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Abstract

A persistent challenge in speech processing is the presence of noise that reduces

the quality of speech signals. Whether natural speech is used as input or speech

is the desirable output to be synthesized, noise degrades the performance of these

systems and causes output speech to be unnatural. Speech enhancement deals with

such a problem, typically seeking to improve the input speech or post-processes the

(re)synthesized speech. An intriguing complement to post-processing speech signals is

voice conversion, in which speech by one person (source speaker) is made to sound as

if spoken by a different person (target speaker). Traditionally, the majority of speech

enhancement and voice conversion methods rely on parametric modeling of speech. A

promising complement to parametric models is an inventory-based approach, which

is the focus of this work. In inventory-based speech systems, one records an inventory

of clean speech signals as a reference. Noisy speech (in the case of enhancement) or

target speech (in the case of conversion) can then be replaced by the best-matching

clean speech in the inventory, which is found via a correlation search method. Such an

approach has the potential to alleviate intelligibility and unnaturalness issues often

encountered by parametric modeling speech processing systems. This work investi-

gates and compares inventory-based speech enhancement methods with conventional

ones. In addition, the inventory search method is applied to estimate source speaker

characteristics for voice conversion in noisy environments. Two noisy-environment
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voice conversion systems were constructed for a comparative study: a direct voice

conversion system and an inventory-based voice conversion system, both with limited

noise filtering at the front end. Results from this work suggest that the inventory

method offers encouraging improvements over the direct conversion method.



Chapter 1

Introduction

1.1 Motivation

Speech processing is an area in signal processing that specifically deals with speech

signals. Manipulation of speech signals includes: speech recognition (interpreting

speech for machine use), speaker identification (recognizing the identity of a speaker

correctly), speech synthesis (producing speech from text), among many others. In all

these technologies, it is desirable to have high quality speech, whether speech is used

as input or it is being produced by the machine. Such speech is not always available,

due to a persistent challenge in speech processing research: the presence of noise.

Speech enhancement deals with improving the quality and intelligibly of speech

signals degraded by noise. On the input side, the need to enhance speech signals

arises in many scenarios: communication over cellular/radio systems nearly always

suffers from background noise; speech recognition systems rely heavily on undistorted

speech signal inputs; digital hearing aids still call for speech-selective enhancement

to relieve the user from fatigue due to their loss of auditory focus ability.

On the output side, synthesized speech signals usually suffer from lack of intelligi-

1
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bility and naturalness, making them perceptually unpleasing to human listeners. On

the one hand, this problem can be alleviated by refining the details of pre-processing

and main subsystems (by using higher quality recording devices, for example). On

the other hand, one can also add a post-processing subsystem that specifically deals

with the already-synthesized speech. The latter approach might be more effective

in many cases such as when one does not have access to the main subsystems or

when these subsystems require independent developments (distant collaboration, for

example).

Such speech post-processing methods can be further complemented by voice con-

version: modifying one’s speech to sound in a way that’s different from the original

speech, but preserving the textual content. In the more general case, voice conver-

sion (or voice transformation) seeks to make a speech signal uttered by a source

speaker sound as if uttered by a target speaker. In many concatenative speech syn-

thesis systems, voice conversion allows for a more economical way of generating new

voices instead of having to create a completely new database for the desired voice.

Besides speech synthesis, voice conversion can also be used to protect one’s identity

in sensitive cases such as witness testimonies. In addition, numerous applications of

voice conversion can be found in the entertainment industry: creating new voices for

cartoon characters, dubbing foreign language films so that the translator can sound

like the original actor etc.

While the majority of speech enhancement and voice conversion methods rely on

parametric modeling of speech signals (statistical filtering for speech enhancement and

Gaussian Mixture Models for voice conversion), a promising alternative/complement

to the existing methods is inventory-based (or corpus-based) processing. In inventory-

based speech processing systems, an inventory of clean speech signals can be used

to replace the degraded speech or used as the target speech. This approach has
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the potential to reduce the so-called musical noise and alleviate intelligibility and

unnaturalness issues often encountered by traditional speech processing systems. This

work investigated the inventory approach to speech enhancement and voice conversion

in noisy environments.

1.2 Summary of Current Research

1.2.1 Speech Enhancement

One of the simplest and oldest classes of speech enhancement algorithms is the spectral

subtraction method and its variations. These methods are based on the assumption

that noise is additive, therefore speech can be enhanced by subtracting the estimated

noise from the noisy signal. This method was first proposed by Weiss et al. [3] in 1975,

where the subtraction was done in the correlation domain. Later, Boll [4] implemented

spectral subtraction in the Fourier domain. Based on the fact that most additive

noise affects certain frequencies more severely than others, many researchers proposed

spectral subtraction methods that are frequency-band dependent. An example of such

approach is the multiband spectral subtraction algorithm by Kamath and Loizou [5].

Another popular class of speech enhancement algorithms consists of methods

based on the statistical estimation framework. These methods seek an estimate of

the clean signal, given the noisy observations and an assumed probabilistic model

of speech and noise. One of the earliest works in this area is the maximum likeli-

hood approach for estimating the Fourier transform coefficients of the clean signal

by McAulay and Malpass [6]. Ephraim and Malah [7] followed shortly after with a

minimum mean square error (MMSE) and the Log-MMSE approach to magnitude

spectrum estimation, which has proven successful in many applications [8]. Within
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the statistical estimation framework, much attention has been dedicated to the esti-

mation of the noise level and the estimation of the short-time magnitude spectrum of

the clean signal. Martin [9], for example, proposed a noise power spectral density esti-

mation scheme using minimum statistics while Cohen [10] had several works on noise

estimation using minima-controlled recursive averaging. On the spectral magnitude

estimation side, the work by Ephraim and Malah [11] following a decision-directed

approach in 1985 remains one of the most successful to date.

Subspace algorithms for speech enhancement offer yet another perspective on the

model of speech and noise. Rooted in linear algebra, subspace methods assume clean

signals are confined to a subspace of the noisy Euclidean space. Consequently, these

methods seek to decompose the noisy signal space into a clean subspace and a noise

subspace. The clean signal can then be approximated by nulling the component

belonging in the noise subspace [12]. Variations in the subspace methods are inspired

by the variations in the decomposition schemes. For example, Ephraim and Van Trees

[11] followed the eigenvalue decomposition (EVD) approach, while Dendrinos et al.

[13] followed the singular value decomposition (SVD) approach.

All the methods mentioned above work well for stationary noise, but have been

reported to perform less effectively in nonstationary noise [14]. In addition, there is

usually a trade-off between noise suppression and speech distortion: speech signals

that are aggressively filtered often suffer from psychoacoustically unpleasant artifacts

such as musical noise [15]. Recent works to alleviate these distortion issues include

cepstral smoothing by Breithaupt et al. [16] and over-attenuated spectral component

regeneration by Ding et al. [17].

Further attempts to reduce distortion in speech enhancement have been imple-

mented successfully in an alternative approach known as the inventory-based (or

corpus-based) methods. In such a scheme, the noisy signal is not merely filtered, but
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resynthesized from optimally chosen clean segments in a prerecorded inventory. Xiao

and Nickel [18] first proposed such an approach in 2010, which was refined by Nickel

et al. in 2013 [15]. Ming et al. [14] investigated corpus-based enhancement in non-

stationary noise in particular, using the longest segments of clean speech identified.

In addition to potentially generating an artifact-free enhanced speech signal, these

methods have the advantage of being noise-independent, since the principal focus lies

in finding the best segments in the clean inventory.

Most recently, Tseng et al. [19] proposed an enhancement scheme that combines

statistical filtering and dictionary learning, named the Sparsity-based Wiener plus

Dictionary Learning (SWDL). Earlier this year, Xu et al. [20] proposed a regression-

based speech enhancement framework using deep neural networks (DNNs), which

was reported to significantly reduce musical artifacts. Despite the numerous suc-

cesses by these methods, much is left to be investigated since the quality of speech

enhancement systems depend on many factors such as the application in question and

computational costs.

1.2.2 Voice Conversion

Automatic voice conversion usually relies on two fundamental components: (1) a

parametric encoding of the underlying sounds that allows for a faithful analysis/re-

synthesis of speech signals, and (2) a mapping that converts parameters of a source

speaker’s voice into corresponding parameters of a target speaker’s voice. Examples

for parameterizations that have been successfully used in the past include sinusoidal

models [21] and Harmonic plus Noise Models (HMN) [22]. Very frequently cited is,

in addition, the STRAIGHT parameterization introduced by Kawahara et al. in 2008

[23, 24]. STRAIGHT, which is also used in this work, refers to Speech Transformation
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and Representation using Adaptive Interpolation of weiGHTed spectrum.

A variety of methods have been employed for feature vector conversion mappings,

ranging from elementary vector quantization techniques from the early days of voice

transformation [25] to very sophisticated mappings proposed in recent years. A con-

version based on neural networks was proposed by Desai et al. in 2010 [26], a partial

least squares regression was considered by Helander et al. in 2010 [27] and later re-

fined in 2012 [28], a Gaussian Mixture Model (GMM) in combination with a noisy

channel model was proposed by Saito et al. in 2012 [29], and Nirmal et al. suggested

the use of GMMs in combination with radial basis functions in 2013 [30].

