).

For example, we can consider the familiar (z,) coordinate plane as a set. Usu-

ally, we describe the distance between two points (za,yo) and (z1,y1) by the

distance formula, d = /(z1 — z0)? + (11 — 40)2. This distance function is a

metric on the plane and one can show that it satisfies the properties listed

above. Though it is the natural metric, it is not the only one. We could def_ine

the distance between two pairs of points as dy == |z — Zg| + ly1 — yo|- This

. is known as the taxi-cab metric, since to get between two points, one is only
permitted to travel horizontally or vertically, the way a taxi-cab must navigate
through city streets. Again, we can check that this does indeed define a metric
on the (x,y) plane. In general, every set can be given many metrics and the
particular application determines which is used.

Once a set has been given a metric and we have a way to measure distances,
a natural next step is to try and find the shortest distance between elements of
the set. This shortest distance is realized by a curve called a geodesic. In familiar
EBuclidean geometry, the shortest distance between any two points is realized by
a straight line: thus the geodesics of Euclidean geometry are straight lines. Now
consider a slightly different setting, a sphere. The shortest distance betiveen two

. points is Vnow realized by the portion of the great circle on the surface of the
sphere that passes through both points. Thus the geodesics on the sphere are all
of the great circles. The same set with different metrics will also have different
geodesics.

The final concept that we require is that of curseture of a surface, denoted &.
Urfortunately, the technical definition is beyond the scope of our work here and
s0 we give just a basic idea. of the concept. As its name might suggest, curvature
is a way of measuring how much a given surface curves. Areas where the surface

. 1s mostly flat have small curvature and areas that have sharp bends have large
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~ curvature. The curvature of a surface can vary from point to point and can be
drastically different throughout a surface. If a surface has the same curvature
at all points, then it is known as a surface of constant curvature. The Euc]idean
plane is an example of such a surface and has curvature 0 everywhere. The model
of hyperbolic geometry presented in the next section also has constant curvature
of k = —1[11, pp. 484-487|. Curvature is not necessary for a description of the
model, but will be required later. Wish these generalized notions of distance

and straight lines, we can proceed to define our model of hyperbolic geometry.

3.3 Model of Hyperbolic Geometry

With the concepts of geodesics and metrics, we can describe a simple model of
hyperbolic geometry [11, pp. 74]. Let 5! denote the unit circle. We will discuss
later the metric for this model; for now let the geodesics be either a diameter
- of the circle or a portion of a circular arc that intersects S' orthogonally (at
'righ_t angles) and define “points” to be regular Euclidean points within the disk
bounded by S*. This is a model of hyperbolic geometry and satisfies all of the
axioms of neutral geometry plus the new parallel axiom. Indeed, take any small
portion of an orthogonal arc contained in the disk bounded by S'. Then taking
P as the center of the disk, we can find as many diameters through P as we
wish that do not intersect the portion of the arc, as seen in Figure 4. This is
the model of hyperbolic geometry, known as the Poincaré Disk, that we will be

referencing throughout.

4 Polar Coordinates

The other decision that we must make is what coordinate system we will use. In

general, standard Cartesian coordinates (z, v) are good for describing figures and

regions consisting of mostly straight lines. We are more interested in describing
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Figure 4: In hyperbolic geometry, there are infinitely many lines through a given
point parallel to a given line. The two lines through the center of the disk are
both parallel to the dotted line and all three are geodesics in the Poincaré Disk
model. It is easy to see how we could find as many geodesics as we wish passing
through the center of the disk and parallel to the dotted line. '

curved and circular regions. To do so, we will use polar coordinates. The
next two sections describe polar coordinates in both Euclidean and hyperbolic

géometi'y.

4.1 Euclidean Case

Usually, we describe a point in the Euclidean plane by {z,y} coordinates. This
approach is the familiar one and works extremely well for dealing with straight
lines and other rectangular objects. However, these coordinates become cum-
beysorrlle when dealing with circular regions. Polar cocrdinates are designed to
make dealing with circular objects simple. Instead of a point being given in
coordinates (z,y), it is specified by (r,#) [19,. pp. 705-707]. The coordinate r
is known as the radius and is the straight line distance from tﬁe origin (0,0)
to the point of interest. For example, the point (1,1) is +/2 units away from
the origin by the distance formula, so » = +/2. The other éomponent, 0, is a
measure of angle. To understand &, consider an arrow emerging from the origin

that rests on the right half of the z-axis. We can rotate this arrow counterclock-
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wise around the origin, creating some angle between the arrow and the z-axis.
We rotate this arrow until it is pointing in the direction of the point that we
are interested in. In the case of (1,1), we would h.ave to rotate the arrow w/4
radians counterclockwise. Thus § = w/4. So transforming (1,1) from Euclidean

to polar coordinates gives us (v/2, 7/4), as shown in Figure 5.

; (V2,m/4)
(0,1) = . .

i (L1)

I n/4
_____ _i___-..__..____-i____. OISR SR,

! (1,0)

Figure 5: The point (1,1) in (z,y) coordinates becomes the point (v/2,7/4) in
polar coordinates.

The advantage of polar coordinates is that circular objects are very easily
described. Indeed, a circle of radius r is simply all points (r,#) for 0 < 6 < 27,
Since we are interested in describing circles in the Poincaré Disk model, using
a coordinate system that easily describes curves will make our computations

easier [11].

4.2 Hyperbolic Case

Polar coordinates in hyperbolic geometry have a similar feel to their Euclidean
counterpart in that they have a radial and angular component. Since we will

be using the Poincaré Disk as our model of hyperbolic geometry, our definition
| is given in terms of this model [5, pp. 1-4]. Let pg be the center of the Poincaré
Disk. For any point p in the disk, there is & unique geodesic f through p and
po. Fix a vector v based at pp to play the role that the positive z-axis plays
in Euclidean polar coordinates; v is- known as the poler azis. Let o be the

~ angle from v to the tangent vector to n at py and let p be the distance from
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pa to p, as shown in Figure 6. The coordinates (p, o) are known as the polar
coordinates of p with respect 1o pp and v. Notice the similarity to Euclidean
polar coordinates: both types have a radial coordinate to convey a distance and
an angular coordinate to convey direction. These coordinates are more natural

to use for the domains that we are considering.

Figure 6: To describe a point in the Poincaré disk in polar coordinates, we let
o be the center of the disk. For a given point p, we take the unique geodesic 1
through po and p. We pick any vector v, called the polar axis, emanating from
po and take a vector tangent to i at ng. We then find the angle ¢ between v
and the tangent to 1 at py. Lastly, we find the distance p along n between p
and pg. Then the hyperbolic polar coordinates of p with respect to py and v are

(p, o).

5 Polar Laplacian

" Changing our coordinate system means we must make some other changes as

well. In particular, we can no longer use the expression for the Laplacian given

&y

in Eq. (2.2) since the terms §=% and %‘; are given with respect to =z and ¥ and

our coordinates are now given with respect to either r and 0 or p and o. As such,

we need to convert the expression for the Laplacian to one that is dependent
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on r and @ or p and ¢ for the Euclidean and hyperbolic cases, respectively. The

next two sections provide the details for these transformations.

