Date of Thesis

11-20-2013

Thesis Type

Masters Thesis (Bucknell Access Only)

Degree Type

Master of Science

Department

Chemistry

First Advisor

Eric Tillman

Abstract

Monobrominated diblock copolymers composed of poly(styrene) (PSt), poly(methylacrylate) (PMA), or poly(methyl methacrylate) (PMMA) were synthesized by consecutive atom transfer radical polymerizations (ATRP). The brominated diblocks were utilized in atom transfer radical coupling (ATRC) and radical trap-assisted ATRC (RTA-ATRC) reactions to form ABA type triblock copolymers. Once PMMA-PStBr and PSt-PMABrBr were produced by ATRP, the synthes of PSt-PMA-PSt and PMMA-PSt- PMMA by ATRC and also by RTA-ATRC were attempted. The coupling methods were compared and it was found that RTA-ATRC succeeded in synthesizing PSt-PMA-PSt where ATRC could not, and that RTA-ATRC improved coupling over ATRC for PMMAPSt- PMMA. Incorporation of the radical trap 2-methyl-2-nitrosopropane (MNP) midchain allowed for simple thermal cleavage of the triblock to confirm the RTA-ATRC pathway occurred in preference over the head to head radical coupling pathway of ATRC. Triblocks made by ATRC did not cleave under our conditions, as no MNP was present and thus no labile C-O bond was incorporated. The RTA-ATRC pathway allowed for lower catalyst amounts (2 molar equivalents of copper(I)bromide and 2 molar equivalents of copper metal) and a high degree of coupling at lower temperatures (40°C). The RTA-ATRC improved upon ATRC because of its ability to generate a persistent radical and proceed by first order kinetics with respect to the chain end radical.

Share

COinS