Traditional approaches of voice conversion rely on parameter mappings that op-

erate instantaneously on a frame-by-frame basis. Significant improvements can be

obtained by considering mappings that take the temporal evolution of feature vectors

into account as well. Hidden Markov Models (HMMs) were successfully applied in

this context by Duxans et al. [31], Nose and Kobayashi [32], and most recently by

Percybrooks et al. [33].

In lieu of many other feature conversion techniques, the most widely used tools for

feature mappings today are still Gaussian mixture model, as considered by Kain in

2001 [21] and Ohtani et al. in 2006 [34] for example. A significant problem of GMMs,

however, can be found in their tendency to “oversmooth” the estimated parameter

representation (see Toda et al. [35]). This problem has led a number of researchers to

pursue Frequency Warping (FW) and/or Amplitude Scaling (AS) methods, either in

conjunction with GMMs as proposed by Toda et al. in 2001 [36], or in lieu of GMMs

as proposed by Godoy et al. in 2012 [37] and Erro et al. in 2013 [38].

Modern voice conversions systems have become able to convincingly transform

the identity of a speaker. Two significant challenges, however, still remain at the

forefront of study: (1) the generation of “natural” sounding converted speech [22],
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and (2) the robustness of conversion procedures in noisy environments as considered

by Takashima et al. in 2012 [39]. As discussed in the previous paragraph, due to the

“oversmoothing” of many GMM based algorithms, the naturalness of the converted

speech is often compromised. An approach that proved fruitful in enhancing the nat-

uralness of text-to-speech systems is provided by concatenative speech synthesis. In

concatenative synthesis a speech signal is produced by concatenating appropriately

chosen “units” from a prerecorded voice inventory of the target speaker. The employ-

ment of a corpus-based concatenative approach to voice conversion was explored by

Dutoit et al. in 2007 [40]. Related is also the work in unit selection by Shuang et al.

from 2008 [41]. We are focusing on the inventory approach in [15] mainly because

of the available speech enhancement framework, allowing for convenient extension to

voice conversion.

1.3 Summary of Thesis and Outline

We are considering an alternative approach to improve noise robustness of voice con-

version via a concatenative analysis approach on the source speaker. The work is

motivated by the success of inventory-based enhancement schemes as proposed by

Xiao and Nickel in 2010 [18] and later refined by Nickel et al. in 2013 [15]. In noisy

environments reliable estimation of the “true” underlying parameterization of speech

is difficult, and hence the performance of conventional voice conversion schemes tends

to degrade significantly. In our work we employ a STRAIGHT feature set [23] and a

simple instantaneous GMM based conversion mapping.

This thesis is organized as follows: Chapter 2 describes several speech enhance-

ment algorithms that were studied in preparation for this project. In particular,

we implemented a subset of standard filtering-based and the inventory-based speech
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enhancement algorithms. The quality of these systems are compared and remaining

challenges are noted. Chapter 3 describes the most popular voice conversion system:

the Gaussian Mixture Model-based voice conversion. Details are given regarding how

to construct such a system. Chapter 4 describes our proposed system: voice conver-

sion in noisy environments using an inventory approach for source analysis. Results

of our experiments are presented and discussed. Future work to potentially deal with

remaining challenges of both aspects (speech enhancement and voice conversion) are

also outlined. Chapter 5 provides final remarks on this work.



Chapter 2

Speech Enhancement

2.1 Speech Enhancement Overview

A speech enhancement system aims to improve the quality of an input speech signal

degraded by noise. Though the specific enhancement methods vary, the basic building

blocks of a speech enhancement system can be described as follows.

We begin by constructing a model for speech signals corrupted by additive noise.

Let us denote the underlying clean speech signal z[n] and the corrupting noise v[n],

our observed (noisy) signal is then x[n] = z[n] + v[n]. A speech enhancement system

typically consists of three subsystems: analysis of the input signal x[n], enhancement

of this noisy signal in the parameter domain (such as frequency) and resynthesis of the

enhanced signal. Signal analysis takes the noisy input and divides it into overlapping

segments of a specified length (typically 20-ms segments with 50% overlap). One can

also apply different windows (Hamming, Hann) to each segment or leave each as-is,

which corresponds to applying a rectangular window. The purpose of such operation

is to reduce boundary effects and spectral leakage when converting samples from the

time domain to the parameter domain (frequency). Typically, the parameter of choice

9
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is the coefficients of the discrete Fourier transform, so the fast Fourier transform

(FFT) is then performed frame-wise, resulting in a new set of frequency-domain

samples. We call the matrix of these samples’ magnitudes X[k, n] where k denotes the

kth frequency bin and n denotes the nth frame from the segmentation process. Each

enhancement method can be represented by an adaptive gain function G[k, n], which

depends on the type of algorithm under study. Several such basic gain functions will

be briefly described in Section 2.2. The gain function matrix is applied element-by-

element to the noisy magnitude matrix X[k, n] to estimate the magnitude spectrum

of the enhanced signal. We denote the enhanced frequency-domain magnitude matrix

Y [k, n] = X[k, n] · G[k, n]. The resulting magnitude spectrum is then combined with

the stored noisy phase spectrum to arrive at the overall enhanced spectrum Y ′[k, n].

The inverse FFT is performed on Y ′[k, n], yielding the time-domain enhanced signal

matrix. Depending on the type of window applied originally, the enhanced signal

y[n] can be obtained by concatenating the weighted-and-overlapped samples in each

segment.

Note that while reconstruction of the final signal employed the enhanced magni-

tude spectrum, the phase spectrum was taken from the noisy signal. This approach,

however, has yielded relatively good results since the human ear is less sensitive to

the phase component of speech signals. The enhancement process is summarized in

the block diagram of Figure 2.1.
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Figure 2.1: Block Diagram of a Speech Enhancement System
(Parts of figure modified from [1])
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2.2 Filtering-Based Speech Enhancement

Several fundamental speech enhancement methods are considered in the following

sections. Our main reference was the text Speech Enhancement, Theory and Practice

[42] by Loizou. Specifically, we cover the Spectral Subtraction and Statistical Filtering

methods, along with their variations.

2.2.1 Spectral Subtraction Methods

The spectral subtraction (SS) algorithm is historically one of the first algorithms

proposed for acoustic noise reduction [42, Ch. 5]. Assuming additive noise that is

uncorrelated to speech, one can reasonably estimate the clean signal spectrum by

subtracting the approximated noise spectrum from the noisy one. There are multiple

variations to spectral subtraction methods, two of which are presented here.

� Simple Spectral Subtraction (SSS):

The gain function for basic spectral subtraction is shown in Equation 2.1. Since

we are operating on the magnitude spectrum, negative values of the enhanced

magnitude spectrum Y [k, n] are meaningless. The simplest solution for this

problem is to floor negative difference spectrum values to 0.

G[k, n] =


√

1− D̂2[k, n]

X2[k, n]
if X[k, n] > D̂[k, n]

0 otherwise

(2.1)

where D̂[k, n] denotes the average magnitude spectrum of the noise. In this

simple method, we assume that the first few frames (typically 40) of the signal

contain only noise. Therefore D̂[k, n] can be found by averaging the spectra of

these first frames.
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Even though noise is reasonably suppressed in this simple approach, consider-

able distortion of speech arises. The effect of musical noise, the irritating and

unnatural sound heard in the background, is especially pronounced in this sit-

uation. This type of speech distortion is aggravated by flooring the negative

difference spectrum values in the final enhanced spectrum [42, Ch. 5].

� Multiband Spectral Subtraction (MBSS):

A multiband spectral subtraction method was shown to perform significantly

better than most other SS approaches [42, Ch. 5]. A multiband method is

based on the fact that noise affects speech signals differently in different fre-

quency bands. In addition to taking into account this non-uniformity of noise

corruption, MBSS pre-processes the noisy magnitude spectrum according to

Equation 2.2, which turned out to play a significant part in the quality en-

hancement of the final speech.

X[k, n] =
M∑

i=−M

WiX[k, n− i] (2.2)

This smoothing process essentially computes a weighted spectral average over

M preceding and M succeeding frames for a certain segment; M is usually

limited to 2. The weights Wi are empirically [42, Sec. 5.6] set to

Wi = [0.09, 0.25, 0.32, 0.25, 0.09].

Finally, the enhanced magnitude spectrum is the result of multiplying this

smoothed magnitude spectrum with the gain function in Equation 2.3. The

MBSS gain function is different for each frequency band i.
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Gi[k, n] =


√

1− αi · δi
D̂2[k, n]

X
2
[k, n]

if Gi[k, n] > β1/2 and bi ≤ k ≤ ei

β1/2 otherwise

(2.3)

where bi and ei are the beginning and ending frequency bins of the ith frequency

band, αi is the oversubtraction factor of the ith band and β is the spectral floor

parameter, typically set to 0.002 as suggested in [42, Sec. 5.6]. δi is the addi-

tional band-subtraction factor that can be individually set for each frequency

band to customize the noise removal process. Loizou [42, Sec. 5.6] provides

more details on choosing the optimal values for these parameters.

Further masking of musical noise can also be achieved by reintroducing a small

amount of noise to the enhanced spectrum as in Equation 2.4.

