Publication Date

1-21-2022

Description

The 0-1 cubic knapsack problem (CKP), a generalization of the classical 0-1 quadratic knapsack problem, is an extremely challenging NP-hard combinatorial optimization problem. An effective exact solution strategy for the CKP is to reformulate the nonlinear problem into an equivalent linear form that can then be solved using a standard mixed-integer programming solver. We consider a classical linearization method and propose a variant of a more recent technique for linearizing 0-1 cubic programs applied to the CKP. Using a variable reordering strategy, we show how to improve the strength of the linear programming relaxation of our proposed reformulation, which ultimately leads to reduced overall solution times. In addition, we develop a simple heuristic method for obtaining good-quality CKP solutions that can be used to provide a warm start to the solver. Computational tests demonstrate the effectiveness of both our variable reordering strategy and heuristic method.

Journal

Journal of Combinatorial Optimization

Volume

44

First Page

498

Last Page

517

Department

Mathematics

Open Access

Full text attached

Publisher Statement

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: 10.1007/s10878-021-00840-z

DOI

10.1007/s10878-021-00840-z

Share

COinS