5.1 Rectangular to Polar

Recall that the Laplacian is given in rectangular coordinates by (2.2) as

ou , P

@ + e (5.1)

In order to make the switch from FEuclidean coordinates to polar coordinates,
we require a relation between the two sets of coordinates. It is well known that

the formulae

z = rcos(f),

y = rsin(d),
-1 (¥
= g 2
# = tan (sr;) . . {5.2)
2yt =42,

convert between a Cartesian coordinate (z,y) and a polar coordinate {r,8) [19,
pp. T06-707). The details of the derivation of the Laplacian in polar coordi-
nates are lengthy and so are given in Appendix A. In general, the process is
straightforward and is simply a matter of substitution according to Eq. (5.2)
and applying the Chain Rule. The result is that the Laplacian in polar form is

given by

v 0%u | & 1Y\ du LY 8w
A““(@J’a_w)‘ﬁJ’(F)E‘F*"(}?)éﬁ (5.3)
Using this expression for the Laplacian, we can find the eigenvalues using

the method of separation of variables. We outline the process here and provide
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the derivation in Appendix B. We begin by assuming that a function F' can be
separated into two functions, one dependent only on r and one dependent only
on 0, so that F(r,0} = R(r)®(§). Then we take the equation AF + AF =0
and apply the Laplacian to our function F. We can separate the variables so
that we have an expression involving ounly » equal to an expression involving
only #. However, r and ¢ change independently, so a change in r does not imply
a change in 8 and vice versa. Thus both expressions must be constant and
s0 we can set both expressions equal to that constant, denote.d k2, resulting
in two differential equations, one involving R(r) and one involving ©(¢). The
equation involving €{f) turns out to be the expression for the Laplacian on
a sphere and determines the values of k to be 0,1,2,3,---. We can use these
values for k when solving for R(r). We find that solutions for R(r) are Bessel
functions, a well studied class of functions, and that the values of A are the zeros

of these furictions. We will discuss Bessel functions in more detail in Section 7.1.

However, we will mention now that enough is known about Bessel functions that

their zeros can be calculated numerically which makes explicitly calculating the
eigenvalues of Fuclidean disks relatively easy. The eigenvalues of the Laplacian

in the hyperbolic case also turn out to be the zeros of a known, though more

- complicated, class of functions as we see in the next section.

5.2 Poincaré Disk Laplacian

Now we move on to the éase of hyperbolic geometry. Since we will be using fhe
Poincaré Disk model of hyperbolic geometry, we wish to find an expression for
the Laplacian in this model. We start from the rectangular metric tensor on the
Poincaré Disk; a metric tensor is the analog of a metric on a Riemannian man-
ifold. Informally, an n-dimensional Riemannian manifeld is an n-dimensional

ob ject that “looks like” and behaves like R™ in small patches and a metric tensor
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is a way to measure distances on a Riemannian manifold. We do not require a
precise definition for metric tensors since we are only working with the expres-
sion formally. The standard metric tensor on the Poincaré Disk is known to be

(11, p. 565]
A(dz? + dy?)

T E-@eAr

(5.4)

One will notice that the numerator of Eq. (5.4) contains the standard rectangular
metric tensor in the Fuclidean plane. The denominator accounts for the fact
that shorter distances nearer the boundary of the Poincaré Disk are the same as

longer distances closer to the center of the disk. Now we use the substitutions

z = tanh{r/2} cos(c)

y = tanh{r/2) sin{c)

given in [16, p. 210] to convert from rectangular to hyperbolic polar coordinates.
Once again, this derivation is too lengthy to be given here and as such is given
in Appendix C. However, the process is generally the same as for the Euclidean
case, in that it requires substitution, differentiation, and repeated applications
of the Chain Rule. As a result we have that the Laplacian in the Poincaré Disk
model is given by

" a(tanh®{p/2) + 1)\ du 2 0y
fu=Bgatt ( tanh(p/2) ) Er (Sinh2(,o/2) coshﬂ(p/z)) 902

(5.5)

Just as in Section 5.1, we can use separation of variables on this expressioﬁ 0
find the eigenvalues. We once again assume that a function F can be separated
into a function of each variable. Then F(p, o)} = T(p)G(e) and we solve for each
function independently. The derivation is in Appendix D and includes a change

of variables in order to get one of the resulting equatioﬁs in a more well known
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form. The method in Appendix D is exactly the same as in Appendix B.
The function G{e) ends up being exactly the same as the function ©(8) from

the Euclidean case in Section 5.1, though with a different constant, denoted

I

Sinice the equations are otherwise identical, ;1 must take the same values
as k, so g = 0,1,2,3,---. Once again, we can use each value of p to find
a golution for T'(p). The functions T'(p) are similar to R(r} in that T(p) also
belong to a known class of functions. Solutions for T (p) are Associated Legendre
functions, which are similar to Bessel functions, and values for A in this case
are the zeros of the Associated Legendre functions. Analogous to the Fuclidean
case, the eigenvalues of F' are also zeros of these Associated Legendre functions.
Unfortunately, Associated Legendre functions of non-integer order are complex
valued functions whose‘zeros are often complex valued as well [18, p. 581].
In general, T'{p) will be an Associated Legendre function of non-integer order
and so will have complex valued zeros. However, the eigenvalues of F must,
by definition, be positive real numbers. So mimicking the approach that we
took in the Euclidean case would require a deeper understanding of the zeros
of Associated Legendre functions than we needed for Bessel functions. Hence
we look for a different approach which does not involve explicit calculation
of the eigenvalues of hyperbolic domains. However, it can involve calculating
explicit eigenvalues of Euclidean disks since we showed that this was feasible in
Section 3.1. To begin, we examine hyperbolic triangles in depth and look for a

Euclidean domain related to a given triangle.

6 Hyperbolic Triangles

In order to understand the fundamental gap for hyperbolic triangles, we must
first understand hyperbolic triangles. In particular, we are interested in when

these triangles exist and in the relationships between sides and angles. Recall
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that we also intend to bound these triangles with both an inscribed and a
circumscribed circle. Thus we must know if and when these circles exist and
how to find their radii. We first present a condition for the existence of a
hyperbolic triangle and a simple relationship between the sides and angles. We
then present conditions for the existence of inscribed and circumscribed circles

as well as formulae for their radii.

6.1 Introduction and Existence

Euclidean triangles are simple to distinguish from other polygons: they have 3
straight line sides that create 3 distinci vertices and form 3 interior angles while
enclosing a region of the Euclidean plane. Recall that in Euclidean geometry,
straight lines are the geodesics. As with Euclidean triangles, hyperbolic trian-
gles are formed by three geodesics that create 3 distinct vertices, form 3 interior
angles and enclose a region of the Poincaré Disk. Tn general, hyperbolic triangles
have an appearance like the triangle shown in Figure 7. Every hyperbolic trian-
" gle has at least one side that is not a diameter of the bounding circle and hence
has at least one side that is a portion of an é,rc. In terms of their geodesic sides,
hyperbolic and Euclidean triangles are similar. However, in terms of angles,
they are very different. We recall that every triangle in Euclidean geomeiry has
three angles and that their sum must be equal to #. Hyperbolic triangles also
have 3 angles, but instead of summing to =, they must sum to less than = [3].
In fact, there exists a hyperbolic triangle with angles o, 8, and +y if and only if
@+ 3+ v < w. This is a necessary and sufficient, as well as simple, condition
for determining the existence of a hyperbolic triangle. Notice that the condition
" depends only on the angles and so we will look to formulate the rest of this

section in terms of the angles of a hyperbolic triangle.
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Figure 7: We see a typical hyperbolic triangle inside the Paincaré Disk model.

- The three sides are portions of arcs that meet the boundary cirele at right angles
-and thus are geodesics. The dotted line region enclosed by the three geodesics

is the hyperbolic triangle.