Y
2
[k, n] = Y 2[k, n] + 0.05 ·X2

[k, n] (2.4)

Although this last step seems counter-intuitive in the noise-reduction sense, hu-

man listeners turn out to prefer a slightly noisier signal to one with musically

distorted speech. This observation indicates that algorithmic optimization of

signal quality does not necessarily lead to the corresponding result in the psy-

choacoustic sense. Human perception of speech quality (and our limited under-

standing in this area) therefore furthers the challenges in speech enhancement

optimization.



15

2.2.2 Statistical Filtering Methods

In statistical filtering methods, the speech enhancement problem is posed in a statis-

tical estimation framework [42, Ch. 7]. The noisy magnitude spectrum is our set of

observations, from which we try to obtain an estimate for the underlying parameters

- the clean speech magnitude spectrum. As with SS methods, we can also write these

statistical estimators in forms of gain functions to operate on the noisy magnitude

spectrum. Loizou [42, Ch. 7] provides an overview of various statistical filtering en-

hancement algorithms, with the log-Minimum Mean Square Error (MMSE) estimator

recommended as having superior performance.

The MMSE/log-MMSE models belong to a subset of the Bayesian estimation

approach, where we make use of the a priori probability density function (PDF) of the

estimation parameter Z[k, n]. However, measuring the true probability distribution

of the speech Fourier transform coefficients is difficult because speech signals are not

stationary [42, Ch. 7]. Ephraim and Malah [43] proposed a statistical model that

makes two assumptions: (1) The Fourier transform coefficients (real and imaginary

parts) have a Gaussian PDF with zero mean and time-varying variance; (2) The

Fourier transform coefficients are statistically independent and, hence, uncorrelated.

Despite these unrealistic assumptions, the resultant models have proven useful in

practice.

Derivations in [42, Ch. 7] show that both MMSE and log-MMSE estimators’ gain

functions can be written as G[k, n] = F (ξ[k, n], γ[k, n]), where ξ[k, n] and γ[k, n]

are referred to as the a priori and a posteriori SNR estimates, respectively. The a

posteriori SNR γ[k, n] can be obtained from Equation 2.5.

γ[k, n] = min

(
X2[k, n]

D̂2[k, n]
, 40

)
(2.5)
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where D̂2[k, n] is the variance of the noise magnitude spectrum, again estimated

using the first few frames of the signal. However, in these calculations, a small

value of D̂2[k, n] can cause unrealistically high values in γ[k, n]. To avoid this, our

implementation sets a higher bound for γ[k, n] at 40, as suggested by Loizou [42,

Ch. 7].

Estimation of the a priori SNR is another essential component of the statistical

filtering estimators. This is no easy task since we only have access to the noisy

speech signal. Several methods have been proposed to deal with this problem, among

which the decision-directed approach by Ephraim and Malah [43] has proven useful.

Equation 2.6 provides the standard estimation formula for ξ[k, n].

ξ[k, n] = max

[
a
Y 2[k, n− 1]

D̂2[k, n− 1]
+ (1− a)max[γ[k, n]− 1, 0], ξmin

]
(2.6)

where ξmin is the minimum value allowed for ξ[k, n]. A value of ξmin = −15 dB was

suggested by Cappe [44]. As can be seen from Equation 2.6, the decision-directed

approach to estimating the a priori SNR is superior in that it takes into account

previous frames’ enhanced spectra. The initial conditions recommended for ξ[k, 0]

are:

ξ[k, 0] = a+ (1− a)max[γ[k, 0]− 1, 0] (2.7)

where the max(·) operator ensures non-negativity and a = 0.98 was empirically sug-

gested.

Both our preliminary statistical filtering enhancement methods use the a priori

SNR estimation described above and the gain functions for each algorithm are pre-

sented in Equations 2.8 and 2.10 below.
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� MMSE Estimator

G[k, n] =

√
π

2

√
ν[k, n]

γ[k, n]
e(−

ν[k,n]
2 )

[
(1 + ν[k, n])I0

(
ν[k, n]

2

)
+ ν[k, n]I1

(
ν[k, n]

2

)]
(2.8)

where

ν[k, n] =
ξ[k, n]

1 + ξ[k, n]
γ[k, n] (2.9)

and I0(·), I1(·) are modified Bessel functions of zero and first order, respectively.

� log-MMSE Estimator

G[k, n] =
ξ[k, n]

ξ[k, n] + 1
exp

{
1

2

∞∫
ν[k,n]

e−t

t
dt

}
(2.10)

where the integral is known as the exponential integral and can be evaluated

numerically [42, Ch. 7].

2.3 Filtering-based Methods Experiments

We now describe the experiments and results from implementing the filtering based

speech enhancement methods. Although Loizou [42] provides MATLAB codes of these

methods, we wrote our own implementations to (1) understand better the workings

of these methods and (2) allow for modifications and expansions if needed.

2.3.1 Experiment Description

In our study, we have access to an inventory of prerecorded speech utterances by

a set of individuals. A group of five random utterances by the same speaker are
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concatenated into one long (10-15 sec) signal stream, which forms the signal z[n]. In

addition, we are provided with an inventory of noise sounds (e.g. White Gaussian,

Pink, Speech Babble) that we use as our additive noise signal v[n]. Our resulting

noisy signal x[n] becomes the input to the enhancement algorithms, which produces

the enhanced signal y[n]. All these speech signals are sampled at 16 kHz and are

assumed to be band-limited between 50 Hz and 8 kHz [15].

The database of clean speech available to us is the CMU_ARCTIC database from the

Language Technologies Institute at Carnegie Mellon University1. This set consists

of sample utterances from 7 speakers, chosen to form a corpus with large phonetic

content, diverse speech patterns and accents [15]. Five utterances of each speaker

were concatenated to form a long stream of clean signal. For each speaker, ten such

streams are formed to be used as clean speech data. We concatenate such a stream

of utterances because of the adaptive nature of the speech enhancement algorithms.

Using a longer speech signals allows the enhancement filters to adapt accordingly,

thus yielding better quality enhanced signals.

The type of additive noise employed in these preliminary experiments was White

Gaussian noise, taken from the NOISEX database from the Institute for Perception-

TNO, The Netherlands Speech Research Unit, RSRE, UK2. This noise was added to

clean speech data at signal-to-noise (SNR) ratios of 5 dB and 10 dB, under consid-

eration of respective active speech level (ASL) [45]. In this way, our noisy signals are

produced with SNR levels strictly with respect to active speech, whereas the overall

SNR of the signal is slightly lower due to silent periods within the signal. In other

words, SNRspeech = SNRsignal − 10 log10(ASL) where 0 < ASL < 1. The resulting

noisy signal x[n] was the input to our various speech enhancement systems.

1This corpus is available at <http://festvox.org/cmu arctic/>.
2This noise corpus is available at <http://spib.rice.edu/spib/select noise.html>.
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In these experiments, two primary classes of enhancement methods were consid-

ered: spectral subtraction methods and statistical filtering methods. In both cases,

noise estimation was an important component. Our experiments assumed speech

absence in the first few frames of the segmentation matrix; hence we used aver-

ages extracted from these frames as our estimated noise magnitude spectrum D̂[k, n].

Loizou in [42, Ch. 9] details several improved approaches to noise estimation that

were not implemented in these preliminary experiments.

2.3.2 Experimental Results

Following the initial set up in Section 2.3.1, algorithms described in Section 2.2.2

were applied on the pre-mixed noisy signal x[n] at SNR levels of 5 dB and 10 dB with

ASL considerations. Our speech samples were from two speakers in the CMU_ARCTIC

database, whose identifiers were BDL (US English male) and SLT (US English female).

The speech analysis portion of our experiments had the following common parame-

ters: 20 ms frame length for signal segmentation with 50% overlap and rectangular

windowing. While other types of windowing can be used, the rectangular window is

the simplest to implement and has the narrowest main-lobe width frequency response

(which is desirable for a fast transition from the pass-band to the stop-band from an

FIR filter design point of view) [46]. For noise estimation, we averaged the magnitude

spectrum values from the 40 first frames (assumed silent). For resynthesis, we used

linear cross fading to concatenate our final signal. Other experimental parameters

were algorithm-specific and will be defined below.

As a companion resource to [42], Loizou provided us with his MATLAB implemen-

tations of the enhancement methods discussed above. For verification and comparison

purposes, Loizou’s equivalent algorithms were also applied on our noisy signals. There
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are, however, two important differences between our implementation and Loizou’s:

(1) Loizou’s uses the Hamming window for signal segmentation and the overlap-add

method for reconstructing the enhanced signal; (2) Loizou’s algorithms incorporate

voice activity detection (VAD) [47] (See also [42, Sec. 11.2]) for noise estimation.

Instead of using a fixed average of the noise spectrum, the VAD updates the noise

estimate by assigning more “noise weight” to frames assumed speech absent, thus

potentially yielding a better noise estimate overall.

We present here four sets of experiments: (1) implementation of our spectral sub-

traction methods; (2) implementation of Loizou’s spectral methods; (3) implementa-

tion of statistical filtering methods (both ours and Loizou’s) and (4) implementation

of our algorithms modified for studying the effects of windowing.

