Title

Hearing Delzant Polytopes From the Equivariant Spectrum

Publication Date

2012

Journal

Transactions of the American Mathematical Society

Volume

364

Issue

2

First Page

887

Last Page

910

Abstract

Let M^{2n} be a symplectic toric manifold with a fixed T^n-action and with a toric K\"ahler metric g. Abreu asked whether the spectrum of the Laplace operator $\Delta_g$ on $\mathcal{C}^\infty(M)$ determines the moment polytope of M, and hence by Delzant's theorem determines M up to symplectomorphism. We report on some progress made on an equivariant version of this conjecture. If the moment polygon of M^4 is generic and does not have too many pairs of parallel sides, the so-called equivariant spectrum of M and the spectrum of its associated real manifold M_R determine its polygon, up to translation and a small number of choices. For M of arbitrary even dimension and with integer cohomology class, the equivariant spectrum of the Laplacian acting on sections of a naturally associated line bundle determines the moment polytope of M.

This document is currently not available here.

Share

COinS