6.2 Relationship Between Sides and Angles

There are many useful relationships known a:bout triangles in Euclidean geom-
etry. Two of the most well known relationships are the law of sines and law
of cosines. They are two ways of expressing a relationship between the sides
and angles of Fuclidean triangles. There are hyperbolic analogues of both of
these laws and here we focus on the law of cosines [11, p. 495]. Consider any
hyperbolic triangle with angles c, 3, and -y and corresponding sides a, b, and ¢,

s0 that angle a opens into side a, angle 4 opens into side &, angle v opens into

- side ¢, as shown in Figure 8.

" Figure 8 The labeling of the sides and angles for a hyperbolic triangle. By

convention, we denote the lengths of the sides opposite angles «v, 4, and -, by
a, b, and ¢ respectively.
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Then the hyperbolic law of cosines is given by
- cosh(a) = cosh{b) cosh{c) — sinh(b) sinh(c} cos{a).

Unfortunately, this law is more useful when the side lengths are known. We are
looking for a relationship that can determine the side lengths from the angles.

Fortunately, there is a corollary to the hyperbolic law of cosines that states

cos{f3) cos(7y) + cos(a) _

sin{) sin(y) (6.1)

cosh{a) =

There are analogous equations for determining cosh(l) and cosh{c). This is
.precisely the relationship that we seek, giving us information about the side
lengths based entirely on the angles. Notice that since cosh(a) depends only on
the angles, once the angles are determined, the length of side a is determined.
Using the two analogous equations, we notice that all three sidé lengths are
_ determined by the angles and thus the entire triangle is determined by the three
angles. This is strikingly different from Euclidean geometry where kndwing the
three angles will give us a ratio between the side lengths, but no exact side
lengths. However, this is exactly what we were hoping for, since knowing the

three angles of a hyperbolic triangle completely determines the triangle.

6.3 Inscribed Circles

We now turn our attention to the inscribed and circumscribed circles of hyper-
bolic triangles, beginning with inscribed circles. An inseribed circle of a polygon
is defined to be the unique circle that is tangent to each side of the polygon, as
shown in Figure 9.

In Euclidean geometry, every triangle has an inscribed circle and it turns out

the same is true in hyperbolic geometry., Thus, regardless of the three angles,
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Figure 9: The inscribed circle is the unique circle contained within the triangle
and tangent to each side of the {riangle.

an inscribed ¢ircle will always exist. Furthermore, Beardon [3, p. 249] gives us a
formula for the radius of the inscribed circle, which we denote rr, that depends

only on the angle measures of the triangle. We have that

cos? (o) + cos?() + cos? () + 2 cos{a) cos(B) cos(y) — 1
2(1 + cos{a) }(1 + cos(B)H1 + cos()) ’

tanh?(r;) = (6.2)

Thus we have everything we need concerning inscribed circles since they always
exist and we have an explicit formula for the radius that depends only on the

~angles of the triangle.

6.4 Circumscribed Circles

The final geometric shape that we need is the circumscribed circle to our hyper-
bolic triangle. A circumscribed circle is defined as the circle that passes through
the three vertices of a triangle as shown in Figure 10.

Since three points determine a unique circle, each circumscribed circle is
unique. As with inscribed circles, every Euclidean triangle has a circumscribed
circle. However, the same is not true for hyperbolic triangles. According to

~ Fenchel [8, p. 118], a hyperboiic triangle with angles ¢, 4, and v and sides a, b, .
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Figure 10: The circumscribed circle is the unique circle containing the triangle
and passing through each of the vertices of the triangle.

and ¢ has a circumseribed circle only if each of

sinh (g) ,  sinh (g) ,  sinh (g) , (6.3)

is less than the sum of the other two. Using the relation

E) _ cosh(z) —1

. h2 ( ,
s 2 5

combined with Eq. (6.1), we can reformulate she condition to be entirely in

terms of angles. Indeed, for side a, we have

(6.4)

ginh (&) _ feosh(@) -1 [cos(B)cos(y) + cos(e) — sin{B) sin(7)
2sin(3) sin(y) ’

with two similar expressions for the sides b and ¢. Thus we have criteria for
the existence of a circumscribed circle of a hyperbolic triangle in terms of only
the angles of the triangle. Additionally, Fenchel [8, p. 119] provides an explicit

formula for the radius of the circumscribed circle, which we denote r¢. Letting




24

28 = a+ 4, we have

cos{X)

tanh®(r¢) = cos(T — @) cos(% — B) cos(T — )’

(6.5)

Thus we have an equation for the radius of the circumscribed circle in terms of
the angles of the triangle as well.

So given any three angles, we can determine whether or not there is a hy-
perbolic triangle with those angles. If there is, then we can determine if there is
a circumiscribed circle. If one does exist, then wé can find the radii of both the
inscribed and eircumscribed circles. All of this information is determined com-
pletely by the original three angles. Now that we can determine the bounding
circles, we need to find the eigenvalues of the disks they bound and relate those

eigenvalues to the eigenvalues of the triangle, which we do in the next section.

7 Eigenvalues of Euclidean Disks

The Dirichlet eigenvalues of disks in the Euclidean plane have been well studied.
Euclidean disks are one of the few regions whose Dirichlet eigenvalues can be
| calculated explicitly. In particular, the eigenvalues of Euclidean disks are the

zeros of a class of functions known as Bessel Functions. In this section, we

discuss Bessel Functions, their properties, and how they relate to the eigenvalues

of Fuclidean disks.

7.1 Bessel Functions

Bessel functions are a type of cylinder function that often arise in boundary

value problems on cylindrical domains [13, pp. 99-103]. A cylinder function is
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any function «(z) which satisfies the differential equation
1 2
u’ + =u + (1 - V—z) u=0, (7.1)
z z

where z is a complex variable and v i a parameter that can be either real or
complex. This equation is known as Bessel’s e(iuation of order v and thus the
solution, J,, is known as the Bessel function of order v. The easiest type of
Bessel equation to solve is one for which v is a non-negative integer. Indeed, if
v = n is a non-negative integer then the Bessel function of order 7 can be given
explicitly by

o (=1)F(z/2)tn 2R
Jn(2) = kzzo TR (7.2)

Functions of the type (7.2) are known as Bessel functions of the first kind of

order n. These functions satisfy the following recurrence relations for all n

Jar(2) () = 2 (2),

In-1(2) — Jn11(2) = 21, (2),

as. well as the relations

L () =T (2), (7.3)
d

pp (27" In{z)) = —2z " Jpga(z), Vn T4

We will be most interested in the Bessel functions of the first kind of orders 0
and 1. All further mention of Bessel functions refers to Bessel functions of the
first kind unless otherwise stated. These two functions can be written explicitly
{though we omit that here} and can be used to define all Bessel functions with

.non-negative integer order greater than 1. Of more interest to us is the fact that
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the zeros of Bessel functions are known to be the elgenvalues of the unit disk in
the Euclidean plane. We are interested in the first two eigenvalues of Euclidean
disks and the next sections show exactly which zeros of which Bessel functions

correspond to those eigenvalues.