Quality assessment can be done using subjective listening tests and/or objective

quality measures. Subjective evaluation relies on having a group of listeners rate the

quality of the enhanced speech according to a certain quantitative scale [42, Ch. 10].

Subjective tests, however, are time-consuming and expensive. Consequently, we need

mathematical/algorithmic-based measures to evaluate the enhancement methods, at

least in the learning/early implementation stages. These “objective” measures quan-

tify quality by measuring the “distance” between the original and processed signals

[42, Ch. 10]. Clearly, these objective measures need to correlate well with subjective

listening tests to be valid since the ultimate judge of our signal quality is the human

ear.

Four such objective measures were chosen for all our algorithm evaluations: the

Perceptual Evaluation of Speech Quality (PESQ) [48] and three Composite measures

for Signal Distortion (CSIG), Background Noise Distortion (CBAK) and Overall

Quality (COVL) [42]. The PESQ measure is highly correlated with subjective lis-

tening tests [48] and therefore is considered one of the more reliable objective quality
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measures. The Composite measure is achieved by combining multiple objective mea-

sures. Since different objective measures capture different characteristics of the dis-

torted signal, combining them can yield significant gains in correlation [42, Ch. 10].

Our specific composite measures above were computed via linear combinations of

standard objective measures including the PESQ, the Cepstrum Distance Measure

[49] and the Frequency-Weighted Segmental SNR [50].

1. Implementation of Spectral Subtraction Methods:

Our first experiment compares the performances of spectral subtraction meth-

ods. In particular, we compare the results from simple spectral subtraction

(SSS) and multiband spectral subtraction (MBSS). Table 2.1 defines algorithm

parameters of each method.

Table 2.1: Algorithm Definitions for Spectral Subtraction Implementation

ALG. Description Windowing Reconstruction
Algorithm
Parameters

Noise
Estimation

1 SSS Rectangular Linear fading n/a
40 first
frames’
average

2 MBSS Rectangular Linear fading
8 bands;

linear
spacing

40 first
frames’
average

3 MBSS Rectangular Linear fading
8 bands; log

spacing

40 first
frames’
average

4 MBSS Rectangular Linear fading
8 bands; mel

spacing

40 first
frames’
average

Table 2.2 presents the results of this experiment. As a reference, the four quality

measures were also computed for the noisy signal. Higher scores for an algorithm
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compared to those for the noisy signal indicate quality improvement.

For both noise levels, it is clear that the MBSS method is superior to the simple

SS, regardless of the way frequency bands are divided. Within MBSS variations,

the objective measures seem to agree that the log-band division performs the

best. However, psychoacoustically little difference was perceived among these

enhanced signals.

Table 2.2: Results of Spectral Subtraction Methods

10 dB SNR
PESQ CSIG CBAK COVL

Mean SD Mean SD Mean SD Mean SD

Noisy Signal 1.576 0.261 1.361 0.380 2.426 0.191 1.387 0.399

ALG 1 1.906 0.224 1.022 0.099 2.172 0.156 1.084 0.182

ALG 2 1.978 0.183 1.667 0.427 2.586 0.1139 1.801 0.311

ALG 3 1.986 0.187 1.794 0.426 2.568 0.1208 1.862 0.311

ALG 4 1.958 0.189 1.661 0.432 2.574 0.1176 1.787 0.316

5 dB SNR
PESQ CSIG CBAK COVL

Mean SD Mean SD Mean SD Mean SD

Noisy Signal 1.228 0.244 1.021 0.057 1.961 0.186 1.099 0.122

ALG 1 1.561 0.228 1.0000 0.0000 1.908 0.139 1.019 0.070

ALG 2 1.565 0.195 1.175 0.197 2.286 0.109 1.270 0.263

ALG 3 1.568 0.204 1.239 0.259 2.254 0.117 1.309 0.285

ALG 4 1.533 0.207 1.171 0.194 2.268 0.115 1.258 0.259

2. Implementation of Loizou’s Spectral Subtraction Methods:

To verify that our SS methods were implemented appropriately, we obtained the

same quality measures for the MBSS methods provided by Loizou. Table 2.3

shows that Loizou’s implementations yielded higher values for the same quality
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measures. This is due to the two significant differences in his code discussed

above – windowing/reconstruction as well as VAD. However, Loizou’s results

agree with ours in the trend of objective quality comparison, i.e. again we see

the log-frequency spacing method achieving highest scores.

Regarding musical noise, MBSS was superior to SSS, though slight distortions

still seem to be present. Even more masking via Equation 2.4 can be achieved

by adding noise to the enhanced signal. This, however, would likely decrease

our objective quality scores as well as make the background noise louder, due

to the trade-off between noise suppression and perceived signal naturalness.

Table 2.3: Results of Spectral Subtraction Methods with Loizou’s Code

10 dB SNR
PESQ CSIG CBAK COVL

Mean SD Mean SD Mean SD Mean SD

Noisy Signal 1.576 0.261 1.361 0.380 2.426 0.191 1.387 0.399

ALG 2 1.992 0.314 1.913 0.639 2.598 0.238 1.939 0.489

ALG 3 2.033 0.280 2.131 0.542 2.595 0.205 2.065 0.421

ALG 4 2.001 0.310 1.995 0.642 2.593 0.232 1.985 0.488

5 dB SNR
PESQ CSIG CBAK COVL

Mean SD Mean SD Mean SD Mean SD

Noisy Signal 1.228 0.244 1.021 0.057 1.961 0.186 1.099 0.122

ALG 2 1.364 0.370 1.273 0.299 2.129 0.269 1.308 0.326

ALG 3 1.408 0.371 1.390 0.409 2.133 0.260 1.373 0.390

ALG 4 1.363 0.373 1.324 0.348 2.124 0.268 1.333 0.351

3. Implementation of Statistical Filtering Methods:

Our next experiment compared statistical filtering methods. The algorithm
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parameters are presented in Table 2.4 and their results shown in Table 2.5. We

include Loizou’s implementation results in the same table for reference.

Table 2.4: Algorithm Definitions for Statistical Filtering Methods

ALG. Description Windowing Reconstruction
Noise

Estimation

1 MMSE Rectangular Linear fading
40 first
frames’
average

2
MMSE

(Loizou’s)
Hamming Overlap and Add VAD

3 log-MMSE Rectangular Linear fading
40 first
frames’
average

4
log-MMSE
(Loizou’s)

Hamming Overlap and Add VAD

At both SNR levels, we see improvement in objective scores from the simple

MMSE algorithm to the log-MMSE method. Again, Loizou’s implementation

yielded higher scores, but was reassuring in that it confirms the comparative

trend between the two measures. Compared to SS methods above, all statistical

filtering methods received higher objective scores. Musical noise also seems to

be less pronounced in the enhanced signals.

4. Effects of Windowing:

Our final experiment considered the effects of windowing/reconstruction method

on the enhanced signal. Table 2.6 presents our parameter definitions and Table

2.7 shows the results of this experiment.

Examination of Table 2.7 shows windowing does affect the objective quality

of the enhanced signal. More importantly, resynthesis of the enhanced signal
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Table 2.5: Results of Statistical Filtering Methods

10 dB SNR
PESQ CSIG CBAK COVL

Mean SD Mean SD Mean SD Mean SD

Noisy Signal 1.576 0.261 1.361 0.380 2.426 0.191 1.387 0.399

ALG 1 1.936 0.178 1.887 0.361 2.559 0.129 1.874 0.268

ALG 2 2.289 0.161 2.321 0.514 3.020 0.100 2.291 0.346

ALG 3 2.170 0.142 1.982 0.297 2.604 0.137 2.024 0.219

ALG 4 2.493 0.099 2.491 0.434 3.127 0.072 2.471 0.272

5 dB SNR
PESQ CSIG CBAK COVL

Mean SD Mean SD Mean SD Mean SD

Noisy Signal 1.228 0.244 1.021 0.057 1.961 0.186 1.099 0.122

ALG 1 1.613 0.226 1.318 0.330 2.293 0.128 1.380 0.325

ALG 2 1.932 0.179 1.651 0.496 2.664 0.087 1.763 0.349

ALG 3 1.878 0.210 1.372 0.339 2.369 0.127 1.543 0.303

ALG 4 2.130 0.165 1.813 0.455 2.769 0.073 1.935 0.319

Table 2.6: Algorithm Definitions for Windowing Effects Comparison

ALG. Description Windowing Reconstruction
Noise

Estimation

1 log-MMSE Rectangular Linear fading
40 first
frames’
average

2 log-MMSE Hamming Linear fading
40 first
frames’
average

3 log-MMSE Hamming Weighted Overlap-Add
40 first
frames’
average

4
log-MMSE
(Loizou’s)

Hamming Overlap-Add VAD
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needs to be consistent with the windowing pattern in the segmentation stage.

For example, linear fading reconstruction is “geometrically” consistent with

rectangular segmentation because of the weights applied to tailing samples.

Similarly, a Hamming-shaped segmentation would be approximately consistent

with simply adding overlapping samples at resynthesis rather than weighing

them before adding. Listening tests agree with these objective scores: while

ALG 1, 3 and 4 showed little perceptual difference, ALG 2 produced a clearly

more distorted speech signal.

Table 2.7: Results of Windowing Effects Comparison Experiment

10 dB SNR
PESQ CSIG CBAK COVL

Mean SD Mean SD Mean SD Mean SD

Noisy Signal 1.576 0.261 1.361 0.380 2.426 0.191 1.387 0.399

ALG 1 2.170 0.142 1.982 0.297 2.604 0.137 2.024 0.219

ALG 2 2.061 0.206 1.883 0.362 2.402 0.155 1.913 0.297

ALG 3 2.142 0.164 1.973 0.297 2.414 0.124 2.004 0.231

ALG 4 2.493 0.099 2.491 0.434 3.127 0.072 2.471 0.272

5 dB SNR
PESQ CSIG CBAK COVL

Mean SD Mean SD Mean SD Mean SD

Noisy Signal 1.228 0.244 1.021 0.057 1.961 0.186 1.099 0.122

ALG 1 1.878 0.210 1.372 0.339 2.369 0.127 1.543 0.303

ALG 2 1.809 0.276 1.339 0.344 2.224 0.182 1.473 0.363

ALG 3 1.864 0.223 1.367 0.322 2.225 0.148 1.533 0.305

ALG 4 2.130 0.165 1.813 0.455 2.769 0.073 1.935 0.319

To summarize, our preliminary experiments show superior performance of sta-

tistical filtering methods compared to spectral subtraction ones. Within statistical
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filtering algorithms, the log-MMSE method yielded promising objective scores. In ad-

dition, our implementations showed consistent score patterns with those by Loizou,

even though our scores were always lower. This suggests noise estimation plays an

important role in achieving good enhancement results (again, at least in the objective

mathematical sense).

Informal listening tests correlate well with these standard objective measures. Al-

though both the MBSS and the log-MMSE methods showed significant improvement

to the noisy speech, there is still a considerable amount of background noise. In cases

where noise was significantly suppressed, speech distortion became more pronounced.

This is the typical trade-off regarding the quality of the resynthesized signal and

remains a challenging topic for speech enhancement research.

2.4 Inventory-Based Speech Enhancement

To further improve speech enhancement without compromising quality and intelligi-

bility, alternative methods employing an inventory of clean speech signals have been

proposed [18, 15, 14]. The noisy signals in this approach are not merely filtered,

but resynthesized based on the undistorted, pre-recorded speech waveforms. The ad-

vantage of this “waveform matching” scheme lies in the fact that not only spectral

magnitude but also spectral phase is estimated. Successful implementations of this

inventory-style enhancement scheme include the work of Xiao et al. [18], and later

refined by Nickel et al. in [15].

The block diagram for an inventory-style enhancement procedure following [15] is

shown in Figure 2.2. Compared to the standard enhancement procedure presented in

Figure 2.1, the significant modifications lie in the addition of a VAD mechanism in

speech analysis and the enhancement subsystem. In this approach, the enhancement
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subsystem consists of three components: (1) a conventional log-MMSE estimator; (2)

a VAD mechanism and (3) an inventory search procedure. The log-MMSE filter is

implemented as described in Section 2.2.2. The VAD block is employed according

to Sohn et al. [47]; it activates the inventory search subsystem only during intervals

of assumed speech presence. The VAD mechanism also controls the stream selection

and normalization in the post-processing block. In addition, similar to Loizou’s im-

plementations, the VAD mechanism is used in the noise estimation subroutine of the

log-MMSE estimator to improve its performance. The following sections focus on

the inventory-based enhancement subsystem components, which consists of feature

extraction, system training and inventory search.

Figure 2.2: Block Diagram of the Inventory-style Enhancement System
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2.4.1 Feature Extraction

The goal of feature extraction is to represent a speech signal in an efficient way that

reflects the signal’s most important characteristics. In particular, an ideal feature

extractor maps a speech signal z[n] to a feature vector z (or a set of feature vectors

z[i]) while dramatically reducing data dimensionality and retaining most of the infor-

mation relevant to the system’s task. Since processed speech signals eventually are

received by humans, psychoacoustically motivated features have proven to be most

successful [51]. One such set of features widely used are the Mel-Frequency Cep-

stral Coefficients (MFCCs), whose definition and computation process is described

in [51]. Another advantage of the MFCCs is their robustness against additive noise

[18, 15], which makes them a desirable option for not only speech enhancement but

also speech recognition applications. Our inventory-based speech enhancement sys-

tem uses MFCCs as our features for this reason.

The MFCC feature extraction process follows a slightly simpler procedure than the

one described in [18, 15]. Following a pre-emphasis filter, we compute 13-dimensional

MFCC vectors ĉz[i] and apply a sinusoidal lifter to these coefficients according to the

recommendations by Young et al. [52]. We then augment these 13 MFCCs with their

∆ and ∆∆ coefficients after [15] to arrive at 39-dimensional feature vectors:

cz[i] = [ ĉTz [i] ∆ĉz
T [i] ∆∆ĉz

T [i] ]T . (2.11)

The ∆ coefficients for a certain frame are the differences between the corresponding

coefficients in the neighboring frames; i.e. ∆ĉz[i] = ĉz[i + 1] − ĉz[i − 1]. The ∆∆

coefficients are obtained in a similar manner, where the subtraction process is done

on the ∆ coefficients: ∆∆ĉz[i] = ∆ĉz[i + 1] − ∆ĉz[i − 1]. In [15], the authors

additionally implemented cepstral mean subtraction for improved robustness.
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2.4.2 System Training

The system training stage attempts to establish a library of probability models for

clean speech. Given an undistorted signal s[n], signal segmentation and VAD are

first applied to retain only the non-silent frames of the speech signal. The feature

extraction mechanism described in Section 2.4.1 is then applied, where we obtain the

MFCC features for each speech segment. Each speech segment s[i] and its correspond-

ing feature vector cs[i] can then be assigned to a unique waveform set Sq and feature

set Cq containing frames with similar phonetic characteristics. The categorization

of segments into clusters in this work was done using available transcription files in

our experimental database (the CMU_ARCTIC database). If a phonetic transcription is

not available one may also use the unsupervised clustering method as in [18]. Once

the phonetic groups have been established, we can train a Gaussian Mixture Model

(GMM) for each group. For example, in this work there were 40 phonetic clusters

and a GMM with 3 mixtures and diagonal covariance was trained on each Cq to yield

40 PDF models

Cq(ĉs[i]) =
3∑

k=1

αcsk,q · NR39(ĉs[i];µcsk,q,Σcsk,q) (2.12)

for q = 1, 2, ...40 with the weights αcsk, the mean vectors µcsk,q and the covariance

matrices Σcsk,q of mixtures k in cluster q. In [15], the authors further classified each

of the 40 clusters into 3 subclusters to account for coarticulation effects. In that case,

the inventory would consist of 120 Gaussian PDF models. GMMs can be computed

numerically by the Expectation-Maximization (EM) algorithm [53, 54, 55], which is

the approach we followed.

We can also establish a state transition model by tallying observed transitory

patterns. Specifically, each time state qi transitions to state qj, we add a count to cell
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[i, j] in our 40-by-40 transition matrix P. These counts are then normalized by the

total count in each row to yield the probabilities of each state transition. The cluster

PDFs Cq(ĉs) for q = 1, 2, ...40 and the matrix P constitute the Hidden Markov Model

(HMM) that will be used in the temporal development estimation of the enhancement

process [15].

2.4.3 Inventory Search and Enhancement

Once the inventory is constructed, noisy test signals x[n] can be processed by the

enhancement system. All frames are passed through the log-MMSE branch, yielding

streams yF[i]; only frames x[i] flagged as non-silent are subjected to the feature

extraction process as described in 2.4.1, resulting in MFCC features ccx[i]. These

parameters can then be used to compute likelihood values λq[i] for each phonetic

class q via Equation 2.12. We jointly optimize the probabilities of these likelihood

values and those in P via a Viterbi algorithm [15] to arrive at the most likely frame

q*[i] for the present voice-active frame x[i].

As a further improvement to this proposed enhancement scheme, Nickel et al.

in [15] pursued a local multipath Viterbi search where not one but multiple state

candidates were passed into the inventory search. For example, three state estimates

q1[i], q2[i] and q3[i] are chosen for each frame x[i]. The search for the best matching

waveform is then performed on the merged inventory collections Sq1,2,3 [i].

To find the optimal waveform within a chosen phonetic cluster, we follow the

matched filter approach in [18]. Specifically, this correlation search seeks the optimal

segment ŝ in inventory group Sq that maximizes the normalized inner product between



32

the present frame of interest x[i] and the (to be) chosen frame ŝ[i], i.e.