7.2 First FEigenvalue of a Euclidean Disk

Though all of the Dirichlet eigenvalues of Buclidean disks have been studied,
particular attention has been paid to the first eigenvalue. Tt has become a
standard result that the first eigenvalue of a Euclidean ball of radius 1 in n
dimensions is the square of the first zero of the Bessel function of order (% — 1)
[7, p. 293]. Since the disks that we are concerned with arise in 2 dimensions,
we set 7 = 2. Thus we are interested in the Bessel function of order 0, Jp. In
particular, we are interested in the first zero of this function, denoted jo, and
its squé.r'e, {(jo)2. Since there is no known explicii representation of the zeros
of Bessel functions, we use Mathematica t.o find a numerical approximation.
However, (j2) is the first eigenvalue for a disk of radius 1 and we would like to
. know the eigenvalue of a disk with any radius. The eigenvalues for a disk of
radius r scale by a factor of ;lg That is, if A? is the first eigenvalue of the unit
disk, then E—:;% is the first eigenvalue of the disk of radius r [1, p. 1056]. Thus
we have an approximation for the first eigenvalue of a Euclidean disk of radius
r. Note that our numerical approximation can be given with arbitrarily high

" precision.

7.3 Second Eigenvalue of a Euclidean Disk

Finding the second eigenvalue proves to be slightly more difficult, though it is
still a matter of determining which zero of which Bessel function is the next

eigenvalue. Since we are considering the eigenvalues in ascending order, all we
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must determine is which zero of which Bessel function is the next largest after
the first zero of Jy. Fortunately, Bessel functions possess & nice property from

which our answer will follow.

Lemma: The zeros of Bessel functions interlace. That is, if 5¢ denotes the itP

zero of the Bessel function of order n, then

0<jr<ijnig<ji<ji-- foricZi>1l (7.5)

Proof: Recall from Eq. (7.3) that the following relation holds for z € C and for

all n,

di; (2" Tn(2)) = 2" Jpn—1(2).

‘We restrict our atiention to z € R since the Bessel functions and their zeros
that arise in our seiting are always real valued. We now apply Rolle’s theorem
to the relation. Rolle’s theorem states th_aﬁ for any real-valued function f that
is continuous on a closed interval [a, b] and differentiable on the open interval
(a,b) with f(a) = f(b), then there exists a point ¢ € {a,b) such that f/(c) = 0.
Since Beéssel functions and the function 2™ are both real-valued, continuous,
and differentiable everywhere, Rolle’s theorem applies to 2™.J,, for all n. So let
g e 4% and b = 751, Then by Rolle’s theorem, there exists a point ¢ with
¢ € (§5,757) such that & (¢"J,(c)) = 0. However, by the relation above,
£ (2" Inl2)) = 2" In-1{2), s0 " Jp_1{c) = 0. Since 0 < 5% < ¢, we have ¢ > 0
and so ¢® > 0 as well. Thus ¢®Jp_1{c) = 0 implies Jy_1{c) = 0 so that cis a
zero of Jp—1. Then ¢ € (5%,72*!) is a zero of J,..; implying that between any

two zeros of J, is a zero of J,_;.
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Replacing n with n — 1 in Eq. (7.4), we obtain the relation

d
= (2_(”‘1)%*1(2’)) =z~ D 7).

dz

Repeating the same argument above using this relation shows that between any
two zeros of J,.1 is a zero of J,. Thus the zeros interlace and listing them in

ascending order gives the desired resuli. O

In Figure 11, we see the first several Beésel functions plotted. From the
graphs, it is apparent that the zeros of the Bessel functions interlace, verifying
that Lemma 7.3 holds. In pariicular, we see that between any two zeros of Jy
is a zero of J1 and so the first zero of J is smaller than the second zero of Jg.
Thus the second eigenvalue of the Euclidean disk must be the first zero of thé
Bessel function of order 1 rather than the second zero of thé Bessel function of
order 0. Once again, we can use Mathematica to numerically find this value to
any precision and, as with the first eigenvalue, it scales by a factor of ?% Note
that these are eigenvalues for Euclidean disks, not hyperbolic disks. However,
- as the eigenvalues of hyperbolic disks are not easy to calculate explicitly, we will
" instead use the eigenvalues of the Euclidean disks to bound the eigenvalues of

the hyperbolic disk.

'8 An Upper Bound for the Fundamental Gap
for Hy.perbolic Triangles

‘We are finally ready to examine the fundamental gap for a hyperbolic triangle.
In the first section, we present the skeleton of the argument that leads to an

upper bound and in the second and third sections, we provide the details.
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Figure 11: We see the graphs of the first five Bessel functions. We can clearly
see the interlacing of the zeros for consecutive functions. In particular, the first
" non-trivial zero of J; {blue) is less than the second zero of Jy (red).

8.1 Towards an Upper Bound

The upper bound for the fundamental gap for a hyperbolic triangle will depend .
on the eigenvalues of the inscribed and circumscribed disks, as well as on the
eigenvalues of the Euclidean disks with the same radii. Se for any hyperbolic

~ triangle T with inscribed circle I and circumscribed circle C, define

/\f : the eigenvalues of the triangle T we are interestéd in,
M . the eigenvalues of the disk whose boundary

is the inscribed circle of T,
AP . the eigenvalues of the disk whose boundary

is the circumscribed circle of T,

Recall that in Section 2.2, we discussed the concept of domain monotonicity in
. the Buclidean plane. It turns out that every Riemannian manifold has the same
domain monotonicity property {6, pp. 17-18]. Since the Poincaré Disk is indeed
a Riemannian manifold (it behaves like R™ in small patches), we can apply

domain monotonicity to regions in the Poincaré Disk. In particular, applying
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domain moenotonicity to the triangle and the two bounding disks, we see that

since I CT C C we have
Mz 27 and M 2720 (8.1)

" The fundamental gap for T is AZ — AT. From the inequality on the right in
Eq. (8.1), we see that A{ > AL, From the inequality on the left, we have that
A > XY which implies that —A§Y > —AT. Then, adding these two inequalities,

we obtain the upper bound
DY ESTEPUN (8.2)

In a similar faghion, we can obtain a lower bound for the fundamental gap,
though we will focus on the upper bound. Notice that we have to be careful in
our use of domain monotonicity; the upper bound depends on one eigenvalue
from each of the disks and not both eigenvalues from one of the disks. Consid-
ering Equation (8.2), all we need now is information about A and A{ and we
will have information about the fundamental gap for the triangle. In particular,
if we have an upper bound for A} and a lower bound for AY, then we have
an upper bound for the quantity A — A¢, and hence an upper bound for the
fundamental gap for T. The next sections will provide the details of finding an

upper bound for )\5 and a lower bound for Alc'.

8.2 Ratio of Eigenvalues

We begin with finding an upper bound for M. In their investigations of the sec-
ond eigenvalue of general hyperbolic domains, Benguria and Linde [4, pp. 245-
247] provide some results that relate the eigenvalues of Euclidean and hyperbolic

domains. In particular, they have two main results and a direct consequence of
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one of them is the relationship that we seek. The result is as follows. Let A& (6)

be the i*P Dirichlet eigenvalue of the hyperbolic geodesic ball of radius 8. Then

(8.3)

is a strictly decreasing function of §. Thus as § — oo, we have A (8)/AF(8) — 1.
However, the limiting case as § — 0 is also of interest. In particular, as &
decreases, a hyperbolic disk and a Euclidean disk of radius § begin to look the
same. This is a result of the way in which distances are skewed in the Poincarg
Disk and smaller éreas are.impacted by the skewing less. So as the area of a
_domain approaches 0, thé hyperbolic domain and its Euclidean counterpart look
increasingly more alike. In fact, if By and By are respectively the Fuclidean
and hyperbolic balls of radius 6, then lims_o By = Bg. Letting AP (8) be the
Dirichlet eigenvalues of a Euclidean ball of radius &, it follows from the result

of Benguria and Linde [4] that

M) _ lry (Aéf (6)) A2(9) , (8.4)

AT (3) XI8)) M)

since M (8}/A{7(6) decreases as § increases. Thus.Eq. (8.4) tells us that the
ratio of the first two eigenvalues of a hyperbolic ball of radius & is less than the
ratio of the first two eigenvalues of a Kuclidean ball of radius §. Additionally,
since the Buclidean ball is the limiting case of the hyperbolic ball, this upper
bound is optimal.