ŝ[i] = argmax
s∈Sq

xT[i] · s
||x[i]|| · ||s||

(2.13)

The best-fitting inventory frames are then normalized to match the energy of

the corresponding replaced frames x[i] in the log-MMSE branch, resulting in the

inventory-branch estimate yI[i].

yI[i] =
xT[i] · ŝ[i]

||x[i]|| · ||̂s[i]||
(2.14)

The VAD indicator then combines streams yI[i] and yF[i] to produce the final

estimate y[i]:

y[i] =


yI[i] if frame i is flagged as “voice active”

yF[i] otherwise

(2.15)

Finally, cepstral smoothing as proposed by [16] and [56] can be applied before signal

resynthesis. The cepstral smoothing method was reported to reduce musical artifacts

due to pitch and phase mismatches at frame boundaries [15]. Both objective measures

and subjective listening tests in [15] support this claim for various noise levels and

noise types. The inventory-based enhancement method performs better than filtering

methods especially in non-stationary noise cases such as Babble noise.
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Voice Conversion

3.1 Voice Conversion Overview

Voice conversion (VC) attempts to make an utterance spoken by a source speaker

sound as if it was spoken by a target speaker. Analogous to speech enhancement,

VC systems typically consist of three main components: source signal analysis, signal

conversion, and target signal synthesis. As in speech enhancement, a source signal

x[n] is also segmented into overlapping frames (typically 20-ms segments with 50%

overlap). These frames are then parametrized as appropriate source features fx[i],

unlike in typical speech enhancement systems where FFTs are commonly used. The

reason for this, as will be clear later, is that these source features are to be mapped to

target speaker features f̂y[i] via a pre-trained model, which cannot be easily obtained

when the feature vectors are of too high a dimension. At the final step, the target

features are converted back to the time domain for synthesis of target speech y[n].

The major difference between voice conversion and speech enhancement lies in

the voice conversion model. As reviewed in Section 1.2, many schemes to arrive at

this model are under study, among which the most commonly used approach is the

33
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Gaussian Mixture Model. Our work focuses on this approach.

Figure 3.1: Block Diagram of a Conventional Voice Transformation System

3.2 The Standard Model

A block diagram for a standard voice conversion system is shown in Figure 3.1. In

the training stage, we need access to sample speech sounds from both the source and

the target speakers. In addition, preferably the utterances by both speakers have

matching textual content, since the basic idea is to parametrize source and target

speeches and then estimate a joint Gaussian Mixture Model of source and target

feature probabilities. A continuous probabilistic transformation function can then be
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implemented using the trained joint GMM [21].

In the testing/conversion stage, we perform analysis on the source speech, ex-

tracting the new feature vectors to be mapped to target feature vectors. The details

involved in feature extraction, conversion model construction, and target speech syn-

thesis are presented in the following sections.

3.2.1 Feature Extraction

Similar to the inventory-based approach for speech enhancement, feature extraction

is necessary to describe input speech signals in terms of efficient parameters. How-

ever, in voice transformation, features other than MFCCs are often used. Examples

of such features are the linear prediction coefficients (LPCs), their close relatives Line

Spectral Frequencies (LSFs), and more recently TANDEM-STRAIGHT related fea-

tures developed by Kawahara et al. [23]. In this work, we used a combination of such

features; a brief description of each feature is provided below.

The LPCs, in essence, are the coefficients of the Wiener filter that attempts to

predict the present input value based on p past input values, which also determines

the order of the filter. In view of the speech production source-filter model, the

LPCs model the filter that represents effects of the vocal tract [51, 57]. LPCs can

be computed numerically from an incoming speech signal using the autocorrelation

method and the Levinson-Durbin algorithm [58].

LSFs are an alternative representation of LPCs, found by solving for the roots of

the polynomials P (z) and Q(z) given by:

P (z) = A(z)− z−(p+1)A(z−1)

Q(z) = A(z) + z−(p+1)A(z−1)
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where A(z) = 1+
∑p

k=1 akz
−k with LPC values ak and p is the order of the LPC filter.

Compared to LPCs, LSFs are reported to possess superior interpolation properties

and quantization robustness in low bit rate speech coding applications [57, 59].

STRAIGHT (Speech Transformation and Representation using Adaptive Inter-

polation of weiGHTed spectrum) is a speech analysis, modification and synthesis

system, first developed by Kawahara [60] and later refined by Kawahara et al. [23].

The most current version of the system, TANDEM-STRAIGHT is a toolbox that

allows the extraction of numerous speech features, among which we focused on the

so-called STRAIGHT spectrum, pitch F0, and aperiodicity values. The most notable

difference between STRAIGHT and conventional speech analysis systems lies in the

aperiodicity estimation, which takes into account the fact that speech sounds are not

strictly periodic due to movements of articulators and fluctuations of the excitation

source [23]. STRAIGHT is widely used in the voice conversion research community

and is reported to produce high-quality resynthesized speech [24]. For this reason, we

incorporated a subset of features extracted by this toolbox in our work.

Efficient feature extraction is important in training voice conversion models. Prefer-

ably, we would like relevant features to also have relatively low dimensions. The

reason for this is that higher dimensional feature vectors require more data and lead

to numerical problems during training [54]. The STRAIGHT spectrum extracted

by the toolbox is not appropriate for direct parameterizations and training, since it

has comparable dimensionality to the FFTs and therefore are difficult to train on.

Consequently, we use only the pitch F0 and aperiodicity information extracted by

STRAIGHT for our training data.

The overall feature extraction process for constructing a voice conversion model

is outlined as follows. First, we compute LPCs of order p and then convert them

to LSF features fLSF[i]. We also save Q[i], the residual mean square error of the
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pth coefficient from the LPC computation process. Q[i] is necessary to correctly

reconstruct the energy of the LPC spectrum from corresponding LSFs, which will be

used in the synthesis process. We then used the STRAIGHT toolbox to get the pitch

estimate F0 and 2 aperiodicity values apT [i]. These parameters are then augmented

into our overall LSF-STRAIGHT feature vector, which is (p+ 4)-dimensional:

fz[i] = [ fLSF
T [i] F0[i] apT [i] Q[i] ]T (3.1)

In our work, p = 16, making the feature vectors 20-dimensional. Were we to use

FFTs or STRAIGHT spectrum frames, each feature vector would have been 257-

dimensional, which makes training not feasible.

3.2.2 Conversion Model Construction

A Voice Conversion Model attempts to predict output features f̂y[i] from input fea-

tures fx[i] via a joint PDF of trained input, output, and a corresponding regression

function [21]. According to Kain et al. [61], modeling the joint density rather than

source density alone should lead to more judicious allocation of mixtures for the trans-

formation function estimation, though obviously the cost of computation is higher.

After training features of the source fsx[i] and target fsy[i], each with dimension

L, have been computed, we shift and normalize each feature vector such that each

vector has zero mean and unit variance to avoid numerical problems during GMM

training. In particular, the normalized feature vectors f̃sx/y[i] are calculated as:

f̃sx/y[i] = αsx/y ◦ fsx/y[i]− f sx/y (3.2)
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where ◦ denotes element-wise multiplication with

αsx/y =

√
1

Var{fsx/y}
(3.3)

and

f sx/y = αsx/y ◦ E{fsx/y} (3.4)

The normalization parameters αsx/y, f sx/y are stored so that one can easily revert

back to nominal values from normalized features and vice versa.

Next, we align source and target features linearly across matching phonemes, such

that each frame of the source utterance has a corresponding frame from the target

utterance. Here we used the available transcription in our database. These feature

vectors can then be stacked in joint 2L-dimensional vectors fxy[i] =
[

f̃Tsx[i] f̃Tsy[i]
]T

.

Using these aligned and normalized joint features, we can train a GMM with K mix-

tures and full/diagonal/scalar covariance matrices to obtain a joint density function:

F (̂fxy[i]) =
K∑
k=1

αxyk · NR2L (̂fxy[i];µxyk,Σxyk) (3.5)

In this work, L = 20, K = 12 and full covariance matrices were used.

The feature conversion function was derived following the continuous probabilistic

transform method in [62]. Given source feature fx[i] and the trained GMM for joint

features fxy[i] in Equation 3.5, the corresponding target feature can be estimated by

evaluating the conditional expectation; i.e. f̂y[i] = E{fy[i] | fx = fx[i]}. The transfor-

mation function is a weighted sum of linear models, where the weights depend on the
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probability of the input being in a particular class [21]:

f̂y[i] = T (fx[i]) =
K∑
k=1

(Wk · fx[i] + bk) · p(k|fx[i]) (3.6)

where

p(k|fx[i]) =
αxyk · NRL(fx[i];µXk ,Σ

XX
k )∑K

n=1 αxyn · NRL(fx[i];µXn ,Σ
XX
n )

(3.7)

Wk = ΣY X
k (ΣXX

k )−1 (3.8)

bk = µYk −ΣY X
k (ΣXX

k )−1µXk (3.9)

Σxyk =

ΣXX
k ΣXY

k

ΣY X
k ΣY Y

k

 (3.10)

and

µxyk =

µXk
µYk

 (3.11)

The transformation function in Equation 3.6 assumes (1) Gaussian distribution of

source features, and (2) source and target features are jointly Gaussian.

3.2.3 Target Speech Synthesis

Target speech is synthesized from the transformed feature vectors f̂y[i]. Depending on

the type of features used, the synthesis process essentially decodes the transformed

parameters back to a speech signal. In our work, the STRAIGHT toolbox allowed

synthesis from the LSF-STRAIGHT features described in Section 3.2.2. To be con-
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sistent with the input syntax of the toolbox, we first use the toolbox to create a

STRAIGHT object that stores source signal parameters necessary for synthesis. Af-

ter feature conversion, we replace relevant elements of source features fx[i] in the

STRAIGHT object with corresponding converted elements of f̂y[i], i.e. the converted

pitch estimate F̂0[i] and aperiodicity parameters âp[i]. Target LPC features are com-

puted from the converted f̂LSF[i] and a new LPC spectrum can be obtained from

these new LPCs and the converted residual error Q̂[i]. We replace the STRAIGHT

spectrum in the current STRAIGHT object by this LPC spectrum.