Returning to our hyperbolic triangle T, if we define

)\F :  the eigenvalues of the Euclidean disk whose boundary

is the circle of the same radius as the inseribed circle of T
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and use the same definitions from Section 8.1, then Eq. (8.4) tells us that

M oA

22 02 (8.5)
M7

Recall that in Section 7, we found approximate values for the first two eigenval-

ues of a Buclidean disk of arbitrary radius. In particular, we can find approxi-

) B E

mate values for both AY and AP, Thus we know the ratio 3%. Letting 3% = K,
1 1

we have that -;%I” < K and hence
1
M < KA ‘ (8.6)

Since we can determine K, which is approximately K = (3.83/2.40)° = 2.53,
we can find an upper bound for A{ by finding an upper bound on M. Thus we

need an upper bound for A and a lower bound for 2.

8.3 Upper Bound for A and Lower Bound for \{

We begin with an upper bound for A{. Fortunately, the first eigenvalue of
a general hyperbolic disk has been well studied over the years and an upper
* bound is known. The classic result from Cheng [7, p. 294] states that for a
hyperbolic disk of radius r,

1 /2m\?
MSZ+(1). (8.7)

r

Thus if we know the radius of the inscribed disk, we have an upper bound for
M. Since we can determine the radius of the inscribed disk fromn Eq. (6.2), we
have an upper bound for Af.

Finally, we turn to finding a lower bound for )\?. ‘We discuss a lower bound

in more general terms and then reduce to our case. Li and Yau [14, p. 215]
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provide a lower bound for the first eigenvalue for a general Riemannian manifold
in.n dimensions. Their bound depénds on the dimension n of the manifold, the
curvature % of the manifold, the mean curvature H of the boundary of the
ﬁlanifold, én’d the radius ¢ of the largest inscribed geodesic ball in the manifold.
We discussed the curvature of the Poincaré Disk in Section 3.2 and the curvature
of the boundary is similar in concept, though takes a different value. Then a

lower bound for the first eigenvalue A; of the manifold is given by

1 1
h2 $ (et osa)? + (o - 1) (8.8)

where

= ma.x{eH 1*4(n~1)2i2n’ e—Z(H—I)H'rZ}.

Now we can reduce to the case in which we are interested [14].

We are interested in reducing this to the case of the inscribed disk in a
hyperbolic triangle. Thus we are in two dimensions so n = 2 and as before,
% = —1 in the Poincaré Disk. We need to know the radius of the largest
.geodesic ball that fits inside the disk. However, the geodesic balis of dimension
2 are simply disks and so the largest circle that fits inside a disk of radius »
is the circle of radius r. So if r; is the radius of the inscribed disk, we have
i = r;. Lastly, we need to consider y and, in particular, the mean curvature of
the houndary, H. By examining the proof of Li and Yau of the lower bound in
Eq. (8.8), we see that 1 must be negative. However, the curvature of a circle

(the boundary in our case) is always positive, so we cannot possibly be in the

—2(n—1}Hi 1+4/1-4(n—1)%i%x

case where v = e Thus we are in the case of v = ¢

and substituting n = 2, i = r;, s = —1, and 7 into Eq. (8.8), we have

1 1 2
> e | : 2) —1]. .
Almelﬂ/m (4@ (1+1/1+4rr> 1) @9
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Finally, we have obtained a lower bound for the first eigenvalue of a hyperbolic
disk of any radius. Now we have the desired lower bound for A{ and all of the
necessary information to complete the upper bound for the fundamental gap for
hyperbolic %riangles. -

Recall from Section 8.1 that we derived the following,
N AT <AL G

Additionally, we showed that if %&E = K, then M < K>, Above, we determined
1

- an upper bound for Al and a lower bound for AY. Combining all of these facts,

we have the following:

Theorem 1 (Upper Bound): Let T be a hyperbolic triangle with eigenvalues
)\;-r, an inscribed disk of radius r;, and suppose that there exists a circumscribed

circle of T. Let AP be the eigenvalues of a Euclidean disk with radius +; and

)\E
let Xi%; = K, Then

2
(1+1/1+4r}) _ 1)
elty/1+4rf

(8.10)

rr.

1
2 (3;:17
Ag—A?gK(i-&-(%) )—

Notice that this upper bound depends only on the radius of the inscribed

circle ry and the ratio of the first two eigenvalues of the Euclidean disk corre-

_sponding to the inscribed circle. However, Eq. (8.10) is not in a particularly

nice form and so we investigate it numerically o find an upper bound that can

be stated more simply.

9 Numerically Investigating the Upper Bound

In this section, we look to reduce the bound given in Eq. (8.10) to a more

manageable form using numerical techniques and the following process. We
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generate three random angles, o, f, and =, between 0 and 7/2 radians and
check to make sure that they form a hyperbolic triangle, i.e, that their sum is
less than . Let a, &, and ¢ be the sides of the triangle opposite «, 3, and 'y‘

respectively. Then we check that each of

suti (), siat (3), s (£)

is less than the sum of the other two, ensuring the existence of a circumscribed
circle. Now we determine the radii of the inscribed and circumscribed circles
using Egs. {6.2) and (6.5). We then determine the first two eigenvalues of the
~ Euclidean disk of the same radius as the inscribed circle, using Mathematica to
.ﬁnd the first zero of the Bessel function of order 0 and the first zero of the Bessel
function of order 1. Finally, we use Eqs. (8.7) and {8.9) to determine an upper
. bound for A and a lower bound for A{ and calculate an upper bound for the
fundamental gap for our randorh triangle. Depending on the angles randomly
chosen, the radius of the circumnscribed circle may be complex valued. If that
is the case, we simply ignore that triangle. By repeating this process, we can
examine the upper bound for the fundamental gap and try to express the upper
bound in a more desirable fashion.

After acquiring the data, we can examine it using a program such as Mi-
crosoft Excel. We can conjecture an upper bound and then test it against all
of the data collected. Doing this for over 100,000 randomly generated triangles,

we have the following conjecture.

Gap Conjecture for Hyperholié Triangles: Let T' be any hyperbolic tri-
angle with angles between 0 and 7 radians, an inscribed circle of radius r7, and

suppose there exists a circumscribed circle of T'. If AT denotes the i*® Dirichlet
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eigenvalue of T, then

2
AT AT <102 (TE) . @1
I

In order to get an idea of how this conjecture compares to Theorem 1, we
provide a comparison between the upper bound given by Eq. (8.10) and by
Eq. (9.1) for ten distinct triangles in Table 1. We give the angles, the radius
of the inscribed circle 7, the upper bound for the fundamental gap provided
by Eq. (8.10), the upper bound for the fundamental ga'tp provided by Eq. {9.1),
and the difference between the two values for each of the ten triangles. We see
that triangles 1-6 all have a difference between the upper bounds of less than
4, Triangles 1, 2, and 3 are all equilateral, triangle 4 has three small angles,
triangle & has three angles that are relatively close to each other, and triangle
6 has one large angle and two smaller angles. Triangles 7-10 have a difference
" between the two upper bounds of at least 16 and as large as 347. All of these
triangles shares a common quality: they each have two angles greater than or

kiy

equal to’z, ie. two large angles. In particular, notice that each of triangles 8,
9, and 10 have angles of § and §. As the third angle increases and the sum
of the three angles approaches m, the difference between the two upper bounds
gets' larger.

Since the angles determiﬁe the radius of the inscribed disk, we can find
similar patterns in the relationship between the radius of the inscribed disk '
and the difference between the upper bounds. It is apparent from Table 1 that
as ry decreases, the bound given in the conjecture becomes larger and farther
away from the upper bound given in Theorem 1. In fact, as r; — 0, we see
that our conjecture states that the fundamental gap becomes unbounded. In

“Section 2.2, we mentioned that Lu and Rowlett showed that the fundamental gap

is unbounded for collapsing triangles that have two angles o and g satisfying % <

% < 1. {15, p. 3i. Our conjecture provides somewhat of a hyperbolic analog for
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Triangle Angles I Theorem 1  Gap Conjecture Difference
1 I 0.36 758.98 761.80 2.83
2 15+ 16> 15 0-52 365.58 366.57 0.99
3 300 36> 35 0-54 340.42 341.30 0.87
4 15+ 35+ 35  0.54 346.81 347.71 0.90
5 LI 034 883.78 887.18 3.40
6 IIE 033 917.60 921.04 3.44
7 L E 0.16 3939.49 3956.92 17.43
8 o E % 016 3730.15 3746.36 16.21
9 TLILT 010 918964 9231.01 41.37
10 %, 5 57 0036 75953.4 76300.42 347.02

Table 1: We see the angles, inscribed radius ry, upper bound for the fundamental
gap from Eq. (8.10), the upper bound for the fundamental gap from Eq. (9.1),
and the difference between the two values for ten friangles. Triangles that are
close to equilateral or that have small angles minimize the difference between the
two upper bounds. Triangles with larger angles tend to have a large difference
between the two upper bounds.

this result in that the fundamental gap seems $0 be unbounded for a restricted
class of collapsing hyperbolic triangles, though our restriction differs from that
of Lu and Rowlett. Currently, we do not have a proof for this conjecture or an
explanation as to the constant 10.2. Note that the form of our upper bound
is comparable to the form of the original Fundamental Gap Conjecture, which
can be rearranged to have the form 3 (%)2. Additionally, the upper bound for
the fundamental gap for the Schrodinger operator in Eq. (2.6) was alsc given in

this form.

10 Conclusion

We _ha,ve examined the Dirichlet eigenvalues of hyperbolic triangles and, in par-
ticular, the fundamental gap for these triangles. Using domain monotonicity
along with the inseribed and circurnscribed circles for a given hyperbolic trian-
gle, we are able to find an upper bound for the fundamental gap for arbitrary

hyperbolic triangles that have a circumscribed circle. We chose not to pursue
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an explicit numerical calculation of the eigenvalues of hyperbotic disks since
they arise as the zeros of Associated Légendre functions. When dealing with
arbitrary disks, we are likely to come across Associated Legendre functions of
non-integral order which causes difficulty in determining the eigenvalues of a
| hyperbolic disk. As such, we chose 10 use a relationship between the eigenval-
ues of Fuclidean and hyper_boiic disks. Using known bounds on the eigenvalues
of hyperbolic disks, we formulate an upper bound for the fundamental gap for
hyperbolic triangles that have a circumscribed circle. -

' Once we obtained a preliminary upper bound for the fundamental gap, we
further expanded on it by using numerical data to conjecture a simpler upper
bound. There is much work left to be done concerning this upper bound. First
of ali, an explanation of the constant 10.2 is needed. We also do not know how
sharp of a bound we have. Indeed, we have used a series of inequalities and
we only know that one of the bounds is sharp, namely the bound on the ratio
of the first two eigenvalues given in Eq. (8.4). Furthermore, our upper bound
-is only for a specific class of triangles. A logical next step would be to find a
similar bound for arbitrary hyperbolic triangles or general polygons with more
than three sides, though such bounds may require different techniques. Such
upper bounds would be a step towards finding an upper bound for a general
hyperbolic convex domain and a hyperbolic analog for van den Berg’s original
Fundamental Gap Conjecture. What we have provided is just the beginning of
an understanding of the fundamental gap for triangles in hyperbolic geometry

and there is much opportunity for further work.
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A Derivation of the Laplacian in Polar Coordi-

nates
‘We would like to translate the expression for the Laplacian
FPu  Bu

Au=

into polar coordinates, using the relations

z = rcos(d),

y = rsin(#)
=1 (Y

# = tan (:c),

We begin by computing the partial derivatives of v with respect to x and y. We
have that

5 5 (V) = e = 2 2 T )
Bz 2vz? +y?  JaRty? o T

or 0 2y y y _ rsin(f)
T_g T 2) = = . -

8y Oy ( =ty ) 2y/z2+y2 2Rty T r #n(6)-

We will also need the partial derivatives of 8 with respect to x and y, which are

8

2= (o (2) - g - -
d 3} -1 z _ rcos €os
5—2 =3 (tan (%)) 22 (1 +y2/az2) r2(9) _ T(S).

Next we wish to find € ;9?- and ng';*. For this, we need the Chain Rule

du Judr dudl ’
3= orow " 300w (4.2)

5;"‘ EE (A1)
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Using Eq. A.2, we see that

Oy 8 (Bu 8 [(Oudr Budl d {du Hu sin(d)
Eﬁzﬁ(%)zﬁ(ﬁ%*%%) a:c(a cos®) - 35— )
&y O [Ou 8 {Hudr Hudb 8 [du Au cos(8)
() 5 (G w) 5 (G0 5.

From these two expressions, we again apply the Chain Rule {Eq. A.2) to obtain

the expressions

&Fu  Or o Ou sin(6) 08 8 (ou du sin(d)
dz2 Bz or ( (‘9}__—) 3z 09 (a ) - )
= (cos(8)) 5- (g os(6) — 2 Smr(g))

. (_si:(ﬂ)) % (B_Zf cos{f) — %w)

= oo (Gt 1 G557 - 75550

B (M) (%(_Sin(g})+ aga cos(d) - du coi(Q) Bzusm(ﬂ)),

r o682 r
and
v Or d Bu cos() 88 9 [du . du cos(F)
ay? Oy or ( (9)+ T ) +8_y% (§81n(9)+% r )
' o g (du A cos()
= (sm(&))bw-— (3_ sin(8)} + 70 )

+ (Coi(. )) % (8_ sin(8) + %COST(S))

e (G2 <>$%®+$ﬁ?ﬁ

Br2
(COS )( aea sin() - 2% Smﬁ?f%“j@}).