Chapter 4

Noise-Robust Voice Conversion

While the majority of voice conversion systems rely on a clean source input, such

ideal conditions might not be realistic. To the best of my knowledge, limited research

has been conducted on voice conversion in noisy environments [39]. Our research

investigated a noisy voice conversion approach with inventory-based analysis of the

source signal.

An immediate solution to the problem of voice conversion in noisy conditions is

to concatenate a speech enhancement subsystem with a standard voice conversion

system. In this study such a system was our reference for comparative experiments.

Alternatively, we propose a method that follows the inventory-style processing algo-

rithm to indirectly estimate the underlying features of the source speech. Both the

reference system and our proposed system are described in the following sections.

4.1 System Description

We assume to have access to an inventory of undistorted speech signals from our source

and our target speaker with matching content. Inventory utterances are properly

41
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energy equalized via ITU-T P.56 [63] and concatenated into one long signal stream s[n]

for each speaker. The observed noisy utterance by the source speaker x[n] = z[n]+v[n]

is the input to our voice conversion system, where z[n] denotes the underlying clean

signal and v[n] denotes additive noise. Our inventory signals are band-limited between

50 Hz and 4 kHz and sampled at 8 kHz. We lowered our upper band cut-off frequency

(and correspondingly reduced the sampling rate) to reduce the computational cost

involved in training joint source-target features (See Section 4.1.2).

All subsystems in our proposed procedure employ signal segmentations of 20-ms

Hamming-windowed frames with 50% overlap. We use x[i] to denote the ith frame

from segmentation, i.e.

x[i] = [x[80 · i] x[80 · i+ 1] ... x[80 · i+ 159] ]T . (4.1)

Frame symbols for other signals such as ẑ[i] are defined analogously.

A conceptual block diagram for the proposed conversion system and the employed

reference system is shown in Figure 4.1. First, the noisy source-speaker signal is pre-

processed by a standard Log-MMSE filter with a decision-directed approach after

Ephraim and Malah [7], resulting in signal frames ẑ[i]. This filtered signal is then

processed by two separate voice conversion systems: the direct conversion branch,

which serves as our reference system, and the inventory conversion branch, which

represents the proposed procedure. Target speech signals are synthesized in both

branches with the TANDEM-STRAIGHT toolbox [24].

In the direct conversion branch, LSF-STRAIGHT features are extracted from

the pre-processed frames ẑ[i] as described in Section 3.2.1. We denote the source-

speaker feature vectors as fz[i]. These features are then converted to target-speaker

features f̂DI[i] through a pre-trained Gaussian Mixture Model (GMM) as described
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Figure 4.1: Block Diagram of the Noise-Robust Voice Conversion Procedures
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in Section 3.2.2. We use this directly converted signal ŷDI [n] as the output of our

reference system for a comparative performance analysis.

In the inventory conversion branch, instead of directly computing LSF-STRAIGHT

features from ẑ[i], we employ the inventory search procedure described in Section 4.1.3

to find the optimal feature frames available in our inventory; these features will be

the input to the pre-trained GMM. The converted features, denoted by f̂IV[i], are

used to synthesize the proposed target-speaker speech signal ŷIV [n].

4.1.1 Feature Extraction

In our proposed procedure, two sets of features need to be extracted: Mel-Frequency

Cepstral Coefficients (MFCCs) for the inventory search procedure and LSF-STRAIGHT

features for the conversion procedure. We need both types of features because MFCCs

are more robust to determine the phonetic cluster membership of a frame under

noisy conditions, whereas the LSF-STRAIGHT features of clean frames allow us to

re-synthesize high quality speech via the TANDEM-STRAIGHT toolbox.

The MFCC feature extraction process follows the procedure described in Section

2.4.1: we augment 13-dimensional MFCC vectors ĉz[i] with the usual ∆ and ∆∆

coefficients after [15] to arrive at 39-dimensional feature vectors:

cz[i] = [ ĉTz [i] ∆ĉz
T [i] ∆∆ĉz

T [i] ]T . (4.2)

The LSF-STRAIGHT feature extraction process follows the procedure in Section

3.2.1: using the STRAIGHT toolbox [24], we compute the pitch estimate F0[i] and 2

aperiodicity parameters ap[i] for each frame. For LSF features, we first compute the

LPCs of order 16 and then convert them to LSF features fLSF[i], saving the residual

mean square error Q[i] of the 16th coefficient from the LPC computation process. The
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resulting LSF-STRAIGHT feature vectors are of dimension 20:

fz[i] = [ fLSF
T [i] F0[i] apT [i] Q[i] ]T (4.3)

As described in Section 3.2.2, we use the LPC spectrum to synthesize output

speech signal in lieu of the STRAIGHT spectrum because the former allows for a

significantly lower-dimensional parametrization for feature training.

4.1.2 Inventory Design and System Training

Corresponding to the two sets of features described in Section 4.1.1, two training

procedures are necessary: one for the inventory search subsystem with MFCCs and

another for the conversion subsystem with the LSF-STRAIGHT features.

We design our waveform inventory by dividing clean source utterances s[n] into

collections Sq of phonetically similar segments. After all silent parts of s[n] are re-

moved, the remaining segments of s[n] are categorized into one of 40 phonetic classes

(q = 1, 2, ...40). In addition to the waveform inventory Sq, we construct our feature

inventory Cq of MFCC features belonging to the same phonetic class. The training

process for the waveform and MFCC inventories follows the simplified method de-

scribed Section 2.4.2: A GMM with 3 mixtures and diagonal covariance is trained on

each Cq to yield 40 PDF models

Cq(ĉs[i]) =
3∑

k=1

αcsk · NR39(ĉs[i];µcsk,q,Σcsk,q) (4.4)

for q = 1, 2, ...40 with the weights αcsk, the mean vectors µcsk,q and the covariance

matrices Σcsk,q of mixtures k in cluster q. In addition, we construct P, the state

transition probability matrix by counting the number of observed transitions from
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a particular state and dividing it by the total number of occurrences of each state

transition.

Analogously, we construct a feature inventory Fq, q = 1, 2, ...40, for LSF-STRAIGHT

features that are phonetically similar based on the database transcriptions. At this

point, we train a different GMM for the voice conversion process following Section

3.2.2: we compute all training LSF-STRAIGHT features fsx[i] and fsy[i] for the source

and target speakers, respectively. We also shift and normalize each feature vector

such that each vector has zero mean and unit variance as in Equations 3.2 through

3.4. We align source and target features linearly across matching phonemes, such

that each frame of the source utterance has a corresponding frame from the target

utterance. These feature vectors can then be stacked in joint 40-dimensional vectors

fxy[i] =
[

f̃Tsx[i] f̃Tsy[i]
]T

. We train a GMM with 12 mixtures and full covariance

matrices on these joint features fxy[i] and obtain a joint density function:

F (̂fxy[i]) =
12∑
k=1

αxyk · NR40 (̂fxy[i];µxyk,Σxyk) (4.5)

4.1.3 Inventory Based Voice Conversion

For voice conversion, our system consists of the inventory search procedure and the

feature conversion and synthesis procedure.

Inventory Search

The inventory search procedure follows the search procedure in Section 2.4.3. The

Log-MMSE enhanced (pre-processed) signal frames ẑ[i] are subjected to an extrac-

tion of MFCC features cz[i]. The likelihood value for each class q is calculated via
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λq[i] = Cq(cz[i]) as in equation 4.4. With these likelihood estimates and the estab-

lished state transition matrix P, we find the most likely phonetic class q∗[i] associated

with the current frame via the Viterbi algorithm. Within the selected cluster inven-

tory Sq∗ , we search for the best waveform representation for ẑ[i] with the normalized

matched filter approach described in [15]. Knowing the location of this best waveform

in our inventory Sq∗ , we can find the corresponding best matching LSF-STRAIGHT

feature f∗zx[i] in our feature inventory Fq∗ .

Feature Conversion and Synthesis

The feature conversion procedure follows the process described in Section 3.2.2: we

follow the continuous probabilistic transform method in [62]. Given source feature

fzx[i] and the trained GMM for joint features fxy[i], the target feature can be estimated

by the transformation function f̂zy[i] = T (fzx[i]) as in Equations 3.6 through 3.11.

Note that in the inventory conversion branch we use the feature mapping f̂IV[i] =

T (f∗zx[i]) while in the direct conversion branch we use the feature mapping f̂DI[i] =

T (fzx[i]).