43

" Then adding the two expressions above and grouping like terms gives

(Bzu | 8%) = O (02(0) + cos?(0))

82 ' By? ore
' %u (cos?(8)  sin®(8) Bu [sin®(8)  cos?(f)
g (i) 5 (=R
Ju ('sin(#) cos(8) N sin(f) cos(f)  sin(f)cos(f) sin(#) cos{d)
a9 ( r2 T B 2 a T )
du sin(f) cos(#)  sin(d) cos(d)
+ orof (_ T + T )
du sin(f) cos(#)  sin{d) cos(d)
+ 880r (_ r + T )

5%y G2y (1 du /1 S Ju Su
=5 055 () + 5 (5) + 5 O+ 52550+ 5570

P (1\0u_ (1Y%
2 r}) or r2 ) 8927
Thus we see that the Laplacian in polar coordinates is
. Fu HFu Py 1\ &u 1Y &%u
A = e e i e - —_ —_— . i
v (5552 + ay2) B2 " (T> e (rz) 262 (A-3)
B - Separation of Variables for the Euclidean Po-

lar Laplacian

We know the expression for the Laplacian in polar coordinates (Eq. (A.3}).
We wish to solve the equation AF + AF = 0. Now assume that F(r,d) can

be separated into two functions, each dependent on only oné variable, so that
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F(r,8) = R(r)9(6). Applying A to F, we see that

AF = AR(rO(8)

2 ' 2
= s @meE)+ (1) 2 (Rme@) 1 () 2y wne®)

1
= R"(r)o@) + (%) R (e + (’.‘"_2) R(r©"(9).
where prime notation denotes differentiation with respect to the variable in

which the function is given. Then

AF + AF = R"(r)O(0) + G) R(r)6(8) -

+ (%) R(r)®"(8) + AR(r)O(8) = 0. (B.1)

T

Grouping terms, we have that

o0 (wer+ (1) ) 2009 + (D) rrer@ =0

Then putting all terms involving R on the left and all terms involving © on the

right, we have
T2 R"(r) + rR'(r) + M2 R(r) 9"

Rir) ~ el (B-3)

Since the left side is only dependent on R and the right side only dependent on
©, they must both equal a constant, which we label k2. Setting each side equal

to k% and rearranging gives the following set of equations,

0"(6) + k20(8) =0, (B.4)

2 R"(r) + rR (r) + {M? — k2 }R(r) = 0. (B.5)
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‘Now we can solve each of these independently. Equation (B.4) is known to be the
equation for the Laplacian on a sphere with eigenvalues k* for k =01 2,3, --.
Hence we have determined the values for k% and so we can solve Eq. (B.5) for
each value of k2. If we compare Eq. (B.5) to Eq. (7.1) (multiplied by 2%), we
see that the of solution Eq. (B.5) is the Bessel function of order %, denoted Jg.
Therefore, the solutions to Eq.(B.5} are Jk('r\/X) and the eigenvalues are the
zeros of this function where we let ji denote the i*" zero of the Bessel function
of order k. The eigenvalues of F' are then simply the eigenvalues of R, since
when solving for the eigenvalues of R we have already taken into account the

eigenvalues of @ through the choice of k. Hence the eigenvalues of I are ji.

C Derivation of the Laplacian in the Poincaré
Disk Model

Here we will find the Laplacian in polar coordinates for the Poincaré Disk model

using a similar method as for the Euclidean case in Appendix A. It is well known

that the metric tensor in the disk model is given by [11, p. 565]

4(dz? + dy?)

ds? — 2T T
8 01— 22 —42)2

(C.1)
Then, using the transformations ([16, p. 210])

z = tanh(p/2) cos{c),

y = tanh{p/2) sin(e), ' _ .(0.2)
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we can solve for the Laplacian in polar coordinates. For brevity, we only include

an overview of the process. We first compute the following derivatives

oz _ __coslo)

dp  2cosh®(p/2)’

Oz ;

o —tanh({a/2) sin(c},
dy  sin(o)

dp 2 cosh?(p/2)’

Iz .
= tanh(c/2) cos(a).

Using the Chain Rule (Eq. A.2), we can compute du/0p andau/aa. Then we

can use the elimination method to solve the system of equations and find that

du

= (2cos(o) cosh®(p/2)) g_z B (%&‘/}2)) %ﬁ—’

dz
ou du cos(a) 1\ Ou
5y = (@ eon®or) g+ (o) 5

Now, we can proceed as in Appendix A. We first find the partial derivatives of

p and o with respect to = and y,

Op _ 2 cosh?(p/2)

dxr ~ cos(o)

dp _ 2cosh®(p/2)

8y  sin(o)

do —1

8z sin(o) tanh{p/2)’
da 1

8y cos(o)tanh(p/2)’
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Then using the Chain Rule, we obtain the féllowing expressions

%a:_t; =ng:(4 cosh®{p/2)) + g—z (4 tanh(p/2) cosh*(p/2) -+ %ﬁ—))

du sin(o) cos(o)
do (cos(a) tanh®(p/2) * sin(z) ta,nh(p/2))
8%y 2sin(o) cosh?(p/2) 8 {2cos(o) cosh*(p/2)
" 9pda ( cos(o) tanh(p/2) ) " Badp ( sin{c) tanh(p/2) )
)
do? \ tanh*(p/2) )’
2 2 2
g—;; - ‘;—;(4 cosh®(5/2)) + g-';_‘ (4tanh(p/2) cosh (p/2) 4 2220 (2/2) 2))

tanh(p/2)
~ du ( sin(o) cos(o) )
do \ cos(o) tanh®(p/2)  sin{o) tanh(p/2)

%u  {2cos(o) cosh?(p/2) 8%y (2sin(o) cosh®(p/2)
+ dpda ( sin(o) tanh{p/2) ) + dadp ( cos(o) tanh{p/2) )

)
do? \ tanh?(p/2)/

Note that when these quantities are added together, the fu/3c terms wilt cancel.

K 2 2 .
Also, since we know aiaua = ;a—gjo, these terms cancel upon adding as well. Thus

we see that in polar coordinates,

O Fu 4 By 2 u
i U o (tanh2(p/2}) 32
4cosh®(p/2)(tanh® (p/2) + 1) Bu
+( tanh(s/2) o ©

Now we must use the expression in Eq. (C.1) to determine the scale factor that

we should apply to BEq. (C.3). This method foflows Chavel [6, pp. 3-5]. The

metric can be expressed in matrix form as

7
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where g;; denotes the (4, k)-entry of the matrix, ¢7* = ¢!, and det G = g ==
K ik

16/{1 — 2% — y?)*. The Laplacian is now given by
1 :
Au = (—) 378 (67 (v5)Bku) (C.4)
Vi

Notice that for j # k, the summand in Eq. (C.4) is zero since gj, = ¢’* = 0.
If § = k, then gjz = 4/(1 — z? — y*)? and so ¢'* = (1 ~ 22 — y?)?/4. Also,
VI = /16/(1— 22 — )% = 4/(1— 22— 9?)? 50 that ¢/*/§ = 1. Thus Eq. (C.4)

becomes
(122~ 22\ (%u  O%u
Au= (T @t aE) (G5)

Next, we must convert the term (1 — z2 — 3?}2, Using the substitutions in

Eq. (C.2), we have

(1 2% — y®)? = (1 — tanh®(p/2) cos? (o) — tanh?(p/2) sin*(0))?

— (1 — tanh®(p/2)(cos(¢") -+ sin?()})?