Target speech is then synthesized from the respective transformed feature vectors

via the TANDEM-STRAIGHT toolbox, as described in Section 3.2.3. We first use the

toolbox to extract STRAIGHT features and create a STRAIGHT object that stores

source signal parameters necessary for synthesis. After inventory search and feature

conversion, we replace relevant elements of source features fzx[i] in the STRAIGHT

object with corresponding converted elements of f̂zy[i], i.e. the converted pitch es-

timate F̂0[i] and aperiodicity parameters âp[i]. Target LPC features are computed

from the converted f̂LSF[i] and a new LPC spectrum can be obtained from these new

LPCs and the converted residual error Q̂[i]. We replace the STRAIGHT spectrum in

the current STRAIGHT object by this LPC spectrum.
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4.2 Experiment Description and Results

We analyzed the performance of the proposed method with voice recordings from the

CMU_ARCTIC database, mentioned in Section 2.3.1. Two of the 7 speakers were used to

study the performance and feasibility of the proposed voice conversion scheme. As our

source speaker we employed the US English male speaker with the identifier BDL and

as a target speaker we chose the US English female speaker with the identifier SLT. The

two speaker sets contain a minimum of 1132 phonetically balanced English utterances

each. Most utterances are between one and four seconds long. The content of the

recorded sentences was specifically designed to cover a large variety of articulatory

gestures for each speaker. Full phonetic transcriptions of all utterances with (roughly)

40 elementary phonetic units per speaker are available. The datasets of the two chosen

speakers (BDL and SLT) were divided into two strictly disjoint sets: a training set of

1000 utterances, which constituted our respective speech inventory, and a testing set

which encompassed all remaining utterances. All data was appropriately resampled

to a 4 kHz bandwidth with an 8 kHz sampling rate. Additive white noise and jet

cockpit noise was taken from the NOISEX database from the Institute for Perception-

TNO, The Netherlands Speech Research Unit, RSRE, UK [64]. The noise was added

to the source speaker testing data at a signal-to-noise ratio (SNR) of 10 dB under

consideration of the respective active speech level after ITU recommendation ITU-T

P.56 [63]. System training was performed with the procedures outlined in Section

4.1.2.

To evaluate the performance of the proposed procedure perceptually we designed

a Comparison Category Rating (CCR) test after ITU-T recommendation P.800 [2]

with 21 non-expert human listeners. As a reference we employed the Log-MMSE

enhanced LSF-STRAIGHT method that is termed direct conversion in Section 4.1.
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The subjects were presented with 20 one-to-one comparisons between the proposed

method and the competing direct method for each of the two considered noise types

(white noise and jet cockpit noise). Subjects were asked to rate the overall quality

of the proposed inventory based method in comparison to the reference method on a

seven point scale. Ratings could be entered as +3 (Much Better), +2 (Better), +1

(Slightly Better), 0 (About the Same), -1 (Slightly Worse), -2 (Worse), and -3 (Much

Worse). No particular instruction was given to the subjects on how to judge speech

“quality”. Prior to the experiment subjects were merely exposed to Modulated Noise

Reference Unit (MNRU) example signals after ITU standard P.810 [65] as an aid to

explain the test procedure.

Histograms of the response counts across all subjects and all test utterances for

each of the two considered noise types are shown in Figure 4.2 and Figure 4.3. The

majority of subjects rated the inventory based method as Slightly Better in each case.

Approximately 21 % of the subjects assigned a Better and Much Better score for the

white noise case, whereas approximately 30 % of the subjects assigned a Better and

Much Better score for the jet cockpit noise case. For white noise the average score

across all responses was 0.77 with a standard deviation of 0.98 and for jet cockpit

noise the average was 1.00 with a standard deviation of 1.02. Most subjects had a

strong preference for the output of the proposed method over the reference method.

Lastly, we also conducted an ABX test, in which A and B were utterances by

either the source or the target speaker. The content of the utterances in X were the

same as those in A and B. Subjects were presented with utterances A, B, and X and

then asked to rate the converted utterance X on a scale of 1 to 5. A 1 indicated

more similarity to the source speaker and a 5 indicated more similarity to the target

speaker. For the white noise case, the average score of all subject ratings was 4.05

with a standard deviation of 0.77. For the jet cockpit noise case, the average score was
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3.84 with a standard deviation of 0.77. Across both noise cases, the average score was

3.95 with a standard deviation of 0.77. All subjects reported that converted speech

was clearly identifiable as the target speaker’s voice, but some gave lower scores due

to imperfections in prosodic characterization.

Figure 4.2: Response counts of a Comparison Category Rating test with white noise
after ITU-T recommendation P.800 [2].
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Figure 4.3: Response counts of a Comparison Category Rating test with jet cockpit
noise after ITU-T recommendation P.800 [2].

4.3 Future Work

As mentioned in Section 4.2, our proposed system yielded encouraging but unideal

results. Since we are dealing with both speech enhancement and voice conversion,

possible improvements exist in both aspects.

4.3.1 Speech Enhancement

For a long time, speech enhancement researchers have focused on optimizing only the

magnitude spectrum estimation. In fact, in the MMSE sense, the noisy phase is the

optimal estimator and does not affect amplitude estimation [42, Ch. 7]. However, we

have seen that optimization in the mathematical sense does not guarantee optimal
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perceived speech quality. Therefore, the role of phase estimation in speech enhance-

ment has been potentially underestimated [66]. In [67], Gerkmann and Krawczyk

argue that clean speech phase provides additional information that can be exploited

for an improved amplitude estimation. They derive a MMSE optimal estimator for

the clean speech spectral amplitude when the spectral phase in given. This estima-

tor was shown to potentially improve the PESQ measure by 0.5 in babble noise as

compared to state-of-the-art amplitude estimators [67].

In addition to phase estimation, we are also considering slight modifications to

our inventory search procedure. In particular, as described in Section 2.4.3, the

inventory search at the moment seeks the clean segment with optimal correlation

values to the noisy segment of interest. This approach has potential boundary issues

when concatenating segments not originally adjacent to each other. To take into

account boundary effects, we can introduce concatenation cost to our inventory search

procedure, defined as the correlation value between the overlapping samples from

frames to be concatenated. The optimal segment will be chosen based on both the

optimal correlation value and concatenation cost.

Most recent research in speech enhancement as described in Section 1.2 include

a combination of Wiener filtering and dictionary learning by Tseng et al. [19] and

deep neural networks (DNN) by Xu et al. [20]. The authors claimed to successfully

reduce musical artifacts [20] and intelligibility issues [19]. These improvements can be

incorporated in our system depending on how much restructuring these modifications

require.
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4.3.2 Voice Conversion

On the voice conversion side, a promising modification to our conversion model is

the Bilinear Frequency Warping Plus Amplitude Scaling (BLFW+AS) approach by

Erro et al. [38]. The main difference of this approach lies in the conversion model

function. In particular, Erro et al. propose using a bilinear warping matrix in place of

the weighing matrix Wk ·p(k|(·)) in Equation 3.6 and a similar bias vector bk ·p(k|(·))

with modified estimation during training [38]. The authors reported results in quality

of speech synthesized comparable to other state-of-the-art voice conversion methods

despite the relative simplicity. Because of the similarity in the system flow of this

approach to ours, we are considering implementation of BLFW+AS in our system.

Another possible modification to our system is using a different set of features and

a promising candidate are the pitch bases of voiced segments LPC residuals. This

approach is motivated by Nickel and Oswal’s work on optimal pitch bases expansions

[68] in 2003. By signal “residual” we mean the output of the voiced speech signal after

the inverse LPC filter. In essence, the pitch bases are obtained by (1) collecting LPC

residuals of voiced segments of a certain speaker, (2) time-aligning these residuals

by pitch events, and (3) performing principal component analysis (such as singular

value decomposition) on the collected pitch waveforms. The singular values resulting

from this operation can be used as additional features for our voice conversion system.

Since the LPCs/LSFs encode most of the information about the spectral envelope, we

hope to use the pitch bases to encode spectral details (or residuals). Informal listening

tests of this method gave encouraging results considering the relative simplicity of the

approach.



Chapter 5

Conclusion

This thesis presented a voice conversion system for operation in noisy environments.

In constructing such a system, we studied essential methods in speech enhancement

as well as voice conversion. Traditional enhancement methods (spectral subtraction

and statistical filtering) were implemented and compared to a new inventory-based

method. The inventory-based method outperformed most traditional methods in

quality of resynthesized speech.

For voice conversion, a standard Gaussian Mixture Model-based system was stud-

ied. This popular approach was integrated with the STRAIGHT toolbox to develop

a voice conversion system with noisy input considerations. In particular, source sig-

nal parameters were indirectly estimated by searching for the best matching clean

feature in an established inventory. Two noisy-environment voice conversion systems

were constructed for a comparative study: a direct voice conversion system and an

inventory-based voice conversion system, both with limited noise filtering at the front

end. Listening tests indicated that the proposed inventory-based conversion system

slightly outperformed the direct conversion system. Improvements to our system can

be incorporated in both the enhancement and the conversion aspects.

54
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This thesis was one of the first attempts to solve a problem of limited attention so

far: voice conversion in noisy environments. Consequently, our work was one of the

first to integrate both speech enhancement and voice conversion in one system. Our

implementation can therefore be used as a research platform for further work in this

area. Considering the complexity of this system, however, the quality of converted

signals was less than ideal. Future work may therefore have to focus on improvements

and/or alternative approaches. The encouraging results do indicate, nevertheless, that

the inventory-based method holds its merit in both speech enhancement and voice

conversion.
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