1
= (1 — tanh*(p/9V° = ——— C6
) (©6)
Therefore, combining Egs. (C.5) and Eq. (C.6), we have
1 Pu | u
Ay=— [ ——=+— C.7
“ 4 cosh*(p/2) (3332 -8y2) ‘ - en

Lastly, plugging Eq. {C.3) into Eq. (C.7), we have that the expression for the

Laplacian in the Poincaré Disk is

_,Pu [ (tanh®(p/2) + 1)\ Ou 1 &u
Au=lgs+ ( tanh(p/2) ) " (2sinh2(p/2) coshz(p/z)) go*
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We would like the expression in terms of functions of g instead of /2. Using

the relations [11, p. 490],

sinh(p) = 2sinh (g) cosh (g) )

tanh (E) sinh(p)

fi

2 cosh{p) +1’

P cosh(p) — 1

h (L) = —2—=
tan (2) cosh(p) + 1’

we can obtain the following expression for the hyperbolic Lapiacian,

0% cosh{p)\ du 1 9y

D Separation of Variables for the Hyperbolic
Polar Laplacian

We know the expression for the Laplacian in hyperbolic polar coordinates,
Eg. (C.8). We wish 0 solve the equation AF + AF = 0. Now assume that
F(p,0) can be separated into two functions that are each dependent on ouly

one variable, so that F(p, o) = T'(p)G{c). Applying A to F, we see that

AF = AT (p)G(7)
cosh{p)
sinh(p)
cosh(p)
sinh{p)

2 2
=25 )60 + 2 (S ) £ (0060 +2 (55 ) 508 TOGEN

sinh®(p)

) T'(p)}G (o) + 2 (@) T(p)G" (o),

= 2T"(p)G (o) + 2 (
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where prime notation denotes differentiation with respect to the variable the in

terms of which the function is given. Then

AF + M F =2T"(p)G(o) + 2 (%) T'p)Gio)

1 " _
2 (m) T(p)G"(a) + AT (p)G(e) = 0.

Grouping terms, we have that

6to) (270 12 (S0 ) 70 + ,\T(,;))

5 (555}11"2@) ()G (o) — 0

Then putting all terms involving 7" on the left and all terms involving G on the

right, we have

sinh®(p) 1" (p) + cosh(p) sinb(p)T"(p) + (A/2)sinb*(p)T(p) _ _ G"(o)

T(p) _ Gla)

Since A is an unknown, we can stmply let A/2 = A. Additionally, since the left
side is only dependent on p and the right side only dependent on o, they must
both equal a constant, which we label p2. Setting each side equal to u2 and

rearranging gives the following set of equations,

G"(0) + 4*Glo) =0, (D.1)

1)+ (S T+ (A s ) T =0 @)

~ Now we can solve each of these independently. We see that Eq. (D.1) is exactly
the same as Eq. (B.4) with g in place of k. Hence the values of x are the same
as the values of k, namely, 1 =0,1,2,3, - and so we find solutions of Eq. (D.2)

for each value of p?. We must do a little more work before we can recognize
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Eq. (D.2). We make the change of variables z = cosh{p) and T'(p) = P{z).

Using the Chain Rule, we have that

or_opos_op
ap“amap“axs Pl

vL_0(0Ty_ b (07,
82 op\dp) ap\azo W

aprP . &P\ [z
= o cosh(p) + sinh(p) (—6—?2—:1:) (B—p)

apP &P .,
=% cosh{p) + T sinh*(p).

Substituting these derivatives and z = cosh(p) into Eq. {D.2), we have

) Px) |

cosh(p) 2

sinh(p)

= (2% — 1) P"(z) + 2xP’(\m) + ()\ - (5'32—*1)) P(z) =0,

sinh?®(p)P" (z) + ( sinh(p) + cosh(p)) P'(x) + ()\ - K

and multiplying by —1 gives us

. 7 ’ 4”'2

1 1
SR Y

then v (v + 1) = —A for either choice of sign, so Eq. (D.3) becomes

Finally, if we let

(1 - 23 P"(x) — 22P'(z) + (v(u +1)— ,(Ti_”iw_f)) Pz)=0.

sinh?(p)

.3)

(D.4)

Equation (D.4) is known as an Associated Legendre equation and its soiution is

the Associated Legendre function of degree v and order p, denoted P¥. Asso-

ciated Legendre functions can be defined explicitly but we omit the definition

since it is quite complex and we do not require it. They have been well studied
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and are similar in nature to Bessel functions. However, they are generally more
complex than Bessel functions and have zeroes that are more difficult to find.
Theoretically, we treat the two types of functions similarly in terms of finding
eigenvalues. In particular, lthe eigenvalues of Eq. (D.4) and hence of Eq. (D.2)
are zeros of P#(z) = P¥{cosh(p)). As in Appendb: B, the eigenvalues of F*'
are simply the eigenvélues of T and hence the eigenvalues of F are zeros of

Fff(cosh{p)).

E Mathematica Code to Numerically Investi-
gate the Fundamental Gap

Provided in this section is the Mathematica code described in Section 9 used to
test our conjectured upper bound for the fundamental gap. Some formatting
has been added for this presentation.

n = 1000

Array|Gaps, n, 1];

Array[InRads, n, 1J;

Array[OutRads, n, 1];

Array[Counter, n, 1];

counter = 0;

For[i=1,i < n, i++,

alpha = RandomReal(0, Pi/2};

beta = RandomReal[0, Pi/2];

gamma = R&ﬁdomReal[O, Pi/2};

sinha = Abs[Sqrt[((1/2)*(((Cos[beta]*Cos[gamma) +

Cos[alpha])/ (Sin[betal*Sin[gammal)) - 1)]};
sinhb = Abs[Sqrt[((1/2)*({(Cos[alphal*Cos|gamma] +




Cos{beta])/(Sin[alpha}*Sin[gammal)) - 1))]];
sinhe = Abs[Sqrt[{(1/2)*{((Cos[alpha]*Cos[beta] +
Cos[gammia]}/ (Sin[alphal*Sin[beta])} - 1)}]];
sigma = (alpha + beta + gamma)*(1/2);
testl = If[Pi < alpha + beta + gamma, 0, 1];
test2 = Iffsinha < (sinhb + sinhc) &é& sinhb < (sinha + sinhc)
&& sinhe < (sinha + sinhb), 1, 0];
inradius = N[ArcTanh[Sqrt[{({Power[Cos[alpha],2] + Power[Cos|beta),2|
B Power[Cos[gamma],2] + 2*Cos[alpha]* Cos[beta]*Cos[gamma)] - 1)
/(2*{1 + Cosfalphal}*(1 + Cos[beta])*{1 + Cos[gammal))}]]};
outradius = N{ArcTanh[Sqrt[{Cos[sigma)/
(Cos[sigma - alpha]*Cos[sigma - beta]*Cos[sigma - gammal)}]]];
Elambdalin = Power[2.40483 /inradius,2];
Elambda2in — Power[3.83171 /inradius,2];
gamma = Exp[l + Sqrt[4*Power|outradius,2|]];
Ratio = Elambda2in/Elambdalin;
Bound = (1/4) + Power[2*Pi/inradius,2];
lambdaloutbound = (1/gamma)*((1/{4*Power|outradius,2])
*Power[Log[gammal,2] - 1);
TriangleGapBound = Ratio*Bound - lambdaloutbound;
test3 = If{Im{TriangleGapBound] == 0, 1, 0];
testsum = (testl -+ test2 - test3)/3;
Htestsum == 1,
' Gaps[i, 1] = TriangleGapBound;
InRads[i, 1] = inradius;
(OutRads[i, 1] = outradius;

Counter[i, 1] = I, Counter[i, 1] = 0] ;
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counter = counter + Counter[i, 1]; ] counter
For[i = 1, i <= counter, i++,

Write[” NewGaps.xls”, Gaps[i, 1 |];

Write[” NewInRads.xls”, InRads{i, 1]];
Write[” NewOutRads.xls”, OutRads{i, 1]];]
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